REAL

A survey on Hungaria asteroids involved in mean motion resonances with Mars

Forgácsné Dajka, Emese and Sándor, Zsolt and Sztakovics, János (2022) A survey on Hungaria asteroids involved in mean motion resonances with Mars. ASTRONOMY & ASTROPHYSICS, 657. ISSN 0004-6361

[img]
Preview
Text
2110.11745.pdf

Download (1MB) | Preview

Abstract

Context. A region at the inner edge of the main asteroid belt is populated by the Hungaria asteroids. Among these objects, the Hungaria family formed as the result of a catastrophic disruption of the (434) Hungaria asteroid a few hundred million years ago. Due to the Yarkovsky effect, the fragments depending on their direction of rotation are slowly drifting inwards or outwards from the actual place of collision. Due to this slow drift, these bodies could approach the locations of the various outer-type mean-motion resonances (MMRs) with Mars. Aims. We aim to study the actual dynamical structure of Hungaria asteroids, which is primarily shaped by various outer-type MMRs with Mars. Moreover, we also seek connections between the orbital characteristics of Hungaria asteroids and their absolute magnitude. Methods. To map the resonant structure and dynamics of asteroids belonging to the Hungaria group, we used the FAst Identification of mean motion Resonances method, which can detect MMRs without the a priori knowledge of the critical argument. We also compiled stability maps of the regions around the MMRs by using the maximal variations in the asteroids' eccentricities, semi-major axes, and inclinations. We numerically integrated the orbits of all asteroids belonging to the Hungaria group available in the JPL Horizon database together with the Solar System planets for one and ten million years. Results. Having studied the resonant structure of the Hungaria group, we find that several asteroids are involved in various MMRs with Mars. We identify both short- and long-term MMRs. Besides this, we also find a relationship between the absolute magnitude of asteroids and the MMR in which they are involved.

Item Type: Article
Uncontrolled Keywords: SIMULATION; methods: numerical; celestial mechanics;
Subjects: Q Science / természettudomány > QB Astronomy, Astrophysics / csillagászat, asztrofizika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 04 Nov 2022 13:58
Last Modified: 04 Nov 2022 13:58
URI: http://real.mtak.hu/id/eprint/152931

Actions (login required)

Edit Item Edit Item