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Abstract Stability and bifurcation analysis of a non-
rigid robotic arm controlled with a time-delayed accel-
eration feedback loop is addressed in this work. The
study aims at revealing the dynamical mechanisms
leading to the appearance of limit cycle oscillations
existing in the stable region of the trivial solution of
the system, which is related to the combined dynam-
ics of the robot control and its structural nonlinearities.
An analytical study of the bifurcations occurring at the
loss of stability illustrates that, in general, hardening
structural nonlinearities at the joint promote a subcrit-
ical character of the bifurcations. Consequently, limit
cycle oscillations are generated within the stable region
of the trivial solution. A nonlinear control force is then
developed to enforce the supercriticality of the bifur-
cations. Results illustrate that this strategy enables to
partially eliminate limit cycle oscillations coexisting
with the stable trivial solution. The mechanical system
is analysed in a collocated and a non-collocated con-
figuration, depending on the position of the sensor.
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1 Introduction

Robots were originally developed for pick-and-place
operations [25], for which extreme geometrical accu-
racy is not a particular need. Later, industrial robots
were also used as a milling platform, first for proto-
type manufacturing of clay [38,39] mostly for indus-
trial design cases. The repeatability of positioning is
more important for machining than for pick-and-place
operations, which was enough for the mentioned clay
prototype sculpture manufacturing. By the time, geo-
metrical accuracy has increased by a factor of 10
from mm to tenth of mm by applying better sensors
and proportional-derivative feedback control. Proto-
type manufacturing is slowly taken over by plastic 3D
rapid prototyping [26,44]; however, for some cases,
clay still serves as cheap and durable solution to test
design issues of e.g. sculpture-like car chassis pro-
totypes. Indeed, the most common open kinematical
chain robots are excellent to manufacture sculpture-
like surfaces [9–11] due to their workspace, but this
versatile configuration lacks rigidity.

Machine tools are created to perform machining on
metal parts; their superstructure is designed to serve
stiffness and rigidity [29], required to provide the nec-
essary geometrical accuracy. This leads to a design
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very different with respect to robots, resulting in heavy,
large, sturdy and consequently expensive superstruc-
tures for machine tools.

Machiningofmetal parts usually requires high shape
accuracy; at first, the reflected stiffness must over-
come the corresponding so-called cutting stiffness [43]
ensuring the minimum requirement for a stable opera-
tion. This is still very much a must even for roughing
operations, where accuracy is not an important factor,
because of the great forces transmitted during cutting.
This requirement is especially hard to achieve by indus-
trial robots, which are generally slender and not par-
ticularly stiff [31,32,42]. There are stiffer geometric
arrangements of open kinematic chains of robotic arms;
however, they generally provide a drastically reduced
utilisable workspace, if the cutting is possible at all.

Theoretically, an online control solution is possible
to upgrade the robot dynamic performance by built-in
velocity and acceleration feedback controllers. On the
one hand, robot manufacturers are not taking the risk
to open their control development kit to that level. On
the other hand, possible factory level deployment of
upgraded industrial robots can be accepted by owners
either using off-line techniques or utilising a certified
built-in control.

Since industrial robot users are also hesitant to
accept mounted passive and semi-active embedded
solutions to increase the dynamic reflected stiffness
of the end-effector, another relatively cheap solution
could be using simply feedback sensor signals in the
built-in position control of stock industrial robots.
This might sound impossible, but stable manufactur-
ing might be achieved with careful parameter man-
agement, especially with the synchronisation of delays
in the built-in and new feedback loop, most probably
using acceleration signals.

Usually, a proportional-derivative control scheme is
used in the inner controller of the robot [47] to decrease
the positioning error. An additional acceleration feed-
back controller, which is fed through the conventional
inner controller of the robot, is sometimes utilised to
mitigate the vibrations arising from the machining pro-
cesses [7,18,34,48,49] or to compensate for the flexi-
bility of the arm [12,19]. Acceleration feedback is par-
ticularly appealing for industrial applications thanks to
its reasonable price, compared to position and veloc-
ity measurement devices required to measure the state
of the robot’s end-effector [14,15]. Typically, sensors
measure only the state of the motor’s rotor, while only

Fig. 1 Collocated (left) and non-collocated (right) robotic arms

relatively recently, sensors for directly (or indirectly)
measuring the position of the arm have been proposed
[3,36]. Because of the flexibility of the robotic arm,
especially at the joints [1], the correct positioning of
the accelerometer can have a significant effect on the
stability and effectiveness of the control scheme [13].
The system is named collocated if the sensors are posi-
tioned near the actuator and non-collocated if they are
positioned far from the actuator [2,22]. The two cases
are illustrated in Fig. 1.

Feedback controllers usually introduce time delays
in the system [41], which is another element potentially
having a substantial effect on the stability and effec-
tiveness of the controller, even if it is relatively small
[17,23]. Nevertheless, its effect is not necessarily detri-
mental; indeed, several studies exploit time delay to
enhance the stability performance of a controller [5].
For instance, in [4] and [45] time delay is purposely
included in the system in order to enhance damping
because of the phase shift it generates between the
acceleration and the control force. A similar study is
performed on a non-collocated system in [37], where
the damping properties of the delayed acceleration
feedback controller are evaluated.

A usual common experience on slender open kine-
matic chain robots is that they often encounter struc-
tural nonlinearities that could induce unstable limit
cycles even in case of achieved stable stationary cut-
ting domain. Especially the joints and the drive of the
robotic arm can introduce nonlinearities to the stiff-
ness characteristic, which is another feature relevant
for the system dynamics often neglected [31,40]. This
aspect was partially studied, for instance, in [8], where
a lumped mass model with a cubic nonlinearity con-
trolled by a delayed acceleration feedback signal was
investigated; the implications of 1:1 resonances and 1/3
subharmonic resonances on stability were analysed. It
should be emphasised that the nonlinearity might limit
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the robustness of the equilibrium position to external
perturbations even if the equilibrium is stable [21].

This study was motivated by the industrial expe-
rience on appearing structural nonlinearities and the
possible solution to use an acceleration feedback con-
trol scheme in the built-in robot controller. The main
objective of this work is to analyse the influence of the
nonlinear behaviour at the joint of the robotic arm on
its dynamics. In particular, we aim at unveiling how it
affects the bifurcation characteristic at the loss of sta-
bility and to which extent this can be controlled.

We attempted to create the simplest possible equiv-
alent model that is able to produce nonlinear behaviour
and mimic the robot position control. However, it
should be noted that it is far from the real-life
behaviour of robotic arms. A two-degree-of-freedom
(DoF) lumped model of a linear robotic arm, subject
to an acceleration feedback control, is considered. Two
configurations are studied, namely a collocated and a
non-collocated one, depending on the position of the
accelerometer. First, the stability of both configura-
tions is analytically studied, and then, the effect of the
various system parameters on the stability is analysed.
The stability of the delayed and non-delayed systems
is compared, which highlights the importance of con-
sidering time delay in such systems. Later, exploiting
a multiple-scale perturbation technique [35], the bifur-
cations occurring at the loss of stability are analytically
studied, providing a partial understanding of the global
dynamics of the system. Finally, a nonlinear term is
included in the control loop to modify the character
of the bifurcation in the case of subcritical bifurca-
tions, with the objective of improving the robustness
of the stable solution. Limitations and advantages of
the various configurations and control laws considered
are carefully analysed.

2 Mechanical model

The adopted two-DoF mechanical system is shown in
Fig. 2.

