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Gergely Dálya · Kornél Kapás ·
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Abstract This paper is the second part of a series of studies discussing a novel
attitude determination method for nano-satellites. Our approach is based on
the utilization of thermal imaging sensors to determine the direction of the Sun
and the nadir with respect to the satellite with sub-degree accuracy. The pro-
posed method is planned to be applied during the Cubesats Applied for MEa-
suring and LOcalising Transients (CAMELOT) mission aimed at detecting
and localizing gamma-ray bursts with an efficiency and accuracy comparable
to large gamma-ray space observatories. In our previous work we determined
the spherical projection function of the MLX90640 infrasensors planned to be
used for this purpose. We showed that with the known projection function the
direction of the Sun can be located with an overall accuracy of ∼ 40′.

In this paper we introduce a simulation model aimed at testing the applica-
bility of our attitude determination approach. Its first part simulates the orbit
and rotation of a satellite with arbitrary initial conditions while its second
part applies our attitude determination algorithm which is based on a mul-
tiplicative extended Kalman filter. The simulated satellite is assumed to be
equipped with a GPS system, MEMS gyroscopes and the infrasensors. These
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instruments provide the required data input for the Kalman filter. We demon-
strate the applicability of our attitude determination algorithm by simulating
the motion of a nano-satellite on Low Earth Orbit. Our results show that the
attitude determination may have a 1σ error of ∼ 30′ even with a large gyro-
scope drift during the orbital periods when the infrasensors provide both the
direction of the Sun and the Earth (the nadir). This accuracy is an improve-
ment on the point source detection accuracy of the infrasensors. However, the
attitude determination error can get as high as 25◦ during periods when the
Sun is occulted by the Earth. We show that following an occultation period
the attitude information is immediately recovered by the Kalman filter once
the Sun is observed again.

Keywords Space vehicle instruments (1548), Stellar tracking devices (1633),
Pointing accuracy (1271), Astrometry (80)

1 Introduction

Owing to the enormous funding requirements, satellite missions were only
conducted by the economically most powerful countries of the world in the
first few decades of the space era. However, as a consequence of the explosive
technological development, small satellite missions with substantially lower
funding requirement – for instance, nano-satellites including as CubeSats –
became a viable alternative for traditional large-size and high-cost satellites,
which made space an achievable goal also for countries/organizations with less
financial resources. The last few decades brought along a lot of such missions
with more and more scientific aims being targeted by them.

One of the technological difficulties that needs to be handled in connection
with small satellite missions is the accurate determination of the satellite’s
actual orientation, i.e. its attitude. While on large-size satellites this informa-
tion is usually provided by costly, large-size star trackers, which determine the
attitude based on the angular distribution of bright stars in their field of view,
these systems do not fit the very restricted size and power budget criteria of
nano-satellites. In our recent paper (Kapás et al., 2021) we proposed a new,
cost-efficient approach to this problem which is based on the utilization of ther-
mal imaging infrasensors. For this purpose we chose the MLX90640 infrasensor
of Melexis (2018), which is a small-size, low-cost sensor having 32×24 pixels
and a relatively large, 110×75 degree field of view. This coverage by a single
sensor implies that six of these sensors, placed on the six sides of a cube, could
cover the full sphere, see Figure 4 of Kapás et al. (2021). This technology might
be suitable to even smaller satellites in similar missions like GRBAlpha (Pal
et al., 2020). As the spherical projection function of MLX90640 infrasensors
(to be used for this purpose) is now known with an overall accuracy of ∼ 40′

(Kapás et al., 2021) we now turn to the next step and introduce a simulation
model for testing the applicability of our attitude determination approach. As
we outline in our recent paper (Dálya et al., 2020), our method is based on a
multiplicative extended Kalman filter that uses the information provided by
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the infrasensors (direction of the Sun and the nadir in the satellite’s coordinate
frame), the GPS system (the location of the satellite in the Earth centered co-
ordinate frame) and the MEMS gyroscopes (angular velocity of the satellite)
carried by the satellite.

The layout of the paper is the following. In Section 2 we describe the sim-
ulation of the satellite dynamics and introduce the multiplicative extended
Kalman filter method. We demonstrate our results in Section 3, and we sum-
marize our conclusions in Section 4. A detailed description of the equations
used for the Kalman filter can be found in Appendix A.

