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Abstract

We investigate additive properties of sets A, where A = {a1, a2, . . . , ak} is a monotone increasing
set of real numbers, and the differences of consecutive elements are all distinct. It is known that
|A+B| ≥ c|A||B|1/2 for any finite set of numbers B. The bound is tight up to the constant multiplier.
We give a new proof to this result using bounds on crossing numbers of geometric graphs. We construct
examples showing the limits of possible improvements. In particular, we show that there are arbitrarily
large sets with different consecutive differences and sub-quadratic sumset size.

1 Introduction

Given two sets of numbers, A and B, the sumset of A and B, denoted by A+B, is

A+B = {a+ b : a, b ∈ A and b ∈ B}

Let A = {a1, a2, . . . , ak} be a finite set of real numbers with the property that

ai − ai−1 < ai+1 − ai (1)

for any 1 < i < k. Sets with this property are said to be convex sets.
Improving on a result of Hegyvári [4], Elekes, Nathanson, and Ruzsa [2] proved that if A is convex,

then |A+B| ≥ ck3/2 for any set B with |B| = k. A set, A, has distinct consecutive differences if for
any 1 ≤ i, j ≤ k, ai+1 − ai = aj+1 − aj implies i = j.

The following theorem, which was proved in [8], generalizes the result of Elekes, Nathanson, and
Ruzsa.

Theorem 1 ([8]) Let A and B be finite sets of real numbers with |A| = k and |B| = `. If A has
distinct consecutive differences, then

|A+B| ≥ ck
√
`.

In particular, if k = `, then
|A+B| ≥ ck3/2,

where c > 0 is an absolute constant.

Although the above theorem is tight, i.e. there are sets A and B such that the above bound is
sharp up to the multiplicative constant (see in [8]), several questions remain open. Below we list six
questions. In all of them A denotes a set with distinct consecutive differences. Here, and later in
the paper, we are using the asymptotic notation f(x) � g(x) when there is a constant c such that
f(x) ≥ g(x)/ logc f(x) holds as x goes to infinity.

1. What can we say about the structure of A when there is a set B, |B| = |A| = k so that
|A+B| = O(k3/2)?

2. There is no restriction on B in Theorem 1. What happens if B also has distinct consecutive
differences?
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3. What is the minimum size of A+A?

4. What is the best bound on |A+B| if A is convex?

5. What is the best bound on |A+A| if A is convex?

6. What is the minimum size of A+B if A and B are convex?

All questions above are open. In this paper we will consider the first three questions. The following
list summarises the best known estimates.

1. If there is a set B, |B| = |A| = k so that |A+B| = O(k3/2) then the sumset is evenly distributed,
E1.5(A,B)� k9/4. (in this paper)

2. Even if both A and B have distinct consecutive differences, there are examples when |B| =
|A| = k and |A+B| = ck3/2. (in this paper)

3. There are constructions for sets A such that |A+A| ≤ |A|2−c with some c > 0.1 (in this paper)
No better lower bound is known than what follows from Theorem 1.

4. What is the best bound on |A+B| if A is convex? No better lower bound is known than what
follows from Theorem 1, and no construction is known showing |A+B| ≤ (|A||B|)1−c with some
c > 0.

5. If A is convex then |A + A| � |A|30/19 according to a recent result of Rudnev and Stevens in
[7], building on earlier results in [5, 9, 12].

6. If A and B are convex and |A| = |B| then |A+B| � |A|30/19 (Ilya Shkredov [13]). No construc-
tion is known showing |A+B| ≤ (|A||B|)1−c with some c > 0.

There are interesting works relaxing and strengthening the notation of convex sequences, like in
[10], [3], and [14].

2 Lower bounds using crossing numbers

2.1 Proof of Theorem 1

In this section we offer a new proof for Theorem 1 by giving a bound in terms of additive energy. As
the original proof in [8], this is also a simple proof but here we are using graph theory, the crossing
number bound, which gives more information about the structure of A. The variants of the crossing
bounds we are going to use are all originate from the classical crossing bound by Ajtai, Chvátal,
Newborn, and Szemerédi in [1].