The model consists of two lumped masses m1 and
m2 connected by a nonlinear spring k and a linear
damping c. The prescribed reference trajectory ud is
programmed, such that in ideal circumstances an iden-
tical constrained motion ur is imposed to the mass m1

via a linear spring k1 with time delay τr. This gives the
dynamical system governed by the following equations
of motion

Fig. 2 Two-DoF model of the robotic arm

m1u
′′
1 + c

(
u′
1 − u′

2

) + k(Δu) (u1 − u2)

+ k1u1 = k1ur,

m2u
′′
2 + c

(
u′
2 − u′

1

) + k(Δu) (u2 − u1) = 0,

(1)

where u1 and u2 are the displacements of the lumped
masses. Prime (′) indicates derivation with respect to
time t . Furthermore, Δu := u2 − u1 and the nonlinear
spring is considered with a second-order nonlinearity
in the stiffness characteristic k(Δu) = k2 + knl (Δu)2,
which will lead to cubic nonlinearities in the system.
Apart from the prescribed reference trajectory ud, an
additional feedback signal uf , with third-order nonlin-
ear acceleration signal is fed back with time delay τf
and summarised with ideal constrainedmotion ur. This
gives a final constrained motion ur(t) = ud(t − τr) +
a1u′′

1(t−τ)+anl,1u′′3
1 (t−τ)+a2u′′

2(t−τ)+anl,2u′′3
2 (t−

τ), where τ = τr + τf is the sum of the delays. The lin-
ear and nonlinear acceleration control gains are a1, a2,
anl,1 and anl,2, respectively. The values m1, m2, c, k1
and k2 are assumed to be positive real numbers, while
knl, a1, a2, anl,1 and anl,2 are generic real numbers.
Generally, the control force is calculated based on the
value of the acceleration of a specific point; therefore,
we assume that either a1 = 0 and anl,1 = 0 or a2 = 0
and anl,2 = 0. These two cases correspond to a non-
collocated or collocated controller, respectively. With
these considerations, the equations of motion can be
written as

m1u
′′
1 + c

(
u′
1 − u′

2

) + k2 (u1 − u2) + k1u1

+knl (u1 − u2)
3 = k1

(
udτr + a1u

′′
1τ + anl,1u

′′3
1τ

+a2u
′′
2τ + anl,2u

′′3
2τ

)
,

m2u
′′
2 + c

(
u′
2 − u′

1

) + k2 (u2 − u1)

+knl (u2 − u1)
3 = 0, (2)
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where udτ r = ud(t − τr), u′′
1τ = u′′

1(t − τ), u′′
2τ =

u′′
2(t − τ). In order to focus on the instabilities induced

by the acceleration feedback controller, constant pre-
scribed reference trajectory is assumed ud(t) ≡ ud.
The equilibrium results in (u1, u2) = (ud, ud). With
the introduction of perturbations u1 = u1 + x1 and
u2 = u2 + x2, the equations of motion can be written
as

m1x
′′
1 + c

(
x ′
1 − x ′

2

) + k2 (x1 − x2) + k1 x̃1

+ knl (x1 − x2)
3

= k1
(
a1x

′′
1τ + anl,1x

′′3
1τ + a2x

′′
2τ + anl,2x

′′3
2τ

)
,

m2x
′′
2 + c

(
x ′
2 − x ′

1

) + k2 (x2 − x̃1)

+ knl (x2 − x1)
3 = 0.

(3)

In order to reduce the number of parameters, we divide
both equations by m1; we introduce the dimensionless
time tω1 → t and displacements x1

√|knl|/(rk1) → x1
and x2

√|knl|/(rk1) → x2, where ω2
1 := k1/m1 and

r := m2/m1. We thus reduce the system to

ẍ1 + 2χrγ (ẋ1 − ẋ2) + γ 2r (x1 − x2) + x1

+ μr (x1 − x2)
3 − (

κ1 ẍ1τ + κnl,1 ẍ
3
1τ + κ2 ẍ2τ

+ κnl,2 ẍ
3
2τ

) = 0

ẍ2 + 2χγ (ẋ2 − ẋ1) + γ 2 (x2 − x1)

+ μ (x2 − x1)
3 = 0,

(4)

where over-dot (˙) indicates derivation with respect to
the new, rescaled dimensionless time t , while ẍ1τ =
ẍ1 (t − τ) , ẍ2τ = ẍ2 (t − τ), with the dimensionless
time delay τω1 → τ . Besides, the dimensionless stan-
dalone natural frequency ratio γ := ω2/ω1, the stan-
dalone damping ratio χ := c/(2m2ω2), with ω2

2 :=
k2/m2, the rescaled control parameters κ1 := ω2

1a1,
κ2 := ω2

1a2, the rescaled nonlinear control parameters
κnl,1 := ω6

1anl,1rk1/|knl|, κnl,2 := ω6
1anl,2rk1/|knl| and

μ := sign(knl) are introduced.

3 Stability analysis

In this section, we investigate the linear stability of the
system’s trivial solution. Firstly, we study the system
with a traditional approach, neglecting the time delay.
Then, we analyse the delayed system and perform a
parametric analysis to evaluate the sensitivity of the
stable region to the parameter values.

3.1 Non-delayed case

In order to analyse the importance of considering the
time delay of the control force, in this section, we
study the stability of the collocated and non-collocated
systems neglecting the time delay. Imposing τ = 0,
regarded to the ideal non-delayed control, the system
in Eq. (4) is reduced to

ẍ1 + 2χrγ (ẋ1 − ẋ2)

+ γ 2r (x1 − x2) + x1 + μr (x1 − x2)
3

−
(
κ1 ẍ1 + κnl,1 ẍ

3
1 + κ2 ẍ2 + κnl,2 ẍ

3
2

)
= 0,

ẍ2 + 2χγ (ẋ2 − ẋ1)

+ γ 2 (x2 − x1) + μ (x2 − x1)
3 = 0.

(5)

This means that the control actions affect the inertia,
while κnl,1 and κnl,2 introduces conventional nonlinear
terms. By solving the system with respect to ẍ1 and
ẍ2 and linearising it around its trivial equilibrium, we
obtain the linear system

ẋ = Ax, (6)

where

A =

⎡

⎢
⎢⎢
⎣

0 0 1 0
0 0 0 1

γ 2(r−κ2)+1

κ1−1

γ 2(κ2−r)

κ1−1

2γχ(r−κ2)

κ1−1

2γχ(κ2−r)

κ1−1

γ 2 −γ 2 2γχ −2γχ

⎤

⎥
⎥⎥
⎦

,

x =

⎡

⎢⎢
⎣

x1
x2
ẋ1
ẋ2

⎤

⎥⎥
⎦ .

(7)

The stability of this system can be investigated with
the Routh–Hurwitz criterion [46]. For this purpose, we
calculate the characteristic equation

|λI − A| = λ4 + 2γχ (κ1 + κ2 − 1 − r)

κ1 − 1
λ3

+ γ 2 (κ1 + κ2 − 1 − r) − 1

κ1 − 1
λ2

− 2γχ

κ1 − 1
λ − γ 2

κ1 − 1
= 0,

(8)
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which can be rewritten as

|λI − A| = λ4 + b1λ
3 + b2λ

2 + b3λ + b4 = 0, (9)

where I is the identity matrix. Considering the follow-
ing Hurwitz matrix

H =

⎡

⎢⎢⎢
⎢
⎣

b1 1 0 0

b3 b2 b1 1

0 b4 b3 b2

0 0 0 b4

⎤

⎥⎥⎥
⎥
⎦

, (10)

the system is stable if all the leading principal minors
of H are positive. Conditions providing stability of the
trivial solution for the collocated and non-collocated
cases are discussed below.

3.1.1 Collocated case

If κ2 = 0, then the four conditions from the Hurwitz
matrix are

−γ 2

κ1 − 1
> 0, − 4γ 2χ2r

(κ1 − 1)3
> 0,

4γ 4χ2r

(κ1 − 1)4
> 0,

2γχ
(
γ 2(κ1 − 1)2+γ 2r2−2γ 2(κ1 − 1)r+r

)

(κ1 − 1)2
>0.

(11)

These conditions can be reduced to two sets of condi-
tions

γ < 0, χ < 0, r > 0, κ1 < 1.

γ > 0, χ > 0, r > 0, κ1 < 1. (12)

The frequency ratio γ and mass ratio r have to be pos-
itive real values. Therefore, the following conditions
must be fulfilled for the trivial solution to be stable:

χ > 0, κ1 < 1. (13)

This result seems in disagreement with respect to what
obtained regarding the stability analysis for the delayed
case, illustrated in the following section (Fig. 3(i)). This
discrepancy is discussed in Sect. 3.2.

3.1.2 Non-collocated case

If κ1 = 0, then the four conditions from the Hurwitz
matrix are

γ 2 > 0,

2γχ
(
γ 2(κ2 − 1)2 − κ2+γ 2r2−2γ 2(κ2 − 1)r + r

)
> 0,

4γ 2χ2(r − κ2) > 0,

4γ 4χ2(r − κ2) > 0.

(14)

These conditions can be reduced to two sets of inequal-
ities:

γ < 0, χ < 0, r ∈ R, κ2 < r.

γ > 0, χ > 0, r ∈ R, κ2 < r. (15)

Since the frequency and mass ratio must be positive
real numbers, these conditions are reduced to

χ > 0, κ2 < r. (16)

This result is fully confirmed by the stability charts
plotted in Fig. 3(ii). In fact, for all investigated cases,
as τ → 0 the system is stable if κ2 ∈ (−∞, r).

