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Abstract

We derive strong laws of large numbers and central limit theorems for Bajraktarevic,
Gini and exponential- (also called Beta-type) and logarithmic Cauchy quotient means of
independent identically distributed (i.i.d.) random variables. The exponential- and loga-
rithmic Cauchy quotient means of a sequence of i.i.d. random variables behave asymptot-
ically normal with the usual square root scaling just like the geometric means of the given
random variables. Somewhat surprisingly, the multiplicative Cauchy quotient means of
i.i.d. random variables behave asymptotically in a rather different way: in order to get a
non-trivial normal limit distribution a time dependent centering is needed.

1 Introduction

Studying properties of various kinds of means (aggregation functions) is an old, popular and
important topic due to the large number of applications in every branch of mathematics. For
a recent survey, see Beliakov et al. [4]. This paper is devoted to studying the asymptotic
behaviour of Bajraktarevi¢ means and Cauchy quotient means of independent identically dis-
tributed (i.i.d.) random variables. Such an investigation for the arithmetic means of i.i.d.
random variables goes back to Kolmogorov, and it is at the heart of classical probability the-
ory. Recently, de Carvalho [6l Theorem 1] (see also Theorem [[LTT]) has derived a central limit
theorem for quasi arithmetic means, and he has also pointed out the fact that quasi arithmetic
means have some applications in interest rate theory and unemployment duration analysis, see
[0, Examples 4 and 5].

2010 Mathematics Subject Classifications: 60F05, 26E60
Key words and phrases: Bajraktarevi¢ mean, Gini mean, Cauchy quotient means, Beta-type mean, central

limit theorem, Delta method.
Matyds Barczy is supported by the Jdnos Bolyai Research Scholarship of the Hungarian Academy of Sci-

ences.


http://arxiv.org/abs/1909.02968v3

We derive strong laws of large numbers and central limit theorems for Bajraktarevi¢, expo-
nential Cauchy quotient and logarithmic Cauchy quotient means of i.i.d. random variables, see
Theorems 2.1 and 2.4l The multiplicative Cauchy quotient means of i.i.d. random variables
behave asymptotically in a somewhat different way: in order to get a non-trivial normal limit
distribution a time dependent centering is needed, see Theorem 2.5

We show another application of quasi arithmetic means to congressional apportionment in
the USA’s election motivated by Sullivan [21] 22], and we also point out its possible extensions
for Bajraktarevi¢ means and Cauchy quotient means, see Appendix

Let N, Z,, R and R, denote the sets of positive integers, non-negative integers, real
numbers and non-negative real numbers. Convergence almost surely, in probability and in
distribution will be denoted by =3, Py and i), respectively. For any d € N, Ny(0,)
denotes a d-dimensional normal distribution with mean vector 0 € R? and covariance matrix
¥ € R4 In the case of d =1, instead of N; we simply write N

1.1 Definition. Let I C R be an interval and n € N. A function M : I" — R s called
an n-variable mean in I if

(1.1) min(zy,...,x,) < M(21,...,2,) < max(zy,...,T,), Tiye.., Xy € 1.
An n-variable mean M in I s called strict if both inequalities in (IL1l) are sharp for all

T1, ..., &, €1 satisfying min(zy,...,z,) < max(xi,...,T,).

If n=1, then the only 1l-variable mean M in [ is M(z)==x, z € I.

Kolmogorov and Nagumo provided an axiomatic construction for a sequence of functions
M, : I" — R, n € N, to define a "regular mean” in I, where [ is a closed subinterval of R,
see, e.g., Kolmogorov [12], Nagumo [I8, [19] and Tikhomirov [23] page 144].

1.2 Theorem. (Kolmogorov (1930) and Nagumo (1930)) Let I be a closed and
bounded subinterval of R, then the following two statements are equivalent:

(i) There exists a sequence of functions M, : I" — R, n € N, such that

e M, s continuous and strictly monotone increasing in each variable for each n € N,

o M, is symmetric for each n € N (i.e., My(x1,...,0,) = Mp(Trq), ..., Taw)) for
each xy,...,x, € I and each permutation (w(1),...,m(n)) of (1,...,n)),

o M,(xy,...,x,) =x whenever x; =---=x,=x €I, neN,

o Myim (1, o syt Ym) = Myion(Tny oo Tny Yty -« o, Ym)  for each n,m € N,
Tl ey Ty Y1y -y Ym € I, where T, := M, (x1,...,2,).

(ii) There exists a continuous and strictly monotone function f: 1 — R such that
My(z1,. .., m,) = f° lznzf(x,) , 1, ...,y €1, n €N,
o
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where ' denotes the inverse of f.

1.3 Definition. (Quasi arithmetic mean) Let n € N, let [ be a non-empty interval
of R, andlet f:1 — R be a continuous and strictly monotone increasing function. The
n-variable quasi arithmetic mean of x1,...,x, € I corresponding to f is defined by

o) = 17 (1300

The function f is called a generator of M.

1.4 Remark. (i). The generator f has an important role in the theory of quasi arithmetic
means. It is not unique, but it is unique up to an affine transformation with nonzero factor (see,
e.g., Hardy et al. [T, Section 3.2, Theorem 83]). More precisely, two quasi arithmetic means on
I, generated by f and g, are equal if and only if there exist a,b € R, a # 0 such that

(1.2) f(z) =ag(z) + b, el

As a consequence, the function f in part (ii) of Theorem can be chosen to be strictly
monotone increasing as well.

(ii). A key idea in the theory of quasi arithmetic means is bisymmetry (for the definition,
see ((CI)) in Appendix[C]). It is developed by Aczél in [1], who applied it for the characterization
of 2-variable quasi arithmetic means, and for the n-variable case, see Miinnich et al. [I7]. The
bisymmetry equation has importance also in the theory of quasisums and consistent aggregation
in economical sciences (see, e.g., Aczél and Maksa [2]).

(iii). For more information about the story of quasi arithmetic means and their possible
applications in various areas, see the excellent survey of Muliere and Parmigiani [I6] and the
references therein. O

For each n € N, M/ is a strict, symmetric n-variable mean in I in the sense of Definition
[LIl The arithmetic, geometric and harmonic mean is a quasi arithmetic mean corresponding
to the function f: R — R, f(z) =2,z € R, f:(0,00) = R, f(x):=1In(zx), = >0, and
f:(0,00) =R, f(z)=a"' x>0, respectively.

