
Publ. Math. Debrecen

Proof-sheets for paper Ref. no.: (2014), 0–0

Some numerical characteristics of Sylvester and Hadamard
matrices

By ÁGOTA FIGULA (Debrecen) and VAKHTANG KVARATSKHELIA (Tbilisi)

Abstract. We introduce numerical characteristics of Sylvester and Hadamard mat-

rices and give their estimates and some applications.

1. Introduction

In this paper we introduce and study numerical characteristics of Hadamard

and Sylvester matrices. The considered characteristics and the structure of Hada-

mard and Sylvester matrices play an important role in the investigation of con-

vergence of series in Banach spaces (see, for example, [1], [2], [11], [12], [13], [14])

and have an independent interest as well. For this characteristics we give est-

imates (cf. Theorems 3.1, 3.6, 4.2 and 4.8). It seems to us that the proposed

characteristics may have applications in other fields of mathematics.

In Section 2 some concepts, definitions and auxiliary results required for

further discussion are given.

In Section 3 the numerical characteristic %(n) of Sylvester matrices is introdu-

ced and its estimations for the case of a Banach space with a subsymmetric basis

(ϕi) are studied. For any positive integer n we prove the following estimations

Mathematics Subject Classification: 15A45, 15A60, 15B10, 15B34.
Key words and phrases: Hadamard matrices; Sylvester matrices; Banach space; subsymmetric

basis.
This paper are supported by the European Union’s Seventh Framework Programme (FP7/2007-

2013) under grant agreements no. 317721, no. 318202, by the Shota Rustaveli National Science

Foundation grant no. FR/539/5-100/13 and by the János Bolyai Research Fellowship.
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(cf. Theorems 3.1 and 3.6)

max

{
n+ 2

6
· λ(2n), 2n

}
≤ %(n) ≤ min


1 +

n∑
j=1

2−jλ(2j−1)

 · 2n, λ(n) · 2n
 ,

where λ(n) = ‖
n∑
i=1

ϕi‖.

In Section 4 we define the analogue characteristic %n for Hadamard matrices.

For any positive integer n for which there exists a Hadamard matrix of order n

we show the following estimations (cf. Theorems 4.2 and 4.8)

max
{

(1/
√

2)λ(n)
√
n, n

}
≤ %n ≤ λ([

√
n] + 1)n,

where [
√
n] is the integer part of

√
n.

As an application of the introduced notions we give a characterization for

the spaces isomorphic to l1 in terms of these characteristics (cf. Theorem 4.10).

In Section 5 we pose one open problem which has naturally arisen from our

investigations.

Most of the results of this paper were announced in [5] without proofs. Here

these and some new results are given with complete proofs.

2. Notation and Preliminaries

We follow the standard notation and terminology used, for example, in [7].

Notations c0, lp and Lp, 1 ≤ p <∞, have their usual meaning.

A sequence (ϕi) of nonzero elements in a real Banach space X is called a

(Schauder) basis of X if for every x ∈ X there is a unique sequence of scalars

(αi) so that x =
∞∑
i=1

αiϕi. If (ϕi) is a basis in a Banach space X with a norm

‖ · ‖, then there is a constant K ≥ 1 so that for every choice of scalars (αi) and

positive integers n < m, we have

‖
n∑
i=1

αiϕi‖ ≤ K‖
m∑
i=1

αiϕi‖.

The smallest possible constant K in this inequality is called the basis constant of

(ϕi). Note that in X there exists an equivalent norm ||| · ||| (i.e. for some positive

constants C1, C2: C1‖x‖ ≤ |||x||| ≤ C2‖x‖ for every x ∈ X) under for which the

basis constant K = 1.



Some numerical characteristics of Sylvester and Hadamard matrices 3

A basis (ϕi) is called normalized if ‖ϕi‖ = 1 for all i. Let (ϕi) be a basis of

a Banach space X. A sequence of linear bounded functionals (ϕ∗i ) defined by the

relation 〈ϕ∗i , ϕj〉 = δij , where δij is the Kronecker delta, is called the sequence of

biorthogonal functionals associated to the basis (ϕi). Two bases (ϕi) of X and

(ψi) of Y are called equivalent provided a series
∞∑
i=1

αiϕi converges if and only if

∞∑
i=1

αiψi converges.

A basis (ϕi) of a Banach space X is unconditional if for any permutation

π : N → N of the set N of positive integers (ϕπ(i)) is a basis in X. If (ϕi) is

an unconditional basis of a Banach space X. Then there is a constant K ≥ 1 so

that for any choice of scalars (αi) for which
∞∑
i=1

αiϕi converges and every choice

of bounded scalars (λi) we have

‖
∞∑
i=1

λiαiϕi‖ ≤ K sup
i
λi‖

∞∑
i=1

αiϕi‖.

The smallest possible constant K in this inequality is called the unconditional

constant of (ϕi). If (ϕi) is an unconditional basis of X, then there is an equivalent

norm in X so that the unconditional constant becomes 1.

The sequence of unit vectors ei = (0, 0, . . . ,
i
1, 0, . . .), i = 1, 2, . . . , is an

example of an unconditional basis in c0 and in lp, 1 ≤ p < ∞ (the basis (ei)

is called the natural basis of the corresponding spaces). The Haar system is un-

conditional basis in the functional spaces Lp(0, 1), 1 < p < ∞. This system is

also basis in L1(0, 1), but in this space does not exist an unconditional basis.

Every normalized unconditional basis in l1, l2 or c0 is equivalent to the natural

basis of the space. Moreover, a Banach space has, up to equivalence, a unique

unconditional basis if and only if it is isomorphic to one of the following three

spaces: l1, l2 or c0.

Let (X, ‖ · ‖) be a Banach space with a normalized basis (ϕi). Consider the

expression

λ(n) = ‖
n∑
i=1

ϕi‖, n = 1, 2, . . . .

