
Survey on Decomposition of Multiple Coverings

János Pach∗ Dömötör Pálvölgyi,† Géza Tóth‡

July 24, 2013

Abstract

The study of multiple coverings was initiated by Davenport and L. Fejes Tóth more than 50

years ago. In 1980 and 1986, the �rst named author published the �rst papers about decompos-

ability of multiple coverings. It was discovered much later that, besides its theoretical interest, this

area has practical applications to sensor networks. Now there is a lot of activity in this �eld with

several breakthrough results, although, many basic questions are still unsolved. In this survey, we

outline the most important results, methods, and questions.

1 Cover-decomposability and the sensor cover problem

Let P = { Pi | i ∈ I } be a collection of sets in Rd. We say that P is an m-fold covering if every
point of Rd is contained in at least m members of P. The largest such m is called the thickness of
the covering. A 1-fold covering is simply called a covering. To formulate the central question of this
survey succinctly, we need a de�nition.

De�nition 1.1. A planar set P is said to be cover-decomposable if there exists a (minimal) constant

m = m(P ) such that every m-fold covering of the plane with translates of P can be decomposed into

two coverings.

Note that the above term is slightly misleading: we decompose (partition) not the set P , but a
collection P of its translates. Such a partition is sometimes regarded a coloring of the members of P.
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The problem whether a set P is cover-decomposable is also referred to as the cover decomposability

problem for P .
The problem of characterizing all cover-decomposable sets in the plane was proposed by Pach

[P80] in 1980. He made the following conjecture, which is still unsolved.

Conjecture 1.2. [P80] Every plane convex set P is cover-decomposable.

In the present survey, we concentrate on results and proof techniques related to this conjecture.
Obviously, in addition to systems of translates of a set P , we could study the analogous questions
for systems of homothets of P (that is, similar copies in parallel position) or for systems of congruent
copies.

In [P86], Conjecture 1.2 was proved for open centrally symmetric convex polygons. More than
twenty years later the proof was extended by Tardos and Tóth [TT07] to open triangles and then by
Pálvölgyi and Tóth [PT10] to any open convex polygon P . Sections 2 and 3 describe the basic ideas
and techniques utilized in these proofs.

Theorem 1.3. [P86] Every centrally symmetric open convex polygon is cover-decomposable.

Theorem 1.4. [TT07] Every open triangle is cover-decomposable.

Theorem 1.5. [PT10] Every open convex polygon is cover-decomposable.

In fact, the proof gives a slightly stronger result: any set, which is the union of �nitely many
translates of the same open convex polygon is also cover-decomposable. See Section 4 for details.

Given a cover-decomposable set P , one can try to determine the exact value of m(P ), that is,
the smallest integer m for which every m-fold covering of the plane with translates of P splits into 2
coverings (cf. De�nition 1.1). For example, for any open triangle T , we have 12 ≥ m(T ) ≥ 4 [KP11].
However, in most of the cases, the best known upper and lower bounds are very far from each other.

One can further generalize the cover decomposability problem by asking whether a su�ciently
thick multiple covering of the plane can be decomposed into k coverings, for a �xed k ≥ 2. This
question was raised in [P86], and �rst addressed in detail in [PT07].

De�nition 1.6. Given a set P ⊂ R2 and an integer k ≥ 2, let mk(P ) denote the smallest positive

number m with the property that every m-fold covering of the plane with translates of P can be

decomposed into k coverings. If such an integer m does not exist, we set mk(P ) = ∞.

We believe that mk(P ) is �nite for every cover-decomposable set P , but we cannot verify this
conjecture in its full generality. However, the statement is true for all currently known families of cover-
decomposable sets. In [P86], it was shown that, for any centrally symmetric convex open polygon P ,
the parameter mk(P ) exists and is bounded by an exponentially fast growing function of k. In [TT07],
a similar result was established for open triangles, and in [PT10] for open convex polygons. However,
all these results were improved to the optimal linear bound in a series of papers by Pach and Tóth
[PT07], Aloupis et al. [Al10], and Gibson and Varadarajan [GV11].
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Theorem 1.7. [PT07] For any open centrally symmetric convex polygon P , we have mk(P ) = O(k2).

Theorem 1.8. [Al10] For any open centrally symmetric convex polygon P , we have mk(P ) = O(k).

Theorem 1.9. [GV11] For any open convex polygon P , we have mk(P ) = O(k).

The problem of determining mk(P ) can be reformulated in a slightly di�erent way: for a given
m, try to decompose an m-fold covering into as many coverings as possible. This problem, more
precisely, a slight generalization of this problem, is called the sensor cover problem in sensor network
scheduling. Suppose that we have a �nite number of sensors scattered in a region R, each monitoring
some part of R, which is called the range of the sensor. Each sensor has a duration for which it can
be active and once it is turned on, it has to remain active until this duration is over, after which it
will stay inactive. The load of a point is the sum of the durations of all ranges that contain it, and
the load of the arrangement of sensors is the minimum load of the points of R. A schedule for the
sensors is a starting time for each sensor that determines when it starts to be active. The goal is to
�nd a schedule to monitor the given area, R, for as long as we can. Clearly, the cover decomposability
problem is a special case of the sensor cover problem, when the duration of each sensor is the same
(�unit� time).

Buchsbaum et al. [B07] and Gibson and Varadarajan [GV11] proved their result in this more
general context. It was shown in [GV11] that for every open convex polygon P , there is a constant
c(P ) such that for any instance of the sensor cover problem with load c(P )k, where the range of each
sensor is a translate of P , there is a polynomial time computable schedule such that every point is
monitored for k units of time.

Conjecture 1.2 cannot be extended to all (not necessarily convex) polygons.

Theorem 1.10. [PTT05] No concave quadrilateral is cover-decomposable.

In Section 5, following [PTT05] and [P10], we describe a large class of concave polygons that are
not cover-decomposable.

The de�nition of cover-decomposability can be extended to higher dimensions in a natural way.
It is interesting to note that most of the ideas presented in this survey fail to generalize to higher
dimensions. The main reason for this is that the statement analogous to Conjecture 1.2 is false in
higher dimensions.

Theorem 1.11. [MP86] For d ≥ 3, the unit ball in Rd is not cover-decomposable.

Theorem 1.12. [P10] For d ≥ 3, no convex polytope is cover-decomposable.

However, there is a notable exception in 3-dimensions, albeit unbounded: the octant {(x, y, z) :
x, y, z > 0}. For the octant, even a 1-fold covering of the whole plane can be trivially decomposed
into any number of coverings. We get a more interesting problem if we demand only a part of the
plane to be covered.
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Theorem 1.13. [KP11] Any 12-fold covering of a �nite point set by octants can be decomposed into

2 coverings.

This property established in the above theorem is called �nite-cover-decomposability; see De�nition
5.4. As an easy consequence, we obtain that any 12-fold covering of the plane with homothets of a
�xed triangle can be split into two coverings. In fact, Conjecture 1.2 can be (and was) formulated in
the following more general form.

Conjecture 1.14. For every plane convex set P , there exists a positive integer m = m(P ) such that

any m-fold covering of the plane with homothets of P can be split into two coverings.

The methods developed in the �rst substantial publication in this topic [P86] were used in all
later papers. Therefore, in the next two sections we concentrate on this paper and sketch the proof of
Theorem 1.3. In Subsections 3.2 and 3.3, we establish Theorems 1.7 and 1.4. In Section 4, we outline
the proofs of Theorem 1.5 and Theorem 1.9 for triangles. Section 5 contains constructions proving
(an extension of) Theorem 1.10 and Theorem 1.12. We close this paper with some open problems.

2 Basic Tricks

A family of sets P is called locally �nite if every point is contained in only �nitely many members
of P. It follows by a standard compactness argument that any m-fold covering of the plane with
translates of an open polygon P has a locally �nite subfamily that forms anm-fold covering. Therefore,
in the sequel we will assume without loss of generality that all coverings that we consider are locally
�nite.