3.2 Delayed case

In order to study the stability of the trivial solution of the
system, we temporarily neglect nonlinear terms and we
consider the trial solution x1 = ξ1eλt and x2 = ξ2eλt ,
obtaining

λ2ξ1 + 2χrγ λ (ξ1 − ξ2) + rγ 2 (ξ1 − ξ2) + ξ1

−
(
κ1λ

2ξ1 + κ2λ
2ξ2

)
e−λτ = 0

λ2ξ2 + 2χγλ (ξ2 − ξ1) + γ 2 (ξ2 − ξ1) = 0,

(17)

By applying the D-subdivision method, when λ = iω,
the characteristic function has the following form

(
1 − κ1e

−iτω
)
ω4 + (

2iχ (κ1 + κ2) γ e−iτω − 2iχrγ

− 2iχγ
)
ω3 + (

(κ1 + κ2) γ 2e−iτω − (r + 1) γ 2 − 1
)
ω2

+ 2iχγω + γ 2 = 0,
(18)

whose solution provides boundaries which separate
regions of the parameter space in which the system has
different number of eigenvalues having positive real
part. Some of these boundaries mark the stable region
of the system.
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Separating real and imaginary parts of Eq. (18), we
obtain

Re : 2χ (κ1 + κ2) ω3γ sin τω + (
(κ1 + κ2) ω2γ 2

,−κ1ω
4) cos τω = ω2

(
(r + 1)γ 2 + 1

)
− ω4

− γ 2,

Im : 2χ (κ1 + κ2) ω3γ cos τω − (
(κ1 + κ2) ω2γ 2

− κ1ω
4) sin τω = 2χωγ

(
(r + 1)ω2 − 1

)
.

(19)

Summing up the squares of these two equations leads
to

4χ2 (κ1 + κ2)
2 ω6γ 2 +

(
(κ1 + κ2) ω2γ 2 − κ1ω

4
)2

−
(
ω2

(
(r + 1)γ 2 + 1

)
− ω4 − γ 2

)2

−
(
2χωγ

(
(r + 1)ω2 − 1

))2 = 0.

(20)

Equation (20) can be directly solved with respect to
κ1 or κ2. In particular, we first impose κ2 = 0, which
refers to the case of a collocated controller, obtaining

κ1(ω) = ±
((
2γ 2ω2 (

(r+1)ω2 − 1
) (
2χ2 (

(r+1)ω2−1
)

− ω2 + 1
) + γ 4 (

(r + 1)ω2 − 1
)2 + ω4 (

ω2 − 1
)2 )/

(
ω4 (

2
(
2χ2 − 1

)
γ 2ω2 + γ 4 + ω4) ))1/2

.

(21)

Instead, imposing κ1 = 0 and therefore referring to the
case of a non-collocated controller, we have

κ1(ω) = ±
((
2γ 2ω2 (

(r+1)ω2 − 1
) (
2χ2 (

(r+1)ω2 − 1
)

−ω2 + 1
) + γ 4 (

(r + 1)ω2 − 1
)2 + ω4 (

ω2 − 1
)2 )/

(
γ 2ω4 (

4χ2ω2 + γ 2) ))1/2
. (22)

Equations (21) and (22) will be directly used for defin-
ing the stability boundary in the τ, κ1 and τ, κ2 spaces
for the collocated and non-collocated cases, respec-
tively. Solving Eq. (19) with respect to sin τω and
cos τω, we obtain

s(ω) := sin τω

= 2χγω
(
κ1rω2 − κ2ω

2 + κ2
)

d(ω)
,

c(ω) := cos τω

= 1

ω2d(ω)

(
γ 2ω2(κ1

(
4χ2 (

(r + 1)ω2 − 1
)

− (r + 2)ω2 + 2
)

+ κ2
(
4χ2 (

(r + 1)ω2 − 1
) − ω2 + 1

) )

+ γ 4(κ1 + κ2)
(
(r + 1)ω2 − 1

) + κ1ω
4 (

ω2 − 1
) )

,

(23)

where

d(ω) := 2γ 2ω2(κ1 + κ2)
((

2χ2 − 1
)

κ1 + 2χ2κ2

)

+γ 4(κ1 + κ2)
2 + κ2

1ω4. (24)

From Eq. (23), we can directly obtain the value of τ as
a function of ω, i.e.

τn(ω) = 1

ω
(arctan2 (s(ω), c(ω)) + n2π) , n ∈ Z.

(25)

Equations (21), (22) and (25) enable us to plot the sta-
bility diagram in the (τ, κ1) and (τ, κ2) spaces. The
diagrams, illustrated in Fig. 3, are obtained spanning
a large range of ω values adopting various n values in
Eq. (25). The effect of parameter values on stability is
discussed in Sect. 3.3.

Figure 3(i) suggests that a necessary condition to
have stability is that −1 < κ1 < 1, for the collocated
case. This condition can be obtained analytically con-
sidering the limit of κ1 for ω → ∞ in Eq. (21), which
gives ±1. This result is typical for neutral delay dif-
ferential equations as discussed, for instance, in [30].
Interestingly, this conclusion implies a discontinuity
with respect to the non-delayed case for τ ≈ 0 and
κ1 < −1. In fact, as demonstrated in Sect. 3.1, the triv-
ial solution of the collocated system is stable for χ > 0
and κ1 < 1, therefore, also for κ1 < −1. Figure 3(i)
clearly shows that for τ → 0 the system is unstable if
κ1 < −1.

Let us investigate the eigenvalues of the system in
correspondence with the discontinuity. Figure 4a, b
depicts some of the eigenvalues of the system for a
very small time delay (τ = 10−5), for κ1 = −0.9999
and κ1 = −1.0001, respectively. The four eigenvalues
in the insets of the two plots exist for both the delayed
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(a) (b) (c)

Fig. 3 Stability charts for the collocated (i) and non-collocated
(ii) cases with the investigated parameters: mass ratio r (a), stan-
dalone natural frequency ratio γ (b) and the standalone damp-
ing factor χ (c). In the collocated case κ2 = 0 and in the
non-collocated case κ1 = 0. The non-investigated parameters

are r = 1, γ = 1, χ = 0.1. The shaded area shows the
stable region. The light green line shows the case, where the
largest characteristic root has minimum Reλmin, which repre-
sents the best performance case. The parameters for this case are
r = 1, γ = 1, χ = 0.1. (Color figure online)

and the non-delayed cases. In both cases, they remain in
the left part of the complex plane, which suggests that
the instability is not related to their perturbations. The
two figures show other eigenvalues having the abso-
lute value of their real part approximately 10. How-
ever, while for κ1 = −0.9999 (Fig. 4a) the real part
is negative, for κ1 = −1.0001 (Fig. 4b) it is positive,
which confirms the stable and unstable behaviour of
the two cases, respectively. Nevertheless, since these
eigenvalues are far apart despite having very similar
parameter values, they confirm the discontinuity of the
spectrum also for κ1 = −1 and τ 	= 0. We speculate
that the eigenvalues might move from the left to the
right side of the complex plane through ±∞ of the
imaginary axis, which is consistent with the limit of κ1
for ω → ∞ in Eq. (21), and with the large value of
their imaginary part. Indeed, a similar scenario might

be responsible for the spectral discontinuity occurring
at τ = 0 and κ1 < −1.

Previous studies [24,27,28,33,50] illustrate that
similar discontinuities in the spectrum are rather com-
mon for systems governed by neutral delayed differ-
ential equations. For instance, in [28,50], analogous
discontinuities are encountered in the delayed control
of an elastic beam, both for τ = 0 and for τ 	= 0. The
possible existence of such discontinuities was mathe-
matically proven in [24]. Additionally, Insperger et al.
[27] encountered a similar discontinuity for advanced
delay differential equations as well.

Figure 4c, d provides time series of the system
dynamics in correspondence of the discontinuity. Fig-
ure 4c shows that, for the non-delayed case, the sys-
tem is stable and has practically unvaried behaviour for
κ1 slightly larger or smaller than −1. On the contrary,
Fig. 4d illustrates that, for the delayed case (τ = 10−5),
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Fig. 4 (a, b) Eigenvalues of
the collocated system for
r = 1, γ = 1, χ =
0.1, τ = 10−5,
κ1 = −0.9999 (a) and
κ1 = −1.0001 (b); the
insets show four eigenvalues
of the spectra, which
coincide with the
eigenvalues of the
non-delayed system. c, d
Numerical simulations of
the system dynamics for the
same parameter values; c
non-delayed case (τ = 0), d
delayed case (τ = 10−5); κ1
as indicated in the figure

(a)

(c)

(b)

(d)

if κ1 < −1, the system rapidly experiences instabili-
ties that cause high-frequency oscillations of increasing
amplitude.