For any space with unconditional basis for which the unconditional constant is

equal to 1 we have that (λ(n)) is a non-decreasing sequence and lim
n→∞

λ(n) =∞,

except the case of the space c0. More precisely, if sup
n
λ(n) < ∞, then (ϕi) is

equivalent to the unit vectors of the space c0 (see, for example, [7], p. 120).
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A basis (ϕi) of a Banach space X is said to be symmetric if for any permuta-

tion π of the positive integers (ϕπ(i)) is equivalent to (ϕi). If (ϕi) is a symmetric

basis of a Banach space X, then there is a constant K so that for any choice of

scalars (αi) for which
∞∑
i=1

αiϕi converges, every choice of signs ϑ = (ϑi) and any

permutation π of the integers, we have

‖
∞∑
i=1

ϑiαiϕπ(i)‖ ≤ K‖
∞∑
i=1

αiϕi‖.

The smallest possible constant K in this inequality is called the symmetric cons-

tant of (ϕi).

A basis (ϕi) of a Banach space X is called subsymmetric if it is unconditional

and for every increasing sequence of integers (in), (ϕin) is equivalent to (ϕi). If

(ϕi) is a subsymmetric basis of a Banach space X, then there is a constant K so

that for any choice of scalars (αi) for which
∞∑
i=1

αiϕi converges for every choice of

signs ϑ = (ϑi) and for every increasing sequence of integers (in) we have

‖
∞∑
n=1

ϑnαnϕin‖ ≤ K‖
∞∑
i=1

αiϕi‖.

The smallest possible constant K in this inequality is called the subsymmetric

constant of (ϕi).

Every symmetric basis is subsymmetric. The converse of this assertion is not

true. The unit vectors in lp, 1 ≤ p <∞, and c0 are examples of symmetric basis.

Proposition 2.1. (see [7], Proposition 3.a.7, p. 119). Let (X, ‖ · ‖) be a

Banach space with a symmetric basis (ϕi) whose symmetric constant is equal to

1. Then there exists a new norm ‖ · ‖0 on X such that:

(a). ‖x‖ ≤ ‖x‖0 ≤ 2‖x‖ for all x ∈ X;

(b). The symmetric constant of (ϕi) with respect to ‖ · ‖0 is equal to 1;

(c). If we put λ0(n) = ‖
n∑
i=1

ϕi‖0, n = 1, 2, . . . , then {λ0(n+ 1)− λ0(n)} is a

non-increasing sequence, i.e. λ0(·) is a concave function on the integers.

The converse of the last assertion is also true in the sense that, for every

concave non-decreasing sequence of positive numbers (λk) there exists at least

one Banach space X having a symmetric basis (ϕi) with symmetric constant

equal to 1 such that ‖
n∑
i=1

ϕi‖ = λn for every n.
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Proposition 2.2. (see [7], Proposition 3.a.4, p. 116). (A). Let X be a

Banach space with a normalized subsymmetric basis (ϕi) whose subsymmetric

constant is 1. Then the following inequality is valid

‖
n∑
i=1

αiϕi‖ ≥

n∑
i=1

|αi|

n
λ(n), n = 1, 2, . . . .

(B). Moreover, if (ϕi) is a subsymmetric basis, then one has

‖
n∑
i=1

αiϕi‖ ≥

n∑
i=1

|αi|

2n
λ(n), n = 1, 2, . . . .

From this it follows that if lim
n→∞

supλ(n)/n > 0, then (ϕi) is equivalent to

the unit vectors of the space l1 (see, for example, [7], p. 120).

The Rademacher function rk : [0, 1] → {0, 1}, k = 1, 2, . . ., is defined by the

equality

rk(t) = sign(sin 2kπt).

Let us note the well-known Khintchine inequality: for every 0 < p <∞ there

exist positive constants Ap and Bp so that

Ap

(
m∑
k=1

α2
k

)1/2

≤

 1∫
0

∣∣∣∣∣
m∑
k=1

αkrk(t)

∣∣∣∣∣
p

dt

1/p

≤ Bp

(
m∑
k=1

α2
k

)1/2

, m = 1, 2, . . . ,

for every choice of scalars (α1, α2, . . . , αm). For p = 1 the best constant is A1 =

1/
√

2 (see [9]).

A Banach space X is said to be of type p if there is a constant Tp = Tp(X) ≥ 0

such that for any finite collection of vectors x1, x2, . . . , xn in X we have∫ 1

0

∥∥∥∥∥
n∑
k=1

rk(t)xk

∥∥∥∥∥
2

dt

1/2

≤ Tp

(
n∑
k=1

‖xk‖p
)1/p

, n = 1, 2, . . . .

In the Khintchine’s inequality the notions type p have meaning for the case

0 < p ≤ 2. Every Banach space has type p for 0 < p ≤ 1. The spaces

lp, Lp([0, 1]), 1 ≤ p <∞, have type min(2, p).

A Hadamard matrix is a square matrix of order n with entries ±1 such that

any two columns (rows) are orthogonal (see e.g. [4], p. 238, [8], p. 44). A
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Hadamard matrix of order n will be denoted by Hn = [hnki]. It is easy to see

that the order of a Hadamard matrix is 1 or 2 or is divisible by 4. Hadamard

puts forward the conjecture that for any n divisible by 4 there exists a Hadamard

matrix of order n. As far as we know, Hadamard’s conjecture remains open yet.

Let NH be the set of all positive integers n for which there exists a Hadamard

matrix of order n.

The following property follows from the definition of Hadamard matrices. If

Hn = [hnki] is a Hadamard matrix, then for every n, n ∈ NH, we have

n∑
i=1

hnkih
n
mi = n δkm,

n∑
k=1

hnkih
n
kj = n δij .

Therefore for any n, n ∈ NH, and every sequence (βi)i≤n of real numbers one has

n∑
k=1

(
n∑
i=1

hnkiβi

)2

= n

n∑
i=1

β2
i .

It is easily seen that multiplying any row or any column of a Hadamard

matrix by −1 we get again a Hadamard matrix.