In the next three subsections, we describe three basic tricks from [P86] that enable us to reduce
the cover decomposability problem to a �nite combinatorial problem for hypergraphs.

2.1 Dualization

Let P = { Pi | i ∈ I } be a collection of translates of a �nite polygon P in the plane, where I is a
�nite or in�nite set. Let Oi denote the center of gravity of Pi. Obviously, P is an m-fold covering of
the plane if and only if every translate of P̄ , the re�ection of P through the origin, contains at least
m elements of the point set O = { Oi | i ∈ I }. Furthermore, P = { Pi | i ∈ I } can be decomposed
into two coverings if and only if the point set O = { Oi | i ∈ I } can be colored with two colors such
that every translate of P̄ contains at least one point of each color.

Clearly, the re�ected polygon P̄ is cover-decomposable if and only if P is. Therefore, we have the
following.

Lemma 2.1. The polygon P is cover-decomposable if and only if there exists an integer m satisfying

the following condition. Any point set S in the plane with the property that every translate of P
contains at least m elements of S can be colored with two colors so that every translate of P contains

at least one point of each color.
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The same argument applies if we want to decompose a covering into k > 2 coverings. Almost all
later papers in the subject follow this �dual" approach. In the sequel, we also study this version of
the problem.

2.2 Divide and conquer�Reduction to wedges

The second trick from [P86] is to cut the plane and the set S in Lemma 2.1 into small regions so
that with respect to each of them every translate of our polygon looks like an in�nite �wedge�.

We use the following terminology. Two half-lines (rays) emanating from the same point O divide
the plane into two connected pieces, called wedges. A closed wedge contains its boundary, an open

wedge does not. The point O is called the apex of the wedge. The angle of a wedge is the angle between
its two boundary half-lines, measured inside the wedge.

Let P be an open or closed polygon of n vertices. Consider a multiple covering of the plane with
translates of P . Then, the cover decomposition problem can be reduced to wedges as follows. Divide
the plane into small regions, say squares, so that each of them intersects at most two consecutive
sides of any translate of P . Every translate of P can intersect only a bounded number c of squares. If
a translate of P contains at least cm points of a set S, then at least m of those will belong to one of
the squares. Therefore, to �nd a coloring of the points of S meeting the requirements in Lemma 2.1,
it is su�cient to focus on a �xed subset of S′ ⊂ S, consisting of all points of S that lie in a single
square. It is su�cient to 2-color the elements of S′ so that no translate of P that covers at least m
points of S′ is monochromatic. Notice that, because of our assumption of local �niteness, each subset
S′ is �nite. Moreover, from the point of view of S′ any translate of P �looks like� a half-space or a
wedge corresponding to one of the vertices of P . To make this statement more precise, denote by
v1, . . . , vn the vertices of P in cyclic order, and denote by Wi the wedge bounded by the rays −−−→vivi−1

and −−−→vivi+1 which contains a piece of P in any small neighborhood of vi. (The indices are taken mod
n.) Now any subset of S′ that can be cut o� from S by a translate of P can also be cut o� by a
translate of one of W1, . . . ,Wn.

Lemma 2.2. Suppose that there is a positive integer m such that any �nite point set S can be colored

with two colors such that every translate of any wedge Wi of P that contains at least m elements of

S, contains points of both colors. Then P is cover-decomposable.

A straightforward generalization of the above argument can be applied when we want to decom-
pose a covering into k ≥ 2 coverings. Thus, from now on, to prove positive cover-decomposability
results we will try to �nd colorings of �nite point sets. However, it will turn out that coloring point
sets with respect to wedges may also be very useful in proving negative results.

Observe that we can assume without loss of generality that our point set S is in general position
with respect to P , that is, none of the lines determined by two points of S is parallel to a side of P .
Indeed, if there is such a line, we can slightly perturb the point set such that any subset of S that
can be cut o� from S by a translate of P , can also be cut o� from the perturbed point set S′.
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2.3 Totalitarianism

So far we have only considered coverings of the whole plane. At this point it will be convenient to
extend our de�nitions to coverings of subsets of the plane.

De�nition 2.3. A set P is said to be totally-cover-decomposable if there exists a (minimal) constant

mT = mT (P ) such that every mT -fold covering of any (!) point set in the plane with translates of

P can be decomposed into two coverings. More generally, for any �xed k ≥ 2, let mT
k (P ) denote

the smallest number mT with the property that every mT -fold covering of any planar point set with

translates of P can be decomposed into k coverings.

This notion was formally introduced only in [P10], but, in view of Lemma 2.2, all proofs in earlier
papers also work for this stronger version of decomposability for locally �nite coverings. To avoid con-
fusion with this notion, sometimes we will call cover-decomposable sets plane-cover-decomposable. By
de�nition, every totally-cover-decomposable set is also plane-cover-decomposable. On the other hand,
there exist sets (perhaps even open polygons) that are plane-cover-decomposable but not totally-cover-
decomposable. For example, the disjoint union of a concave quadrilateral and a far enough half-plane
is such a set. Using the notion of total decomposability, we obtain the following stronger version of
Lemma 2.2.

Lemma 2.4. A polygon P is totally-cover-decomposable if and only if there exists a positive integer

mT with the property that any �nite point set S in the plane can be colored with two colors such that

every translate of any wedge of P that contains at least mT points of S, contains points of both colors.

Note that if we want to show that a set P is not plane-cover-decomposable, then, using Lemma 2.4
with suitably chosen sets S, we can �rst show that it is not totally-cover-decomposable, and then we
can add more points to S and apply Lemma 2.1. Of course, we have to be careful not to add any
points to the translates that guarantee that P is not totally-cover-decomposable. This is the path
followed in [MP86, PTT05] (and also in [P10], but there the point set S cannot always be extended).
These constructions will be discussed in detail in Section 5.

3 Boundary methods

Let W be a wedge and s be a point in the plane. The translate of W with its apex at s is
denoted by W (s). More generally, given a convex wedge (whose angle is at most π) W , and points
s1, s2, . . . , sk, letW (s1, s2, . . . , sk) denote the minimal translate ofW (for containment) whose closure
contains s1, s2, . . . , sk.

Following [P86], next we will de�ne the boundary of a �nite point set with respect to a collection of
wedges. We establish and explore some basic combinatorial and geometric properties of the boundary,
which will be the heart of the proofs of Theorems 1.3, 1.7, and 1.4. The details of these three proofs
from [P86], [PT07], and [TT07], respectively, will be sketched in the next three subsections.
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3.1 Decomposition into two parts

In this subsection, we outline the proof of Theorem 1.3 in the special case when P is an axis-
parallel square. This square has an upper-left, a lower-left, an upper-right, and a lower-right vertex.
For each vertex v of the square, there is a corresponding convex wedge, whose apex is at v and whose
boundary half-lines contain the sides of the square incident to v. Denote these wedges by Wul, Wll,
Wur, and Wlr, respectively. We refer to these four wedges as P -wedges.

Let S be a �nite point set. By Lemma 2.2 it is su�cient to prove the following.

Lemma 3.1. The set S can be colored with two colors such that any translate of a P -wedge which

contains at least �ve points of S, contains points of both colors.

At this point, we introduce the notion of the boundary of S with respect to the wedges of P .
This notion will be similar to that of the boundary of the convex hull. A point s of S belongs to the
boundary of the convex hull of S if there is a half-plane which contains s on its boundary, but none
of the points of S in its interior. Similarly, a point s of S belongs to the boundary with respect to
wedge W if W (s) contains none of the points of S.

De�nition 3.2. Let W be an open wedge. The W -boundary of S, that is, the boundary of S with

respect to W is de�ned as BdW (S) = {s ∈ S : W (s) ∩ S = ∅}. Two vertices, s and t, of the

W -boundary are called neighbors if W (s, t) ∩ S = ∅.

