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Transition from localized to mean field behaviour of cascading fail-

ures in the fiber bundle model on complex networks

Attia Batool, Gergő Pál, Zsuzsa Danku, Ferenc Kun

• A transition from localized to mean field behaviour of the failure dy-
namics of fiber bundles is revealed as the structure of the network of
load transmitting connections is varied.

• The transition is limited to a well defined range of disorder of the failure
strength of nodes (fibers) of the network.

• A threshold disorder is determined below which the randomization of
the network structure does not provide any improvement neither of the
load bearing capacity nor of the cascade tolerance of the system.

• An optimal network structure is identified with the highest stability
against cascading failure.
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Abstract

We study the failure process of fiber bundles on complex networks focusing
on the effect of the degree of disorder of fibers’ strength on the transition from
localized to mean field behaviour. Starting from a regular square lattice we
apply the Watts-Strogatz rewiring technique to introduce long range random
connections in the load transmission network and analyze how the ultimate
strength of the bundle and the statistics of the size of failure cascades change
when the rewiring probability is gradually increased. Our calculations re-
vealed that the degree of strength disorder of nodes of the network has a
substantial effect on the localized to mean field transition. In particular, we
show that the transition sets on at a finite value of the rewiring probabil-
ity, which shifts to higher values as the degree of disorder is reduced. The
transition is limited to a well defined range of disorder, so that there exists a
threshold disorder of nodes’ strength below which the randomization of the
network structure does not provide any improvement neither of the overall
load bearing capacity nor of the cascade tolerance of the system. At low
strength disorder the fully random network is the most stable one, while at
high disorder best cascade tolerance is obtained at a lower structural random-
ness. Based on the interplay of the network structure and strength disorder
we construct an analytical argument which provides a reasonable description
of the numerical findings.

Keywords: cascading failure, fiber bundle model, Watts-Strogatz rewiring,
disorder of failure strength
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1. Introduction

Load redistribution following local damage often drives the cascading fail-
ure of connected elements in complex systems [1, 2]. From crackling bursts
accompanying materials breakdown, through the failure avalanches of trans-
portation and communication networks, to the cascading blackouts of electric
transmission grids, the statistical features of failure cascades, and the over-
all performance of the damaged system strongly depend on the structure of
the underlying network of load transmitting connections between elements
of the system [3, 4, 5, 6, 7, 8, 9, 10]. The interplay of the cascading dy-
namics and of the network topology has recently been studied using discrete
models on various types of complex networks. In these approaches either
the nodes [5, 8] or the links [11] of the network are assumed to undergo a
degradation process accompanied by a mechanism of load rearrangement on
the intact elements which can give rise to cascades of failure events. Among
these approaches the so-called fiber bundle model (FBM), widely used to
study materials breakdown phenomena [12, 13, 14], has proven very useful
since it grasps the essential mechanisms of the intermittent failure spreading
yet being simple enough to offer analytic solutions in certain limiting cases
[15, 16, 12].

In the basic setup, an FBM is composed of a set of parallel fibers organized
on a regular lattice [13, 17]. Under a slowly increasing external load the
fibers fail irreversibly when the local load on them exceeds their strength
value, which is assumed to have a certain degree of randomness. Under the
constraint of load conservation, the load dropped by the failed fiber gets
redistributed over the remaining intact ones. Recently, two limiting cases
of load sharing have been subject to intensive investigations both with a
high practical relevance: in case of equal load sharing (ELS) all intact fibers
receive the same fraction of load irrespective of their distance from the failed
one, while for localized load sharing (LLS) only the intact nearest neighbors
share equally the load of the broken element [18, 19, 16, 12, 20]. In both
cases the load increments can cause further breakings so that a single broken
fiber may trigger an entire cascade of failure events. Due to the generality of
this failure spreading mechanism, fibers of the model can easily be replaced
by roads carrying traffic [21, 22], flow channels [23], or electric power stations
[24, 2, 25, 26, 10] on a high voltage transmission grid, making FBMs a basic
modelling framework for cascading failure with widespread applications on
complex networks [14].
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During the past decades it has been shown that for a broad class of the
distributions of fibers’ strength, FBMs exhibit universal behaviour with two
distinct universality classes according to the range of load redistribution: for
long range load sharing (ELS class) the size of failure cascades proved to
be power law distributed with a universal exponent 5/2 [18, 16, 12] and the
bundle has a finite asymptotic strength in the limit of large system sizes
[27, 28, 13]. For equal load sharing conditions the fibers always keep the
same load, no stress concentration can arise, hence, ELS realizes the mean
field limit of FBMs. Under short range load sharing (LLS class) the distri-
bution of cascade sizes is a significantly steeper (non universal) power law
or exponential, and additionally, for large system sizes the ultimate strength
of the bundle tends to zero [29, 30, 31, 32]. Recently, LLS FBMS have been
analyzed on complex networks where fibers were assigned to the nodes and
localized load sharing was realized along the links of the network [33]. Based
on the statistics of cascade sizes and on the ultimate strength of the system,
it was demonstrated for scale-free, Erdős-Rényi (ER) and Watts-Strogatz
(WS) rewired networks that LLS FBMs on complex networks fall in the ELS
universality class [33]. Later on it was shown on a ring graph with two nearest
neighbor links that adding a single random load transmitting connection to
each fiber, the localized load sharing FBM exhibits ELS behaviour in terms
of the size distribution of failure cascades and global strength [34]. However,
all these studies of FBMs on complex networks were limited to a high dis-
order of node strength and considered only networks with a high degree of
randomness in their structure even in the case when all fibers had the same
degree.