Let a triple (Ω,A,P) be a probability space, where Ω is a nonempty set, A is

a σ-algebra of subsets of Ω and P is a probability measure on a measurable space

(Ω,A) (that is P is a non-negative measure on (Ω,A) satisfying the condition

P(Ω) = 1). Let X be a real Banach space with the topological dual space X∗. A

function ξ : Ω→ X is scalarly measurable (respectively scalarly integrable) if for

each x∗ ∈ X∗ the scalar function 〈x∗, ξ〉 is measurable (respectively integrable,

i.e. 〈x∗, ξ〉 ∈ L1(Ω,A,P)). A scalarly integrable function ξ : Ω → X is Pettis

integrable (or weak integrable) if for each A ∈ A there exists a vector mξ,A ∈ X
such that

〈x∗,mξ,A〉 =

∫
A

〈x∗, ξ〉 dP

for every x∗ ∈ X∗. For a Pettis integrable function ξ : Ω→ X the element mξ,Ω

is called Pettis integral of ξ with respect to P. It is also called the mean value

of the function ξ. The Pettis integral of the function ξ we denote by the symbol

E ξ. If a function ξ : Ω → X has a measurable norm and there exists E ξ, then

‖E ξ‖ ≤ E ‖ξ‖. For every separably valued function ξ : Ω→ X from the condition

E ‖ξ‖ < ∞ it follows the existence of the Pettis integral E ξ (”separably valued”

i.e. ξ(Ω) is a separable subset of X).

All materials considered here and much more with proofs and discussions one

can find in [7] and [10].
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3. Sylvester matrices

The Sylvester matrices are special cases of Hadamard matrices. They are

defined by the recursion relations [8], p. 45:

S(1) =

[
1 1

1 −1

]
, S(n) =

[
S(n−1) S(n−1)

S(n−1) −S(n−1)

]
, n = 2, 3, . . . .

S(n) is a Hadamard matrix of order 2n and hence 2n ∈ NH for all n = 1, 2, . . . ..

If the first column of a Hadamard matrix Hn = [hnki] consists of only +1,

then one has
n∑
k=1

hnki =

{
n, for i = 1,

0, for i = 2, 3, . . . , n.

In particular, if S(n) =
[
s

(n)
ki

]
, n = 1, 2, . . ., is a Sylvester matrix, then we

get
2n∑
k=1

s
(n)
ki =

{
2n, for i = 1,

0, for i = 2, 3, . . . , 2n

and
2n−1∑
k=1

s
(n)
ki =

{
2n−1, for i = 1 and i = 2n−1 + 1,

0, otherwise.

Let S(n) =
[
s

(n)
ki

]
, n = 1, 2, . . . , be the Sylvester matrix and X be a Banach

space with a norm ‖ · ‖ and a normalized basis (ϕi). Consider the functional

%(n)(m) =

∥∥∥∥∥
2n∑
i=1

(
m∑
k=1

s
(n)
ki

)
ϕi

∥∥∥∥∥ , m = 1, 2, . . . , 2n. (3.1)

One has %(n)(1) = λ(2n), %(n)(2) = 2

∥∥∥∥∥2n−1∑
i=1

ϕ2i−1

∥∥∥∥∥ , %(n)(2n) = 2n, where λ(2n) =∥∥∥∥ 2n∑
i=1

ϕi

∥∥∥∥. The expression %(n)(m) obviously depends on X, the norm in X, and

the choice of basis (ϕi). In particular, for the case of the spaces lp, 1 ≤ p < ∞,

with respect to the natural basis, it has the form %(n)(m) =

(
2n∑
i=1

∣∣∣∣ m∑
k=1

s
(n)
ki

∣∣∣∣p)1/p

.

We set

%(n) = max
1≤m≤2n

%(n)(m). (3.2)
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The functional %(n)(m) can be expressed as follows. Let ak =
2n∑
i=1

s
(n)
ki ϕi, k =

1, 2, . . . , 2n. Then one has %(n)(m) =

∥∥∥∥ m∑
k=1

ak

∥∥∥∥ . If (ϕi) is an unconditional ba-

sis with unconditional constant 1, then, obviously, ||ak|| = λ(2n) for any k =

1, 2, . . . , 2n and %(n) ≤ λ(2n) 2n ≤ 22n.

In lp, 1 ≤ p <∞, it was proved in [11] that %(n) ≤ n 2n.

The following theorem gives a similar estimate of %(n) in the case of general

Banach spaces with subsymmetric basis.

Theorem 3.1. Let X be a Banach space with normalized subsymmetric

basis whose subsymmetric constant is equal to 1. Then for %(n) defined by (3.2)

one has the following estimation

%(n) ≤ min


1 +

n∑
j=1

2−jλ(2j−1)

 · 2n, λ(n) · 2n
 , n = 1, 2, . . . . (3.3)

Proof. First consider the inequality %(n) ≤

(
1 +

n∑
j=1

2−jλ(2j−1)

)
· 2n. We prove

this inequality by induction. For n = 1 it is true since the left hand side of (3.3)

is equal to 2 and the right hand side is equal to 3. Let now n ≥ 2 and introduce

the following notation

α
(n)
i (m) =

m∑
k=1

s
(n)
ki , 1 ≤ i,m ≤ 2n. (3.4)

Therefore we get

α
(n)
1 (m) = m (3.5)

and

α
(n)
2n−1+1(m) =

{
m, for 1 ≤ m ≤ 2n−1,

2n −m, for 2n−1 + 1 ≤ m ≤ 2n.
(3.6)

Since i ≤ 2n we can write that i = εn2n + εn−12n−1 + . . . + ε12 + ε0, where εj
for every j is equal to 0 or to 1. Then by the definition and the properties of the

Sylvester matrices we can prove by induction that for any i

max
1≤m≤2n

∣∣∣α(n)
i (m)

∣∣∣ = 2f(i), (3.7)
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where the function f : {1, 2, . . . , n} → {0, 1, 2, . . . , n} is defined by the following

way: f(1) = n; f(i) = 0 if ε0 = 0 (i.e. i is an even number) and if ε0 = 1

(i.e. i is an odd number), then for f(i) we have: εf(i) = 1 and εj = 0 for every

j = 1, 2, . . . , f(i)− 1.