2 Simulation model for testing the on-board attitude
determination algorithm

The attitude determination algorithm we developed is aimed to run on-board
and therefore it needs to be tested for the different situations possible during
a space mission. For this purpose we built a simulation model where all parts
of the attitude determination process can be tested independently and as a
whole as well. The first part of the code simulates the dynamics of the Sun-
Earth-satellite system while its second part determines the attitude of the
satellite by applying a multiplicative extended Kalman filter to the simulated
data provided by the first part of the code. The goal of this process is to see
how the recovered attitudes compare to the ’real’ ones.

2.1 Simulation of the satellite dynamics

This part of the code calculates the position and the attitude of the satellite
in the Earth centered J2000 reference system (where the X and Z axes point
towards the former positions of the vernal equinox and the Earth’s rotation
axis in January 1, 2000 at 12:00 TT, respectively) as well as the position of
the Sun and the Earth in the satellite’s coordinate system (where the origin
of the system is fixed to the center of mass of the cubesat and the axes are
parallel to its edges, see Fig. 1). In the code time is expressed in Julian dates
and the GPS to J2000 coordinate transformations are implemented as well.
The code also determines the ’night’ part of the orbit, i.e. where the Sun is
occulted by the Earth.

The orbit of a satellite can be characterized by five orbital elements (Ω,
longitude of ascending node; i, inclination; ω, argument of periapsis; e, ec-
centricity; h, altitude of satellite orbit at perigeum; see Fig 1.) which remain
constant when assuming a spherical Earth. The actual position of the satellite
on this elliptical orbit is given via the true anomaly (ν) which is obtained
from the Kepler equation. However, the oblateness of the Earth introduces
perturbations, from which the J2 perturbation has the largest magnitude, and
therefore it has to be taken into account while simulating the satellite dynam-
ics. The main effect of the J2 perturbation is on Ω and ω. The time derivatives
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Fig. 1 The two main coordinate systems used in the simulations. Index i denotes the J2000
system with the Earth in the origin. The Zi axis coincides with the rotation axis of the Earth
in January 1, 2000 at 12:00 TT while the Xi axis points to the vernal equinox at the same
epoch. The axes of the satellite’s coordinate frame are denoted by index s. The orbital
parameters displayed in the figure are Ω (longitude of ascending node), i (inclination), ω
(argument of periapsis) and ν (true anomaly).

of these orbital elements are the following (Kozai, 1959):

ω̇ =
3

4
nJ2

(
Re
p

)2

(5 cos2 i− 1) (1)

Ω̇ = −3

2
nJ2

(
Re
p

)2

cos i (2)

where Re is the radius of the Earth, p = a(1 − e2), n =
√
GMe/a3 and

J2 ' 1.082629 · 10−3.
Next we discuss the description of the rotation of the satellite. As the

variation of the gravitational field is negligible in the range of the satellite’s
dimensions and we did not apply any kind of attitude control in our model, the
net angular momentum transfer due to external torques is negligible during
one orbit. We also assumed that the satellite frame coincides with the principal
frame, however, in case it does not, an additional constant rotation needs to be
taken into account between the two frames. The time evolution of the attitude
then can be determined using Euler’s rotation equation, which describes the
evolution of the angular velocity of a rotating rigid body represented in its
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principal frame (see e.g. Coutsias and Romero, 2004):

d

dt

ω1

ω2

ω3

 =


I2 − I3
I1

ω2ω3

I3 − I1
I2

ω3ω1

I1 − I2
I3

ω1ω2

 . (3)

where ω is the angular velocity vector of the satellite represented in the princi-
pal frame (which coincides with the satellite frame), and I1, I2 and I3 are the
moments of inertia corresponding to the x, y and z axes, respectively. Note
that Eq. (3) could imply complex motions, such as tumbling1, which we can
readily reproduce within our model (see supplementary material).

The attitude can then be calculated by an additional integration over the
angular velocities. In this work we use unit quaternions to represent the atti-
tude of the satellite as qs = [n sin(γ/2), cos(γ/2)]T, where n is the axis of the
rotation that transforms the J2000 coordinate frame to the satellite frame,
γ is the rotation angle and the superscript T denotes transposition (quan-
tites represented in the satellite frame are denoted by the superscript ’s’). The
quaternion kinematics is given by the following equation (see e.g., Crassidis
and Junkins, 2012; Baroni, 2018):

q̇s =
1

2
Ω (ωs) qs, (4)

with the 4× 4 matrix

Ω (ωs) =

[
−S(ωs) ωs

−(ωs)T 0

]
, (5)

where S(ωs) is the matrix representation of the cross product (ωs×):

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (6)

2.2 Attitude determination with Kalman filter

The Kalman filter is an algorithm that provides an efficient way to estimate
the state of a dynamic system by a series of measurements with inaccuracies
over time (Kalman, 1960). The estimates produced by the algorithm are more
accurate than those based on a single measurement alone since the joint prob-
ability distribution of the variables is estimated for each discrete time-step of
the process. This leads to the minimization of the mean of the squared error
of the estimates.