Generalizing the notion of quasi arithmetic means, Bajraktarevié¢ [3] introduced a new class
of means (nowadays called Bajraktarevi¢ means) in the following way.

1.5 Definition. (Bajraktarevié mean) Let n € N, let I be a non-empty interval of R,
let f:1I— R be a continuous and strictly monotone function, and let p: 1 — (0,00) be a
(weight) function. The n-variable Bajraktarevié¢ mean of x1,...,x, € I corresponding to f

and p is defined by
Z?Zl p(xz)f(%))
> iz p(xi) '

BIP(xy, .. my) = [ (



For each n € N, BJP is a strict, symmetric n-variable mean, see, e.g., Bajraktarevi¢ [3] or
Péles and Zakaria [20]. Especially, by choosing p(z) =1, x € I, we see that the Bajraktarevi¢
mean of xq,...,x, corresponding to f and p coincides with the quasi arithmetic mean of
x1,...,%, corresponding to f.

Next we recall the notion of Gini means, which are special Bajraktarevi¢ means.

1.6 Definition. (Gini mean) Let r,s € R, n > 2, ne€ N, and z,...,2, > 0. The
n-variable Gini mean of x1,...,x, corresponding to r and s 1is defined by

1
n g
( ) (Zifligy ’ if r# s,
Gz, ... xy) = =

N 3 1
i adin(x) | no_T\NTT v _
exp { et b — ([T, o] )5 if v =s.

Gini means are special Bajraktarevi¢ means, since, by choosing I := (0,00), f: 1 — R,

max(r,s)—min(r,s) if %
x if r=s,
flx) = .
In(x) if r=s,
and p: I — R, p(z):= 2™") gz ¢ I, the Bajraktarevi¢ mean of zy,...,z, € I corre-
sponding to f and p coincides with the Gini mean of x4, ..., z, corresponding to r and s.

Recently, Himmel and Matkowski [9, [I0] have introduced and studied Cauchy quotient
means.

1.7 Definition. (Exponential Cauchy quotient mean, Beta-type mean) Let n > 2,
n €N, and x1,...,2, > 0. The n-variable exponential Cauchy quotient mean of x1,...,x,
(also called m-variable Beta-type mean) is defined by

nry---Ty

Bo(x1,... an) = ") ———"
(1 ) Ty+ -+ Ty

Note that B, is a strict, symmetric n-variable mean in (0,00) for each n > 2, n € N,
see Himmel and Matkowski [9, Theorem 2]. In the case of n =2, B,(x1,23) coincides with
the harmonic mean of z; and x5, where x1,29 > 0.

1.8 Definition. (Logarithmic Cauchy quotient mean) Let n > 2, n € N, and
x1,...,%, > 1. The n-variable logarithmic Cauchy quotient mean of x,...,x, 1is defined by

Lo ) doie " H?:l,j;si ;i In(z;)
(1, . ) = - .
' > izt In(z:)

Note that £, is a strict, symmetric n-variable mean in (1,00) for each n > 2, n €N,
see Himmel and Matkowski [10, Theorem 2.



1.9 Definition. (Multiplicative (or power) Cauchy quotient mean) Let n > 2, n €
N, and zi,...,x, > 1. The n-variable multiplicative (or power) Cauchy quotient mean of

Ti,...,T, 15 defined by
1
n In(zq---xzn) nln(n)
1n<17>
D - | | n(z;)
n(xl,...’xn> = ( xi i )

i=1

Note that P, is a strict, symmetric n-variable mean in (1,00) for each n > 2, n € N,
see Appendix [Bl or Himmel and Matkowski [8 Theorem 2|. Since the reference [§] refers to
Himmel and Matkowski’s slides of a talk given at a conference, where no proofs are available,
and we have not found any other reference to the result in question, we decided to check that
P, is indeed a strict n-variable mean in (1,00) for each n > 2, n €N, see Appendix Bl

In the next remark we point out the fact that Bajraktarevi¢ means, and the considered
Cauchy quotient means are not quasi arithmetic means in general.

1.10 Remark. The class of Bajraktarevi¢ means strictly contains the class of quasi arithmetic
means. To see this, we check that not all the Gini means (as special Bajraktarevi¢ means) are
quasi arithmetic means. Gini means are trivially homogeneous, and a quasi arithmetic mean is
homogeneous if and only if it is a Holder mean (also called power mean), i.e., it has the form

(LYr a?)P if pA0,

(1.3) )
(Il =) it p=0,

Vg, ...,x, >0,

with some p € R, see, e.g., Hardy et al. [7, Section 3.3, Theorem 84], and for some n > 2,
n € N, the class of n-variable Gini means strictly contains the class of n-variable Hélder
means (see, e.g., Bullen [5], p. 248-251]).

Himmel es Matkowski [0, Remark 6] showed that the exponential Cauchy quotient mean
B, is a quasi arithmetic mean if and only if n =2 (and in the case of n = 2, it is nothing else
but the harmonic mean). In Appendix [C] we show that the logarithmic-, and multiplicative
Cauchy quotient means L,, n € N, and P,, n € N, are not quasi arithmetic means. O

De Carvalho [0, Theorem 1] derived a central limit theorem for quasi arithmetic means.
First, let us recall that if f: 1 — R is a continuous and strictly monotone increasing function,
where [ is a non-empty subinterval of R, and ¢ is a random variable such that P(§{ € I) =1
and E(|f(¢)]) < oo, then Kolmogorov’s expected value of ¢ corresponding to [ is defined
by

Ef(€) = fTHE(f(6))).

Here E(f(£)) € f(I), since f(I) is an interval bein;g a convex set. If I = (0,00) and
f(z) =2P, v >0, where p >0, then E;({) = (E(&))», which is nothing else, but the L,-
norm of £. The usual expected value of ¢ correspondsto f:R — R, f(z):=azx+b, z€R,

where a,b € R, a# 0. Recall also that D?(¢) :=E((§ —E(£))?) whenever E(|¢]) < cc.



