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AN EXTENSION OF THE ABEL-LIOUVILLE IDENTITY

ZSOLT PALES AND AMR ZAKARIA

ABSTRACT. In this note, we present an extension of the celebrated Abel-Liouville identity in terms of
noncommutative complete Bell polynomials for generalized Wronskians. We also characterize the range
equivalence of n-dimensional vector-valued functions in the subclass of n-times differentiable functions
with a nonvanishing Wronskian.

1. Introduction

Throughout this paper let N and Ny denote the set of positive and nonnegative integers, respectively,
and let I stand for a nonempty open real interval.

For an n-dimensional vector valued (n — 1)-times continuously differentiable function f : I — R", its
Wronskian Wy : I — R is defined by

Wy o= |0 gl
Consider now the nth-order homogeneous linear differential equation

Y™ = a1y 4 4 a,y, (1)
where aq,...,a, : I — R are continuous functions. By the classical Abel-Liouwville identity (cf. [4]), if

f 1 — R" is a fundamental system of solutions of (IJ), then Wy does not vanish on I and

W]/c = a Wf.
For a sufficiently smooth function f : I — R™ and k = (k1,...,k,) € Njj, we introduce now the
generalized Wronskian W]’f : I — R by
Wi = |ft) o fla]

One can easily see that, with this notation, we have

Wf _ W(n—l,n—27...70) and W],c _ W(n7n—2,...70).

f f
Therefore, the Abel-Liouville identity can be rewritten as
W]gn,n—27...70) _ alw}n—lm—Q,...,O)' (2)

One of the main goal of this short paper is to establish a formula for WJ’f in terms of the coeflicients of
differential equation (Il). Another goal is to introduce the range equivalence for n-dimensional vector-
valued functions and to characterize this equivalence relation in the subclass of n-times differentiable
functions with a nonvanishing Wronskian.
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2. MAIN RESULTS

For the description of our main result, we recall the notion of noncommutative complete Bell polyno-
mials, which was introduced by Schimming and Rida [3]. Let R™*™ denote the ring of n x n matrices
with real entries and let I,, denote the n x n unit matrix. Now define By, : (R™*™)™ — R"*" by the

following recursive formula
m

m
By :=1,, Bm+1(X1,...,Xm+1) ZZZ <j>Bj(Xla---ij)Xm+1—j- (3)
=0

The notion of complete Bell polynomials in the commutative setting (i.e., when n = 1) was introduced
by Bell [1], [2]. One can easily compute the first few Bell polynomials as follows:

Bi(X)) = X,
Bo(X1, X2) = X7 + Xo,
B3(X1, Xo, X3) = X3 4+ 2X1 X5 + Xo X1 + X3,
By(X1, Xo, X3, Xy) = X} +3X2 Xy 42X, X0 X1 + 3X1 X3 + 3X2 + Xo X7 + X3 X, + Xy,
Bs(X1, X0, X3, X4, X5) = X7 +4X3 X5 + 3X7 X0 X1 + 6X7 X3+ 8X1 X5 + 2X 1 Xo X7

+3X 1 X3 X] +4X1 X4 + 3X3X) + Xo X3 4+ 4X5 X1 Xy + 6X0 X3
+ X3X? +4X3Xs + X4 X1 + X.
The statement of the next basic lemma was proved in the paper [3].

Lemma 1. For every j € Ng, and j-times differentiable matriz-valued function X : I — R™*™,
. . . /
Bj(X,..., X)) = XB;(X,..., XUV + <Bj(X,...,X(J_1))) . (4)

Lemma 2. Let n,m € N, let X : I — R"™"™ be an (m — 1)-times continuously differentiable function
and Y : I — R™" be a differentiable function such that

Y =YX (5)
holds on I. Then Y is m-times continuously differentiable and
YU =yB;(X,....,XU™D)  (je{o,...,m}). (6)

Proof. If m = 1, then X is continuous, hence the continuity of Y and (&) imply that Y is continu-
ously differentiable. If m > 1, then using (fl), a simple inductive argument shows that Y is m-times
continuously differentiable.