For i = 1 and i = 2n−1 + 1 the equality (3.7) is valid since from the relations

(3.5) and (3.6) it follows, that max
1≤m≤2n

∣∣∣α(n)
1 (m)

∣∣∣ = 2n and max
1≤m≤2n

∣∣∣α(n)
2n−1+1(m)

∣∣∣ =

2n−1. To prove (3.7) for the rest indexes i, we are needed the following equalities

max
1≤m≤2n+1

∣∣∣α(n+1)
2n+i (m)

∣∣∣ = max
1≤m≤2n+1

∣∣∣α(n+1)
i (m)

∣∣∣ = max
1≤m≤2n

∣∣∣α(n)
i (m)

∣∣∣ (3.8)

for any i = 2, 3, . . . , 2n, which is a consequence of the definition and the properties

of the Sylvester matrices. Every positive integer i, 1 ≤ i ≤ 2n+1, has the unique

representation given by

i =

{
εn2n + . . .+ ε12 + ε0, for 1 ≤ i ≤ 2n,

2n + εn2n + . . .+ ε12 + ε0, for 2n + 1 ≤ i ≤ 2n+1.
(3.9)

If i is an even number, then in (3.9) we have ε0 = 0 and by (3.7) and (3.8), we

obtain max
1≤m≤2n+1

∣∣∣α(n+1)
i (m)

∣∣∣ = 1. But if i is an odd number and, in addition,

i 6= 1 and i 6= 2n + 1, then one can write (3.9) in the following way

i =

{
εn2n + . . .+ εj0+12j0+1 + 2j0 + 1, for 3 ≤ i ≤ 2n,

2n + εn2n + . . .+ εj0+12j0+1 + 2j0 + 1, for 2n + 3 ≤ i ≤ 2n+1,

where j0 = 1, 2, . . . , n− 1. Using again relations (3.7) and (3.8) we certainly have

max
1≤m≤2n+1

∣∣∣α(n+1)
i (m)

∣∣∣ = 2j0 .

Applying now a simple combinatorial calculation we get that the number of

indexes i, 1 ≤ i ≤ 2n, for which max
1≤m≤2n

∣∣∣α(n)
i (m)

∣∣∣ = 2j , is equal to 2n−j−1 for

j = 0, 1, 2, . . . , n − 1, and the equality max
1≤m≤2n

∣∣∣α(n)
i (m)

∣∣∣ = 2n is satisfied only in

one case for i = 1.

As the basis (ϕi) has unit subsymmetric constant, using (3.7), we obtain for

every m = 1, 2, . . . , 2n the following relations:

%(n)(m) =

∥∥∥∥∥
2n∑
i=1

∣∣∣α(n)
i (m)

∣∣∣ϕi
∥∥∥∥∥ ≤

∥∥∥∥∥
2n∑
i=1

max
1≤m≤2n

∣∣∣α(n)
i (m)

∣∣∣ϕi
∥∥∥∥∥ =
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=

∥∥∥∥∥∥2nϕ1 +

n∑
j=1

2n−j
2j−1∑
i=2j−1

ϕπ(i+1)

∥∥∥∥∥∥ , (3.10)

where π is a permutation of a sequence of the positive integers {2, 3, . . . , 2n}.
Applying now the triangular inequality on the right hand side of (3.10) and using

subsymmetricity of (ϕi) we get that the required inequality is valid.

Now let us prove the inequality %(n) ≤ λ(n) 2n. The number of basis elements

(not necessarily different) involved in the right hand side of the inequality (3.10)

is equal or less than n·2n (more exactly, (1+n/2)·2n). Hence we get the following

equality

2nϕ1 +

n∑
j=1

2n−j
2j−1∑
i=2j−1

ϕπ(i+1) =

2n∑
k=1

lk∑
i=1

ϕki , (3.11)

where 1 ≤ lk ≤ n for any k = 1, 2, . . . , 2n, moreover, ϕki ∈ {ϕ1, ϕ2, . . . , ϕ2n} and

for any fixed k we have ϕki 6= ϕkj for every i 6= j, i, j = 1, 2, . . . , lk, and for any

fixed i the elements ϕki for different indexes k can be coincide. As the basis (ϕi)

is subsymmetric with unit subsymmetric constant and (3.10) and (3.11) is valid

we have for every m

%(n)(m) ≤

∥∥∥∥∥∥2nϕ1 +

n∑
j=1

2n−j
2j−1∑
i=2j−1

ϕπ(i+1)

∥∥∥∥∥∥ =

∥∥∥∥∥
2n∑
k=1

lk∑
i=1

ϕki

∥∥∥∥∥ ≤
≤

2n∑
k=1

∥∥∥∥∥
lk∑
i=1

ϕki

∥∥∥∥∥ =

2n∑
k=1

λ(lk) ≤ λ(n) 2n

and the theorem is proved. �

Remark 3.2. For the estimations proved in Theorem 3.1 with respect to

the natural basis in the case X = l1 we have 1 +
n∑
j=1

2−jλ(2j−1) ≤ λ(n), but for

the case X = c0 we have the converse relation 1 +
n∑
j=1

2−jλ(2j−1) ≥ λ(n).

Let X be a Banach space (not necessarily with basis), x1, x2, . . . , x2n be a

sequence of elements from the unit ball of X and S(n) be the Sylvester matrix

of order 2n, n = 1, 2, . . .. By analogy with the definition of %(n) let %̂(n)(m) =∥∥∥∥ 2n∑
i=1

(
m∑
k=1

s
(n)
ki

)
xi

∥∥∥∥ , m = 1, 2, . . . , 2n, and let %̂(n) = max
1≤m≤2n

%̂(n)(m).