Here we present a detailed numerical and analytical study of the tran-
sition of the failure process of the fiber bundle model from the LLS to the
ELS universality class when an initially regular lattice of load transmitting
connections is gradually randomized. Starting from a square lattice we apply
the Watts-Strogats rewiring technique [35, 36] to introduce long range ran-
dom connections and study how the critical load and strain of the bundle,
furthermore, the statistics of the size of failure cascades change when the
rewiring probability is gradually increased at different degrees of disorder of
the strength of nodes (fibers). Our calculations revealed that the degree of
strength disorder of nodes of the network has a substantial effect on the tran-
sition. In particular, we show that the LLS-ELS transition sets on at a finite
value of the rewiring probability, which shifts to higher values as the degree
of disorder is reduced. The transition is limited to a well defined range of
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disorder, i.e. there exists a threshold disorder of nodes’ strength below which
the randomization of the network structure does not provide any improve-
ment neither of the overall load bearing capacity nor of the cascade tolerance
of the system. Based on the interplay of the network structure and strength
disorder we construct an analytical argument which provides a reasonable
description of the numerical findings.

2. Fiber bundle model on a rewired square lattice

To study cascading failures we consider a bundle of parallel fibers which
are assigned to the nodes of a complex network. The bundle is subject to a
slowly increasing external mechanical load parallel to the fibers’ direction. To
connect the model to the mechanics of materials, we assume that the fibers
are linearly elastic up to a threshold load σth where they break irreversibly.
The Young modulus E of fibers has a fixed value E = 1, however, their local
strength σth is a random variable sampled from a probability density function
p(σth). When a fiber fails its load has to be overtaken by the remaining intact
fibers. We assume localized load sharing (LLS), i.e. load is redistributed
along the links of the underlying load transmission networks. In the following
details of the model construction are presented:

To generate the network of connections along which load is redistributed
over fibers, we start from a regular square lattice of side length l with N = l2

fibers, and apply the Watts-Strogatz rewiring technique to randomize the
connections [35, 36]. The fibers are assigned to the nodes oriented perpen-
dicular to the plane of the lattice. Figure 1 provides an overview of the model
construction. On the square lattice with periodic boundary condition in both
directions, all fibers (nodes) are connected to their four nearest neighbors,
hence, initially the degree distribution ρ(k) of fibers has the simple form

ρ(k) =

{

1 for k = 4,

0 otherwise.
(1)

As to the next, each of the L = 2N initially existing connections is rewired
with a probability p which spans the interval 0 ≤ p ≤ 1. For both ends of a
rewired link a new fiber is selected randomly in the bundle with the constraint
that neither multiple links nor loops are allowed between fibers (see Fig. 1
for illustration). As a consequence, long range randomized connections are
introduced in the bundle and the degree distributions ρ(k) broadens while the
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a) b)

Figure 1: Demonstration of the model construction. (a) The network of load transmitting
connections is obtained by rewiring a two-dimensional regular square lattice with periodic
boundary connections in both directions. The rewiring introduces long range randomized
connections, which broadens the degree distribution of the network while keeping the
average degree fixed. (b) Fibers of the bundle are assigned to the nodes of the network
oriented perpendicular to the plane of the original lattice.

average degree of nodes 〈k〉, i.e. the average number of interacting partners
of fibers, remains the same 〈k〉 = 4. The degree distribution ρ(k) of the
network is presented in Fig. 2 for several values of the rewiring probability
p. For large values of p in the vicinity of 1, isolated fibers and small clusters
of a few fibers may occur due to rewiring. In order to exclude their effect,
after the rewiring process we identify all clusters of nodes of the bundle and
keep the largest one for further calculations.