3.3 Parameter analysis

In this section, we investigate the sensitivity and
behaviour of the stable region with changing param-
eters. The stable region is studied in the plane of the
time delay τ and control parameters κ1, κ2. Generally,
one would think that lower time delays would be ben-
eficial for stability. However, the control of the robot
and the acceleration feedback controller can introduce
relatively large time delays in the system, so the stable
region for larger τ values has to be studied. Although
the actuator’s saturation is neglected in this study, it
should be noted that technological constraints limit the
value of the control parameters κ1 and κ2; therefore,

they cannot have arbitrarily large values. The parame-
ter analysis of the system is illustrated in Fig. 3.

The light green line in Fig. 3 shows the controller
with the best performance, i.e. where the largest char-
acteristic root is minimum for one particular param-
eter set. It should be noted that this is very close to
the boundary of stability; therefore, when one wants
to operate the controller close to this line, the effect of
the nonlinear terms can be particularly relevant for the
system dynamics.

3.3.1 Variations of the mass ratio r

Stability charts for the collocated and non-collocated
cases for various mass ratio r values, with the other
parameters kept constant γ = 1, χ = 0.1, are
displayed in Fig. 3a. Regarding the collocated case
(Fig. 3a, (i), the stable region is not very sensitive to
variations of themass ratio r . The positive stable region
shrinks with increasing τ values. On the contrary, the
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negative stable region undergoes only a slight contrac-
tion for all the considered τ range. This feature, for
the collocated case, will also be confirmed for other
parameter values investigated below.

Conversely, the non-collocated system ismuchmore
sensitive to variations of r . In general, the stable region
enlarges with r , particularly for small τ values. This
effect is valid for both positive and negative ranges of
κ2.We notice that for τ → 0, the upper stability bound-
ary tends to r , as calculated for the non-delayed system
in Sect. 3.1.2. Therefore, this parameter is important
because it defines the largest positive stable value of
κ2. In the negative region, as τ tends to zero, the sta-
ble values of κ2 tend to negative infinity. With increas-
ing time delay, the positive stable region shrinks much
faster than the stable negative region, and it gets very
small with large delays, for all considered r parame-
ters. Interestingly, in the non-collocated case, the stable
region is larger for κ2 < 0 than for κ2 > 0, being even
unbounded for small τ values. On the contrary, for the
collocated case, the stable region is generally smaller
and bounded for any τ value.

3.3.2 Variations of the standalone frequency ratio γ

Stability charts for the collocated and non-collocated
cases for various γ values, with the other parameters
kept constant r = 1, χ = 0.1, are represented in
Fig. 3b. For both collocated and non-collocated cases,
the stable region is larger for smaller γ values. How-
ever, in the non-collocated case, the system is much
more sensitive to variations of γ . Regarding the col-
located case, with larger γ values, the positive stable
region abruptly shrinks for relatively small τ values.
Considering the non-collocated case, we notice that for
relatively small γ values (in Fig. 3b (ii), γ = 0.5 and
γ = 0.75), a sort of peak can be given for the maxi-
mum positive value of κ2. Smaller γ values mean that
the system is tuned for larger ω1 values than ω2 values,
so the robot is stiffer close to the actuator. As expected,
results illustrate that the stable region is larger in this
case.

3.3.3 Variations of the standalone damping factor χ

Stability charts for the collocated and non-collocated
cases for various standalone damping factor χ values,
with the other parameters kept constant r = 1, γ = 1,
are displayed in Fig. 3c. As expected, the stable region

becomes smaller for decreasing χ values in both cases.
The shrinkage is more pronounced for larger values
of time delay τ . Considering the collocated case, we
notice that for sufficiently large χ values, the destabil-
ising effect of the time delay becomes negligible, and
the maximum and minimum values of κ1 which guar-
antee stability are constant with respect to τ for a large
range (see, for instance, the blue curve in Fig. 3c (i)).
Furthermore, the negative region does not seem to be
particularly affected by small values of χ ; for instance,
reducing χ from 0.1 to 0.01 practically leaves the neg-
ative stable region of the collocated case unchanged.
Regarding the non-collocated case, the destabilising
effect of small values of χ is relevant for both posi-
tive and negative half-plane of the stability diagram.
However, the positive critical value of κ2 for τ → 0 is
unaffected by variations of χ , which means that in the
non-collocated case the stable region is much larger
than in the collocated case as τ → 0. Nevertheless,
even relatively small nonzero τ values shrink the sta-
ble regionmore significantly in the non-collocated case
than in the collocated one.

We remark that, although the stable region signifi-
cantly shrinks in somecases, the system is always stable
for zero control force. This means that we cannot talk
about a “more stable” configuration. Conversely, we
can state that the system is more sensitive to large con-
trol gains in some cases. For instance, let us consider the
case of τ → 0 and large mass ratio (m2 
 m1), which
makes the non-collocated configuration stable for very
large κ2 values. This result does not mean that the sys-
tem is very stable but that a control force applied on
the first mass—which is relatively small—proportional
to the acceleration of the second mass, has a negligi-
ble effect on the system stability, which indeed sounds
physically reasonable.

4 Bifurcation analysis

We now aim at analysing the Andronov–Hopf bifurca-
tions, identified by theD-curves, occurring at the loss of
stability, and the effect of the sign of the system non-
linearity on it. In particular, a subcritical bifurcation
might limit the robustness of the stable trivial solution
in the proximity of the stability boundary, which can
cause the onset of self-excited vibrations within the
stable region. The method of multiple scales for time-
delayed systems is adopted for such analysis [20,35].
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First, we transform the system in Eq. (4) into first-
order form, i.e.

ẏ = Ly − κ1R1ẏτ + f1 (26)

in the case of a collocated controller, or

ẏ = Ly − κ2R2ẏτ + f2 (27)

for a non-collocated one, where

y :=

⎡

⎢⎢
⎣

y1
y2
y3
y4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

x1
x2
ẋ1
ẋ2

⎤

⎥⎥
⎦ , yτ := y(t − τ),

L :=

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

−γ 2r − 1 γ 2r −2χrγ 2χrγ
γ 2 −γ 2 2χγ −2χγ

⎤

⎥
⎥
⎦ ,

R1 :=

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

⎤

⎥⎥
⎦ ,

f1 :=

⎡

⎢
⎢
⎣

0
0

−μr(y1 − y2)3 + κnl,1 ẏ33τ
−μ(y2 − y1)3

⎤

⎥
⎥
⎦ ,

R2 :=

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎤

⎥⎥
⎦ ,

f2 :=

⎡

⎢⎢
⎣

0
0

−μr(y1 − y2)3 + κnl,2 ẏ34τ
−μ(y2 − y1)3

⎤

⎥⎥
⎦ .

(28)

The adopted bifurcation parameters are the rescaled
control parameters κ1 and κ2.

Next, in order to eventually obtain a convergent solu-
tion, we expand the solution of Eq. (26) (or Eq. (27))
as

y(t; ε) = ε1/2y1 (T0, T1) + ε3/2y2 (T0, T1) + · · · (29)

where T0 = t , T1 = εt and ε is a small bookkeeping
parameter. The derivative with respect to t is trans-
formed into
d

dt
= ∂

∂T0
+ ε

∂

∂T1
= D0 + εD1 , (30)

while delayed terms are expressed as

y(t − τ ; ε) = ε1/2y1 (T0 − τ, T1 − ετ)

+ ε3/2y2 (T0 − τ, T1 − ετ) + · · · ,
(31)

which upon expansion for small ε becomes

y(t − τ ; ε) = ε1/2y1 (T0 − τ, T1)

+ ε3/2y2 (T0 − τ, T1) − ε3/2τD1y1
(T0 − τ, T1) + · · · .