Corollary 3.3. We have %̂(n) ≤ n · 2n.
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Proof. Using the triangular inequality and the fact that ||xi|| ≤ 1 for any i, we

have

%̂(n)(m) ≤
2n∑
i=1

∣∣∣∣∣
m∑
k=1

s
(n)
ki

∣∣∣∣∣ .
The right hand side of the last relation is the expression %(n)(m) in the space l1
with respect to the natural basis, which is for every m = 1, 2, . . . , 2n less or equal

than n 2n (cf. Theorem 3.1). �

Corollary 3.4. Let X be a Banach space of type p, p > 1, with a normalized

subsymmetric basis (ϕi) whose subsymmetric constant is 1. Then one has

%(n) ≤ c · 2n,

where the constant c ≥ 1 depends only on the space X.

Proof. Since (ϕi) is a normalized subsymmetric basis, whose subsymmetric cons-

tant is 1, then λ(2j−1) ≤ Tp(X) 2(j−1)/p for every j ≥ 1, where Tp(X) is the

constant involved in the definition of the space of type p. Then for the right hand

side of (3.3) we get

1 +

n∑
j=1

2−jλ(2j−1) ≤ 1 + Tp(X)

n∑
j=1

2−j+(j−1)/p ≤ 1 + Tp(X)/(2− 21/p).

Taking as c the value 1 + Tp(X)/(2− 21/p) the proof is finished. �

It should be pointed out that in the space c0 we have a similar estimation,

namely %(n) ≤ 2n (cf. Theorem 3.1), although c0 is a space of type 1. As %(n) ≥ 2n,

we get %(n) = 2n in the space c0.

Thus, in the Banach spaces of type p, p > 1, (as well as in c0), we have

sup
n
%(n)/2n < ∞. But in generally this is not true. The following statement

shows this fact in the space l1.

Theorem 3.5. [6]. For the space l1 with the natural basis, one has

%(n) = max
1≤m≤2n

%(n)(m) = (3n+ 7)2n/9 + 2(−1)n/9, n ≥ 1.

For any n the maximum is attained at the points mn = (2n+1 + (−1)n)/3 and

m
′

n = (5 · 2n−1 + (−1)n−1)/3 .

Let us estimate %(n) from below.
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Theorem 3.6. If a Banach space X satisfies the conditions of Theorem 3.1,

then one has

%(n) ≥ max

{
n+ 2

6
λ(2n), 2n

}
, n = 1, 2, . . . .

Proof. By definition of the expression %(n)(m) for any integer n we have, %(n) ≥
%(n)(2n) = 2n and the inequality %(n) ≥ 2n is evident.

Let us prove that for any integer n the inequality %(n) ≥ n+2
6 λ(2n) is also

true. Using inequality (1.2) in Proposition 2.2(B) for any integer n we have

∥∥∥∥∥
2n∑
i=1

∣∣∣α(n)
i (m)

∣∣∣ϕi
∥∥∥∥∥ ≥

2n∑
i=1

∣∣∣α(n)
i (m)

∣∣∣
2n+1

λ(2n), for any m = 1, 2, . . . , 2n,

where the numbers α
(n)
i (m) are defined by (3.4). Then for any integer n we get

max
1≤m≤2n

∥∥∥∥∥
2n∑
i=1

∣∣∣α(n)
i (m)

∣∣∣ϕi
∥∥∥∥∥ ≥

max
1≤m≤2n

2n∑
i=1

∣∣∣α(n)
i (m)

∣∣∣
2n+1

λ(2n). (3.12)

As it is known

∥∥∥∥ 2n∑
i=1

∣∣∣α(n)
i (m)

∣∣∣ϕi∥∥∥∥ = %(n)(m) and
2n∑
i=1

∣∣∣α(n)
i (m)

∣∣∣ is the value of the

expression %(n)(m) in the space l1 with respect to the natural basis. Therefore,

by Theorem 3.5 we have

max
1≤m≤2n

2n∑
i=1

∣∣∣α(n)
i (m)

∣∣∣ =
3n+ 7

9
2n + (−1)n

2

9
, for any n = 1, 2, . . . .

Substituting these expressions in (3.12) an elementary calculation yields the as-

sertion. �

Remark 3.7. If a basis (ϕi) of a space X is, in addition, symmetric, then

using inequality (1.1) of Proposition 2.2(A) by analogy with Theorem 3.6 we can

prove that

%(n) ≥ max

{
n+ 2

3
λ(2n), 2n

}
, n = 1, 2, . . . .

From Theorem 3.6 it follows that in the spaces of type p, p > 1, for suf-

ficiently large n the lower estimation 2n is more precisely than the estimation
n+2

6 λ(2n), because of in such spaces we have λ(2n) ≤ Tp(X) 2n/p. Hence, the

lower estimation n+2
6 λ(2n) can compete with 2n in the spaces having type 1.

The following example shows that besides l1 there exist Banach spaces, for

which sup
n
%(n)/2n =∞.
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Example 3.8. Consider the real function f(t) =

√
log2 5

5
t+4√

log2(t+4)
, t ≥ 1.

It is a concave function since its second derivative

f
′′
(t) =

√
log2 5

10 ln 2
· − log2(t+ 4) + 3/(2 ln 2)

(t+ 4) log
5/2
2 (t+ 4)

≤ 0

for every t ≥ 1. Consider a sequence (λn) of real numbers, defined by the equa-

tions: λn = f(n), n = 1, 2, . . .. The sequence (λn) is concave (cf. Proposition

2.1(c)). Then there exists at least one Banach space X with symmetric basis (ϕi),

whose symmetric constant is equal to 1 and for which λ(n) =

∥∥∥∥ n∑
i=1

ϕi

∥∥∥∥ = λn for

every n = 1, 2, . . . (see [7], p. 120). Hence, by Remark 3.7 for any integer n we

have

%(n) ≥ n+ 2

3
· λ(2n) =

n+ 2

3
·
√

log2 5

5
· 2n + 4√

log2(2n + 4)
>

>

√
log2 5

15
· n+ 2√

n+ 2
· 2n ≥

√
log2 5

15
·
√
n+ 2 · 2n.