1.11 Theorem. (de Carvalho (2016)) Let I be a non-empty interval of R, and f:1 — R
be a continuous and strictly monotone increasing function. Let (§,)nen be a sequence of i.i.d.
random variables such that P(&; € I) =1, D*(f(&)) € (0,00) and f'(E;(&1)) exists and is
non-zero. Then

MI(&, .., 6) 2 Ep(€)  as n— oo,

and
D2(f(&1))
V(M€ .. &) —Ep(&) 1>./\/'(0,— as n — 0o.
( r(6) &)
As a corollary of Theorem [[LTT] de Carvalho [0, Corollary 1] formulated central limit the-
orems for geometric and harmonic means. We recall it for geometric means for our later
purposes.

1.12 Corollary. (de Carvalho (2016)) Let (n,)nen be a sequence of i.i.d. random variables
such that P(n, > 0) =1 and D*(In(n,)) € (0,00). Then

a5 GE(In(m))

U, —> e as n — oo,

and

(1.4) V(e — eE(ln(m))) N N (0, Dz(ln(m))em(ln(m))) as mn — oo.

Very recently, Mukhopadhyay et al. [I5] Lemma 3] have derived a central limit theorem
for the power means (see ([L3])) of a sequence of independent random variables describing a
mixture population consisting of two components: a major (dominating) and a minor (outlying)
component.

The paper is organized as follows. Section [2 contains our results, Section [ is devoted to
the proofs, and we close the paper with four appendices, where we recall the Delta method
(see Appendix [Al), we show that P, is a strict n-variable mean for each n > 2, n € N
(see Appendix Bl), £, and P, are not quasi arithmetic means for any n > 2, n € N
(see Appendix [C)), and we give an application of quasi arithmetic and Bajraktarevié¢ means to
congressional apportionment in the USA’s election (see Appendix [DI).

2 Results

First, we present a strong law of large numbers and a central limit theorem for the Bajraktarevié¢
means of i.i.d. random variables.

2.1 Theorem. Let I be a non-empty interval of R, let f: I — R be a continuous and
strictly monotone function such that the interval f(I) 1is closed, and let p: 1 — (0,00) be
a measurable (weight) function. Let (&,)nen  be a sequence of i.i.d. random wvariables such



that P(& € 1) =1, IE( (£1))?) < 0o and E((p(&)f(&1))?) < oo. If f is differentiable at

IS 1(E( () f(€))/ Elp( ) with a non-zero derivative, then
B ) 2 ot (BRSO s,
and
2 va(Br e - (PRI 2 v00r) s s
where
ot = BRIy 220 s ()

(f, (f—l (E(zé(f;()g}f;)))))
— 2E(p(6)) E(p(1) £(61)) Cov(p(&a). p(€0) (1))
+ (B(p(€) () DA (p(&)).

Note that in Theorem 2] since [ is an interval and [ is continuous, we have f(I) is

also an interval. However, in general f(I) 1is not closed, for example, if I := [0,00) and
flz) :=x/(x+ 1),z € I, then f(I) =1[0,1). The assumption on the closedness of f(I)
in Theorem 2.1l comes into play in proving a strong law of large numbers for Bf{P(&p, ... &,)

as n — oo. Remark also that if I = [a,b], where a <b, a,b€ R, and f:I - R isa
continuous function, then f(I) is closed, so in this special case the condition on the closedness
of f(I) in Theorem 2.1]is satisfied automatically. One could easily specialize Theorem [2.1] for
Gini means by choosing f and p as given after Definition [L.G.

Next, we present a strong law of large numbers and a central limit theorem for the expo-

nential Cauchy quotient means of i.i.d. random variables.

2.2 Theorem. Let (&,)nen be a sequence of i.i.d. random variables such that P(& > 0) =1,
E(¢) < oo and D*(In(&)) € (0,00). Then

Bn(gb v 7£n) E} e]E(ln(ﬁl)) as n — o9,
and
(2.2) Vi (Bu(&, ..., &) — E0EN) 2y Ar(0,D(In(&,))e22®EN) s n = oo,

2.3 Remark. Concerning the moment conditions E(¢;) < oo and D?*(In(&;)) € (0,00) in
Theorem 2.2], we note that they are not redundant in general. Indeed, if & :=e™"7, where 71 is
a random variable such that P(n > 0) =1, E(n) < co and E(n?) = oo, then P(& >0) =1,
E(&) < 1, and E((In(&))?) = E(n?) = oo. Further, if & := €7, where 7 is a random
variable such that P(n > 0) = 1, E(n*) < oo and E(n®) = oo, then P(& > 0) = 1,
E((In(&))?) = E(n?) < oo, and E(&) = E(n?/3!) = oo yielding that E(&;) = oc. O
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Next, we present a strong law of large numbers and central limit theorems for the logarithmic
Cauchy quotient means of i.i.d. random variables.

2.4 Theorem. Let (&,)nen be a sequence of i.i.d. random variables such that P(& > 1) =1
and E(&) < co. Then

Lo(&,...,6) > () as m — 0o,
and
(2.3) Vn(La(&, ..., &) — eE(ln(gl))) N N (0, Dz(ln(gl))em(ln(&))) as m — 0o.

Note that the centralization e®"(é)) and the scaling +/n are the same in (), ([22)
and in (2.3]), and the limit (normal) distributions coincide as well. Roughly speaking, it means
that the exponential- and logarithmic Cauchy quotient means of a sequence of i.i.d. random
variables behave asymptotically just like the geometric means of the given random variables.

Next, we present a strong law of large numbers and a limit theorem for the multiplicative

Cauchy quotient means of i.i.d. random variables.

2.5 Theorem. Let (&,)nen be a sequence of i.i.d. random variables such that P(& > 1) =1
and D?*(In(&;)) € (0,00).

(i) Then
Po(€r, ..., &) 22 eBnE) as n — oo,
and
(2.4)
Inn) (P (6, &) — 506 T =0 (n(E(In(€,))) E(ln() — E(n(&:) In(n(&,))))
as mn — oo.

(11) In addition, if D?(In(&)In(In(&y))) € (0,00), then
(2.5)

ﬁ(ln(%(&, +160) ~ E(n(61) = gy (mE(n(€:) Bne) — E(n(éy) 1n<1n<§1>>>))

2y N(0,D2(In(&1))) as n — 0o.