The equality () is trivial if j = 0, because By = I,,. For j = 1, the equality (@) is equivalent to ().
Now assume that (@) has been verified for some 1 < j < m. Then, using (Bl and Lemma [I], we get

YUt = (y0) = (YBj(X,...,X(j_l)))/:Y’Bj(X,...,X(j_l))—i—Y(Bj(X,...,X(j_l)))/

_ Y[XBJ-(X, D ) e (Bj(X, . ,XU—1>)>/] — VB (X,..., X))
This proves the assertion for j + 1. O

In what follows, let eq,..., e, denote the elements of the standard basis in R".

Corollary 3. Letn,m € N, let a : [ — R™ be an (m — 1)-times continuously differentiable function and
let f: I — R™ be a fundamental system of solutions of the differential equation (Il). Let the matriz-valued
functions Xo : I — R™" and Yy : I — R™ "™ be defined by

Xo=(a e ... en1) and Y= (f("_l) ). (7)
Then Y} is m-times continuously differentiable and

YO = VB (X, XGD) (G0, m)}). (8)
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Proof. The function f satisfies the differential equation (II), therefore f (n) = Y7 - a. On the other hand,
fln=i) = Yy - e; holds for i € {1,...,n — 1}. These equalities imply that

Y]ﬁ = (f(n) f(n_l) . f/) = (Yf - a Yf €1 ... Yf . en_l) = YfXa. (9)

Therefore, equation (Bl holds with Y := Y} and X := X, consequently, the statement is a consequence
of Lemma, 2 O

Using the above corollary, we can easily establish a formula for the computation of the generalized
Wronskian WJ’f .

Theorem 4. Let n,m € N, let a : I — R™ be an (m — 1)-times continuously differentiable function
and let f : I — R™ be a fundamental system of solutions of the differential equation (Il). Let the
matriz-valued functions X, : I — R™" be defined by ([@). Then, for k = (ki,...,k,) € N with
max(ky,..., k) <m+n—1,

WF =W |Be, (Xare o X Nenrone oo B (Xavooo X8V enra,n | (10)

where, fori € {1,...,n}, ;== (ki —n+1)*.

Proof. Define the matrix valued function Yy : I — R™*" by (7)) and observe that, by Corollary B} for all
¢e€{0,...,m+n— 1}, we have that

O = YJS%W_Z =YiBi(Xay. o, X8 Weppie  (Ge{(t—n+1)T,... ,minl,m)}).
By taking the smallest possible value for ¢ in the above formula, we get
f(g) =Y Bp—ni1)+ (ch e =X«S(g_nﬂ)tl))€n+(f—n+1)+—f'

Applying this equality for ¢ € {kq,...,k,}, we obtain

(fe0 . ) =y (Bgl (Xay o, X Nensny 4y - B, (Xa, ... ,ng"‘”)en%_kn) .
Now taking the determinant side by side and using the product rule for determinants, the equality (I0])
follows. -

In the subsequent corollary, we consider the case when ¢; = 0 for i € {2,...,n}. In this particular

setting, the determinant on the left hand side of ([I0]) can easily be computed.

Corollary 5. Let n,m € N, let a : I — R™ be an (m — 1)-times continuously differentiable function
and let f : I — R™ be a fundamental system of solutions of the differential equation (Il). Let the matriz-
valued functions X, : I — R™™ be defined by (0) and let d € {0,....,m — 1} and j € {0,...,n — 1}.
Then

W L) (I B (X XD e s g). (1)

Ifd =0 and j = n — 1, then this equality reduces to the Abel-Liouville identity [2l). More generally, for
d=0,1,2, we get the following formulas:

W}n,n—1,...,j+1,j—1,...,0) _ (_1)n_j_1Wfan_j,

1,n—1,j41,5—1,..0 i
WJETH- n Jj+1,7 ) - (_1)n J 1Wf(a1an_j + ap—j+1 +CL;L_]-), (12)
2n—1,..j+1,j—1,...,0 i
WJSHJF " T ) = (- 1Wf(a%an—j + a1ap—j11 + a2an—j + an—j42

/ / / "
+aray,_j + 2a1an—j + 20,41 + ).