Obviously, one can de�ne a natural ordering on the W -boundary points of S, according to which
two vertices are consecutive if and only if they are neighbors. Observe that any translate of W
intersects the W -boundary in an interval with respect to this ordering. The boundary of S with

respect to the four P -wedges is the union of the Wul-boundary, the Wll-boundary, the Wur-boundary,
and the Wlr-boundary of S. All points of S that are not boundary vertices with respect to the
P -wedges are called interior points.

The Wlr-boundary and the Wll-boundary of S meet at the �highest� point of S, that is, at the
point of maximum y-coordinate. (Assume, for simplicity that this point is unique). The Wll-boundary
and the Wul-boundary meet at the rightmost point of S; the Wul-boundary and the Wur-boundary
meet at the lowest point; and the Wur-boundary and the Wlr-boundary meet at the leftmost point.
See Figure 1. If it leads to no confusion, the translates of Wul, Wll, Wur, Wlr will also be denoted by
Wul, Wll, Wur, Wlr.

If we link together the natural orderings of the boundary vertices of S corresponding to Wll,
Wlr, Wur, and Wul, in this cyclic order, then we obtain a counterclockwise cyclic enumeration of
all boundary vertices. The main di�erence between the boundary of S with respect to P and the
boundary of the convex hull of S is that in the cyclic enumeration of the boundary vertices some
vertices may occur twice. These vertices are called singular, and all other vertices regular.

It is not hard to show, however, that no boundary vertex can appear three times in the cyclic
enumeration. Moreover, all singular vertices must have the same type. In our case, all of them belong
to both a Wul and a Wlr, or all of them belong to a Wur and a Wll. This property generalizes to the
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Figure 1: The boundary of a point set.

case when P is any centrally symmetric convex polygon: all singular boundary vertices must belong
to a pair of opposite P -wedges of the same type.

The most important observation is the following.

Observation 3.3. If the intersection of S with a translate of some P -wedge, say, Wll, is non-empty,

then this set can be obtained as the union of three subsets:

(i) an interval of consecutive elements in the cyclic enumeration of all vertices of the boundary of S,
which contains at least one point from the Wll-boundary;

(ii) an interval of consecutive elements in the cyclic enumeration of all vertices of the boundary of S,
which contains at least one point from the Wur-boundary;

(iii) a set of interior points.

Note that while the subset in (i) contains at least one element, those in (ii) and (iii) may be empty.

Analogous statements hold for the other three wedges, and also for other symmetric polygons.

A �rst naive attempt to �nd a suitable coloring of S is to color all boundary vertices blue and
all interior vertices red. Unfortunately, it is possible that there is a P -wedge that contains lots of
boundary vertices and no interior vertex, so this coloring is not necessarily good.

Another naive attempt is to color the boundary vertices alternately red and blue. Apart from
the obvious problems that the size of the boundary may be odd and that the singular vertices are
repeated in the cyclic order, there is a more serious di�culty with this approach: the translate of a
wedge may contain just one boundary vertex and lots of interior vertices. Consequently, we have to
be careful when we color the interior vertices, which may lead to further complications.
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It turns out that a �mixture� of the above two naive approaches will work.

De�nition 3.4. A boundary vertex s ∈ S is called m-rich if there is a translate W of a P -wedge,
such that s is the only W -boundary vertex in W , but W contains at least m points of S.1

This de�nition is used in di�erent proofs with a di�erent constant m, but when it leads to no
confusion, we simply write �rich� instead of �m-rich.� In this proof, �rich� means �5-rich,� thus a
boundary vertex s is rich if there is a wedge that intersects the W -boundary in s and contains at
least four other points.2

Our general coloring rule will be the following.
(1) Rich boundary vertices are blue.
(2) There are no two red neighbors along the boundary.
(3) Color as many points red as possible, that is, let the set of red points R ⊂ S be maximal under
condition (1) and (2).

Note that from (3) we can deduce
(4) Interior points are red.

A coloring that satis�es these conditions is called a proper coloring. The same point set may have
many proper colorings. For centrally symmetric polygons, any proper coloring will be suitable for our
purposes. In [P86], an explicit proper coloring is described.

Now we are ready to sketch the proof of Lemma 3.1. Suppose that S is colored properly and W
is a translate of a P -wedge such that it contains at least �ve points of S. We can assume without
loss of generality that W contains exactly �ve points of S. By Observation 3.3, W intersects the
W -boundary of S in an interval.

First, we �nd a blue point in W . If the above interval contains just one point then this point
is rich, as the wedge contains at least �ve points, and rich points are blue according to (1). If the
interval contains at least two points, then one of them should be blue, according to (2).

Now we show that W also has at least one red element. If W contains any interior point, then we
are done, according to (4). Thus, we can assume by Observation 3.3 that W ∩ S is the union of two
intervals and all points in W are blue. Since W has �ve points, at least one of them, say, x, is not
the endpoint of any of the intervals. If x is not rich, then, according to (3), x or one of its neighbors
is red. So, x must be rich. But then there is a translate W ′ of a P -wedge, W , or −W , which contains
only x as a boundary vertex, and contains �ve points. Using that S is centrally symmetric, it can
be shown that S ∩W ′ is a proper subset of S ∩W , a contradiction, since both contain exactly �ve
points. This concludes the proof of Lemma 3.1.

If we consider wedges with more points, we can guarantee more red points in them.

1In [P86] and [PT07] a slightly di�erent de�nition was used: there s was required to be the only vertex from the
whole boundary (and not only from the W -boundary) in the translate of W . For centrally symmetric polygons, both
de�nitions work, but, for example, for triangles only the latter one does.

2Instead of m = 5, we could also choose m = 4 to de�ne rich points in this proof. Only the last line of the argument
would require a little more attention.
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Lemma 3.5. In a proper coloring of S, any translate of a P -wedge which contains at least 5i points
of S contains at least one blue point and at least i red points (i ≥ 1).

The proof is very similar to the proof of Lemma 3.1. The di�erence is that now we color 5i-rich
points red and we have to be a little more careful when counting red points, especially because of the
possible singular points. If we delete the blue points (giving them color 1) and then recolor red points
recursively by Lemma 3.5, we obtain an upper bound on mk(P ), exponential in k. An analogous
statement holds for any centrally symmetric open convex polygon, therefore, we have

Lemma 3.6. For any centrally symmetric open convex polygon P , there is a constant cP such that

any ckP -fold covering of the plane with translates of P can be decomposed into k coverings.

3.2 Decomposition to Ω(
√
m) parts for symmetric polygons

Here we sketch the proof of Theorem 1.7, which is a modi�cation of the argument described in the
previous subsection. We continue to assume for simplicity that P is an axis-parallel square. Let k ≥ 2.
We will color the point set S with k colors such that any P -wedge that contains at least m = 18k2

points has at least one point of each color. Recursively, we de�ne k boundary layers and denote them
by B1, B2, . . . , Bk. Let B1 denote the boundary of S, and let S2 = S \ B1. For any i < k, if the set
Si ⊂ S has already been de�ned, let Bi be the boundary of Si and let Si+1 = S \Bi. The coloring of
the boundary layer Bi will be �responsible� for color i. Color i takes the role of blue from the previous
proof, while those points that were colored red there will be �uniformly� distributed among the other
k − 1 colors.

Slightly more precisely, a vertex v ∈ Bi is called rich if there is a translate of a P -wedge that
intersects Si in at least 18k2 − 18ki points, and v is the only element of Bi in it. We color all rich
vertices of Bi with color i, and color �rst the remaining singular, then the remaining regular points
periodically: 1, i, 2, i, 3, i, . . . , k, i, 1, i, . . .. The main observation is that, if a P -wedge intersects Bi

(for any i) in at least 18k points, then it contains a long interval that contains a point of each color.
Otherwise, it has to intersect each of the boundary layers Bi (1 ≤ i ≤ k), but then for each i, its
intersection with Bi contains a rich point of color i.