2.6 Remark. Note that if P(§ > 1) = 1 and D?(In(&)In(In(é))) € (0,00), then
D?(In(&)) € (0,00). Indeed,

E ((In(£1))*) = E ((In(&1))*Lange)<e) + E ((I0(61))* Lne,)ey)
< e+ E ((In(&))*(In(In(&)))* Lime)sep) < € +E ((In(&1))*(In(In(&)))?) < oc.



Next, we give an example of a random variable & such that P(& > 1) = 1, E((In(&))?) < oo,
and E((In(&))*(In(In(&;)))?) = oo, which shows that the condition D?(In(¢;)In(In(&;))) €
(0,00) in part (ii) of Theorem 2.5]is indeed an additional one. With the notation 7 := (In(&;))?,
it is enough to give an example of a random variable 7 such that P(np >e) =1, E(n) < oo
and E(n(In(n))?) = co. Let n be a random variable such that its density function takes the

form
1 .
f(x) = Cixz(ln(x)ﬁ if x>e,
0 if = <e,
where é = [ ZQ(lnl(m))z dz. Note that C € (0,00), since with the substitution z = e?,

Then P(n > e) = 1, moreover,

o0

E():/xfn( d:c—C/ e dx—C/—dy—C<oo

e

and
E(n(n(n))?) = [ alin)2f,x)de =€ [ do = o

O

Note that the limit distribution in (2.4]) is not a normal distribution instead of a deter-
ministic constant, and the scaling factor is In(n) instead of the usual /n. So, somewhat
surprisingly, the multiplicative Cauchy quotient means of i.i.d. random variables admit a dif-
ferent asymptotic behaviour than the exponential- and logarithmic Cauchy quotient means of
the random variables in question.

3 Proofs

Proof of Theorem 2.7l By the strong law of large numbers,

LS D(E)F(&) as. E(p(&) (&)
IS o) E(p&)

Since [ is an interval and f is continuous, we have f(I) is also an interval, yielding that

(3.1)

as n — Q.

;ilpfi;( : ZZ ( ) f(&) € f(I), n € N.



Using that f([) is assumed to be closed, by ([B.1]), we have

E(p(&1)f(&1))
E(p(¢1))

and hence, using that f~! is continuous,

f.p _ -1 %E?zlp(gl)f(£2> as. -1 E(p(&)f(&))
Bt &) =1 ( TS () )_” ( E((6)))

€ f(I),

) as n — 0o,

as desired.

By the multidimensional central limit theorem, we have
P€) f ()4 +p(én) f(én) E 0
Jn " (PEFED)|) 2, N, S a8 1 — 0o,
pE1)++p(En) E(p(&1)) 0

D(p(61)f (61)) Cov(p(&)f(&),p(&))l

where

| Covip(&) F(E). p(E) D2(p(&1))

Using the Delta method with a measurable function ¢ : R? — R satisfying g¢(z,y) = %
x,y >0 (see, e.g., Theorem [AT]), we have

> i P& (&) CE@E)fE))\ o . N
ﬁ( > p(&) E(p(&,)) ) — N(0,DED) — o0,

where
D = g (E(() (&), Ep(E) = [grley; 2],

and one can calculate

- Dp(E) () EGE)FE)) | . - (E(pE)F(E
DD = ") EQE))? Ep(6)

Using again the Delta method with a measurable function ¢ :R? — R satisfying g(z,y) =
fHx), = € f(I), we have

alr (ghe) - Craer )

o (B ) e

yielding the statement, since ¢'(z) =1/f'(f"1(x)), = € f(I).
Proof of Theorem [2.21 We have
ngb (V& &)

4+ & (§1+ +§n)7i1

n

2 Cov(p(&) (1), pl&1)) (&) D)y

(3.2) Bo(&1,.. ., 60) = ™

, n>=2 neN,
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and hence the strong law of large numbers and Corollary [L12 yield that B, (&,..., &) —
EnE)  R(ln(g))
@y

Further,

as n — 0o, as desired.

(v 6) = 7 i) - Lo (SEEE) s e,

—14 n—
and the central limit theorem, Slutsky’s lemma and ([B.2]) yield that

Vi (In(Bu(, &) — E(In(61)))
n—1 1
Vi (P (B 6 ) ~ () + (B, 6))

L (Gt t&) | 1
( Zln &) — E(In( &))) -l <f) B 6)

= N(0,D*(1n(61)) = 0~ n(E(&) + 0 In(e*)) = (0, D*(In(&1)))
as n — oo. Using the Delta method with the function ¢g: R — R, g(x) :=¢*, z € R (see,
e.g., Theorem [A.T]), we have
V(e BnEtn) _ oEnE)y 2, — N(0,D*(In(&)) (e"mE)?) as n — 00,

yielding (2.2]).

Proof of Theorem 2.4l First note that, since P(In(§;) > 0) = 1, we have & = ™) >
2

7(111(5!1)) P-almost surely yielding that E((In(£;))?) < 2E(&;) < co.

In the special case D?(In(&;)) = 0, we have P(§ = ¢) = 1 with some ¢ > 1, and
L,(&,...,&) =c, n €N, P-almost surely, yielding the assertion. So in what follows, without
loss of generality, we can assume that &; is non-degenerate, yielding that D?(In(&;)) € (0, 00).

For all n>2, n €N, we have

YL g InE)
E?:l ln(@-) ’

L&y &) =

n

=y
where, by Corollary T2, "/[]}_, &, = (,”/H;L:1 @-) 2% Bn(&) a5 — oo, and

SULE T () ae

— — 1 as n — 00.
Zizl In(&;)

1
Indeed, since P(&; > 1) = 1, we have P(§, "'In(&) < In(&),i = 1,...,n) =1, n > 2,
n € N, yielding

(3.3)

S 6 T In(E)
Z?:l ln(&')

(3.4) <1, n =2, a.s.,

11



and we also have
(3.5)

> fi_ﬁln(fi) _ 1 R A W
S (@ )T 3 (646 = () T,

_1

2 (EED)) - 1=1 as n — oo.

Consequently, by the squeeze theorem, we have ([3.3)), yielding that L£,(£1,...,&,) — eF(n1)
as n — 0o, as desired.