The space X does not isomorphic to l1, as

lim
n→∞

sup
n

λ(n)

n
= lim
n→∞

sup
n

(√
log2 5

5
· n+ 4

n
√

log2(n+ 4)

)
= 0.

From the obtained estimation by Corollary 3.4 in particular it follows that

the type of the space X does not exceed 1.

4. Hadamard matrices

In connection with the Hadamard matrices the following natural problem

arises: are there generalizations of the above estimates for general Hadamard

matrices? Let Halln be the set of all Hadamard matrices of order n, n ∈ NH. For

a Hadamard matrix Hn = [hnki] we consider the same numerical characteristic

%Hn
(m) =

∥∥∥∥ n∑
i=1

(
m∑
k=1

hnki

)
ϕi

∥∥∥∥ , m = 1, 2, . . . , n, where (ϕi) is a normalized basis

of a Banach space X. Setting ak =
n∑
i=1

hnkiϕi, we notice that

%Hn
(m) =

∥∥∥∥∥
m∑
k=1

ak

∥∥∥∥∥ . (4.1)



14 Ágota Figula and Vakhtang Kvaratskhelia

If (ϕi) is an unconditional basis with unconditional constant 1, then one has

max
1≤m≤n

%Hn(m) ≤ λ(n)n ≤ n2 for any Hn ∈ Halln .

Finally we set %Hn = max
1≤m≤n

%Hn(m) and %n = max
Hn∈Halln

%Hn .

Remark 4.1. Note that the characteristic %Hn
= %(Hn) can be regarded as

a norm of the Hadamard matrix Hn. Indeed, denote by Mn the vector space of

all square matrices of the order n, n ∈ NH, and let X be a Banach space with

a basis (ϕi). Obviously Halln ⊂ Mn. Let Tn = [tnki] ∈ Mn be a matrix and

%(Tn) = max
1≤m≤n

∥∥∥∥ n∑
i=1

(
m∑
k=1

tnki

)
ϕi

∥∥∥∥ . It is easy to see that % is a norm in Mn and

with respect to this norm Mn is a Banach space.

The following theorem gives us the lower estimate for %n.

Theorem 4.2. Let X be a Banach space with a normalized unconditional

basis whose unconditional constant is 1. Then

%n ≥ max
{

(1/
√

2)λ(n)
√
n, n

}
for any n ∈ NH.

Proof. If one of the columns of a Hadamard matrix Hn consists of only +1, then

we have %Hn
(n) = n and the inequality %n ≥ n is evident.

Let now Hn = [hnki] be a Hadamard matrix of order n and let (rk(t))k≤n
be a sequence of Rademacher functions defined on the interval [0, 1]. The matrix

Hn,t = [hnki rk(t)] for every t ∈ [0, 1] is also a Hadamard matrix, for which %Hn,t
=

max
1≤m≤n

%Hn,t
(m) = max

1≤m≤n

∥∥∥∥ m∑
k=1

ak rk(t)

∥∥∥∥ , where ak =
n∑
i=1

hnkiϕi, k = 1, 2, . . . , n.

Denote ξ(t) =
n∑
i=1

∣∣∣∣ n∑
k=1

〈ϕ∗i , ak rk(t)〉
∣∣∣∣ϕi. Using the fact that (ϕi) is an uncon-

ditional basis for which the unconditional constant is equal to 1, it is easy to see

that

||ξ(t)|| =

∥∥∥∥∥
n∑
i=1

n∑
k=1

〈ϕ∗i , ak〉 rk(t)ϕi

∥∥∥∥∥ =

=

∥∥∥∥∥
n∑
k=1

(
n∑
i=1

〈ϕ∗i , ak〉ϕi

)
rk(t)

∥∥∥∥∥ =

∥∥∥∥∥
n∑
k=1

ak rk(t)

∥∥∥∥∥
for every t ∈ [0, 1]. From boundedness of the Rademacher functions it follows the

integrability of ||ξ(t)|| with respect to Lebesgue measure on [0, 1]. Hence, there

exists the Pettis integral E ξ of the measurable function ξ, and, as it is well-known,

E ||ξ|| ≥ ||E ξ||. It is easy to see that E ξ =
n∑
i=1

(
E
∣∣∣∣ n∑
k=1

〈ϕ∗i , ak〉 rk(t)

∣∣∣∣)ϕi.
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From boundedness of the Rademacher functions it follows also the integrabi-

lity of the expression %Hn,t with respect to Lebesgue measure on [0, 1] and using

the Khintchine inequality we have

∞ > E %Hn,t = E max
1≤m≤n

∥∥∥∥∥
m∑
k=1

ak rk(t)

∥∥∥∥∥ ≥ E ||ξ|| ≥ ||E ξ|| ≥

≥ (1/
√

2)

∥∥∥∥∥∥
n∑
i=1

(
n∑
k=1

〈ϕ∗i , ak〉2
)1/2

ϕi

∥∥∥∥∥∥ = (1/
√

2)λ(n)
√
n,

where (ϕ∗i ) are the biorthogonal functionals corresponding to the basis (ϕi). Then,

clearly, there exists a point t0 ∈ [0, 1], such that %Hn,t0
≥ E %Hn,t and, therefore,

%n ≥ %Hn,t0
≥ (1/

√
2)λ(n)

√
n. �

The immediate consequence of this theorem is the following corollary.

Corollary 4.3. In spaces lp, 1 ≤ p < 2, with respect to the natural basis we

have sup
n∈NH

%n/n =∞.

Among the spaces lp the similar fact for the Sylvester matrices is satisfied

only in the space l1 (see Theorem 3.5).

Let us estimate %n from above for the case of spaces lp, 1 ≤ p <∞.

Theorem 4.4. In the space lp, 1 ≤ p <∞, with respect to the natural basis

for any n ∈ NH the following inequality is valid

%n ≤ max
{
n(p+2)/2p, n

}
.