3.3 Triangles

The main di�culty with non-symmetric polygons is that Observation 3.3 does not hold here: the
intersection with a translate of a P -wedge is not necessarily the union of two boundary intervals and
some interior points. See Figure 2. In the case of triangles, Tardos and Tóth [TT07] managed to
overcome this di�culty by de�ning a variant of proper colorings. In this subsection, we sketch their
proof of Theorem 1.4. For other polygons, a di�erent approach was needed (see Section 4.1).

Suppose that P is a triangle with vertices A, B, C. There are three P -wedges, WA, WB, and WC .
We de�ne the boundary just like before. It consists of three parts, the A-boundary, B-boundary, and
C-boundary. Each of them forms an interval in the cyclic enumeration of the boundary vertices. Here
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comes the �rst di�culty: there may exist a singular boundary vertex which appears three times in
the cyclic enumeration of boundary vertices, once in each boundary. It is easy to see that there exists
at most one such vertex, and we can get rid of it by decomposing our point set S into at most four
subsets such that in each of them all singular boundary points belong to the same pair of boundaries,
just like in the case of centrally symmetric polygons. For simplicity of the explanation, assume that
S has no singular boundary vertex.

C B

A

P

Figure 2: Triangle P and the structure of the boundary.

Again, we call a boundary vertex s rich if there is a translate W of a P -wedge, such that s is the
only W -boundary vertex in W , but W contains at least �ve elements of S.

Our coloring will satisfy the following four conditions.
(1) Every rich boundary vertex is blue.
(2) There are no two red neighbors.
(3) Color as many points red as possible, that is, let the set of red points R ⊂ S be maximal under
condition (1) and (2).
(4) All interior points are red.

We describe explicitly how to �nd the set of red points using a greedy algorithm. Consider the
linear order on the set of all lines of the plane parallel to the side BC, so that the line through A is
smaller than the line BC. We de�ne a partial order <A on our point set as follows. Let x <A y if the
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line through x is smaller than the line through y. We have A <A B and A <A C. Analogously, de�ne
the partial order <B with respect to the side AC such that B <B C and B <B A, and the partial
order <C with respect to the side AB such that C <C A and C <C B.

First, color all rich boundary vertices blue. Now take all A-boundary vertices of S and consider
them in increasing order with respect to <A. If we get to a point that is not colored, we color it
red and its neighbors blue. Note that these neighbors may have already been colored blue (because
they are rich, or because of an earlier red neighbor), but they were de�nitely not colored red, as any
neighbor of any red point is immediately colored blue. Continue this procedure, until all points of the
A-boundary are colored. Color the B-boundary and the C-boundary in a similar fashion, using the
other two partial orders.

Suppose that W is a translate of a P -wedge covering at least �ve points of S. We can assume
without loss of generality that W covers exactly �ve points of S. Assume that W is a translate of
WA. The other two cases can be treated similarly. To �nd a blue point in W , we proceed just like in
the previous section; this works for any proper coloring. We know that W intersects the A-boundary
of S in an interval. If this interval contains just one point, then it must be rich and hence blue. It the
interval contains at least two points, then one of them must be blue.

It remains to show that W also contains at least one red point. If W contains any interior point,
then we are done. Therefore, we assume that all �ve points in W are boundary vertices. Since there
are �ve points in W , one of them, say, x, is (i) not the �rst or last A-boundary vertex in W ; (ii) not
the <A-minimal B-boundary point in W ; and (iii) not the <A-minimal C-boundary point in W .

Suppose that x is rich. Then there is a translate W ′ of a P -wedge, which contains only x as a
boundary vertex, and contains �ve points. It can be shown by some simple geometric arguments that
S ∩W ′ is a proper subset of S ∩W , a contradiction, since both sets contain �ve points. So, x cannot
be rich. But then why would it be blue? The only possible reason is that during the coloring process,
one of its neighbors on the boundary, say, y, was colored red earlier. It can be shown that then y ∈ W ,
which implies that there is a red point in W .

The same idea works if there are some singular boundary vertices, but all of them belong to the
A-boundary and the B-boundary, say. The only di�erence is that in this case we have to synchronize
the coloring processes on the A-boundary and on the B-boundary, so that we arrive at the common
vertices at the same time. This concludes the proof of Theorem 1.4. The original proof gave that
every 43-fold covering with translates of a triangle splits into two coverings, but B. Ács [A10] showed
that the statement also holds for every 19-fold covering. Recently it was further improved to 12-fold
coverings, by Keszegh and Pálvölgyi [KP11].

By a slightly more careful argument, we can establish

Lemma 3.7. The points of S can be colored with red and blue such that any translate of a P -wedge
which contains at least 5i+ 3 of the points, contains a blue point and at least i red points (i ≥ 1).

If we apply Lemma 3.7 recursively, we obtain an bound on mk(P ), exponential in k.
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Lemma 3.8. For any open triangle P , every 7· 5k−15
20 -fold covering of the plane with translates of P

can be decomposed into k coverings.

This result was later improved by the more general Theorem 1.9 of Gibson and Varadarajan.

4 Path Decomposition and Level Curves

In this section, we present three generalizations of the boundary method that can be used to
establish cover-decomposability results.

4.1 Classi�cation of wedges

Pálvölgyi and Tóth [PT10] developed some new ideas to establish Theorem 1.5 which states that
all open convex polygons are cover-decomposable. In the previous section, we colored a point set with
respect to P -wedges, for some �xed polygon P . Here we color point sets with respect to an arbitrary

set of wedges.

De�nition. A collection of wedges W = { Wi | i ∈ I } is said to be non-con�icting or, simply, NC
if there is a constant m with the following property. Any �nite set of points S in the plane can be
colored with two colors so that any translate of a wedge W ∈ W that covers at least m points of S
contains points of both colors.

It turns out that a single wedge is always NC. One can also characterize all pairs of wedges that
are NC. Pálvölgyi and Tóth proved that a set of wedges is NC if and only if each pair is NC. It follows
directly from this characterization that for any convex polygon P , the set of P -wedges is NC.

Lemma 4.1. A single wedge is NC.

An important tool in the proof of Lemma 4.1 and in the proof of the following lemmas is the path
decomposition, which is a generalization of the concept of the boundary. To illustrate this technique,
we present a proof of Lemma 4.1.

Proof of Lemma 4.1. Let S be a �nite point set and let W be a wedge. We prove that the NC
property holds with m = 3, that is, we show that S can be colored with two colors such that any
translate of W that contains at least 3 points of S, contains a point of both colors. Suppose �rst that
the angle of W is at least π. Then W is the union of two half-planes, A and B. Take the translate of
A (resp. B) that contains exactly two points of S, say, A1 and A2 (resp. B1 and B2). There might be
coincidences between A1, A2 and B1, B2, but still, we can color the set {A1, A2, B1, B2} such that
A1 and A2 (resp., B1 and B2) are of di�erent colors. Now, if a translate of W contains three points,
it contains either A1 and A2, or B1 and B2, and we are done. Note that three is optimal in this
statement; see Figure 3.

Suppose now that the angle of W is less than π. We show that in this case the NC property holds
with m = 2. We can assume that the positive x-axis is in W ; this can be achieved by an appropriate
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Figure 3: A concave wedge and three points, any two of which can be cut o� by a translate.

rotation. For simplicity, also suppose that no line determined by a pair of points of S is parallel to
the sides of W . This can be guaranteed by applying a suitable perturbation of the set S that does
not e�ect which subsets of it can be cut o� by a translate of W .

For any �xed y, let W (2; y) be the translate of W which
(1) contains at most two points of S;
(2) the y-coordinate of its apex is y; and
(3) the x-coordinate of its apex is minimal.

