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Abstract: A hierarchical lane-keeping controller of passenger cars is analyzed, with the
consideration of feedback delay in the control loop. The higher-level controller generates the
desired steering angle based on the delayed feedback of the lateral position and yaw angle of
the vehicle. The feedback delay of the lateral position and the yaw angle are treated separately
in the model, therefore more general sensor setups and estimation algorithms can be handled.
A lower-level proportional-integral-derivative power steering controller ensures that the desired
steering angle signal is followed properly. The linear stability analysis of the resulting closed-
loop system is performed, with a focus on the controller parameters and the delay values. The
optimal control gains, leading to the fastest decay of the solution are also investigated in detail.
The results are showcased with the help of stability charts and numerical simulations.
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1. INTRODUCTION

One of the fundamental aspects of automated driving
functions is the ability of the vehicle to follow a given
path. It is a commonly used simplification to decouple
the longitudinal and lateral dynamics of the vehicle, and
design the corresponding controllers separately (Rajamani
(2011), Beregi et al. (2021)). In this paper, the lateral
controller is analyzed in detail, with the consideration of
a hierarchical control scheme. The higher level controller
uses the lateral position and yaw angle errors of the
vehicle with respect to the reference path to generate a
desired steering angle. A lower-level proportional-integral-
derivative (PID) controller is then used to ensure that the
actual steering angle matches the reference.

In order to avoid unwanted oscillations and stability issues,
the time delay in the control loop has to be considered
when selecting the control gains. In case of a steering
controller, the main sources of the feedback delay are
sensor and communication delays, the computation time of
the estimation and control algorithms, and actuator delay
(Heredia and Ollero (2007), Vörös and Takács (2022)).
Typically, the delay of the lower-level controller, which
is related to its sampling frequency is much smaller than
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the delay in the higher-level control loop. In Beregi et al.
(2018), it was shown that as long as the lower-level
feedback delay is below a critical value (≈1 ms), it has a
negligible effect on the stability of the lane-keeping control,
therefore in this paper, only the time delay of the higher-
level control loop will be considered.

However, due to the different sensor setups and estimation
algorithms, it is possible that not all state variables have
the same delay in the higher-level controller. Therefore,
the feedback delay of the lateral position and the yaw
angle error will be treated separately in our analysis. By
performing the linear stability analysis of the resulting
time delay system with multiple delays, the effects of
the different control parameters and delay values on the
stability and performance of the closed-loop system will
be highlighted. We show that in certain cases, it can even
be beneficial to increase the feedback delay.

The rest of the paper is organized as follows: the vehicle
model with the hierarchical steering controller is presented
in Section 2 and the linear stability analysis of the closed-
loop system is performed in Section 3. In Section 3.1,
the critical characteristic exponents are investigated, in
Section 3.2, the domains of stabilizing control gains are
presented in stability charts, and in Section 3.3 the control
gains leading to the fastest decay of the solution are
investigated. The results are concluded in Section 4.

2. VEHICLE MODEL AND CONTROL DESIGN

In order to describe the lateral dynamics of the vehicle,
we use the in-plane bicycle model as shown in Fig. 1. The
model includes four generalized coordinates: xR and yR



Fig. 1. Single-track vehicle model.

describe the position of the rear axle centerpoint (point R),
ψ denotes the yaw angle and δs is the steering angle. The
vehicle parameters include the wheelbase f , the distance
d between the center of gravity (point C) and the rear
axle, the vehicle mass m and the yaw moment of inertia
JC about the center of mass. The mass moment of inertia
of the steering system is denoted by JF.

The longitudinal speed of the rear wheel driven vehicle is
assumed to be constant (V ). This can be considered as a
kinematic constraint in the model, which makes the system
non-holonomic. The equations of motion are derived using
the Gibbs–Appell method (Greenwood (2006)), but there
are other methods available as well (see e.g. Bloch (2003)
and Kane and Levinson (1985)). For the details of the
derivation, see Vörös and Takács (2022).

The resulting equations for the time derivatives of the
generalized coordinates are

ẋR = V cosψ − σ1 sinψ , (1)

ẏR = V sinψ + σ1 cosψ , (2)

ψ̇ = σ2 , (3)

δ̇s = σ3 , (4)

where σ1, σ2 and σ3 are the so-called pseudo-velocities,
which are defined as the lateral velocity of point R, the
yaw rate of the vehicle, and the steering rate, respectively.
The rest of the equations of motion describe the dynamics
of the pseudo-velocities as follows:
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md JC +md2 + JF JF
0 JF JF





[

σ̇1
σ̇2
σ̇3

]

=

[

f1
f2
f3

]

, (5)

where the terms on the right-hand side are

f1 = −FR − FF cos δs −mV σ2 , (6)

f2 = −MF −MR − FFf cos δs −mdV σ2 , (7)

f3 = −MF +Ms . (8)