The Kalman filter works in a two-step process with a prediction step (time
update) and a measurement step. In the prediction step the filter propagates

1 see https://youtu.be/1n-HMSCDYtM

https://youtu.be/1n-HMSCDYtM
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the estimates of state and uncertainties from current to the next time step.
In the measurement step the state of the system is measured with some error
and the estimate is updated by the weighted average of the estimate and the
measurement, where the weights are determined by the respective uncertain-
ties.

In our specific objective the Kalman filter serves to combine the infrasensor
data with the angular velocity information provided by the MEMS gyroscopes.
Although the 3 axis MEMS gyroscopes yield an accurate attitude information
on a short time period, due to the error accumulation effect known as gyroscope
drift an absolute attitude information is required as well, which is provided
by the thermal imaging infrasensors in our case. In earlier works this kind of
absolute attitude information was usually gathered by a 3-axis magnetometer
and an optical Sun sensor (see e.g., Ni et al. 2011; Springmann et al. 2012;
Baroni 2018; Gaber et al. 2020). The use of infrasensors is more convenient
in the sense that as opposed to magnetometers they can be built-in parts
of the satellite and do not need an external boom to be mounted on. The
infrasensors determine the direction of the Sun and the nadir in the satellite’s
coordinate frame, which vectors are known in the Earth centered reference
frame as well owing to the location information provided by the onboard GPS.
The rotation that transforms the reference frame to the satellite frame (which
is indeed equivalent to the attitude of the satellite) is unequivocally determined
by the pair of these two vectors in the two coordinate frames. Hence we get a
prediction of the system’s state from the gyroscope which can be corrected by
the absolute attitude information provided by the infrasensors.

Since the quaternion kinematics, described by Eq. (4), is nonlinear in the
variables ωs and qs the utilization of an extended Kalman filter is necessary.
We use the Multiplicative Extended Kalman Filter (MEKF) method (Lef-
ferts et al., 1982), where a multiplicative error state δq is introduced, which
represents a small rotation from the predicted attitude – which contains mea-
surement errors – to the actual attitude (from now on we omit superscripts,
since everything is understood to be represented in the satellite frame, unless
noted otherwise)2:

δq = q⊗ q̂−1, (7)

where the circumflex ’∧’ denotes the expected (or predicted) value of a quan-
tity. With this multiplicative approach the conservation of the unit quaternion
length is guaranteed and the problem of singular covariance matrices, encoun-
tered in the additive approach, is avoided as well.

To describe gyroscope measurements we use the model of Lefferts et al.
(1982), where in addition to a zero mean Gaussian error ηω a time dependent
bias vector β is also introduced, the motion of which is determined by a random
walk. Hence, the measured angular velocity ωm is given by

ωm = ω + β + ηω, (8)

2 Note that the quaternion product ⊗ is conventionally defined here such that ijk = 1
instead of the more commonly used ijk = −1
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β̇ = ηβ, (9)

where the Gaussian processes ηω and ηβ have covariance matrices σ2
ωI3×3 and

σ2
βI3×3, respectively. Therefore the estimated value of the angular momentum

is

ω̂ = ωm − β̂. (10)

The state space model is then given by the equations:

q̇ =
1

2
Ω (ω̂) q, (11)

β̇ = 0. (12)

The predicted values of the angular momentum and bias vectors are up-
dated through the Kalman filter using the position of the Sun and the nadir
both as seen by the satellite and as calculated in the inertial frame. A vector
in the inertial frame is transformed to the satellite frame by

rs = A(qs)ri. (13)

It can then be shown that a small multiplicative quaternion error δq creates a
small δrs deviation detemined by the following equation (Crassidis and Junk-
ins, 2012):

δrs = 2S
(
A (q̂s) ri

)
δq3, (14)

where δq3 is a three component vector containing the imaginary part of the
multiplicative error state δq. This determines the so called sensitivity matrix,
which is then used by the Kalman filter to calculate the multiplicative error
state from the δrs quantities.