(32)

The bifurcation parameters κ1 and κ2 are rewritten as
κ1 = κ1,cr + εδ1 and κ2 = κ2,cr + εδ2, respectively,
where κ1,cr and κ2,cr correspond to the κ1 and κ2 val-
ues at the loss of stability, while δ1 indicates the close-
ness of κ1 to κ1,cr, δ2 has an analogous meaning. As
explained later, this expansion enables us to have a
non-hyperbolic fixed point for order ε1/2 and secular
terms generated for order ε3/2. Indeed, this choice of
the order of ε is suitable for systems having only cubic
nonlinearities, like the one under study. For a more
comprehensive explanation of the formalism adopted,
we address the interested reader to [35].

Substituting Eqs. (29)–(32) into Eq. (26), we obtain

(D0 + εD1)
(
ε1/2y1 + ε3/2y2

) − L
(
ε1/2y1 + ε3/2y2

)

+ (
κ1,cr + εδ1

)
R1 (D0 + εD1)

(
ε1/2y1τ + ε3/2y2τ − ε3/2τD1y1

) = ε3/2 f̃1 + h.o.t.,

(33)

where h.o.t. indicates termswith values of ε higher than
order 3/2,y1τ = y1 (T0 − τ, T1),y2τ = y2 (T0 − τ, T1),

f̃1 =

⎡

⎢⎢
⎣

0
0

−μ r (y11 − y21)3 + κnl,1 (D0y31τ )3

μ (y11 − y21)3

⎤

⎥⎥
⎦ ,

f̃2 =

⎡

⎢⎢
⎣

0
0

−μ r (y11 − y21)3 + κnl,2 (D0y41τ )3

μ (y11 − y21)3

⎤

⎥⎥
⎦ ,

y11, y21, y31 and y41 are the elements of vector y1. In
the non-collocated case, κ1,cr, δ1, R1 and f̃1 should be
substituted with κ2,cr, δ2, R2 and f̃2. For the sake of
brevity, in the following, equations related to the non-
collocated case will be omitted unless necessary.

Separating terms of different order of ε, we obtain

ε1/2 : D0y1 − Ly1 + κ1,crR1D0y1τ = 0. (34)

ε3/2 : D0y2 − Ly2 + κ1,crR1D0y2τ = −D1y1
−κ1,crR1D1y1τ − δ1R1D0y1τ
+κ1,crR1D0D1y1τ + ε3/2 f̃1. (35)

Order ε1/2

Equation (34) consists of the linearised system of equa-
tion for a critical value of the bifurcation parameter κ1
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(or κ2). Therefore, its trivial solution is a centre and its
general steady state solution is

y1(T0, T1) = A(T1)ceiωT0 + Ā(T1)c̄e−iωT0 , (36)

where the overbar indicates complex conjugate and ω

is given by Eq. (25) for a specific τ value and for κ1 =
κ1,cr (or κ2 = κ2,cr). c = [1 c2 c3 c4]ᵀ is obtained
by the linear homogeneous system of equation
(
iωI − L + κ1,crR1iωe

−iωτ
)

c = 0, (37)

where I is the identity matrix, which gives

c =

⎡

⎢⎢
⎣

c1
c2
c3
c4

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢⎢
⎣

1
ω2

(−1+κ1,cre−iτω
)+γ r(γ+2iχω)+1

γ r(γ+2iχω)

iω
iω

(
ω2

(−1+κ1,cre−iτω
)+γ r(γ+2iχω)+1

)

γ r(γ+2iχω)

⎤

⎥⎥⎥⎥
⎦

(38)

and

c =

⎡

⎢⎢
⎣

c1
c2
c3
c4

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢⎢
⎣

1
eiτω

(−γ r(γ+2iχω)+ω2−1
)

κ2,crω2−γ reiτω(γ+2iχω)

iω

−ωeiτω
(−γ r(γ+2iχω)+ω2−1

)

iκ2,crω2+γ reiτω(2χω−iγ )

⎤

⎥⎥⎥⎥
⎦

(39)

for the collocated and non-collocated cases, respec-
tively.
Order ε3/2

Substituting Eq. (36) into Eq. (35), we obtain

D0y2 − Ly2 + κ1,crR1D0y2τ =
[

−
[
I + κ1,crR1

(
e−iωτ − τ iω

) ]
c A′ − δ1 R1A c iω e−iωτ

+ 3A2 Ā ˜̃f1
]
eiωT0 + c.c. + n.s.t.

(40)

where

˜̃f1 =

⎡

⎢
⎢
⎣

0
0

μ r (1 − c2)2 (c̄2 − 1) + i c23 c̄3κnl,1ω
3e−iωτ

−μ (1 − c2)2 (c̄2 − 1)

⎤

⎥
⎥
⎦ ,

⎛

⎜
⎜
⎝

˜̃f2 =

⎡

⎢
⎢
⎣

0
0

μr (1 − c2)2 (c̄2 − 1) + ic24 c̄4κnl,2ω
3e−iωτ

−μ (1 − c2)2 (c̄2 − 1)

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ ,

prime (′) stands for derivation with respect to T0, c.c.
and n.s.t. stand for “complex conjugate” and for “non
secular terms”, respectively.

Because the homogeneous part of Eq. (40) has non-
trivial solutions, the non-homogeneous equation has a

solution only if a solvability condition is satisfied. To
determine this solvability condition, we assume a par-
ticular solution of the form

y2(T0, T1) = φ(T1)e
iωT0 , (41)

and obtain

[
L − κ1,crR1iωe

−iωτ − iωI
]
φ = [

I + κ1,crR1
(
e−iωτ − τ iω

) ]
c A′ + δ1R1A c iωe−iωτ − 3A2 Ā ˜̃f1.

(42)

The solvability condition demands that the right-hand
side of Eq. (42) is orthogonal to every solution of the
adjoint homogeneous problem. The adjoint problem is
governed by
[
LH + κ1,crRH

1 iωe
iωτ + iωI

]
b = 0, (43)

where H indicates the conjugate transpose. To make b
unique, we impose the condition

bHc = 1 (44)

and obtain

b =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

1

− γ 2rω2

−γ 2+2iγχω+γ 2rω2+ω2

iω
(−γ 2+2iγχω+ω2

)

−γ 2+2iγχω+γ 2rω2+ω2

− iγ rω(γ−2iχω)

−γ 2+2iγχω+γ 2rω2+ω2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(45)

and

b =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

1

− γ
(
ω2−1

)

ω(γω−2iχ)

2χω+iγ
γω−2iχ

γ r(2χω+iγ )−i
(
ω2−1

)

γ (γω−2iχ)

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

, (46)

for the collocated and non-collocated cases, respec-
tively. We take the inner product of bH with the right-
hand side of Eq. (42), i.e.

bH
( [

I + κ1,crR1

(
e−iωτ − τ iω

)]
c A′

+ δ1R1A c iωe−iωτ

− 3A2 Ā ˜̃f1
)

= 0,

(47)

from which we get the expression

A′ = Λ1δ1A + Λ2A
2 Ā. (48)
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4.1 Normal form

We introduce the polar form

A = 1

2
a eiβ, (49)

where a and β are real functions of T1. Substituting
Eq. (49) into (48) and separating real and imaginary
parts, we get

Re: a′ = δ1Λ1Ra + 1

4
a3Λ2R (50)

Im: a β ′ = δ1Λ1Ia + 1

4
a3Λ2I, (51)

where Λ1R, Λ2R, Λ1I and Λ2I are the real and imagi-
nary parts of Λ1 and Λ2, respectively.