P r o o f. (of Theorem 1.) For the given sets A = {a1, a2, . . . , ak} in which the consecutive differences
are all distinct and an arbitrary set B = {b1, . . . , b`} we define a geometric graph, G. The vertices
of the graph are points on the x axis, the values of the sumset A+B. Two vertices, u, v ∈ {A+B}
are connected by an edge, an upper semicircular arc, iff there is an ai ∈ A and bj ∈ B such that
u = ai + bj and v = ai+1 + bj . So G consists of translates of the path, P, with vertex set A where
the consecutive vertices are connected by a semicircular arc (Fig.1). Since the consecutive differences
are all different in A, the graph has no multiple edges. We are going to bound the crossing number
of this graph from below and from above to get a bound on |A+B|. For the upper bound, note that
any two translates of P have at most 2k − 1 crossings, so the number of crossings in G is at most

cr(G) ≤

(
|B|
2

)
(2k − 1) ≤ |B|2k. (2)

There are various bounds on the crossing number of graphs. In our case this is the convex crossing
number (which is the same as the 1-page crossing number) applies. The lower bound is a bit better
than for general crossing numbers. It was proved in [11] that for |B|(k−1) edges and |A+B| vertices
the number of crossings is at least

cr(G) ≥ (|B|(k − 1))3

27|A+B|2 , (3)
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a1 a2 a3 a4 a5a1+b a2+b a3+b a4+b a5+b

Figure 1: The number of crossings between two translates of A is at most 2k − 1.

which proves Theorem 1, with the constant c = 1/
√

27 ≈ 0.19, since

|B|2k ≥ (|B|(k − 1))3

27|A+B|2 , (4)

implies that

|A+B| ≥ |A||B|
1/2

√
27

.

�

Our goal is not only to give another simple proof to this result, but to understand the structure
of A a bit better when the above bound is close to being tight. One would expect that uneven degree
distributions might improve the bound. If in our graph, G, a vertex v ∈ {A + B} has degree d that
means that there are at least d/2 ways to write v as v = a + b, where a ∈ A and b ∈ B. Using the
usual notation in additive combinatorics, rA+B(x) denotes the number of ways to write x as x = a+b,
where a ∈ A and b ∈ B. The additive energy of the two sets is defined as

E(A,B) = E2(A,B) =
∑

x∈{A+B}

r2
A+B(x).

In a similar way, for any α > 1 one can define

Eα(A,B) =
∑

x∈{A+B}

rαA+B(x).

We are going to use a crossing number bound from [6] to get an estimate on E1.5(A,B) when A
has distinct consecutive differences.

Theorem 2 (Theorem 1 in [6]) For any simple graph G on n vertices with vertex degrees d1 ≥
d2 ≥ . . . ≥ dn we have

cr(G) ≥ 1

36000n

n∑
i=1

id3
i − 4.01n2.

Note that for any sequence of positive real numbers d1 ≥ d2 ≥ . . . ≥ dn we have the inequality

n∑
i=1

id3
i ≤

(
n∑
i=1

d
3/2
i

)2

≤ (lnn+ 1)

n∑
i=1

id3
i ,

which leads us to

|B|2k + 4.01|A+B|2 ≥ c1
|A+B| ln |A+B|

 ∑
x∈{A+B}

r
3/2
A+B(x)

2

.

We use this bound in the case when |B| = |A| = k. By Theorem 1 and the inequality above we get
the following result.
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Theorem 3 If A is a set where the consecutive differences are distinct, and B is an arbitrary set
such that |A| = |B|, then 1

|A+B| �

 ∑
x∈{A+B}

r
3/2
A+B(x)

2/3

= E1.5(A,B)2/3.

This bound - up to the log factor - is an improved version of Theorem 1. By Jensen’s inequality the
right hand side is minimal if rA+B(x) is the average, k2/|A + B|, for all x ∈ {A + B}, and then
|A+B| ≈ k3/2.

There is another, more direct way to measure the smoothness of the degree sequence, to count
the number of x ∈ {A+B} which have high multiplicity, i.e. there are many ways to express x as a
sum. For this, let us choose a set S ⊂ {A+B} which is a collection of such elements.

Theorem 4 Suppose that A is a set with consecutive differences being all distinct, and B is an
arbitrary set. Let S ⊂ {A+B} a set such that∑

x∈S

rA+B(x) ≥ |A||B|
∆

. (5)

Then there is a constant, c∆ > 1/(2∆)3, so the following inequality holds

|A+B| ≥ c∆|B||A|2

|S| . (6)

As in the previous theorem, this result implies Theorem 1. Setting S = {A+B} gives |A+B| =
Ω
(
|B|1/2|A|

)
, as in Theorem 1. At the other end, if |S| ≈ |A|, then the sumset is as large as possible,

it is Ω(|A||B|).
P r o o f. We will work with G as defined in the proof of Theorem 1 and we are going to use a simple
crossing bound from [6].

Lemma 5 (Lemma 2.1 in [6]) Let G(U, V ) be a bipartite graph with vertex classes U and V, and
suppose that its number of edges satisfies e ≥ 6 max(|U |, |V |). Then we have

cr(G(U, V )) ≥ e3

108|U ||V | .