Further, for all n > 2,

Vi (In(La (&, ..., &) — E(In(&)))

v (A e - Bn RV R by R ()
_\F<n;1 (&) —E( (&))) +n(n_1);1 (&) +v/nl ) )

where, by the central limit theorem,

(3.6) ( Zln &) — E(In( 51))> 2y N(0,D*(In(£,)))  as n — oo,

and, by the strong law of large numbers,

7%r%;M@£WEM®F0 as > oo,

and, by (34), (33) and again the strong law of large numbers,

Zizl In(&;)
- (S ) 25 0 n(E(€6) 0 =0 as ns o

Consequently, by Slutsky’s lemma,

Vi(In(La(&, o, &) — E(In(€))) = N(0,D*(In(&1)))  as n— oo,

and, an application of the Delta method (see, e.g., Theorem [AT]) with the function ¢: R — R,
g(x) :=¢€", xR, yields [23). 0
Proof of Theorem 2.5 First note that E(]| In(&;) In(In(&;))]) < oo. Indeed, P(In(&) > 0) =
1, and using that 1 — % <In(x) <z —1, x>0, we have

lzIn(7)] < max(2? + 2,2 +1) < 2* + 22+ 1= (z + 1)? x>0,

12



yielding that E(|In(¢&;) In(In(&))]) < E((In(&) + 1)?) < oo.
(i). For all n>2, neN, we have

1 n 1n<ln(l§1(”j§")>
1n<7>n<§1,...,5n>>=mzm(@ ) )
=1

(3.7) = nl:i(n) (111 (In(¢ Zlﬂ &) — Zln(@) hl(ln(fi))>
— m(ln) In (> In gz> Zln (&) — Zln (&) In(In(&;))

Hence, by the strong law of large numbers,

n(Pa(&r - &) = (1+0-In(E(In(&)))) E(In(&)) — 0+ E(In(&) In(In(é1))) = E(In(&1))

as n — oo, yielding P, (&1, ...,&) == B0 as n — oo, as desired.

Further, by the strong law of large numbers, ([B.6]) and Slutsky’s lemma,

In(n) (In(Pr (&1, .-+, &) — E(In(&1)))
— hi/_ < Zl (&) — E(In( 51))) +In (% Zln(&)) %Zln(@)

i=1 i=1

N % Z In(&) In(In(&))

= n(B(In(&1))) E(In(6)) — E(ln(&) In(In(€1))  as n — oo,
Since the limit In(E(&)) E(In(&;)) — E(In(&;) In(In(&;))) is a constant, we also have

In(n) (In(Pa(&, - &) — E(In(€1))) — (E(In(&))) E(In(&)) — E(n(&) In(In(€)))

as n — oo. Finally, an application of the Delta method (see, e.g., Theorem [AT]) with the
function g: R = R, g(x):=e*, z €R, yields that

In(n) (Pu(&r, - .., &) — PIED) 2y (B (1n(E(¢,)) E(In(&)) — E(n(&) In(ln(&y))))

as n — oco. Using that the limit e®™) (In(E(In(&))) E(In(&)) — E(In(&) In(In(&)))) is a
constant, we have ([2.4)), as desired.

13



(ii). First recall that D?(In(&;)) € (0,00), see Remark 2.6 Using ([B3.7), for each n € N,
we have

ﬁ(m(m&, &)~ E(n(6n) — e (n(E(n(6) E(n(&) ~ E(in(6) 1n<1n<§1>>>))

=AY+ AP + AD + A,

where

AS) =/n (% Zln(fi) - EO“(&))) )

AR = _ln(ln) v (% Z In(&) In(In(&;)) — E(In(&;) 1n(1n(§1)))) :

A1(13>;:1n(1 ( ( Zlngl> E(n(&))) ) Zln@

AW = ln(ln) n(E(In(&,))) ( Zln (&) — E(In( 51))> .

To prove (Z3), by Slutsky’s lemma, it is enough to check that A% 2 N(0,D2(In(&))) as
n — 0o, and Agf) 50 as n— oo, ¢ =2,3,4. By the central limit theorem,

AW 2, N(0,D*(In(&))) as m — 00,

and
NG (% 3~ (&) Inln(&) ~ E(lné) lnan(sl)))) 25 N (0, D*(In(&) In(In(&1))))

as n — o0. Hence using Slutsky’s lemma, we have AP 50 as n— oo, and, using also
that A} = ALY In(E(In(&y))), we have AP E50 as n— .

n ln(n

Tt remains to check that A% 50 as n — co. An application of the Delta method (see,
e.g., Theorem [A.]]) with a measurable function ¢ : R — R satisfying g¢(x) = In(z), = > 0,
yields that

o, (o DPMED Y
( ( ZMZ) (1“@1))))%” (* e ) o

By the strong law of large numbers, we have 3" In(&) == E(In(&;)) as n — oo. Conse-
quently, by Slutsky’s lemma, we have AY 550 as n— 00, as desired. O

Appendices
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A

Delta method

We recall the Delta method which we use for proving limit theorems, especially asymptotic
normality, see, e.g., Lehmann and Romano [13] Theorem 11.2.14].

A.1 Theorem. Let X,,n €N, and X be d-dimensional random variables, where d € N.
Assume that 1,(X, — ) Py X as n— oo with some peR and 1, € R, n €N,
satisfying T, — 00 as n — o0.

(i)

(i)

B

Let g:R? = R be a measurable function which is differentiable at . Then
D
T(9(X0) —g(n)) — g (W)X as n— oo,

where the 1 X d matriz ¢'(u) denotes the derivative of g at p. In particular, if X
is a d-dimensional normally distributed random variable with mean vector 0 € R? and
covariance matriz ¥ € R4, then

7u(9(X,) — g(p)) = N0, ¢ (0)2g' (1)) as n — oo.

More generally, let g = (g1,...,9,)" : RY — R? be a measurable function which is
differentiable at p, where d,q € N. Then

T(9(X0) —g(1)) = 7 (91(Xn) —91(1), g2(X ) —g2(p8), - - - >gq(Xn)_9q(IJ'))T 1) g ()X

as n — oo, where the ¢ X d matriz ¢'(p) denotes the derivative of g at . In
particular, if X s a d-dimensional normally distributed random variable with mean
vector 0 € R and covariance matriz ¥ € R¥™*?, then

7(9(X0) — g(p) =5 Ny(0,¢'()=g'(0)T)  as n — oo

P, 1is a strict n-variable mean

B.1 Proposition. For each n > 2, n € N, the multiplicative Cauchy quotient mean P, is

a strict m-variable mean in (1, 00).