Equation (50) provides information about the oscil-
lation amplitude of the system in the vicinity of the
bifurcation. In order to identify periodic solutions, we
impose a′ = 0 and obtain the solutions

a0 = 0 and a1 = 2

√

−δ1

Δ
, (52)

where

Δ = Λ2R/Λ1R

=
3Re

(
μ(c2−1)2(c̄2−1)(b̄4−b̄3r)−ib̄3c23 c̄3κnl,1ω

3e−iτω

b̄1+b̄2c2−b̄3c3κ1,cre−iτω+ib̄3c3κ1,crτω+b̄3c3+b̄4c4

)

Im
(

b̄3c3ωe−iτω

b̄1+b̄2c2−b̄3c3κ1,cre−iτω+ib̄3c3κ1,crτω+b̄3c3+b̄4c4

)

(53)

for the collocated case and

Δ =
3Re

(
μ(c2−1)2(c̄2−1)(b̄4−b̄3r)−ib̄3c24 c̄4κnl,2ω

3e−iτω

b̄1+b̄2c2+b̄3c3−b̄3c4κ2,cre−iτω+ib̄3c4κ2,crτω+b̄4c4

)

Im
(

b̄3c4ωe−iτω

b̄1+b̄2c2+b̄3c3−b̄3c4κ2,cre−iτω+ib̄3c4κ2,crτω+b̄4c4

)

(54)

for the non-collocated case.
Recalling Eqs. (29), (36), (49), (52) and that κ1 =

κ1,cr + εδ1, we have that the amplitude of the LCOs in
the vicinity of the bifurcation is approximated by

y1 = ϕ0 cos(ωt + β),

y2 = c2ϕ0 cos(ωt + β), ϕ0 = 2
√

κ1,cr−κ1
Δ

.
(55)

Since δ1 represents small variations of κ1 with respect
to its critical value κ1,cr, a1 is real for δ1 > 0 (< 0)
if Δ < 0 (> 0). For the system under study, in most
cases we have that for κ1,cr either positive or negative,

the system is stable if |κ1| < |κ1,cr|. Therefore, for
κ1,cr > 0, the Andronov–Hopf bifurcation is supercrit-
ical (subcritical) for Δ < 0 (Δ > 0) and the opposite
for κ1,cr < 0. It means that when the signs of κ1cr and
Δ are the same, the Andronov–Hopf bifurcation is sub-
critical, andwhen the signs are opposite, it is supercriti-
cal. The same scenario is verified for the non-collocated
case.

5 Bifurcation diagrams

In this section, we analyse the results obtained through
the bifurcation analysis performed with the multiple
scales method in the previous section. These analyti-
cal results are compared with direct numerical integra-
tions and with bifurcation diagrams obtained through
the NDDE-Cont continuation software for neutral dif-
ferential equations [6], which is based on the continu-
ation toolbox DDE-BIFTOOL for MATLAB [16]. Ini-
tially, results obtained with a classical linear controller
(κnl,1 = 0 or κnl,2 = 0) are presented. Later, possible
improvements in the bifurcation behaviour related to
introducing a nonlinear term in the controller are stud-
ied. For the sake of brevity, the values of χ , r and γ

are fixed at 0.05, 1 and 1, respectively, throughout the
whole analysis performed in this section. Nevertheless,
extending the obtained results to other parameter values
is a relatively simple task left for the interested reader.

5.1 Linear control: collocated system

Equation (53) enables us to characterise the types of
bifurcations occurring at the loss of stability. At this
stage, we assume that the controller is purely linear
(κnl,1 = 0). Based on the calculated value ofΔ, Fig. 5a
illustrates that for μ = 1, which corresponds to a
hardening nonlinearity of the stiffness, bifurcations are
always subcritical in the analysed parameter range.
Indeed, in Fig. 5b it can be recognised that, for the sta-
bility boundary corresponding to κ1,cr > 1 (κ1,cr < 1),
Δ is positive (negative), which indicates that all corre-
sponding Andronov–Hopf bifurcations are subcritical.
The practical consequence of a subcritical bifurcation
is that a branch of unstable periodic solutions exists
within the stable region of the trivial solution. Gener-
ally, this limits the robustness of the stable trivial solu-
tion, causing the system to undergo large oscillations if
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subject to sufficiently large perturbations, even within
the stable region of the trivial solution.

It can be noticed that the sign of Δ directly depends
on the sign of μ. Therefore, considering a softening
stiffness nonlinearity of the system (μ = −1), we
expect to have supercritical bifurcations instead of sub-
critical. This is confirmed in Fig. 5c, d, which shows
exactly the same features of Fig. 5a, b, butwith reversed
sign of Δ, which indicates that all bifurcations are
supercritical. This feature could be easily predicted by
looking at Eq. (53) for κnl,1 = 0.

In Fig. 6, bifurcation diagrams obtained analyti-
cally (black lines) overlap with bifurcation diagrams
obtained through the NDDE-Cont continuation soft-
ware (blue and orange lines). The two procedures pro-
vide practically identical results at low amplitudes,
which confirms the validity of the analytical procedure
and that a softening nonlinearity produces subcritical
bifurcations.

Since the analytical procedure neglects terms of
order higher than ε3/2, it provides a bifurcation curve
that is restricted to a parabola, making it impossible to
detect any other trend of the branches of periodic solu-
tions arising at the loss of stability.However,more com-
plicated shapes of the branches can be easily tracked by
extending the numerical continuation to higher values.

Figure 6c illustrates that also in the case of softening
nonlinearity (blue line), the branch of stable periodic
solutions encounters a fold point atκ1 ≈ 0.5, losing sta-
bility and turning back towards the stable region. This
behaviour generates unstable periodic solutions within
the stable region of the trivial solution, even in the case
of supercritical Andronov–Hopf bifurcations. Never-
theless, this unstable branch has a very high amplitude,
especially if compared with the red curve in Fig. 6c
referring to the hardening case. This scenario suggests
that the trivial solution, although not globally stable,
is probably much more robust in the case of softening
rather than hardening nonlinearity.

In this respect, Fig. 7 illustrates that, for fixed param-
eter values belonging to the stable region of the trivial
solution, the system can either converge towards the
trivial solution or not, depending on the initial condi-
tions. In the case of hardening nonlinearity (μ = 1),
Fig. 7a shows that selecting initial conditions y(t) =
[0.735, 0, 0, 0]ᵀ or y(t) = [0.740, 0, 0, 0]ᵀ with t ∈
(−τ, 0], the system either converges towards the trivial
solution or towards a much larger attractor (seemingly
quasiperiodic). A somehow similar scenario occurs

in the case of softening nonlinearity (μ = −1), as
depicted in Fig. 7b for the same parameter values
(exceptμ, of course). However, in this case, the system
still converges towards the trivial solution for a sig-
nificantly larger initial condition of x1. Additionally,
the non-convergent time series is not attracted to any
bounded solution, but it diverges unboundedly. This
behaviour is probably related to a statistical loss of sta-
bility due to the softening stiffness, which becomes
negative for excessively large |x1 − x2| values and not
to the unstable periodic solution detected by the numer-
ical continuation. Clearly, for such large |x1 − x2| val-
ues, the mathematical model adopted fails to describe
the mechanical system under study. Indeed, the unsta-
ble periodic solution encompasses points such that
(x1 − x2)2 > γ 2, for which the stiffness is negative,
being therefore out of the region of validity of the
mathematical model. Although rigorously proving that
for hardening nonlinearity the trivial solution is less
robust than for softening nonlinearity is very demand-
ing because the system is infinite-dimensional, the per-
formed analysis hints that a similar conclusion is plau-
sible.

An interesting feature of the bifurcation diagram in
Fig. 6c, for μ = 1, is that the branch of unstable peri-
odic solutions reaches values of κ1 close to zero (the
fold occurs at κ1 = 0.023), meaning that large ampli-
tude vibrations might unexpectedly occur also for κ1
far from the stability boundary.

From the stability analysis of Sect. 3, we deduce that
for κ1 < −1 an infinite number of eigenvalues has pos-
itive real parts. This occurrence makes it very hard for
the numerical solver to track a periodic solution and
perform a continuation in the vicinity of this boundary.
For this reason, bifurcation diagrams for negative κ1
values are depicted in Fig. 6b, d for τ = 0.8, where
κ1,cr is equal to −0.87 and relatively far from −1 (see,
for instance, Fig. 5a). Apart from confirming the ana-
lytical results, i.e. that the bifurcations are subcritical
for hardening stiffness and supercritical for softening,
the bifurcation diagram of Fig. 6d illustrates that the
branch of unstable periodic solution exists for a wide
range of κ1 negative values (up to κ1 < −0.07). This
observation implies that also for κ1 < 0, unexpected
large amplitude oscillations might occur for almost any
κ1 value in the case of hardening stiffness.

Figure 6e illustrates the bifurcation diagram for the
same bifurcation point of Fig. 6d, but adopting the time
delay τ as bifurcation parameter. For the hardening case
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Fig. 5 a, c Stability charts
of the collocated system for
the parameter values
χ = 0.05, r = 1 and γ = 1;
μ = 1 a and μ = −1 (c);
dashed lines: subcritical
bifurcations, solid lines:
supercritical bifurcations. b,
d Corresponding values of
Δ for μ = 1 and μ = −1
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(μ = 1), the figure shows that the branch of unstable
periodic solutions is very steep, rapidly reaching high
values. This suggests that in this case, for low values
of time delay τ , although the basin of attraction of the
trivial solution is probably bounded, the trivial solu-
tion might still be globally stable limiting initial con-
ditions to states of the mechanical system compatible
with a physical system. The steep trend of the branch of
periodic solutions for negative κ1 could be already pre-
dicted by analysing the absolute value of Δ in Fig. 5b,
d, which is tiny for small τ values. In fact, Eq. (55)
clearly shows that the smaller the absolute value of Δ,
the steeper the branch of periodic solutions arising at
the bifurcation.