From the proof of Theorem 1 we know that cr(G) ≤ |A||B|2. There are two simple cases to consider;
when a δ-fraction of the edges with an endpoint in S are inside of S, or the (1− δ)-fraction of them
connect S with the outside of S. (We are going to optimize for 0 < δ < 1 at the end of our calculation)
For the first case we apply a classical crossing bound for the induced subgraph of G on S, denoted
by HS . By inequality (3) we have

|A||B|2 ≥ cr(HS) ≥ (δ|A||B|/∆)3

27|S|2 ≥ (δ|A||B|/∆)3

27|A+B||S| ,

which gives the required inequality

|A+B| ≥
(
δ

3∆

)3 |B||A|2

|S| .

In the second case we can assume that |A||B|2 ≥ 6|A + B|, so Lemma 2.1 is applicable with V = S
and U = {A+B} \ S.

|A||B|2 ≥ e3

108|U ||V | >
((1− δ)|A||B|/∆)3

125|S||A+B| ,

1We remind the reader that the � notation hides a possible logc multiplier as we defined it in the Introduction.
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which gives

|A+B| >
(

1− δ
5∆

)3 |B||A|2

|S| .

Choosing δ to make the constant multipliers in the two cases equal, we see that one can set
c∆ > 1/(2∆)3 in Theorem 4.

�

One can be more specific in defining S, we can bound the number of x ∈ A + B such that
rA+B(x) ≥ t.

Corollary 6 Suppose that A is a set with consecutive differences being all distinct, and B is an
arbitrary set. Let t > 1 an arbitrary integer and St ⊂ {A+B} a set such that

min
x∈St

{rA+B(x)} ≥ t. (7)

Then

|St| <
3|A+B|1/2|A|1/2|B|

t3/2
.

P r o o f. Set

∆ =
|A||B|
t|St|

so the following inequality holds ∑
x∈St

rA+B(x) ≥ |St|t =
|A||B|

∆
,

and we can apply Theorem 4. Solving inequality (6) for |St| we get the desired result.
�

Another advantage of using crossing numbers in this context is that there are effective bounds for
multigraphs, so we get the following result.

Claim 7 Let A and B be finite sets of real numbers with |A| = k and |B| = `. If in A any consecutive
difference, ai − ai−1, has multiplicity at most m then

|A+B| ≥ ck
√
`√

m
,

where c > 0 is a universal constant.

P r o o f. The claim follows directly from the crossing bound for multigraphs (see e.g. in [15]) and
from our upper bound in equation (2).

k`2 ≥ cr(G) ≥ c(k`)3

m|A+B|2 .

�

2.2 A small improvement on the crossing number bound

In the above results we used crossing number bounds, however we could have used a slightly better
graph parameter for our purposes. It might be interesting if one would like to improve the constant
multiplier in the lower bounds. For any graph, Gn, an interval drawing is given by a one-to-one
map, Φ : V (Gn) → R, where an edge (vi, vj) ∈ E(V (Gn) maps to the interval [Φ(vi),Φ(vj)]. Two
vertex-disjoint edges, (vj , vj) and (vk, v`), are intersecting (under the map Φ) if they share an interior
point,

[Φ(vi),Φ(vj)] ∩ [Φ(vk),Φ(v`)] 6= ∅.
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Definition 8 For a given graph Gn, the intersecting number, int(Gn), is the lowest number of edge
intersections of an interval drawing of Gn.

Our upper bound in (2) holds for the intersection number of Gn and it is clear that

int(Gn) ≥ cr(Gn).

The inequality is strict if one edge (interval) contains another inside. The maximum number of
crossing-free edges in Gn is about 2n, while for intersection-free Gn it is at most 1.5n. Using the
probabilistic approach of Székely (as we will see in the proof of Claim 9), one can show that if the
number of edges, e, is at least 2.25n, then

int(Gn) ≥ 0.0658e3

n2
,

which is better than the inequality used in equation (4) since 1/27 ≈ 0.037 < 0.0658. As an example
we show the following bound:

Claim 9 Let A = {a1, a2, . . . , ak} be a finite set of real numbers with distinct consecutive differences
which are not too far from each other, i.e.

ai − ai−1 ≤ 2(aj − aj−1) (8)

for any 1 < i, j ≤ k, and let B ⊂ R an arbitrary finite set. Then

|A+B| ≥ 2

3
√

3
|A||B|1/2.