Proof. Let zq,...,x, > 1 be fixed such that z; < 2o < --- < z,. With the notation

Yi =

In(z;), i =1,...,n, we have that min(zy,...,2,) < Pu(z1,...,27,) < max(xy,...,x,)
is equivalent to
In(zq---xn) In(zq-zn)
In In
nln(n) ( In(xq) ) ( In(zn) ) nln(n
xl <:I;1 T <xn ()’

which is equivalent to

yi1+--+yn y1+---+yn
ety o n(PE) (M) n(a)y,

<e ,
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or equivalently

Yyr+- o+
B.1 nln(n y21n< ) < nln(n)y,.
(B.1) E " (n)

Since In (W) = In (1 + y1+"'+yi’1;:yi“+”'+y") >0, and 0 <y <yo < -+ < Yp, We

have

B (5) s ().

so for nln(n)y; <>, yiln (yﬁy%) it is enough to check that

nln(n ylzln<y1+ + Un ),

or equivalently,

mmwgmcw+”+%w)

Y1+ Yn
By algebraic calculations, it is equivalent to /y; -y, < (y1 + -+ -+ y»)/n, which is nothing
else but the well-known inequality between the arithmetic and geometric means, yielding that
the first inequality in (B]) holds.

Now we turn to prove the second inequality in (B.I). With the notation z; := 5—;,

1,...,n—1, after dividing by y,, we get that the second inequality in (B.I]) is equivalent to

1 =

n—1
1421+ 4 2o
f(z1, oy 2nm1) ::Zziln< & . : 1) +In(z; 4+ -+ 2,01+ 1) <nln(n)
i=1 ‘

for each z; € (0,1], i=1,...,n— 1. We check that the function f:(0,1]""!' — R is strictly
monotone increasing in each of its variables. Due to the fact that f is symmetric, it is enough
to check it for the its first variable z;. One can calculate that

0 1 n— )
af(zla"'azn—l):1n<1+ Tt R 1)>0, 226(0,1], 221,...,77,—1,
21 21

yielding that f isstrictly monotone increasing in z;. Further, f can be extended continuously
onto [0,1]"!, since for any a € Ry, by L’Hospital’s rule,

1+4+a Tt =
a)/x x?
limazn 1+ = lip P/ 2
10 x )0 1/22

Consequently, the function f takes its maximum at (1,...,1)T € R 1 and f(1,...,1) =
nln(n), yielding the second inequality in (B]).
Finally, we present another proof of the second inequality in (B.Il). With the notation

Yi .
p; = —F——— € (0,1), 1=1,...,n,
T
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the second inequality in ([B.I)) takes the form

—pi1In(p1) — -+ — p, In(p,) < nln(n)p,.

Recall that —pjlogy(p1) — -+ — pnlogy(pn) is the entropy of the probability distribution
{p1,...,pn}, and it is well-known that the entropy of a probability distribution concentrated
at m points at most is less than or equal to log,(n), yielding that

log2(n) = mn nin(n
10g2(e) =1 ( )< 1 ( )pnv

where in the last inequality we used that p, = max;eqi,. »yp; implying p, > 1/n. O

—piIn(p1) — - — puIn(py) <

C L, and P, are not quasi arithmetic means

Given an interval I CR, and n>2, n€ N, amap M: I" — [ is said to be bisymmetric
if it fulfils the following equation

(C].) M(M(Z’ll,...,Z’ln),...,M([L’nl,...,l’nn)):M(M([L’ll,...,Z’nl),...,M(Zlfln,...,[L’nn))
for every x;; € I, 1,5 =1,...,n.

C.1 Theorem. If n>2, neN, then L, isnot a quasi arithmetic mean.

Proof. Let n > 2, n € N, be fixed. On the contrary, let us suppose that L, is a quasi
arithmetic mean. Then it should satisfy the following bisymmetry equation

(02) ﬁn(ﬁn(xn, e ,ZL’ln), ce ,,Cn(l'nl, Ce ,Inn)) = ﬁn(ﬁn(xn, ce ,ZL’n1>, ce ,,Cn(l'ln, ce 7xnn>>

for all 11,...,Z10, -, Tnly- -, Tup > 1, see, e.g., Miinnich et al. [I7].
Step 1. We check that (C.2]) yields that the function F': (1,00) x (1,00) — R,
YE() + )
In(zy)

should be bisymmetric as well. Here we will use the following extension of L,:

- ‘ Wy In(xy) + ﬁln(xg)

L, (x1,29,1,...,1) := hn} Lo(z1,...,2,) = In(2122)

) x’:ye (17OO>7

(C.3) F(z,y) :=

X1, Lo > 1.

Let x;; > 1, 4,5 =1,...,n. Taking the iterated limits z;; — 14, 4,7 & {1,2} (in an arbitrary
order) of both sides of (C2), we have

i ("Wln(:cn) + "\l/ﬁln(%z) "/TIn(z1) + "/Toiln(za0) 1 1)

In(x11212) In(xg1292)
_Z ( " /@1 In(211) + /a0 hl(ile) "/TIn(z12) + "/Tialn(z2n) 1 1)
In(z11791) In(z1229) )
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where we used that

D s "/ 1oz % In(x)

lim L, (x1,...,2,) = To,oo., Ty > 1
e1l1 n( 1 ) n) 2?22 hl(xl) ) 25 yn )
lim ---lim £, (zq,...,2,) = "V, Tp > 1,
Tp—141 z1l1
lim lim ---lim £, (z1,...,2,) = 1.
zpdl xp_11 z1l1
Introducing the notations
11 = X, T12 =1 Y, Top =1 S, Too =11,

and, using the definitions of £, and Zn, we get

"VEF(s, ) In(F(z,y)) + "N/ F(z,y) In(F(s, 1))

In(F(z,y)F(s,1))

(C.4)
_ YFh O I(F(r,5) + "/F e, s) n(Fy, )
In(F(z, s)F(y, 1)) ’

F(F(z,y), F(s,t)) = F(F(x,s), F(y,t)),  zy,st>1,
yielding that F' is bisymmetric.
Step 2. We check that the function F defined in (C3)) is not bisymmetric. On the

contrary, let us assume that F is bisymmetric, i.e., (C4]) holds for all x,y,s,t > 1. We
distinguish two cases, n > 2 and n = 2.