Since measurements are made at discrete time-steps, to implement these
equations one must first discretize the kinematical equations. The Kalman
filter then can be applied after each time-step to refine the attitude information
predicted by the kinematical equations. The detailed discretized equations can
be found in Appendix A.

3 Simulation results

The applicability of our attitude determination approach is demonstrated by
simulating a satellite on Low Earth Orbit (LEO) described by the following
parameters:

– Ω = 0◦, i = 60◦, ω = 0◦, e = 0.01, h = 650 km,
– I1 = 2.75× 10−4 kg m2, I2 = 2.75× 10−4 kg m2, I2 = 5.5× 10−5 kg m2,
– L0 = [−4.4× 10−6, 1.925× 10−6, −6.05× 10−7] kg m2/s,
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Fig. 2 The orbit and rotation of the simulated satellite. Its position is described by its
altitude, latitude and longitude (left) while its attitude is described by its right ascension
(α), declination (δ) and roll (ρ) (right). For the different parameters that characterize the
satellite’s motion we refer to the main text. Shaded areas represent those parts of the orbit
where the Sun is occulted by the Earth.

where L0 denotes the initial angular momentum of the satellite in the satellite
frame. The chosen I1, I2 and I3 values correspond to a 3U CubeSat with a
size of 10x10x30 cm and total mass of 3.3 kg. The initial attitude was selected
randomly. Figure 2 shows how the position and the attitude of the satellite
changes during 6 hours on such an orbit. The attitude is represented in the
form of right ascension (α), declination (δ) and roll (ρ). The conversion rule
between these angles and the quaternion representation of the attitude is given
by the following formulas:

α = arg(q1q3 + q2q4, q2q3 − q1q4),

δ = arg(q24 + q23 − q22 − q21 , 2
√

(q21 + q22)(q23 + q24)),

ρ = arg(q1q3 − q2q4,−q2q3 − q1q4), (15)

where arg(x, y) gives the ϕ phase factor of the complex number x+iy = r ·eiϕ.
Note also that the domain of δ is [0◦, 90◦], while it is [0◦, 360◦) for α and ρ.
In the figure shaded areas represent those parts of the orbit where the Sun
is occulted by the Earth, i.e. where the number of measured vectors for the
MEKF is reduced to one.

Since MEMS gyroscopes are available with various precision we investi-
gated three different cases for attitude determination characterized by three
different values for gyroscope drifts. For the largest error case we used
σω = 4.89 × 10−3 rad/s1/2 and σβ = 3.14 × 10−4 rad/s3/2 as proposed by
Baroni (2018), while for our standard and low-error case we used errors 0.1
and 0.3 times those of the high-error case, respectively. The initial parameters
of the MEKF were chosen as follows:
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Fig. 3 The real (orange) and the MEKF recovered (green) attitude for the simulation shown
in Fig. 2 for our standard choice of gyroscope error (left), and the error of the attitude
determination, i.e. the difference between the real and the recovered attitude elements for
the same orbital configuration (right). Shaded areas represent parts of the orbit where the
Sun is occulted by the Earth.

– β0 = [0, 0, 0],
– P0 = diag([0.25, 0.25, 0.25, 0.01, 0.01, 0.01]).

q0 was selected randomly and the standard deviation of the measured vectors
had been set to 0.012 rad (∼ 40′, in accordance with our previous result on
the pointing accuracy of MLX90640 infrasensors) and had been added to the
input vectors. Sensor data were sampled at 1 Hz.

The recovery of the attitude on the orbit shown in Fig. 2 for our standard
choice of gyroscope error is presented in Fig. 3. The left panels of Fig. 3 show
that the attitude elements are well recovered when the MEKF works with two
input vectors (’day’), i.e. when the infrasensors provide both the direction of
the Sun and the Earth (the nadir), while the accuracy breaks down significantly
when there is only one input vector (only the nadir direction) available for
the MEKF (’night’). This behavior is not surprising, since we are lacking the
minimum of two linearly independent vectors necessary to gain information
about the absolute attitude of the satellite, and since the bias instability of
MEMS gyroscopes is relatively high. The right panels of Fig. 3 show that the
difference between the real and the recovered attitude elements may reach 25◦

during the ’night’ phase in our standard case.