5.2 Linear control: non-collocated system

We now consider the non-collocated system and repeat
the analysis performed in the previous section for the
collocated system. Analysing the value of Δ from
Eq. (54), the Andronov–Hopf bifurcations occurring
at the loss of stability are characterised. Figure 8a, c
illustrates that, similarly to the collocated case, also for

the non-collocated system, the bifurcations are subcrit-
ical in the case of hardening stiffness and supercritical
in the case of softening stiffness.

Fixing the time delay τ at 0.15, bifurcation diagrams
are depicted in Fig. 9. Also in this case, the goodmatch-
ing between analytical and numerical results exhib-
ited in Fig. 9a, b validates the analytical procedure.
Figure 9c, d provides a wider view of the bifurcation
diagrams, which enables us to draw some conclusions
about the effects of the bifurcations on the global sys-
tem dynamics. In Fig. 9c, it can be noticed that both
branches, forμ = 1 andμ = −1, increase their ampli-
tude very slowly, if compared with the bifurcation dia-
grams in Fig. 6b. This observation could be deduced
by the analytical procedure by looking at the absolute
value of Δ in Fig. 8b, d. For κ2,cr < 0 and decreasing
τ , the absolute value of Δ rapidly increases, such that
limτ→0 Δ = ∞. This is exactly the opposite trend of
Δ in the collocated case for κ1,cr < 0, whereΔ tends to
0 with a horizontal tangent for τ → 0 (Fig. 5b). Such
a large Δ value, in the case of a supercritical bifurca-
tion, makes arising periodic solutions have a relatively
small amplitude (see blue curve in Fig. 9c), which is a
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Fig. 6 Bifurcation diagrams for the collocated system; parame-
ter values: r = 1, γ = 1, χ = 0.05, τ = 0.1 a, c and τ = 0.8 b,
d, in (e) κ1 = −0.87, μ is indicated in the figures. Solid lines:
stable branches, dashed lines: unstable branches, orange lines:

hardening case, blue lines: softening case, black lines: analytical
results. a and b are enlargements of (c) and (d) centred at the
Andronov–Hopf bifurcations. (Color figure online)

Fig. 7 Time series obtained
from direct numerical
simulations of the
collocated system for the
parameter values χ = 0.05,
r = 1, γ = 1, τ = 0.1,
κ1 = 0.4, μ = 1 (a) and
μ = −1 (b). Blue and red
lines mark time series
converging and not
converging towards the
trivial solution, respectively.
Initial conditions are
indicated in the figure.
(Color figure online)
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desirable feature from an engineering point of view in
many applications. On the contrary, if the bifurcation
is subcritical, a low branch of unstable periodic solu-
tions is generated, whichmight significantly reduce the
robustness of the stable trivial solution.

In Fig. 10a, time series obtained from direct numer-
ical simulations illustrate the phenomenon. For μ = 1,

κ2 = −3 and τ = 0.15, therefore inside the sta-
ble region, a small perturbation of the value of x1
(x1(0) = 0.27 in the figure) is sufficient to make
the system diverge from the trivial solution causing
unbounded vibrations. For the same parameter values
but with a softening stiffness (μ = −1), the system
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Fig. 8 a, c Stability charts
of the non-collocated
system for the parameter
values χ = 0.05, r = 1 and
γ = 1; μ = 1 (a) and
μ = −1 (c); dashed lines:
subcritical bifurcations,
solid lines: supercritical
bifurcations. b, d
Corresponding values of Δ

for μ = 1 and μ = −1
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Fig. 9 Bifurcation
diagrams for the
non-collocated system;
parameter values: r = 1,
γ = 1, χ = 0.05, τ = 0.15,
μ as indicated in the figures.
Solid lines: stable branches,
dashed lines: unstable
branches, black lines:
analytical results, blue and
orange lines: numerical
results. (Color figure online)
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converges to the trivial solution even for much larger
initial displacement x1, as shown in Fig. 10b.

Considering bifurcations occurring at the positive
stability boundary (κ1,cr > 0), bifurcation diagrams
for τ = 0.15 are illustrated in Fig. 9d. For the soften-
ing case (μ = −1), the branch has a fold, similarly to
the bifurcation diagram encountered in the collocated
case (Fig. 6a). However, in this case, the fold is very
far from the stability boundary and does not seem to
endanger the robustness of the trivial solution inside
its stable region. Conversely, for a hardening stiffness
(μ = 1), the branch of unstable periodic solutions is
rather steep and does not enter very deeply in the stable
region (excluding the part of the branch having huge
amplitude), meaning that the region of limited robust-
ness of the trivial solution might be not very large.

The time series in Fig. 10c proves that, in the vicin-
ity of the stability boundary (κ2 = 0.3, τ = 0.15)
and for softening nonlinearity, the system is bistable.
Namely, depending on the initial conditions, the sys-
tem’s dynamics either converges to the trivial solu-
tion (blue curve) or to a larger periodic solution (red
curve), although the existence of other attractors can-
not be excluded. We also remark that the amplitude
of the large attractor (x1max = 1.6) and of the unsta-
ble periodic solution on which the system initially lies
(x1max ≈ 0.52) in Fig. 10c agree with the results
provided by the numerical continuation illustrated in
Fig. 9d.

5.3 Bifurcation manipulation via nonlinear control

All bifurcation diagrams illustrated in the previous sec-
tions refer to the case of a linear controller, i.e. with
κnl,1 = 0 (and κnl,2 = 0). However, Eq. (53) suggests
that a proper choice of κnl,1 might change the sign of
Δ and switch the bifurcation characteristic from sub-
critical to supercritical or the other way around.

Δ is linear with respect to κnl,1, therefore values of
κnl,1 such that Δ is either positive or negative gener-
ally exist. Furthermore, the value of κnl,1 causing the
transition from subcritical to supercritical behaviour
(i.e. such that Δ = 0) can be easily found analytically.
Value of κnl,1 and κnl,2 at the bifurcation transition from
subcritical to supercritical are illustrated in Fig. 11a,
b for the collocated and non-collocated cases, respec-
tively. Since bifurcations are already supercritical for
softening stiffness, only the case of hardening stiffness

(μ = 1) is considered, where forcing subcritical bifur-
cations to be supercritical might be beneficial.

The black curve in Fig. 11a refers to the upper stabil-
ity boundary,while the red curve to the lower one. Inter-
estingly, we notice that for the upper stability boundary
a negative value of κnl,1 is required, while for the lower
one, a positive value. From an engineering point of
view, this is not a desired feature, since, for instance,
a positive value of κnl,1 might be beneficial from the
point of view of the global stability for κ1 > 0, but it
will be detrimental for κ1 < 0. Another aspect high-
lighted by Fig. 11a is that just a very small value of κnl,1
is required to change the character of the bifurcation of
the lower stability boundary, while for negative values
of κ1 larger absolute values of κnl,1 are required. This
is directly related to the Δ value depicted in Fig. 5b.

Regarding the collocated case, Fig. 12 illustrates
the effect of the additional nonlinearity in the control
law on the bifurcation diagram. Figure 12a refers to
the upper stability boundary for τ = 0.1. According
to Fig. 11a, the transition from subcritical to super-
critical behaviour occurs at κnl,1 = −0.0093. Fig-
ure 12a confirms this prediction, showing that for
κnl,1 = 5×10−5, 0, −5×10−5, −5×10−4, −0.005
the bifurcation is always subcritical, while it becomes
supercritical for κnl,1 = −0.01. The different bifurca-
tion diagrams in the figure illustrate that negative val-
ues of κnl,1, in absolute value even smaller than 0.0093,
generally reduce the extent of the bistable region, mak-
ing the stable trivial solution more robust. Conversely,
if κnl,1 is positive, the bifurcation branch moves to the
left. This effect most probably reduces the robustness
of the stable region.

Figure 12b depicts bifurcation diagrams occurring at
the lower stability boundary, for κ1 < 0 and τ = 0.8.
According to Fig. 11a, the transition of the bifurcation
from subcritical to supercritical should occur at κnl,1 =
0.00033. This prediction is also confirmed numerically
in the figure, where the bifurcation diagram for κnl,1 =
0.0004 presents a supercritical characteristic. In this
case, although the analytical procedure can correctly
predict the type of bifurcation, branches of unstable
periodic solutions exist within the stable region also
in the case of supercritical bifurcations (as for κnl,1 =
0.0004). Nevertheless, further increasing κnl,1 (κnl,1 =
0.001) these branches seem so disappear.