At first, let n > 2. By substituting z =y = 2@ 1* and s = t = eV in (C4), after some
simplifications and rearrangements, we get that

e no1fent
_ 2) = n—1 2).
“or2) = Y et +2)

Since the function (0,00) 3 z + 2"71

e+ 2 "_1<e"_1—|—2
3 3 ’

which entails that F' can not be bisymmetric for n > 2.

is strictly convex for all n > 2, we have

For the case n =2, let us substitute =1y, s =e, and ¢t = e? in (C4]). Then we get

2z+e? In(x) z+eln(x) z+4eln(x) 2z+e2 In(x)
%(e -+ 2) IH(I) + zln (%(e + 2)) . In(z)+2 In ( In(z)+1 ) + In(z)+1 In ( In(z)+2 )

tn (w5(e +2)) In (2555000 . o)
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10

If we calculate the values of both sides of the previous equation with z = e, then we get

strictly less than 2800 for the left hand side (approximately 2797.9), and strictly greater
than 2800 for the right hand side (approximately 2808.8). So F' can not be bisymmetric
even for n = 2.

Steps 1 and 2 lead us to a contradiction. O

C.2 Theorem. If n>2, neN, then P, isnota quasi arithmetic mean.

Proof. Let n > 2, n €N, be fixed. We divide the proof into three steps.

Step 1. We check that P, is a quasi arithmetic mean on (1,00) if and only if P, isa
quasi arithmetic mean on (0,00), where

~ 1 n + -y,
(05) Pn(yh’yn) = Zylln (u) ) Yi,-- -, Yn > 0.

nln(n) <~ i

First, let us assume that P, is a quasi arithmetic mean on (1,00). Then there exists a
strictly monotone increasing, continuous function ¢: (1,00) — R such that

1
n In In(zq-xn) nin(n) o
Py, ..., 1,) = (H z, ("5 )> — (@(351) +

s Zlﬁ'l,...,l'n>1.

+ w(wn))

i=1 "
With the substitutions
(C.6) In(x;) =1y, i=1,...,n, poexp =: f,

we can derive the equation

ﬁ’ﬂ(y17 ... 7yTL) = f_l (f(yl) _'_ '7;[' —"_ f<yn)

)7 ylv”'ayn>07

yielding that P, is a quasi arithmetic mean on (0,00) corresponding to f.

Let us assume now that P, is a quasi arithmetic mean on (0,00). Then there exists a strictly
monotone increasing, continuous function f: (0,00) — R such that

Polins ) = ;iy"m (M) _ (f(y1)+-..+f(yn))

nln(n) i n

for yi,...,y, > 0. With the substitutions (C.6]), we have

Po(x1,...;20) = ¢

1 (@(ﬂfl) + -+ o)

, Tlyeooy Ty > 1
n

yielding that P, is a quasi arithmetic mean on (1,00) corresponding to .
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Step 2. We check that if P, given in () is bisymmetric, then the function G : (0, 00) x
(0,00) = R,

a+b
(C.7) G(a,b) = In (%) b0,
should be bisymmetric as well.

If P, is bisymmetric, then it fulfils the bisymmetry equation

(C.8) Pa(Pulyit, - Y1n)s s PalWnts s Ynn)) = Pa(Pu(yits - Un1)s - oo Pains - - o Ynn))

for all y11,.. ., Y1ny -+ Ynly-- -, Ynn > 0. Here we will use the following extension of ﬁn:
= S 1 + +
Pr(y1,y2,0,...,0) = lim Pu(y1,...,Yn) = <y11n (yl y2) + 42 In (yl y2>>
 yil0 nln(n) Y1 Yo
1€4{3,...,n}
1

G > 0.
n) (ylu y2)7 Y1, Y2

Let y; >0, 4,7 =1,...,n. Taking the iterated limits y;; | 0, 7,7 & {1,2} (in an arbitrary
order) of both sides of (C.8), we have

- 1 + + 1 + +
P (— (yllln (M) +y121n(y“ yl?)), (ymln (w) +ysaln (w)) 0. O)
nln(n) Y11 Y12 nln(n) Y21 Y22

~ (1 + + 1 + +
_ P ( (yll In (yll yzl) +yorln (yll Y21 )) ’ (y12 In (ylz y22) +yoaln (y12 y22)) 0. 0) 7
nln(n) Y11 Y21 nln(n) Y12 Y22

where we used that

.~ 1 Y2+t Yna
imP,(y1, .. Yn) = E ; In , ooy Ynoy >0,
y140 (v Yn) nlin(n) — 4 ( Ui ) Y2 Yn—1
. .= 1 Yn—1+ Yn Yn—-1+ Yn
lim ---limP,(y1, .- Yn) = —— (Y In|—/——— | +y, In| ——— | | , Yn_1, Yn >0,
Un—210 4110 (v Yn) nln(n) [y ' ( n—1 ) Y ( n o d

lim ---Hm Py (1, ..., yn) = lim - Hm Py (y1, - .., yn) = 0, 0> 0.
yo1l0 y1d0 (1) yl0 110 (s m) Y

Introducing the notations
Yy =: 7, Y12 =Y, Y21 =1 8, Y2 =: 1,
and, using the definitions of ﬁn and 75,*“ after some simplification, we get

G(z,y) + G(s,t) G(z,y) + G(s,t)
Sy ) i (e

 C(r.$)1n G(z,s) + G(y,t) N G(z,s) + G(y,t)
= Gl (FE G0 ) v G (SR ),

o)
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ie.,

G(G(z,y),G(s,t) = G(G(z,5), Gy, 1),  xy,s1>0,
yielding that G is bisymmetric.

Step 3. We check that the function G defined in (C1) is not bisymmetric, yielding that P,
can not be bisymmetric (see Step 2), and hence P,, can not be bisymmetric (see Step 1). On the
contrary, let us suppose that G is bisymmetric. Note that G is strictly monotone increasing
in both of its variables, and continuous as well. Hence according to Maksa [14] Theorem 1],
there exist strictly monotone, continuous functions ¢;: (0,00) — R, ¢9: (0,00) — R, and

¥ G((0,00) x (0,00)) = R such that
G(a,b) = v~ (pi(a) + ¢2(b),  a,b € (0,00).