Even though the accuracy of recovering the independent attitude parame-
ters breaks down during ’night’, the errors are correlated even in this case due
to the information gained from observing the horizon. This is shown in the
left panel of Fig. 4, where we plot the y and z components of the quaternion
error states (δqy and δqz). As the information about the horizon determines
the orientation of the satellite with respect to the orbital plane, the error of
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Fig. 4 The y and z components of the quaternion error states, as well as the component
corresponding to the rotation in the satellite’s orbital plane (left), and the errors of the
attitude elements around a ’night’ to ’day’ transition (right).

Fig. 5 Probability distributions of the right ascension’s measurement error, i.e. the dif-
ference between the real and the recovered values, during ’day’. The different panels show
the cases with low (left), standard (middle), and the high (right) gyroscope error. The red
curves represent Gaussian fits.

the quaternion component that describes the rotation within this plane (δqO)
does not increase during the ’night’ periods. δqO can be produced as a linear
combination of δqy and δqz in our example. The right panel of Fig. 4 shows
a short time period around a ’night’ to ’day’ transition and how the attitude
information is immediately recovered once the Sun is visible again.

We also investigated the statistical behavior of the measurement errors. To
do so we initialized our simulation with the same parameters except for the
direction of angular momentum vector, which we picked randomly. By starting
the simulation from several different initial conditions we collected statistical
data about the first ’day’ and ’night’ phases.

Figure 5 shows the distribution of the right ascension’s measurement error
for the ’day’ case with different gyroscope precisions (the other two attitude
parameters have similar error distributions). The results show that the recov-
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Fig. 6 Probability distributions of the right ascension’s measurement error during ’night’.
The left, middle and right columns correspond to the cases with low, standard and high
gyroscope error, respectively, while the different rows represent different equal-length time
segments with the top row being the first and the bottom row the last quarter of the ’night’
phase.

ery has a 1σ error of ∼ 22′ in our standard case, while this error is ∼ 18′ and
∼ 32′ in the low- and high-error cases, respectively. This is an improvement
on the ∼ 40′ error of the MLX infrasensor’s point source detection accuracy
(Kapás et al., 2021), which shows the power of the MEKF method.

In Figure 6 we show the same errors for different parts of the ’night’ phase.
We divided the ’night’ period to four equal-length segments to investigate the
evolution of the errors and to avoid creating statistics from time periods with
qualitatively different behavior. We see that the distribution of errors gets
smeared as time progresses, and also with larger gyroscope errors. In the last
segment of the high-error case the distribution is completely smeared so that
not much information is retained about the real attitude. This is in accordance
with the results of Baroni (2018).

4 Summary

In the present paper we described a simulation model for testing our new
concept aimed at determining the attitude of nano-satellites. The attitude
was represented by unit quaternions and a MEKF approach was applied to
estimate the most probable state (attitude) of the system. In our model the
prediction step of the Kalman filter utilizes gyroscope measurements while
its measurement step is based on infrasensor measurements and GPS location
information which provide the direction of the Sun and the nadir in the satellite
and in the J2000 reference frames, respectively.

The results of our simulations show that an attitude accuracy of 22′ is
achievable using combined measurements of the infrasensors and MEMS gy-
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roscopes having a conservative drift. This is an improvement on the accuracy
of point source detection with the MLX infrasensors (∼ 40′, see Kapás et
al., 2021). This accuracy is gradually lost when the Sun is occulted by the
Earth whereupon it can reach values of ∼ 15− 25◦. The attitude information,
however, is recovered within a short time once the Sun is observed again.

During the actual mission the satellites will not have infrasensors on all
of their six sides and hence not being able to observe the Sun will be more
regular. However, these time periods will be relatively short and the gyroscope
drift is expected to be manageable during these intervals.

In this work we simulated a satellite on LEO with an inclination of 60◦.
This is a reasonable choice for a particle detector experiment like a GRB
detector because on this orbit the satellite evades high latitudes with increased
noise contamination from the polar regions but is able to cover a large area
of the sky. However, on such an orbit the illumination conditions may change
substantially on the timescales of a few months due to the motion of the
Earth around the Sun, as well as due to the orbital precession caused by J2.
However, we consider our simulations to represent the average conditions on
such an orbit sufficiently well.

The attitude determination method described in this paper is planned to
be used in the CAMELOT mission where the attitude data will also serve as
additional information for localizing gamma-ray bursts besides triangulation.
An in-orbit demonstration of our experiment is planned to be scheduled for
the end of 2022.
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University’s Campus in Szombathely, EFOP-3.6.1-16-2016-00023). We also thank the sup-
port of the GINOP-2.3.2-15-2016-00033 project which is funded by the Hungarian National
Research, Development and Innovation Fund together with the European Union.