Here, Ms denotes the steering torque, FF and FR refer to
the tire side forces, while MF and MR are the self-aligning
moments at the front and rear wheels, respectively. Since
the focus of this paper is the linear stability analysis of
the system, the tire forces and self-aligning moments are
modeled as linear functions of the side-slip angles αF and
αR with coefficients Ci (cornering stiffness) and C̃i:

Fi = Ciαi , Mi = −C̃iαi , i ∈ {F,R} . (9)

The side-slip angles are calculated as follows:

αF = arctan

(

(σ1 + fσ2) cos δs − V sin δs
(σ1 + fσ2) sin δs + V cos δs

)

, (10)

αR = arctan
(σ1

V

)

. (11)

Next, we design a feedback controller for lane-keeping to
allow stable path following of the vehicle. For the stability
analysis of the closed-loop system, a straight-line reference
path along the x axis is considered. In order to better
handle more complex curvatures, the feedback controller
can be extended with a feedforward term, as in e.g. Qin
et al. (2021).

We use a hierarchical controller design, where the higher-
level control loop generates the desired steering angle
(δdess ) based on the delayed feedback of the lateral devia-
tion and the yaw angle error:

δdess (t) = −PyyR(t− τy)− Pψψ(t− τψ) . (12)

Depending on the sensor configuration and the estimation
methods used in the vehicle, the feedback delay of yR and
ψ might not be the same in practice, therefore we use the
notation τy and τψ to differentiate them. In addition, Py
and Pψ represent the corresponding control gains.

The resulting desired steering angle from the higher-level
control law in Eq. (12) is then used as the reference signal
of the lower-level controller, which generates the steering
torque Ms. Here, a PID controller of the form

Ms = −kp
(

δs − δdess

)

− kdσ3 − kiz (13)

is used, where kp, kd and ki represent the control gains, and
the integral of the error is considered using the additional
state variable

ż = δs − δdess . (14)

In order to simplify the calculations, the reference steering
rate is assumed to be zero. The numerical values of the
lower-level control gains and JF used in this paper are
based on Beregi et al. (2021) (see Table 1).

3. STABILITY ANALYSIS

Since a straight-line reference path along the x axis is
considered in our analysis, the lateral dynamics of the
vehicle will not depend on the coordinate xR, therefore
it can be omitted. With the consideration of the integral
state z, the state vector of the closed-loop system consists
of

x = [yR ψ δs σ1 σ2 σ3 z]
T
, (15)

and stable motion along the reference path corresponds
to x(t) ≡ 0. From the point of view of designing the
higher-level controller, the linearized system around this
equilibrium can be written as

ẋ = Ax+Bδdess , (16)

where the desired steering angle is considered as the sys-
tem input and the parameters of the lower-level controller
are included in the state and input matrices:
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, (17)

B = [0 0 0 B4 B5 B6 −1]
T
. (18)

The elements of matrix A and B are listed in the Ap-
pendix. Using the control law in Eq. (12), the characteristic
equation of the closed loop system is

D(λ) := det
(

λI−A−B
(

Kye
−λτy +Kψe

−λτψ
))

= 0 ,
(19)

where the row vectors Ky and Kψ include the higher-level
control gains in the appropriate positions:

Ky = [−Py 0 0 0 0 0 0] , (20)

Kψ = [0 −Pψ 0 0 0 0 0] . (21)

Because of the time delays in the system, the characteristic
equation is transcendental, with infinitely many roots for
the characteristic exponent λ. At the stability boundaries,
either a real characteristic exponent crosses the imaginary
axis (static loss of stability, λ = 0) or a complex conjugate
pair of characteristic roots move to the right half plane
(dynamic stability loss, λ = ±iω, where ω is the oscillation
frequency at the stability boundary). Substituting λ = 0
into Eq. (19) leads to

D(0) =
Pyki

mJFJC

(

CF

(

C̃R + fCR

)

− C̃FCR

)

= 0 . (22)

This means (assuming realistic vehicle parameters) that
static stability loss can occur at the control gains Py = 0
and ki = 0, regardless of the delay values.

3.1 Root tendencies

Figure 2 shows the real part of the rightmost character-
istic roots as a function of the higher-level control gain
Py. The calculations were performed using the Matlab
package DDE-Biftool (Engelborghs et al. (2001)). Black
lines correspond to real characteristic roots, while blue
lines represent complex conjugate pairs of roots. In order
to better understand the effects of the integral action in the
lower-level controller, Fig. 2(a) shows a simplified system
without the integrator. In this case, the last term of the
lower-level control law in Eq. (13) is not present (reducing
to a PD controller), and the integral state z is not part of
the state vector x.