Y

Z Z

Y

XX X

Y

Z

Figure 4: Z replaces X in W (2; y).

For any y, the translate W (2; y) is uniquely determined. Examine, how W (2; y) varies as y runs
over the real numbers. If y is very small (smaller than the y-coordinate of the points of S), then
W (2; y) contains two points, say X and Y , and one more, Z, on its boundary. As we increase y, the
apex of W (2; y) changes continuously. How can the set {X,Y } of the two points in W (2; y) change?
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For a certain value of y, one of them, say, X, moves to the boundary. At this point, Y is inside and
two points, X and Z, are on the boundary. If we slightly further increase y, then Z replaces X, that
is, Y and Z will be in W (2; y) (see Figure 4). As y increases to in�nity, the set {Z, Y } could change
several times, but each time it changes in the above described manner. De�ne a directed graph whose
vertices are the points of S, and there is an edge from u to v if v replaced u during the procedure.
We get two paths, P1 and P2. The pair (P1, P2) is called the path decomposition of S with respect to

W , of order two (see Figure 5).
Color the vertices of P1 red, the vertices of P2 blue. Observe that each translate ofW that contains

at least two points, contains at least one vertex of both P1 and P2. This completes the proof. �

Y1

Y2

Y3

X2

X1

X4

X3

Y1

X1

Y2

X2

X3

X4

Figure 5: Path decompositions of order two. P1 = X1X2 . . ., P2 = Y1Y2 . . ..

The path decomposition of S with respect to W , of order m can be de�ned very similarly. Let
W (m; y) denote the translate of W which
(1) contains at most m points of S;
(2) the y-coordinate of its apex is y; and
(3) the x-coordinate of its apex is minimal.

Suppose that, for a very small value of y, the set W (m; y) contains the points r1, r2, . . . , rm, and
at least one more point on its boundary. Just like in the proof above, as we increase the value of y,
the set {r1, r2, . . . , rm} changes several times. Every time one of the elements of this set is replaced by
another point. De�ne a directed graph whose vertices are the points of S, and there is an edge from
r to s if r is replaced by s at some point. This graph is the union of m directed paths, PW

1 , PW
2 , . . .,

PW
m (and possibly some isolated vertices), which is called the order m path decomposition of S with

respect to W . Note that the order 1 path decomposition is just the W -boundary of S, so this notion

15



can be regarded as a generalization of the boundary. In general, in a higher order path decomposition,
no path is identical to the boundary. The union of the paths, however, always contains the boundary.

Note that there is a hidden variable in this notation. When we write PW
1 , then it can mean the

�rst path of the path decomposition of any order m, so it would be more precise to write PW
1 (m).

However, to ease readability, we use the (ambiguous) simpler notation as from the context the value
of m will be always clear.

Lemma 4.2. (i) Any translate of W contains an interval of each of PW
1 , PW

2 , . . ., PW
m .

(ii) If a translate of W contains precisely m points of S, then it contains precisely one point from

each of PW
1 , PW

2 , . . ., PW
m .

Now we scrutinize the case when we have two wedges, V and W . We distinguish several cases
according to their relative position.

Type 1 (Big): One of the wedges has angle at least π.

For the other cases, we can assume without loss of generality that W contains the positive x-axis.
Extend the boundary half-lines of W to lines. They divide the plane into four parts: Upper, Lower,
Left, and Right parts, the last of which is W itself. See Figure 6.

W

RightLeft

Upper

Lower

O

Figure 6: Wedge W

Type 2 (Half-plane): One side of V is in the Right part and the other one is in the Left one. That
is, the union of the wedges cover a half-plane. See Figure 7.

V

W W

V

Figure 7: Type 2 (Half-plane)
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Type 3 (Contain): One of the following three conditions is satis�ed:
(i) one side of V is in the Upper part, the other is in the Lower part;
(ii) both sides are in the Right part;
(iii) both sides are in the Left part. See Figure 8.

W

V V

W

W

V V

W

Figure 8: Type 3 (Contain)

Type 4 (Hard): One side of V is in the Left part and the other side is either in the Upper part or
in the Lower one. See Figure 9.

V

W

W

V

Figure 9: Type 4 (Hard)

Type 5 (Special): One of the following three conditions is satis�ed:
(i) one side of V is in the Right part and the other one is in the Upper or Lower part;
(ii) both sides of V are in the Upper part;
(iii) both sides are in the Lower part.
That is, the union of the wedges is in an open half-plane whose boundary contains the origin, but
neither of them contains the other. See Figure 10.

It is not hard to see that there are no other possibilities.

Lemma 4.3. Let W = {V,W} be a set of two wedges, of Type 1, 2, 3, or 4. Then W is NC.

Here we omit the proof. It is di�erent for each type, but in each case the basic idea is similar to
that of the proof of Lemma 4.1. In the case of pairs of wedges of Type 4 (Hard), we have to take care
of singular points in a somewhat similar way as in the previous section, in the proof for triangles. For
pairs of wedges of Type 3 (Contain), we can apply an order 4 path decomposition.

Next, we turn to the case of several wedges.
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V V

WW V

W

V

W

Figure 10: Type 5 (Special)

Lemma 4.4. A set of wedges W = {W1,W2, . . . ,Wt} is NC if and only if any pair {Wi,Wj} is NC.

It is obvious that if two wedges are not NC, then W cannot be NC. The proof in the other
direction is more involved. It is based on a tricky application of path decompositions. In fact, it
can be shown that if W is NC, then for any k there is an mk such that any �nite point set can be
colored with k colors such that if a translate of a wedge from W contains at least mk points, then
it contains all k colors. However, the bound obtained in [PT10] grows very fast, the argument gives
only mk ≤ (8k)2

t−1
.

To �nish the proof of Theorem 1.5, observe that no two wedges corresponding to the vertices of
a convex polygon can form a pair of Type 1 (Big) or of Type 5 (Special).

It is shown in [P10] that if W = {V,W} is a set of two wedges of Type 5 (Special), then W is not
NC. Therefore, a set of wedges is NC if and only if none of its pairs is of Type 5 (Special). For the
construction and its consequences, see Section 5.

4.2 Level curves and decomposition to Ω(m) parts for symmetric polygons

The level curve method, which can be regarded as another extension of the boundary technique,
was invented by Aloupis, Cardinal, Collette, Langerman, Orden, and Ramos [Al10] at about the same
time, but independently from the introduction of path decompositions.

Suppose that W is an open wedge and its angle is less than π. The level curve of depth l, denoted
by C(l), is de�ned as the boundary of the union of all translates of W that contain fewer than l points.
If W contains the positive x-axis, then we can also de�ne C(l) as the set of the apices of W (l− 1; y).

Note that this curve consists of straight-line segments that are parallel to the sides of W . See
Figure 11. C(1) passes through all boundary points. If p ∈ C(l), then |W (p) ∩ S| is l − 1, and W (p)
has one or two points of S on its boundary.

Consider all translates of W whose apices are on C(l). Call these translates C(l) − W -wedges.
Consider a point of S in a C(l)−W -wedge. The apices of those C(l)−W -wedges which contain this
point form an interval on C(l). Therefore, each C(l) −W -wedge corresponds to a point on C(l), and
every point of S corresponds to an interval of C(l). The condition that each C(l)−W -wedge contains
at least l − 1 points translates to the condition that each of the points of C(l) is covered by at least
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C(l)

W

Figure 11: The level curve C(l).

l−1 intervals. Here we want to color the intervals in such a way that each point is covered by intervals
of all colors.

Now we sketch the proof of Theorem 1.8 given in [Al10], based on the level curve method.
Suppose that our symmetric polygon P has 2n vertices. Denote the wedges belonging to them

by W0, . . . ,W2n−1, in clockwise order. Throughout the proof, all the indices should be considered
modulo 2n. Two wedges, Wi and Wj , are called antipodal if i + n ≡ j modulo 2n, that is, if they
belong to two opposite vertices of the polygon. A crucial observation, already used in Subsection 3.1
(more generally, in [P86]), is that any two wedges that are not antipodal cover a half-space.