Proof. Let p ≥ 2 and Hn ∈ Halln be a Hadamard matrix of order n. Using

definition (4.1) and the fact ||a||lp ≤ ||a||l2 , one can see that

%Hn ≤ max
1≤m≤n

∥∥∥∥∥
m∑
k=1

ak

∥∥∥∥∥
l2

= max
1≤m≤n

(
m∑
k=1

ak,

m∑
k=1

ak

)1/2

= n,

where by the symbol (·, ·) we denote the inner product in the space l2.

As Hn is a Hadamard matrix, it follows that in spaces lp, p ≥ 2, for every

Hadamard matrices the estimate %n ≤ n is valid.

Now let 1 ≤ p ≤ 2 and Hn ∈ Halln be again a Hadamard matrix. If a =

(αi) ∈ lp is a sequence length of which is n (i.e. αn 6= 0 and αi = 0 for any i > n),

then one has ||a||lp ≤ n(2−p)/2p ||a||l2 . Hence, we have

%Hn ≤ n(2−p)/2p max
1≤m≤n

∥∥∥∥∥
m∑
k=1

ak

∥∥∥∥∥
l2

= n(p+2)/2p,
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and by arbitrariness of a Hadamard matrix Hn, the proof is finished. �

For Sylvester matrices Corollary 4.3 and Theorem 4.4 yield the following

corollary.

Corollary 4.5. Let S(n) be a Sylvester matrix of order 2n, n = 1, 2, . . ..

Then in the space lp, p ≥ 2, with respect to the natural basis we have

%(n) = 2n.

From Theorem 4.2 and 4.4 it follows the following result.

Corollary 4.6. In the space lp, 1 ≤ p ≤ ∞, with respect to the natural

basis for every n ∈ NH we have

(1/
√

2)n(p+2)/2p ≤ %n ≤ n(p+2)/2p, for 1 ≤ p < 2,

%n = n, for p ≥ 2.

Let X be a Banach space (not necessarily with a basis), let x1, x2, . . . , xn be

a sequence of elements from the unit ball of X and let Hn ∈ Halln , n ∈ NH. Let us

consider %̂Hn
(m) =

∥∥∥∥ n∑
i=1

(
m∑
k=1

hnki

)
xi

∥∥∥∥ , m = 1, 2, . . . , n, %̂Hn
= max

1≤m≤n
%̂Hn

(m)

and %̂n = max
Hn∈Halln

%̂Hn
.

Corollary 4.7. For any n ∈ NH one has %̂n ≤ n
√
n.

Proof. Using Corollary 4.6 for the case p = 1, the proof passes in the analogous

way as the proof of Corollary 3.3. �

Now we prove the analogue of Theorem 3.1 for the case of the Hadamard

matrices.

Theorem 4.8. Let X be a Banach space with a normalized subsymmetric

basis whose subsymmetric constant is 1. Then one has for any n ∈ NH

%n ≤ λ([
√
n] + 1)n,

where [
√
n] is the integer part of

√
n.

Proof. Let Hn = [hnki] be a Hadamard matrix of order n. As we already noted

%Hn
= max

1≤m≤n

∥∥∥∥∥
n∑
i=1

(
m∑
k=1

hnki

)
ϕi

∥∥∥∥∥ ≤ max
1≤m≤n

n∑
i=1

∣∣∣∣∣
m∑
k=1

hnki

∣∣∣∣∣ ≤ n√n (4.2)
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for every Hn ∈ Halln . For the convenience let us introduce the notation

α
(n)
i (m) =

∣∣∣∣∣
m∑
k=1

hnki

∣∣∣∣∣ for any i,m = 1, 2, . . . , n. (4.3)

From the definition of Hadamard matrices and from (4.2) it follows the following

properties of the numbers α
(n)
i (m):

(a). For every indexes i and m the number α
(n)
i (m) is an integer and 0 ≤

α
(n)
i (m) ≤ n.

(b). For any m the following condition
n∑
i=1

α
(n)
i (m) ≤ n

√
n is satisfied.

If we denote by M a subset of X consisting of the following n points M =

{
n∑
i=1

α
(n)
i (m)ϕi : m = 1, 2, . . . , n}, where α

(n)
i (m) is defined by (4.3), then one

has %Hn
= max

x∈M
||x||.

Let us consider in X the following subsets:

S = {
n∑
i=1

tiϕi : 0 ≤ ti ≤ n, i = 1, 2, . . . , n} and T = {
n∑
i=1

tiϕi :

n∑
i=1

ti ≤ n
√
n}.

Since S is a n-dimensional parallelepiped and T is a hyperplane in X the sets

S, T and their intersection S ∩ T are convex. Moreover, one has M ⊂ S ∩ T .

As S ∩ T is a bounded set in a n-dimensional subset of X spanned on the basis

vectors ϕ1, ϕ2, . . . , ϕn it is compact and by the Krein-Milman theorem (see, for

example, [3], p. 104) it is a closed convex span of its extreme points. Hence we

have

%Hn
= max

x∈M
||x|| ≤ sup

x∈S∩T
||x|| = sup

x∈E
||x||, (4.4)

where E is the set of the extreme points of S∩T . The extreme points of the set S

are the vertices of the parallelepiped S, i.e. the points of the form
n∑
i=1

βiϕi, where

each βi takes the values 0 or n. As E ⊂ S ∩ T the set E contains those extreme

points of S for which the condition
n∑
i=1

βi ≤ n
√
n is satisfied. If we denote by l

the number of these βi, which are different from zero, then the last condition we

can write in the following way: ln ≤ n
√
n, i.e. l ≤

√
n. As l is an integer we get

l ≤ [
√
n]. Since the basis (ϕi) is subsymmetric, the norm of each such element

can be estimated in the following way

∥∥∥∥ n∑
i=1

βiϕi

∥∥∥∥ ≤ λ(l)n < λ([
√
n] + 1)n.