It can be seen that at the stability boundary of Py = 0
(denoted as P fold

y in Fig. 2), indeed a real characteristic
exponent crosses the imaginary axis. As the value of Py
is increased inside the stable domain, the real part of the
rightmost root decreases at first, indicating an improve-
ment in control performance and stability. There exists an
optimum (P opt

y ), where two real characteristic exponents
merge. As Py is further increased, these two exponents
form a pair of complex conjugate roots. From this point on,
the solution becomes oscillatory and control performance
degrades as this complex pair of roots approaches the
imaginary axis. Finally, the complex pair moves to the

Table 1. Vehicle parameters

Parameter Value

Vehicle wheelbase (f) 2.7 m

Distance between rear axle
and center of gravity (d)

1.35 m

Vehicle mass (m) 1430 kg

Yaw moment of inertia (JC) 2500 kgm2

Steering system moment of inertia (JF) 0.25 kgm2

Cornering stiffness of front wheels (CF) 67000 N

Cornering stiffness of rear wheels (CR) 50000 N

Self-aligning moment coefficient,

front wheels (C̃F)
1116.7 Nm

Self-aligning moment coefficient,

rear wheels (C̃R)
833.3 Nm

Lower-level steering control
proportional gain (kp)

640 Nm

Lower-level derivative gain (kd) 8 Nms

Lower-level integral gain (ki) 40 Nm/s

Longitudinal velocity (V ) 20 m/s

right half-plane at the stability boundary PHopf
y , leading

to a Hopf bifurcation in the nonlinear system.

When the integral term and the corresponding integral
state z is introduced in the lower-level controller, an
additional real characteristic root appears in the system,
relatively close to the imaginary axis (see Fig. 2(b)).
Although in most of the stable domain, this additional
root resides closest to the imaginary axis, simulations show
that the dominant system dynamics still behave according
to the rest of the characteristic exponents, that remain
largely in the same configuration as without the integral
control. One slight change is that at the boundary of
static loss of stability (Py = 0), this new root crosses the
imaginary axis instead of the original real λ. This change
becomes more apparent as ki is increased, as in Fig. 2(c).

3.2 Stability charts

In order to determine the boundaries of dynamic loss of
stability in the planes of the different control gains, we
used the D-subdivision method (Neimark (1949)). This
involves substituting λ = iω into the characteristic equa-
tion, separating the real and imaginary parts of the re-
sulting complex equation, and solving the two equations
for two system parameters. This leads to the curves of
dynamic stability loss, parameterized by ω. These curves
separate regions of the parameter plane with the same
number of unstable characteristic roots. The stable pa-
rameter domain among the resulting stability boundaries
can be identified using a number of methods: e.g. Stépán’s
formulae (Stépán (1989)), the semi-discretization method
(Insperger and Stépán (2011)) or numerical simulations
can all be applied to identify the stable region. For the
results in this paper, the semi-discretization method was
used.

First, the domains of stabilizing control gains of the
lower-level controller were analyzed in Fig. 3. The higher-
level gains in these stability charts were fixed at Py =
0.0095 m−1 and Pψ = 0.56, which corresponds to the
fastest decay of the solution for the parameter set in
Table 1. The stability charts show that increasing the



Fig. 2. The real parts of the rightmost characteristic roots as a function of the control gain Py: (a) no integral action
in the lower-level controller; (b) the integral gain is set to ki = 40 Nm/s; (c) ki = 200 Nm/s. Black continuous and
blue dashed lines represent real and complex conjugate pairs of characteristic roots, respectively. The color of the
stability boundary Reλ = 0 indicates the stable (green) and unstable (red) ranges of Py. Pψ = 0.5, τy = τψ = 0.5 s
and the rest of the parameters are listed in Table 1.

Fig. 3. Stable parameter domains of the lower-level con-
troller for Py = 0.0095 m−1, Pψ = 0.56 and τy = τψ =
0.5 s. Vehicle parameters are listed in Table 1.

derivative gain kd decreases the upper limit of the sta-
bilizing values of kp, while higher integral gains ki mainly
affect the lower bound of stable kp values.

In Fig. 4, the stable domain of the higher-level control
gains Py and Pψ are plotted for different amounts of
feedback delay. It can be seen that increasing the delay
of the yaw angle error leads to a sharp decrease in the size
of the stable domain. On the other hand, increasing the
feedback delay of the lateral deviation mainly affects the
shape of the stable parameter domain. In certain cases,
there even exist control gain combinations that turn from
unstable to stable when τy is increased.