We want to color the points of the point set S with k colors such that every translate of Wi

(i = 0, . . . , 2n−1) that contains at least m′
k points, contains a point of each color. For any �xed l, the

level curves Ci(l) that correspond to wedge Wi may cross each other in a complicated way. However,
in the �middle� of S they form a structure similar to the boundary in Subsection 3.1. It turns out
that it is enough to consider these parts of the level curves.

More precisely, let l = 6k + 1. For every side of P , take two lines parallel to it that cut o� 2l + 3
points from each side of S. Denote the intersection of the n strips formed by these lines by T . For
every i, let C′

i(l) = Ci(l)∩T . Call those translates of Wi whose apices are on C′
i(l) witness Wi-wedges.

It is not hard to see that only level curves belonging to antipodal wedges may cross inside T . Some
further analysis shows that, in fact, there can be only at most one such pair. (Note the similarity
to singular points in case of symmetric polygons.) This means that the regions cut o� from T by
the curves C′

i(l) are all disjoint, with the possible exception of one pair. Without loss of generality
we may assume that this pair is C′

i(0) and C′
i(n). It is not di�cult to verify that any translate of
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Wi that contains at least 3l + 5 points, must contain a witness Wi-wedge. Therefore, it is enough to
concentrate on wedges with this property.

One can parameterize these witness wedges by t ∈ [0, 2n) such that W (t) is a translate of W⌊t⌋.
The most important geometric observation is that if p ∈ W (⌊t⌋+ x) ∩W (⌊t⌋+ z), where 0 ≤ x ≤ 1
and 0 ≤ z ≤ n, then p ∈ W (⌊t⌋+ y) for all x ≤ y ≤ z.

If p ∈ W (⌊t⌋+ x) ∩W (⌊t⌋+ z), where 0 ≤ x ≤ 1 and n ≤ z ≤ n+ 1, then p is contained in two
antipodal wedges, which implies that it is contained in translates of W0 and Wn, but in no translates
of any other wedge Wi. Therefore, every p corresponds to either an interval of the circle [0, 2n) or to
two intervals, one of which is a subinterval of [0, 1], and the other a subinterval of [n, n+ 1].

We can take care of these two cases separately, as any big wedge contains many points from one
of these groups. The sets of the �rst type (intervals) form a circular interval graph. Using a simple
greedy algorithm, we can partition the set of these circular intervals into k parts with the property
that any point of the circle that is covered by at least 3k intervals will be covered by at least one
interval in each part. For sets of the second type (unions of two intervals), we want to color points
with respect to a wedge W and its antipodal pair −W . The greedy algorithm again gives a good
partition of a 3k-fold covering into k coverings. Since every witness wedge contains at least 6k points,
we are done.

Combining these facts, we obtain that m′
k ≤ 18k + 5 for any system of wedges derived from a

convex centrally symmetric polygon. This has to be multiplied by a constant depending on the shape
of the polygon that comes from Lemma 2.2, to derive a bound for the multiple-cover-decomposability
function mk of the polygon.

4.3 Decomposition to Ω(m) parts for triangles

The case of not necessarily centrally symmetric polygons P was settled in [GV11]. In this subsec-
tion, we sketch the proof in the special case when P is a triangle, which already contains most of the
key ideas of the general argument.

The �rst step is the usual dualization and reduction to wedges, therefore, it is enough to prove
the following statement.

Lemma 4.5. Let WA, WB, WC be the wedges of a triangle T , and let k > 0. Then any point set

S can be colored with k colors such that any translate of WA, WB, or WC which covers at least 14k
points of S contains at least one point in each color.

Let S be a point set. Consider the level curve CA = CA(14k + 1) of WA of depth 14k + 1. Again,
for the coloring it is enough to consider those translates of WA whose apices are on CA. As we have
seen in the previous subsection, these wedges contain 14k points of S. Call these translates witness
A-wedges. The witness B-wedges and witness C-wedges can be de�ned analogously.

The most important new idea is that �rst we partially color the points of S so that every witness
A-wedge contains at least one point of each color, and all witness B-wedges and witness C-wedges
have su�ciently many uncolored points. We proceed by extending this coloring in such a way that
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every witness B-wedge has a point of each color, and it is still true that every witness C-wedge has
enough uncolored points. Finally, we take care of the witness C-wedges.

Lemma 4.6. One can partially color the points of S with k colors such that

(i) each witness A-wedge contains all k colors, and

(ii) each witness B-wedge and C-wedge contains at least 6k uncolored points.

Proof. We will again use the partial orders <A, <B, and <C , de�ned in Subsection 3.3. First, we
choose a subset Q ⊂ S in the following way. Initially, set Q = ∅. Then, for each witness A-wedge
W such that |Q ∩ W | < 2k, we add the points of S ∩ W to Q, one by one, in decreasing order
with respect to <A, until |Q ∩W | = 2k. Then we proceed with another witness A-wedge. There are
in�nitely many witness A-wedges, but we have to consider only �nitely many, since they can intersect
S in only �nitely many distinct subsets.

In the way described in the previous subsection, each witness A-wedge corresponds to a point on
CA, and each point of Q corresponds to an interval. Thus, we obtain a system of intervals on CA (or,
equivalently, on a line) such that each point is covered at least 2k times. Take a minimal collection
of these intervals that still form a covering. Is is easy to see that no point can be covered more than
twice. Color these intervals with the �rst color, take another minimal cover for the second color,
and continue until all colors are used. Since we started with a 2k-fold covering and in each step the
thickness decreased by at most two, we will be able to use all colors. This corresponds to a coloring
of a subset R ⊂ Q. It is clear that each witness A-wedge contains at least one point of each color.
Observe, that the intervals that correspond to R do not cover any point more than 2k times. That
is, each witness A-wedge contains at most 2k points of R.

Now we prove (ii). By symmetry, it is enough to show that every witness B-wedge contains at
least 6k uncolored points. Let W be a witness B-wedge, and let p1, p2, . . . be the points of W ∩ S in
increasing order with respect to <B. If none of them is in Q, then none of them is colored and we are
done. Otherwise, let j be the largest number such that pj ∈ Q. If j < 8k, then there are at least 6k
uncolored points in W . Suppose that j ≥ 8k. Point pj was added to Q when we considered a certain
witness A-wedge, say, V . Wedges W and V can have two types of intersection, since exactly one of
them contains the apex of the other one.

Case 1: V contains the apex of W . Consider the triangle Z1 = { x | x ∈ W,pj ̸<B x }. (See the
left part of Figure 12.) It contains j points of S, but at most 2k of them are colored, so W contains
at least 6k uncolored points.

Case 2: W contains the apex of V . Consider the triangle Z2 = { x | x ∈ V, pj ̸<A x }. (See the
right part of Figure 12.) Since we added pj to Q when we processed wedge V , there can be at most
2k− 1 points p in V with pj <A p. Therefore, at least 12k points are in Z2. Since we colored at most
2k of them, there must remain at least 10k uncolored points in Z2 ⊂ W .

Now we run the same algorithm for the uncolored points and for the witness B-wedges. A very
similar argument shows that there will still be at least 2k uncolored points in each witness C-wedge.
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Figure 12: The two types of intersections of W and V .

We run the algorithm once more for the uncolored points and for the witness C-wedges. This concludes
the proof.