Since G is symmetric as well, we have ¢(a) + ¢2(b) = ¢©1(b) + a(a), a,b € (0,00), i.e.,
(o1 — @2)(a) = (¢1 — p2)(b), a,b € (0,00), vyielding the existence of K € R such that
pa(a) = p1(a) + K, a € (0,00). Hence

G(a,b) =7 (¢i(a) + a(b) + K) = v~ (p(a) +¢(D),  a,be (0,00),

where ¢ :(0,00) = R, ¢(z) :=¢i(z)+%, 2 €(0,00). Thatis tosay, G is a quasisum in the

sense of Maksa [14] Definition, page 59]. Moreover, with the notation h: (0,00) — R, h(a) :=
aln(a), a € (0,00), G can be written as a Cauchy-difference

G(a,b) = h(a+b) — h(a) — (D), a,b € (0,00).

Since G is a Cauchy-difference and a quasisum at the same time, by Jarai et al. [T, Theorem
2.4], there exist an additive function A: R — R and a,f,7,0 € R such that af # 0 and
h should have one of the following forms:

(I) h(z) = aln(cosh(Bz + 7)) + A(x) + ¢;
(1) h(z) = aln(sinh(Bz + 7)) + A(z) + 6 (here 3,7 € R,);
(1) h(z) = aln(sin(Bz +7)) + A(z) + 6 (here, in fact, #=0 and € (0,7));
(IV) h(z) = ae’® + A(z) + 6;
(V) h(z) =aln(jz +~|) + A(x) + 0 (here v € R,);
(VI) h(z) = az®+ A(z) +6

for all x € (0,00). Since a continuous and additive function on (0,00) has the form cz,
x € (0,00), with some ¢ € R, it is clear that all the cases (I)-(VI) are impossible, so G
can not be bisymmetric.

Steps 1, 2 and 3 imply the assertion, since if P, were a quasi arithmetic mean, then it
should be bisymmetric (see, e.g., Miinnich et al. [I7]), leading us to a contradiction. O
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D Application of means to congressional apportionment
in the USA’s election

In the USA, the membership of the House of Representatives is fixed at 435 by the Apportion-
ment Act of 1911, and the representation of each state in the House of Representatives is based
on its population. In principle, it would mean that the number of representatives of a given
state in the House of Representatives can be calculated as follows: we multiply 435 by the
population of the given state and divide it by the total population of the USA. However, this
number is not an integer in general, so, in practice, its integer part is taken (if it is 0, then
1 representative is apportioned to the given state). As a result of this procedure there are
some remaining places for representatives which should be apportioned among the 50 states.
This is an important question, since there is a census in the USA in every 10*® year (the next
one will be in 2020). Sullivan [21], 22] provided several methods for the apportionment such as
the method of the arithmetic, geometric and harmonic means. In what follows, we provide a
common generalization of these three methods to quasi arithmetic means, and we also point
out further possible extensions to Bajraktarevi¢ means and Cauchy quotient means.

Let Ny and Np be the population size of two states A and B in the USA, respectively,
and 7, and rp be the corresponding number of representatives assigned these states. Ideally,
the ratios % and 1% should be equal, however, in reality, this is not the case. According to
Sullivan’s arithmetic method, one says that the assignment of an additional representative to
state A rather than to state B is correct (fair) if

TA+1_T_B<7’B—|—1_7‘_A
Na Np Np Ny’

1 A TA+1 1 B TB+1
— - <_ -
2<NA+ NA) 2<NBJr NB)’

or equivalently

see Sullivan [2I]. Then one can arrange the values 2(% + ZEh) ¢ = 1,...,50, in an
increasing order, where Ni,..., N5y are the populations of the 50 states and rq,...,r5 are

the corresponding number of representatives (before assigning the remaining places). If there
are k remaining places for representatives, then assign a representative to those k states
which correspond to the bottom £ values in the above mentioned list.

Let f : (0,00) = R be a continuous and strictly monotone increasing function. The
ratios f(ra/Na) and f(rp/Np) are, as before, not equal in general. Analogously to Sullivan’s
fairness definition, we say that the assignment of an additional representative to state A rather
than to state B is fair with respect to the function f if

ra+1 rB rg+1 ra
() - (@) < () - (&)
or equivalently

1 1
(D.1) M{(T—A i )<M{<T—B ik )




where sz is the 2-variable quasi arithmetic mean corresponding to f. By choosing
f:(0,00) =R, f(z)=u=x, f(z)=1In(z) and f(z)=2x"1, x>0, one gets back the method
of arithmetic, geometric and harmonic mean, respectively, given in Sullivan [21]. Then one can
arrange the values sz (Z"V—l, "]\4,; L), i =1,...,50, in an increasing order, and, similarly as in

the case of Sullivan’s arithmetic method, if there are k& remaining places for representatives,

then assign a representative to those k states which correspond to the bottom k& values in
the above mentioned list. As a generalization, one may replace the inequality (D.Il) by

+ 1 s Tp -+ 1
D.2 Bf,P ra Ta vap

where p: (0,00) — R is a given (weight) function, where BJ* is the 2-variable Bajraktarevié

mean corresponding to f and p. By some algebraic calculations, one can check that (D.2))
ra+1 rg+1 rg+1 ra+1
() () () ().
o (50)e (@) b () - (50)
V() - ()]
()b

If one replaces the inequality (D.II) by
1 1
(D.3) 32<“ rat )<32<7“_B s+ )

is equivalent to

Ni' Ny
then one gets back the method of harmonic mean in Sullivan [21], since By(x,y) is nothing
else but the harmonic mean of z,y € (0,00), and it is easy to check that (D.3) is equivalent to

Ny Np Np Ny

ra+1l g rp4+l s

In general, in the inequality (D) the quasi arithmetic mean MJ corresponding to f could
be replaced by any 2-variable symmetric mean, and one could investigate the effects of the
corresponding assignment rules for a given election in the USA, similarly as in Sullivan [21, 22].
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