From Fig. 12a, b, it can be noticed that bifurcation
branches can move from negative to positive ranges of
κ1 and vice-versa. This feature,whichwas not observed
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Fig. 10 Time series obtained from direct numerical simulations
of the non-collocated system for the parameter values χ = 0.05,
r = 1, γ = 1, τ = 0.15, κ2 = −3 (a, b), κ2 = 0.3 (c), μ = 1 (a,

c) and μ = −1 (b). Blue and red lines mark time series converg-
ing and not converging towards the trivial solution, respectively.
Initial conditions are indicated in the figure. (Color figure online)

Fig. 11 Values of κnl,1 and
κnl,2 such that Δ = 0 for the
collocated (a) and
non-collocated (b) cases;
black lines refer to the upper
stability boundary, while red
lines refer to the lower
stability boundary.
Parameter values: χ = 0.05,
r = 1, γ = 1 and μ = 1.
(Color figure online)
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in the case of a linear control force, implies that the tun-
ing of κnl,1 should be done with particular care. In fact,
if the linear control parameters are such that the sys-
tem is, for instance, close to the upper stability bound-
ary and we aim at enforcing supercritical bifurcation
to grant robustness to the system, we need to tune κnl,1
to a negative value. However, this will cause the bifur-
cation branch arising at the lower stability boundary to
bend to the right, reaching parameter spaces where κ1
is positive, potentially mining the system’s robustness
in the point of interest. This feature is better illustrated
below for the non-collocated case.

Figure 11b, referring to the non-collocated system,
depicts the values of κnl,2 such that the bifurcations
occurring at the loss of stability undergo a transition
from subcritical to supercritical. Comparing Fig. 11a,
b, we notice that, for both the collocated and non-
collocated cases, a positive nonlinear coefficient is

required to force bifurcations at the lower stability to
be supercritical (except for τ < 0.045) and a negative
one for the bifurcations at the upper stability boundary.
However, in the non-collocated case, much larger con-
troller nonlinearity values are required, particularly for
small τ values. This peculiarity is related to Δ, which
reaches very large values for κnl,2 = 0, as visible in
Fig. 8b.

In Fig. 13, bifurcation diagrams with various values
of κnl,2 are represented for the non-collocated case. In
the figure, τ is fixed at 0.15. According to the analyt-
ical prediction, the transition of the bifurcations from
subcritical to supercritical should occur at κnl,2 = 9.3
at the lower boundary and κnl,2 = −0.69 at the upper
boundary. This prediction is confirmed by the bifurca-
tion diagrams in Fig. 13.

Apart from correctly estimating the bifurcation tran-
sition, Fig. 13a also shows that, in general, positive
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Fig. 12 Bifurcation
diagrams for the collocated
system; parameter values:
r = 1, γ = 1, χ = 0.05,
μ = 1, τ = 0.1 (a) and
τ = 0.8 (b), κnl,1 as
indicated in the figures.
Solid lines: stable branches,
dashed lines: unstable
branches; all curves refer to
results obtained through
numerical continuation
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Fig. 13 Bifurcation diagrams for the non-collocated system;
parameter values: r = 1, γ = 1, χ = 0.05, μ = 1 and
τ = 0.15, κnl,2 as indicated in the figures. Solid lines: stable
branches, dashed lines: unstable branches; red curves in b indi-

cate bifurcation branches arising at the lower stability boundary;
all curves refer to results obtained through numerical continua-
tion. (Color figure online)

values of κnl,2 move the branch of periodic solutions
to the left, probably increasing the robustness of the
trivial solution, even if κnl,2 is smaller than the critical
value 9.3. On the contrary, in the upper stable region
(κ2 > 0), because of the shape of the branch of periodic
solutions, characterised bymultiple folds, it is arguable
if the additional nonlinearity produces any beneficial
effect in terms of robustness.

In Fig. 13b, red curves depict bifurcation branches
arising at the lower stability boundary but reaching a
region of positive κ2. Interestingly, these curves lie
below the bifurcation branches arising at the upper
stability boundary for the same κnl,2 values, mining
the robustness of the trivial solution. This result high-
lights that introducing an additional nonlinearity in the
control force must be done with particular care and
considering the system’s global behaviour. This phe-

nomenon is particularly relevant in the non-collocated
case, where large nonlinearities are required to con-
trol bifurcations. Indeed, it is well known that sys-
tems encompassing large nonlinearities might present
dynamical phenomena hardly predictable. We remark
that bifurcation branches crossing the border of κ1 = 0
(or κ2 = 0) are present also in the other cases stud-
ied in this section but are not represented for clarity of
illustration of the figures.

In order to directly illustrate the potentiality and lim-
itations of utilising anonlinear control force for enhanc-
ing robustness, Fig. 14 depicts time series obtained
from direct numerical simulations. Figure 14a refers to
the collocated system and parameter values close to the
upper boundary (sameparameter values as inFig. 7a). If
κnl,1 = 0 and the initial displacement x1 is too large, the
system converges towards a large quasiperiodic attrac-
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Fig. 14 Time series obtained from direct numerical simulations
of the collocated (a) and non-collocated (b) systems for the
parameter values χ = 0.05, r = 1, γ = 1, μ = 1; a τ = 0.1,
κ1 = 0.4; b τ = 0.15, κ2 = 0.3. Values of κnl,1 and κnl,2 and ini-

tial conditions are indicated in the plot. Blue and red lines mark
time series not converging towards the trivial solution, while
black lines mark time series converging towards it

tor (red curve). However, including a small negative
nonlinearity in the control force (κnl,1 = −0.005), for
even larger initial conditions, the system still converges
to the trivial solution. This result clearly suggests that
the trivial solution is more robust thanks to the addi-
tional nonlinearity.

Referring to the non-collocated case, Fig. 14b shows
time series for parameter values close to the upper sta-
bility boundary (same parameter values as in Fig. 10c).
In this case, for certain initial conditions, the system
either converges towards a large periodic attractor or
towards the trivial solution, depending on the value of
κnl,2 (red and black curves in the figure, respectively,
the large periodic attractor is visible in Fig. 10c). How-
ever, if the initial x1 displacement is slightly increased,
the system diverges unboundedly (blue curve) in the
case of a nonlinear controller. This example directly
shows that, although a nonlinear control force can
increase robustness, it might also generate undesired
and unexpected phenomena.

6 Conclusions

This study investigated the stability and bifurcation
behaviour of a two-DoF system subject to delayed
acceleration control. Two configurations of the same
systems were considered, namely a collocated and a
non-collocated one. The stability analysis illustrated
the importance of considering the time delay of the
control force, especially for the collocated case, where

even an infinitesimal time delay can cause instabilities.
Additionally, time delay seems particularly critical for
both the collocated and non-collocated cases if damp-
ing is small.

The bifurcation analysis showed an interesting and
unexpected feature about the global dynamics of the
system. For both configurations studied, if the system
encompasses a hardening stiffness nonlinearity, bifur-
cations at the loss of stability are subcritical, while
they are supercritical in the case of softening nonlinear-
ity. This behaviour has important consequences on the
robustness of the stability of the trivial solution. In fact,
particularly in the case of hardening nonlinearity, the
system can experience large oscillations even within
the stable region of the trivial solution if subject to a
sufficiently large perturbation.

By adding a nonlinear term in the control force, a
strategy to increase the robustness of the trivial solution
was developed. Our analysis illustrates that, for a collo-
cated controller, even a small nonlinearity can change
the character of the bifurcations, improving the robust-
ness of the trivial solution, even in the case of hardening
nonlinearity. However, this approach seems to have sig-
nificant limitations in the non-collocated case, where
strong additional nonlinearities would be required to
control bifurcations; these strong nonlinearities typi-
cally generate other undesired dynamical phenomena,
hardly predictable.

The bifurcation analysis was performed for a given
set of parameter values. The effect of the various param-
eters on the system’s nonlinear behaviour might illus-
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trate other dynamical mechanisms not disclosed in this
study. Other relevant aspects omitted in this work are
the saturation of the control force and external exci-
tations. These two elements might have an essential
effect on the global dynamics of the system and will be
analysed in future studies.
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