It is easy to check that the set E, besides of the vertices of the parallelepiped

S, also contains the points of intersection of bound of the set T with the edges of
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the parallelepiped S, the points of which have the form
n∑
i=1

βiϕi, where one of βi

satisfies the condition 0 ≤ βi0 ≤ n, and all other βi take the values 0 or n. Denote

by l the number of βi, for which βi = n. By virtue of the condition
n∑
i=1

βiϕi ∈ T ,

we have βi0 + ln ≤ n
√
n. As βi0 ≥ 0 and l is an integer we have l ≤ [

√
n]. Since

0 ≤ βi0 ≤ n, using again the subsymmetry of the basis (ϕi), we obtain

∥∥∥∥∥
n∑
i=1

βiϕi

∥∥∥∥∥ =

∥∥∥∥∥∥βi0ϕi0 +

n∑
i0 6=i=1

βiϕi

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥nϕi0 +

n∑
i0 6=i=1

βiϕi

∥∥∥∥∥∥ ≤ λ([
√
n] + 1)n.

Thus, for every point x of the set E the estimation ||x|| ≤ λ([
√
n] + 1)n is

valid and using (4.4) the theorem is proved. �

Remark 4.9. We can rephrase Theorem 4.8 in such a way. LetHn = [hnki] be

a Hadamard matrix of order n ∈ NH and let ak =
n∑
i=1

hnkiϕi, k = 1, 2, . . . , n, where

(ϕi) is a normalized subsymmetric basis of a Banach space X with subsymmetric

constant 1. Then one has

max
1≤m≤n

∥∥∥∥∥
m∑
k=1

ϑkak

∥∥∥∥∥ ≤ λ ([√n] + 1
)
n

for any signs ϑk = ±1, k = 1, 2, . . . , n, any Hadamard matrices Hn ∈ Halln and

positive integer n ∈ NH.

As follows from Theorem 3.1, in a Banach space with a normalized subsym-

metric basis whose subsymmetric constant is equal to 1 we have %(n)/ (n · 2n) ≤ 1.

On the other hand, by Theorem 3.5 in the space l1 we have %(n)/ (n · 2n) ≥ 1/3.

Using Sylvester and Hadamard matrices we can characterize the spaces isomor-

phic to l1 in the following way.

Theorem 4.10. Let X be a Banach space with a normalized subsymmet-

ric basis (ϕi) whose subsymmetric constant is 1. The following statements are

equivalent:

(i). There is a constant δ > 0 such that %n/ (n
√
n) ≥ δ for every n ∈ NH,

where δ is independent of n.

(ii). X is isomorphic to l1.

(iii). There exists a constant ε > 0 not depending on n such that for any

n = 1, 2, . . . we have %(n)/ (n · 2n) ≥ ε.
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Proof. (i)⇒ (ii). Using Theorem 4.8 for any n ∈ NH we have

0 < δ ≤ %n/(n
√
n) ≤ λ([

√
n] + 1)n/(n

√
n) = λ([

√
n] + 1)/

√
n.

Therefore λ([
√
n])/
√
n ≥ δ/2 > 0 for infinitely many n. Now the validity of the

statement (ii) follows from the fact which was mentioned in Section 2: if

lim
n→∞

supλ(n)/n > 0,

then X is isomorphic to l1.

(ii) ⇒ (iii). Let X be isomorphic to l1 and denote by T : X → l1 an

isomorphism between X and l1. It is clear that (Tϕi) is an unconditional basis in

l1. Since in l1 all normalized unconditional bases are equivalent (see [7], p. 71),

there exists a bounded linear operator S : l1 → l1 with bounded inverse operator,

such that Tϕi = Sei for any integer i, where (ei) is a sequence of unit vectors in

l1. By Theorem 3.5 for every integer n we have

1/3 ≤ max
1≤m≤2n

∥∥∥∥∥
2n∑
i=1

∣∣∣∣∣
m∑
k=1

s
(n)
ki

∣∣∣∣∣ ei
∥∥∥∥∥ / (n · 2n) =

= max
1≤m≤2n

∥∥∥∥∥
2n∑
i=1

∣∣∣∣∣
m∑
k=1

s
(n)
ki

∣∣∣∣∣S−1Tϕi

∥∥∥∥∥ / (n · 2n) ≤ ‖S−1T‖ max
1≤m≤2n

%(n)(m)/ (n · 2n) .

Hence, denoting ε = 1/
(
3||S−1T ||

)
> 0, we get the validity of assertion (iii).

The implication (iii)⇒ (i) is true because 2n ∈ NH. �

5. Unsolved problem

Let (ei) be the natural basis of the space l1, S(n) =
[
s

(n)
ki

]
be a Sylvester

matrix of order 2n and (ak)k≤2n be a sequence in l1 defined as follows

ak =

2n∑
i=1

s
(n)
ki ei, k = 1, 2, . . . , 2n.

Let us formulate the assertion of Theorem 3.5 in the following manner

%(n) =

∥∥∥∥∥
mn∑
k=1

ak

∥∥∥∥∥
l1

= (3n+ 7)2n/9 + 2(−1)n/9,
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where mn = (2n+1 + (−1)n)/3.

Now let us consider a permutation σ : {1, 2, . . . , 2n} → {1, 2, . . . , 2n} and the

following expression: ∥∥∥∥∥
mn∑
k=1

aσ(k)

∥∥∥∥∥
l1

.

By Corollary 4.6 for any permutation σ : {1, 2, . . . , 2n} → {1, 2, . . . , 2n} we

have ∥∥∥∥∥
mn∑
k=1

aσ(k)

∥∥∥∥∥
l1

≤ 23n/2.

The authors do not know yet the answer of the following conjecture:

Conjecture 5.1. For any positive integer n ≥ 1 and for any permutation of

integers σ : {1, 2, . . . , 2n} → {1, 2, . . . , 2n} we have∥∥∥∥∥
mn∑
k=1

aσ(k)

∥∥∥∥∥
l1

≥ (3n+ 7)2n/9 + 2(−1)n/9.
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