(Here we define ap+1 := apt2 :=0.)
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Proof. We apply the previous theorem for k := (n+d,n—1,...,j+1,j—1,...,0), whered € {0,...,m—1}
and j € {0,...,n — 1}. Then we get that /; =d+ 1, and ¢; = 0 for ¢ € {2,...,n}. Therefore,

+d7 _17“'7‘+17'_17“'70 d
W}n n JThd ) = Wf ‘Bd+1(Xa,...,X[g ))61 T.,er ... Hnen—j—l Hnen—j-l-l o ey,

= (_1)n_j_1Wf<Bd+1 (XCH s 7X(§,d))617 en—j>'
Thus, equality (II]) has been shown. In the case d = 0, we have that
(B1(Xa)e1, en—j) = (Xae1,€n—j) = an_j
because the (n—j)th entry of X, equals a,,—;. This implies the first equality in (I2)) for j € {0,...,n—1}.
In particular, for j = n — 1, this equality is equivalent to the Abel-Liouville identity (2)).
In the case d = 1, a simple computation gives that
(Ba(Xa, X))er, en—j) = (X2 + X})e1, en_j) = a1an_j + an_ji1 +aj,_;,
which yields the second equality in (I2]) for j € {0,...,n — 1}.
In the case d = 2, a somewhat more difficult computation gives that
(B3(Xa, Xg, Xg)e1, en—j) = (X3 +2Xa X, + X0 Xo + Xg )er, €n—j)
= a%an—j + a10p—j4+1 + a20n—j + Gn—j42
+ a1y, + 20 an_j +2a;, ;. +ay_j,
which then yields the third equality in (I2]). O
For the sake of convenience and brevity, we introduce the following notation: for an n-times contin-

uously differentiable function f : I — R™ such that W is nonvanishing and j € {0,...,n — 1}, the
function (IJBZ] : I — R is defined by
(n77]+17]_1770)
ol — (_pyn-i1 7
I Wy
For instance, if f is n-times continuously differentiable function whose components form a fundamental
system of solutions for (), then the Abel-Liouville identity (2] can be rewritten as

(I)Bcn_l] = aj.

More generally, the first equality in (I2]) gives that
oW =a,_;  (je{0,....n—1})
or, equivalently,
o= (jef1,... .n}). (13)

Lemma 6. Let f : I — R" be an n-times continuously differentiable function such that Wy is nonvan-
ishing. Then the components of f form a fundamental system of solutions of the nth-order homogeneous
linear differential equation

y = Z @Eg}y(j)_ (14)

Proof. This equation is equivalent to the following identity

n—1

|f(n—1) f(O)\y(”):Z(—l)"‘j‘1|f(") o fUrD G- f(O)‘y(j).

J=0
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We can now rearrange this equation to obtain

y(n) y(n_l)

R S A

It is easily seen that if y € {f1,...,fn}, then the determinant vanishes. Therefore, fi,...,f, are

solutions of (I4)). Due to the condition that Wj is nonvanishing, the components of f are linearly
independent, therefore they form a fundamental solution system for (I4]). O

Corollary 7. Let n,m € N with m > n and let f : I — R™ be an m-times continuously differentiable
function such that Wy is nonvanishing. Define a : I — R™ by (I3) and X, : I — R™" by ([{). Then the
equality (IQ) holds for k = (ki,...,kn,) €N, if ki <m and {; .= (ki —n+1)T forie {1,...,n}.

Proof. Tt follows from the definition of a, that it is (m — n)-times continuously differentiable. On the

other hand, by Lemmal6l we have that f satisfies the n-th order homogeneous linear differential equation
(). Thus, the statement is a consequence of Theorem [l O

We say that two continuous functions f,g : I — R™ are range equivalent, denoted by f ~ g, if there
exists a nonsingular n X n-matrix A such that

f=Ag. (15)

Theorem 8. Let f,g : I — R" be an n-times continuously differentiable functions such that Wy and
Wy are nonvanishing. Then f ~ g holds if and only if

ol =oll  (je{o,...,n—1}). (16)
Proof. If f ~ g, then there exists a nonsingular n x n-matrix A such that f = Ag. The product rule for
determinants shows that W]’? = |A|W§ for every k € Nj. Using this identity and the definition of <I>£f]

and q)g ], we obtain the equalities in (I6)).
On the other hand, if the identities (6] are valid on I, then the nmth-order homogeneous linear
differential equation (I4]) is equivalent to the following one

n—1
Y =3 alily),
j=0

Therefore, the (n-dimensional) solution spaces of these differential equations are identical, which in
view of Lemma [f] yields that the components of f are linear combinations of the components of g. Thus

identity (1) holds for some nonsingular n x n-matrix A. O
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