P r o o f. To see this, note that by condition (8) if a subgraph of G|A+B| on n vertices is intersection
free, then it has at most n−1 edges. If the number of edges is at least 1.5n then there are at least 0.5n
intersections. The number of edges in G|A+B| is (k−1)|B| ≈ |A||B|, so let’s select a random subgraph

of G|A+B| choosing the vertices independently at random with probability p = 1.5|A+B|
|A||B| . Then the

expected number of vertices is 1.5|A+B|2
|A||B| , the number of edges is (1.5|A+B|)2

|A||B| , and the expected number

of intersections is at least p4 · int(G|A+B|). From here we have(
1.5|A+B|
|A||B|

)4

· int(G|A+B|) ≥ 0.5 · 1.5|A+B|2

|A||B| ,

and

|A||B|2 ≥ int(G|A+B|) ≥ 0.5 · (|A||B|)3

1.53|A+B|2 .

�
Note that in the proof we only used the weaker condition that ai+2− ai 6= aj for any 1 ≤ i, j ≤ k.

3 Constructions

3.1 Both A and B have distinct consecutive differences.

In this section we are going to show constructions which indicate the limitations of possible lower
bounds on the size of sumsets forced by local conditions, like distinct consecutive differences in a set.

Theorem 10 For arbitrary large integer k, there are are sets, A and B, such that in both sets the
consecutive differences are distinct, |A| ≈ |B| ≥ k and |A+B| ≤ c|A||B|1/2, where c > 0 is a universal
constant.
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P r o o f. Let n and k be relative prime numbers, 1 < n < k, such that k − n is small. (we will assign
their exact values later) Set A is defined as

A = {jk | 0 ≤ j < n/2}.
Between two consecutive numbers of A there is at least one multiple of n. Let us choose one of

them and add it to A. In this way we have n− 1 numbers, all below kn/2. All consecutive differences
are distinct since the difference is either of the form jk − in or in − jk. If jk − in = j′k − i′n, then
(j − j′)k = (i− i′)n, so n | j − j′, j = j′ and then i = i′. The same holds for the in− jk = i′n− j′k
case. If jk− in = i′n− j′k, then (j + j′)k = (i+ i′)n, so n | j + j′, j + j′ < n, so j = j′ = 0, which is
not possible.

The construction of B follows the same algorithm, using numbers m, r.

B = {jr | 0 ≤ j < m/2}.
We choose m, r in a way that A + B is small. To achieve this let 1 < a < b < c < d be four

pairwise relative prime numbers close to each other. e.g. a = 6t+ 1, b = 6t+ 2, c = 6t+ 3, d = 6t+ 5.
Let n = ab, k = cd,m = ac, r = bd. The elements in both sets are less than abcd/2, so the sumset
is subset of [0, abcd). All elements of the sumset are divisible by one of the numbers a, b, c, d, so its
cardinality is less than 4bcd. The cardinality of the sets is at least a2 and

4bcd < (4 + ε)(a2)3/2.

�

3.2 Bounding the size of A+ A.

The best known lower bound on |A + A|, where A has distinct consecutive differences follows from
Theorem 1. One can use the structure of the graph G defined by A + A to improve the constant
multiplier in Theorem 1, but it is still |A+A| = Ω(|A|3/2). In this direction the best result is due to
Schoen [10] who proved a better bound if A is a tdcd set. Schoen calls a a set a tdcd-set (totally distinct
consecutive differences) if for every fixed 1 ≤ d < |A|, all differences ai − ai−d, where d < i < n, are
distinct. For tdcd sets Schoen proved that there is a constant c > 0 such that |A+A| ≥ c|A|3/2+c.

The next construction shows that there are sets A with distinct consecutive differences such that
|A+A| ≤ c|A|2−c.

Theorem 11 There is a constant, c > 0.1, such that for arbitrarily large n there is a set A with
distinct consecutive differences, |A| ≥ n, such that |A+A| = O

(
|A|2−c

)
.

P r o o f.
For the construction of A we are going to use a set of integers with larger difference set than sumset.

Searching for sets with many more differences than sums we selected the set S = {0, 1, 3, 7, 12, 22, 30}.
S has 43 distinct pairwise differences and 28 sums.

If the reader would like to follow the construction with a smaller set then one can perform all
steps using the S = {0, 1, 3} set, and then c > 0 is a bit below 0.1 (c ≈ 0.92), but the steps are easier
to check. The selected seven element set is a result of a simple optimization to maximize c. We are
going to revisit the selection of S at the end of the proof.

First we construct a set of k-dimensional vectors, Qk, in a sequence that consecutive vectors
have distinct (vector) differences. Let us consider S as the vertex set of a complete digraph on 7
vertices, and assign a value to every edge as follows: If the edge is vi → vj then its value is defined
as w(i, j) = vi − vj . For example, w(2, 4) = −6, and w(3, 3) = 0. We will consider walks in this
digraph. The first walk is an Euler tour starting and ending in v1. Listing the indices of the vertices
in sequence as the tour goes we have e.g.