5 Indecomposable Coverings

In this section, we describe some constructions of coverings with arbitrarily high multiplicity that
cannot be decomposed into two coverings. The �rst such example was given by Mani and Pach [MP86],
and it shows that the unit ball is not cover-decomposable. In other words, for any m, there exists a
covering of R3 with unit balls such that every point is covered by at least m balls, but the covering
cannot be decomposed into two coverings. Later in [PTT05], several other constructions were given,
all based on the geometric realization of the same m-uniform hypergraph (system of m-element sets)
not having Property B.3 The same hypergraph is used in the construction described in Subsection 5.1
below. It was shown by Erd®s [E63] that every m-uniform hypergraphs that does not have Property
B has at least 2m−1 hyperedges, so any indecomposable construction must be exponentially large.
As one of the �rst geometric applications of the Lovász Local Lemma [EL75], Pach showed that if a
system of translates of a �nice� geometric set has the property that every point is covered by at least
m and at most a subexponential (in m) number of sets, then the system is decomposable into two
coverings.

First, we present the construction of [PTT05] showing that no concave quadrilateral is cover-
decomposable. In Subsection 5.2 (see also [P10]), we show that general concave polygons are not
totally-cover-decomposable and polyhedra are not space-cover-decomposable. Finally, we discuss the
di�erence between several variants of cover-decomposability.

3We say that a hypergraph has Property B if the elements of its vertex set can be colored with two colors such that
every hyperedge contains points of both colors.
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5.1 Concave quadrilaterals�Proof of Theorem 1.10

We present the construction in the dual setting. Suppose that the vertices of the quadrilateral, Q,
are A,B,C and D, in this order, the re�ex angle being at D. This implies that WA and WC are of
Type 5 (Special) (see Section 4.1 for the de�nition). Moreover, they belong to an even more special
subclass, which we call Very Special: when we translate the wedges so that their apices are in the
origin, then they are disjoint and their closures are both contained in the same open half-plane (see
the two right examples in Figure 10).

First, for any m, we give a �nite set of points and a �nite number of translates of Q, each covering
precisely m points, such that no matter how we color the points by two colors, at least one of the
translates will be monochromatic. In the �primal� setting, this corresponds to a �nite system of
translates of Q with the property that no matter how we partition this system into two, we can �nd
a point contained in precisely m translates, each of which belongs to the same part. Hence, Q is not
totally-cover-decomposable. Finally, we show how this construction can be extended to an m-fold
covering of the whole plane, which cannot be split into two coverings.

We use translates of the wedges WA and WC to realize the following m-uniform hypergraph H,
also used in [MP86]. The vertices of the hypergraph are the vertices of a rooted perfect m�ary tree
of height m − 1. There are two types of hyperedges. To each vertex v which is not a leaf of the
tree, we assign a hyperedge of the �rst type, formed by the children of v. To each leaf v, we assign a
hyperedge of the second type, formed by the vertices along the path from the root to v. More precisely,
the vertices of the hypergraph are sequences of length less than m, consisting of the integers from
1 through m: V (H) = [m]<m = ∪m−1

i=0 [m]i. The hyperedges of the �rst kind consist of m-tuples of
sequences of length l, for some l (1 ≤ l < m), such that removing their last elements, we obtain the
same sequence of length l − 1. The hyperedges of the second kind consist of all initial segments of a
sequence of lengthm−1, where the empty sequence (corresponding to the root) is considered an initial
segment of every sequence. Hence, H has

∑m−1
i=0 mi vertices and

∑m−1
l=1 ml−1 +mm−1 hyperedges.

The hyperedges of the �rst kind are realized by translates ofWA, the hyperedges of the second kind
by translates of WC . For simplicity, suppose that WA is a very thin wedge that contains the positive
x-axis and WC is a very thin wedge that contains the negative y-axis; although the construction
would work for any pair of convex wedges that belong to opposite vertices of a concave quadrilateral.
All vertices of H are very close to a vertical line. All vertices of a hyperedge of the �rst kind are on a
horizontal line, for each edge on a di�erent one (see Figure 13). It is easy to see that this is indeed a
geometric realization of H, so the points cannot be colored with two colors such that every translate
of WA and WC of size m contains points of both colors.

Now we switch back to the primal plane. We have a point set S, and a set Q of translates of
Q. It remains to extend Q to an m-fold covering of the whole plane. Before doing so, notice that it
can be achieved that all points of the set S are on a line ℓ, not parallel to the sides of Q. Add to
this m-fold covering all translates of Q that are disjoint from S (see Figure 14). It is clear that the
resulting arrangement remains indecomposable. The construction can be easily modi�ed to obtain a
�locally �nite� covering, using a standard compactness argument. Note that the construction of [P10]
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Figure 13: Indecomposable covering with two special wedges of a concave quadrilateral.

is not always extendable this way.

5.2 General concave polygons and polyhedra

The hypergraph H can be realized by two wedges that form a Very Special pair. Unfortunately,
there are concave polygons that do not have two Very Special wedges (see, e.g., Figure 16). In fact,
they might not even have two wedges that form a Type 5 (Special) wedge at all; e.g., in the case of
the union of two axis-aligned rectangles. The cover-decomposability of such concave polygons follows
from the proof of Theorem 1.5 (see Lemma 2.2, 4.3, 4.4). However, it can be shown that every concave
polygon that has two wedges that form a pair of Type 5 (Special) is not totally-cover-decomposable.
This includes all �typical� concave polygons, as any polygon that has no parallel sides has a Type 5
(Special) pair of wedges.

To prove indecomposability, we have to realize another hypergraph that does not have property
B. This construction has fewer points than H (about 4m). It is also more general, in the sense that it
can be realized by any pair of Type 5 (Special) wedges. In fact, the following statement holds, which
implies that no polygon with a Type 5 (Special) pair of wedges is totally-cover-decomposable [P10].

Lemma 5.1. [P10] For any pair of special wedges, V and W , and for any pair of positive integers,

k and l, there is a point set P of size
(
k+l
k

)
− 1 such that for every coloring of P with red and blue,

either there is a translate of V containing k red points and no blue points, or there is a translate of

W containing l blue points and no red points.

Proof. We proceed by induction on k+ l. Denote by P (k, l) a set of points that satisfy the conditions
of the lemma for k and l. If k or l is equal to 1, then the statement is trivially true. In the induction
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ℓ

Figure 14: Extending the original 2-fold covering of the four points by the solid quadrilaterals to a
2-fold covering of the whole plane by adding the dotted quadrilaterals.

step (see the left side of Figure 15), place a point p in the plane and a suitable small scaled down
copy of P (k − 1, l) with the property that any translate of V with its apex in the neighborhood of
P (k−1, l) contains p, but none of the translates of W with its apex in the neighborhood of P (k−1, l)
does. Analogously, place a scaled down copy of P (k, l−1) in such a way that any translate of W with
its apex in the neighborhood of P (k, l − 1) contains p, but none of the translates of V with its apex
in the neighborhood of P (k, l − 1) does.

If p is colored red, then either for the �rst part of the construction, similar to P (k− 1, l), there is
a translate of V that covers point p together with k− 1 other red points and no blue ones, or for the
part similar to P (k−1, l), there is a translate of W that covers l blue points, no red ones, and it does
not contain p. In both cases, we are done. A similar argument works in the case when p is blue.

Remark 5.2. Instead of considering all translates of V and W, in order to �nd a wedge that meets

the requirements of Lemma 5.1, it is su�cient to restrict our attention to a �nite set of translates

whose apices lie on the same line.

This construction, combined with Lemma 4.3 and 4.4, gives the following characterization of
polygons.

Theorem 5.3. [PT10, P10] An open polygon P is totally-cover-decomposable if and only if none of

the P -wedges form a pair of Type 5 (Special).
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Figure 15: Sketch of one step of the induction and iteration of some steps.

Unfortunately, we still do not have a nice characterization for plane-cover-decomposability. The
reason is that the above construction cannot always be extended to coverings of the whole plane. As
pointed out in Remark 5.2, it is su�cient to consider a �nite set of wedges whose apices lie on the
same line. However, after dualization the centers of the translates will lie on two lines. An example
of a polygon which is not totally-cover-decomposable but might be cover-decomposable is depicted
in Figure 16. Some special cases when such an extension is always possible, were studied in [P10].