3.3 Optimal control gains

The optimal control gain combinations, leading to the
fastest decay of the solution are also indicated in Fig. 4
(for the cases of τψ = 0, the optimum does not fall into
the plotted region of the stability charts). As detailed in
Section 3.1, the real part of the rightmost characteristic
exponent (ignoring the one which corresponds to the
integral state z) has the smallest value in these points.
We used first order semi-discretization to determine these
optimal points, by applying a step-size of Py = 5 ·
10−4 m−1 and Pψ = 5 · 10−3 over the stable domain. The
discretization size of the time delays was set to 0.01 s.
The location of the optimal gain pairs show that achieving
the fastest decay of the solution does not correspond to
using the largest possible gain values. Especially in terms

of Py, relatively smaller values lead to the best control
performance, as explained by the root tendencies in Fig. 2.

The colormap in Fig. 5 shows how the real part of the
critical characteristic exponent using the optimal control
gains changes depending on the two delay values. This
shows how close the system is to instability in the best-
case scenario, with an optimally tuned controller. The
optimal gains and the corresponding characteristic roots
were evaluated for time delays between 0.05 s and 1 s with
a step size of 0.05 s for both τy and τψ. The calculations
were performed using the semi-discretization method with
the previously mentioned details.

Based on the critical real part corresponding to the opti-
mal gains, the negative effects of increasing τψ only become
pronounced above ≈ 0.8 s. Above this level, a similar effect
can be observed to what the stability charts in Fig. 4
suggested: namely, varying τy seems to have very little
effect on the value of the critical real part, while further
increasing τψ leads to a sharp increase towards instability.
Note, however, that the contour levels are becoming noisier
as the size of the stable domain is decreasing, since the
resolution of the Py–Pψ grid used during the calculations
was not scaled with the stable region, which affects the
accuracy of finding the optimum. In the region below
τψ = 0.8 s, an opposite effect can be observed: increasing
τy leads towards instability, but a higher value of τψ can
compensate this.

Figure 6 shows a pair of numerical simulations to further
illustrate these counterintuitive results. In panel (a), the
delay values were set according to point A in Fig. 5
(τy = 0.75 s, τψ = 0.25 s), with the corresponding optimal
gains of Py = 0.0105 m−1 and Pψ = 0.82. These result in
a somewhat slow but smooth lane-change maneuver from
the initial condition of y(t ≤ 0) = 3 m (the rest of the
state variables were set to zero). On the other hand, by
increasing τψ to 0.75 s in panel (b), the system (using
the corresponding optimal gains of Py = 0.0065 m−1

and Pψ = 0.41) reaches the reference path significantly
faster. Note that the control gains in the second case are
considerably smaller, but they still lead to a more dynamic
system response.



Fig. 4. The stable parameter domain of the higher-level control gains Py and Pψ for different amounts of feedback delay.
The stable regions are shaded in gray. The optimal points in terms of the fastest decay of the solution are denoted
by plus signs. Vehicle parameters are listed in Table 1.

Fig. 5. The real part of the critical characteristic exponent
using the optimal values of Py and Pψ as a function
of the feedback delay τy and τψ. Vehicle parameters
are listed in Table 1.

4. CONCLUSION

A hierarchical lane-keeping controller with multiple de-
lays was analyzed in this paper. With the help of stabil-
ity charts, the domains of stabilizing control gains were
identified for different combinations of feedback delay. In
addition, the optimal control gains that lead to the most
dynamic system response were also identified. We showed
that a larger stable domain does not always correspond

Fig. 6. Simulation results using the delay values in points A
and B in Fig. 5 and the corresponding optimal control
gains. Vehicle parameters are listed in Table 1.

to a faster system response and in some cases, increasing
the feedback delay can be beneficial to improve control
performance. These results can be used as guidelines when
tuning the controllers in order to achieve reliable and safe
path following of the vehicle.
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Appendix A. COEFFICIENTS OF THE LINEARIZED
SYSTEM

The elements of matrix A in Eq. (17) are the following:

A43 =
CF(md(d− f) + JC)−mdkp

mJC
,

A44 =
(−C̃R − (CF + CR)d+ CFf)dm− (CF + CR)JC

mV JC
,

A45 =
CFf(md(f − d)− JC)

mV JC
− V ,

A46 = −
dkd

JC
,

A47 = −
dki

JC
,

A53 =
CF(f − d) + kp

JC
,

A54 =
(CF + CR)d− CFf + C̃R

V JC
,

A55 = −
CFf(f − d)

V JC
,

A56 =
kd

JC
,

A57 =
ki

JC
,

A63 =
−C̃FJC − CF(f − d)JF − kp(JF + JC)

JFJC
,

A64 =

(

−C̃R − (CF + CR)d+ CFf
)

JF + C̃FJC

JFJCV
,

A65 =
f
(

CFJF(f − d) + C̃FJC

)

JFJCV
,

A66 = −kd
JF + JC

JFJC
,

A67 = −ki
JF + JC

JFJC
.

(A.1)

Matrix B in Eq. (18) includes

B4 =
dkp

JC
, B5 = −

kp

JC
, B6 = kp

JF + JC

JFJC
. (A.2)