E = {1, 3, 5, 2, 6, 4, 7, 2, 4, 1, 5, 7, 3, 6, 1, 2, 3, 4, 5, 6, 7, 1, 7, 5, 3, 7, 4, 6, 5, 1, 6, 2, 5, 4, 3, 1, 4, 2, 7, 6, 3, 2, 1}.

Using the values assigned to the vertices we have our first multiset of (one dimensional) vectors,
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Q1 = {0, 3, 12, 1, 22, 7, 30, 1, 7, 0, 12, 30, 3, 22, 0, 1, 3, 7, 12, 22, 30, 0, 30, 12, 3, 30, 7, 22, 12, 0, 22, 1, 12, 7, 3, 0, 7, 1, 30, 22, 3, 1, 0}.

By the construction, all consecutive differences are distinct, we used all differences but 0. We define
Qk+1 recursively, using Qk. There will be 43|Qk| = 43k+1, not necessarily distinct k + 1 dimen-
sional vectors in Qk+1, such that all consecutive differences are distinct. The first k coordinates
are periodically repeating vectors, lets take k copies, blocks, of Qk, one after the other. We choose
the last, (k + 1)-th coordinate for every vector in blocks using Q1 as follows. In the first block all
(k+ 1)-th coordinates are 0. In the second block we alternate 3 and 0, as 3, 0, 3, 0, . . . , 0, 3. The third
is 12, 3, 12, 3, . . . , 3, 12. For the i-th block, (i > 1), we use the i-th and i − 1-th entries of Q1 and
alternate them starting (and ending) with the i-th. Note that the first and last vectors are identical.

In this way all consecutive vectors have distinct differences. If the differences in the last coordinate
are the same in two pairs of consecutive vectors, then there are three cases.

• First, the two pairs are selected from the same Qk block. In this case the differences of the first
k coordinates are distinct by induction.

• The second case when one of the pairs is between two blocks. There is only one pair of blocks
where the last and the first vectors have a given difference in the last coordinate, so the other pair
is inside one block. But in the difference vector of pairs between blocks the first k coordinates are
zero, while differences of consecutive vectors in the same block have some nonzero coordinates
among the first k.

• The third case is when one pair is in one block and the other is in another block. It is only
possible if one pair is in a block with last coordinates a, b, a, . . . , b, a and the other is in the
block with b, a, . . . , a, b, but in this case the positions of the two pairs relative to their blocks
are different due to parity, so by induction the differences are distinct in the first k coordinates.

0,0,0,0 ……...0,0 3,0,3,0 ……...0,3 12,3,12,3 …3,12 1,3,1,3 ……...3,1 0,1,0,1 ……...1,0

Qk Qk Qk QkQk ...

Figure 2: The recursion getting Qk+1 from Qk.

Our next step is to construct an increasing sequence of numbers using the vectors in Qk keeping
the same order and keeping the property that consecutive elements have distinct differences. If ~vi ∈ Qk
has coordinates ~vi

T = [ν1, ν2, . . . , νk], then let us define bi = ν1 + 100ν2 + 1002ν3 + . . . + 100k−1νk.
With this definition bi ≤ 100k, and the consecutive differences (in the order of the vectors in Qk) are
all distinct. To make the sequence monotone increasing, we define

A =
{
ai | ai = bi + i100k, 1 ≤ i ≤ 43k

}
.

The sumset, A + A, consists of sums ai + aj = bi + bj + (i + j)100k. From the selection of the
initial set, S, we see that

∣∣{bi + bj |1 ≤ i, j ≤ 43k
}∣∣ ≤ 28k, so we have the bound |A+A| ≤ 28k ·2 ·43k

while |A| = 43k. By this construction we get a set A, with distinct consecutive differences and
|A+A| ≤ 2|A|2−c where

c =
log 43

28

log 43
≈ 0.11406.

From the construction we see that we needed a set S with small sumset and large difference set.
We were searching among Sidon sets, i.e. sets where all pairwise sums are distinct. In such sets, if
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the size of S is x then |S + S| =
(
x
2

)
+ x and |S − S| = x(x− 1) + 1. As we are looking for a large c

above, we want to find the maximum of the function

log x(x−1)+1

(x2)+x

log x(x− 1) + 1
,

for positive x. The maximum is 0.114058 . . . when x ≈ 6.99618, so we selected S to be a 7-element
Sidon set, {0, 1, 3, 7, 12, 22, 30}.

�
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