In higher dimensions, the situation is completely di�erent. According to Theorem 1.12 [P10], for
d ≥ 3, no d-dimensional convex polytope is cover-decomposable.

The proof is based on the observation that for any polytope P , either there is a plane that
intersects P in a concave polygon, which always has a special pair of wedges, or there are two parallel
planes that intersect P in two polygons such that there is a special pair among their wedges. In both
cases, we can take a plane in space and a family of translates of P that realize the above construction
in this plane so that the intersection of the plane and the translates of P play the role of the wedges.
Then we take the dual of this arrangement. To prove that this construction is extendable to an
indecomposable covering of the entire space, observe that the centers of all the translates used in the
construction lie in a plane, therefore, we can follow the same argument as for quadrilaterals in the
plane.
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Figure 16: Unknown hexagon: its only special pair of wedges are at A and E.

5.3 Technical di�culties: closed polygons, �nite covering

Notice that in all of our positive results (Theorems 1.3-1.9) we considered open polygons. This
is due to the fact that at the very beginning of Section 2, based on a compactness argument, we
restricted our attention to locally �nite coverings. This does not work for closed polygons. The truth
is that at the moment for not locally �nite coverings with closed polygons, we cannot prove any
positive result. (Our negative results, of course, remain valid for closed polygons as well.) In [P10],
we made an attempt to overcome this di�culty. To state the (rather weak) results obtained there,
we need a de�nition.

De�nition 5.4. A planar set P is said to be �nite-cover-decomposable (countable-cover-decompo-
sable) if there exists a constant m ≥ 2 such that every m-fold covering of any point set with �nitely

(countably) many translates of P can be decomposed into two coverings.

By de�nition, we have: P is totally-cover-decomposable ⇒ P is countable-cover-decomposable ⇒
P is �nite-cover-decomposable. But which of these implications can be reversed? In [P10], it was
proved that the �rst one can be for �nice� sets. The de�nition of nice includes all closed convex sets
and polygons, but is much more general. The proof is based on the hereditary Lindelöf property of
the plane.

Unfortunately, we have been unable to prove any such connection between �nite-cover-decomposa-
bility and countable-cover-decomposability. Hence, the status of closed polygons is still undetermined.
We believe, however, that using further geometric observations this problem can be settled.

6 Open questions

The main unsolved problem in the �eld remains to verify (or refute) Conjecture 1.2 or, more
generally Conjecture 1.14.
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Problem 6.1. Is every plane convex set cover-decomposable?

Concerning coverings with homothetic copies of a set P , the �rst interesting special cases are
when P is a disk or a square.

Problem 6.2. Does there exist a positive integer m such that every m-fold covering of the plane with

open disks of arbitrary radii splits into two coverings?

Problem 6.3. Does there exist a positive integer m such that every m-fold covering of the plane with

open squares of arbitrary side lengths, whose sides are parallel to the coordinate axes, splits into two

coverings?

As we have seen in the Introduction, the answer to the corresponding question for triangles is
a�rmative [KP11].

In Subsection 2.3, we de�ned a notion somewhat stronger than cover-decomposability (see De�-
nition 2.3).

Problem 6.4. Does there exist a bounded (convex) set P which is cover-decomposable, but not totally-

cover-decomposable?

According to Theorem 1.5, every open convex polygon is cover-decomposable, that is, for every
open convex polygon P , there is a positive constant m(P ) such that every m(P )-fold covering of the
plane with translates of P splits into two coverings. The best known value of m(P ) depends on the
shape of P .

Problem 6.5. Is it true that, for any integer j ≥ 3, there is a positive constant mj such that every

mj-fold covering of the plane with translates of any convex j-gon P splits into two coverings?

For open triangles the answer is yes with m3 ≤ 12. On the other hand, the same statement is not
known for closed triangles, as we do not even know if closed triangles are cover decomposable.

It is possible that for any cover-decomposable set P , there exists a (smallest) positive integer
m = m3(P ) with the property that every m-fold covering of the plane with translates of P splits into
three coverings. More generally, as in the Introduction, let mk(P ) denote the smallest positive integer
m such that every m-fold covering of the plane with translates of P splits into k coverings. If such
an integer does not exist, let mk(P ) = ∞.

Problem 6.6. Is it true that if m2(P ) < ∞, then we also have mk(P ) < ∞, for every k ≥ 3?

This may be true even in a very general combinatorial setting. Given a �nite system of sets
F , a multiset of its members (with possible repetition!) is said to form a m-fold covering if every
element of the underlying set is contained in at least m members of F . For any positive integer k,
let mk(F) denote the smallest number m ≥ 1 such that every m-fold covering with members of
F splits into k coverings. It is easy to see that this number is always �nite: for example, we have
mk(F) ≤ (k − 1)|F|+ 1.
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Problem 6.7. Does there exist a function f such that, for every �nite set system F , we have m3(F) <
f(m2(F))?

It is possible that the answer is yes even with the function f(x) = O(x). As a matter of fact, the
relation mk(F) < Ckm2(F) may also hold with an absolute constant C > 0.

In spite of substantial progress in this �eld, our knowledge on decomposability properties of multi-
ple coverings is rather rudimentary. To our surprise, G. Tardos (personal communication) constructed
a set system F , which �almost� refutes Problem 6.7. This set system cannot be decomposed into 3
coverings, although every subsystem of it (with no repetition!) which forms a 2-fold covering splits
into 2 coverings.

Finally, we mention another problem for �nite set systems that has a strong connection to cover-
decomposability.

For a subset A ⊂ [n], let us denote by ai the i-th smallest element of A. Given two k-element
sets, A,B ⊂ [n], we write A ≼ B if ai ≤ bi for every i. A k-uniform hypergraph H ⊂

([n]
k

)
is called a

shift-chain if for any two hyperedges, A,B ∈ H, we have A ≼ B or B ≼ A. (So a shift-chain has at
most k(n− k) + 1 hyperedges.)

Problem 6.8. Is it true that if k is su�ciently large, then every k-uniform shift-chain has Property

B? In other words, is it true that for every shift-chain H ⊂
([n]
k

)
, one can color [n] with two colors

such that no hyperedge is monochromatic?

An a�rmative answer would be a huge step towards Pach's conjecture that all planar convex sets
are cover-decomposable. To see this, recall the following de�nition from Section 4.1. For a �nite set
of point S in the plane and for a plane convex set P , de�ne P (k; y) as the translate of P which
(1) contains exactly k points of S;
(2) the y-coordinate of its apex is y; and
(3) the x-coordinate of its apex is maximal,
if such a translate exists.

If we associate i ∈ [n] with the element of S with the i-th smallest y-coordinate, then an easy
geometric argument shows that H = {P (k; y) ∩ S | y ∈ R} is a shift-chain.

For k = 2, there is a trivial counterexample to the above problem: (12),(13),(23). For k = 3, a
magic counterexample was found by a computer program written by Radoslav Fulek:

(123), (124), (125), (135), (145), (245), (345), (346), (347), (357), (367), (467), (567), (568), (569),
(579), (589), (689), (789).

If we allow the hypergraph to be the union of two shift-chains (with the same order), then the
construction in Section 5.2 provides a counterexample for any k. Therefore, all arguments using that
the average degree is small (like attempts based on Lovász Local Lemma) would probably fail.

Added in proof

Recently, several new related new results have been found. It was proved by I. Kovács and G.
Tóth [K13, KT13], and, independently, by M. Vizer [V13] that closed centrally symmetric polygons
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are cover-decomposable. In a series of papers, it was shown by J. Cardinal, K. Knauer, P. Micek
and T. Ueckerdtand [C12, C13], and by B. Keszegh and D. Pálvölgyi [KP12, KP13] that kO(1)-fold
coverings by homothets of open triangles or by (�nite collections of) octants are decomposable into
k coverings.
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