Conflict of interest The authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict
of interest.

Appendix A Time and measurement update with the Kalman
filter

Here we describe the discretized time update and measurement update steps of the Kalman
filter. From now on the superscript ’–’ denotes propagated states before the measurement
update, while the superscript ’+’ denotes states after the measurement update.

A.1 Time update

The estimated values of the attitude quaternion and the bias vector after a ∆t time-step
can be calculated using the following equations (Crassidis and Junkins, 2012):

q̂−
k+1 = Θ(ω̂)q̂+

k , (16)
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β̂−
k+1 = β̂+

k , (17)

where ω̂+
k = ωm − β̂+

k and

Θ(ω̂+
k ) =

cos( 1
2
||ω̂+

k ||∆t)I3×3 − S(ψ̂+
k ) ψ̂+

k

−
(
ψ̂+
k

)T
cos( 1

2
||ω̂+

k ||∆t)

 , (18)

ψ̂+
k =

sin( 1
2
||ω̂+

k ||∆t) ω̂
+
k

||ω̂+
k ||

. (19)

The covariance matrices are propagated using

P−
k+1 = ΦkP

+
k ΦT

k + GkQkG
T
k , (20)

with Φ being the state transition matrix:

Φk =

[
Φ11 Φ12

Φ21 Φ22

]
, (21)

where

Φ11 = I3×3 − S(ω̂+
k )

sin(||ω̂+
k ||∆t)

||ω̂+
k ||

+ S(ω̂+
k )2

[1− cos(||ω̂+
k ||∆t)]

||ω̂+
k ||2

,

Φ12 = S(ω̂+
k )

[1− cos(||ω̂+
k ||∆t)]

||ω̂+
k ||2

− I3×3∆t− S(ω̂+
k )2

[||ω̂+
k ||∆t− sin(||ω̂+

k ||∆t)]
||ω̂+

k ||3
,

Φ21 = 03×3, Φ22 = I3×3. (22)

The Q and G matrices determining the process noise matrix are given by

Qk =

(σ2
ω∆t+ 1/3 σ2

β∆t
3
)

I3×3 −
(

1/2 σ2
β∆t

2
)

I3×3

−
(

1/2 σ2
β∆t

2
)

I3×3

(
σ2
β∆t

)
I3×3

 , (23)

Gk =

[
−I3×3 03×3

03×3 I3×3

]
. (24)

A.2 Measurement update

In the measurement update step the MEKF first estimates the quaternion error state δq
using the sensitivity matrix determined by Eq. (14) and then updates the attitude utilizing
Eq. (7).

Supposing there are n vectors measured by the satellite, the quaternion error state and
the bias vector error can be obtained using the following formula:

[
δq3
k

δβk

]
= Kk




rs1,k
rs2,k

...
rsn,k

−


r̂s1,k
r̂s2,k

...
r̂sn,k


 , (25)

where rsi denotes a vector measured by the satellite, while r̂si = A(q̂−)rii is the predicted
value of that vector. Kk is the Kalman gain defined the usual way:

Kk = P−
k HT

k

(
HkP

−
k HT

k + Rk

)−1
, (26)
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with Hk being the sensitivity matrix:

Hk =


2S(r̂s1,k) 03×3

2S(r̂s2,k) 03×3

...
...

2S(r̂sn,k) 03×3

 , (27)

and Rk the measurement covariance matrix:

Rk = diag[σ2
r1

I3×3, σ
2
r2

I3×3, . . . , σ
2
rnI3×3]. (28)

The quaternion state, the bias vector and the covariance matrix are then updated by

q̂+
k = δqk ⊗ q̂−

k , (29)

β+
k = β−

k + δβk, (30)

P+
k = (I−KkHk) P−

k , (31)

where the quaternion error state is obtained from its imaginary part using the normalization
constraint:

δq =

[
δq3
k
T
,

√
1− δq3

k
T · δq3

k

]T
. (32)

In our setup the number of measured vectors is n = 2 when the Sun and the horizon is
visible at the same time, while it is n = 1 when the Sun is occulted by the Earth.
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Werner N., Ř́ıpa J., Pál A., Ohno M., Tarcai N., Torigoe K., Tanaka K., et al. SPIE. 10699.
106992P. (2018)


	1 Introduction
	2 Simulation model for testing the on-board attitude determination algorithm
	3 Simulation results
	4 Summary
	A Time and measurement update with the Kalman filter