The load bearing capacity of nodes, i.e. the threshold load σth where fibers
fail, is a random variable which is sampled from a Weibull distribution

p(σth) = m
σm−1
th

λm
e−(σth/λ)

m

(2)

over the interval 0 ≤ σth < +∞. Here the parameter λ sets the scale of
strength values, while m controlls the shape of the distribution. The choice
of the distribution Eq. (2) has two motivations: (i) the failure behaviour of
FBMs with such a fast decaying strength distribution, shows a high degree
of robustness which has been well understood both in the equal load sharing
and localized load sharing limits on regular square lattices [37, 13]. (ii)
Varying the Weibull shape parameter m in the range m ≥ 1, the degree of
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Figure 2: Degree distribution ρ(k) of the network of fibers’ connections at several rewiring
probabilities p. As p increases the distribution ρ(k) gets broader, however, the value of
the average number of connections is preserved 〈k〉 = 4.

strength disorder can be controlled in the sense that increasing m reduces
the width of the distribution making the response of the bundle more brittle.
This feature of the distribution is illustrated in Fig. 3 for several m values.
It is an important characteristics of our model that the strength σi

th and the
degree ki of fibers (nodes) (i = 1, . . . , N) are uncorrelated.

As the load gradually increases on the bundle, initially all fibers keep
the same load, hence, the weakest fiber with the lowest breaking threshold
breaks first. We assume that fibers have a nearest neighbor interaction so
that the load dropped by a broken fiber is equally shared by its intact nearest
neighbors on the underlying network. As a consequence, the updated load
of the neighboring fibers may exceed their local breaking threshold resulting
in additional breakings which are then followed again by load redistribution.
As a results of subsequent breaking and load redistribution steps a single
fiber failure can trigger an entire cascade of failures, which stops when all
the fibers receiving load in a load redistribution step, can sustain the elevated
load. This so called localized load sharing has the consequence that fibers
breaking in an avalanche form a connected cluster on the underlying network
in such a way that on the intact fibers along the cluster perimeter a large
amount of load can accumulate.
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Figure 3: Weibull distribution of failure thresholds p(σth) of fibers (nodes) of the network
at different values of the exponent m. As the exponent m increases the distribution gets
narrower.

The system has two sources of disorder, i.e. the stochastic strength of
fibers and the randomness of the underlying network of connections, which
are both quenched. The interplay of the two gives rise to an inhomogeneous
stress field on the fibers, which evolves as the failure of the system proceeds.
If fiber i of load σi fails, then its ni intact nearest neighbors all receive the
load increment ∆σi = σi/ni, so that the load σj of a neighboring fiber j will
have the updated value

σj → σj +∆σi. (3)

It follows that ni ≤ ki, where ki is the initial degree of the node i. During an
avalanche the external load is kept constant so that the failure spreading is
solely driven by the redistribution of load through the transmission network.

After a cascade stops the external load is further increased to provoke the
breaking of a single element: the load σi of each intact fiber is incremented
by the same amount δσ

σi → σi + δσ, (4)

where δσ is determined as the smallest difference between the load σi and
strength σi

th of intact fibers δσ = min
i
(σi

th−σi). Ultimate failure of the system

occurs when a load increment triggers a catastrophic cascade breaking all the
intact fibers.
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Figure 4: Constitutive curves σ(ε) of the bundle at different rewiring probabilities p com-
pared to the mean field solution of the model Eq. (6) indicated by the dotted line for the
Weibull parameter m = 1. The two axis are rescaled by the mean field critical load σELS

c

and strain εELS
c . The inset demonstrates the entire σ(ε) curve of Eq. (6) including the

definition of the critical load σELS
c and strain εELS

c .

Simulations of the failure dynamics were performed starting from a square
lattice of size l = 400 with N = 160.000 fibers using periodic boundary
condition in both directions, which results in L = 320.000 load transmitting
connections. To controll the degree of strength disorder, the scale parameter
of the Weibull distribution was fixed to λ = 1, while the shape parameter
m was varied in the range 1 ≤ m ≤ 22. For the rewiring probability p we
considered 30 different values in the interval 0 ≤ p ≤ 1. At each parameter
set averages were calculated over 2000 samples.

3. Macroscopic response of fiber bundles on complex networks

The macroscopic response of the bundle can be characterized by deter-
mining the relation σ(ε) of its stress σ and strain ε. In the limit of equal
load sharing, where all fibers interact with each other and keep the same
load, this constitutive relation can be obtained analytically as

σ = Eε [1− P (Eε)] , (5)

where P (x) denotes the cumulative distribution of failure thresholds [17, 13].
Since at a given strain ε all the fibers keep the same load Eε, the total load
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Figure 5: Inset: Average critical strain 〈εc〉 and load 〈σc〉 of the network scaled with their
mean field counterparts εELS

c and σELS
c as function of the rewiring probability p for the

Weibull parameter m = 1 of the failure thresholds. Main panel: The strength values 〈εc〉
and 〈σc〉 obtained for p = 1 as function of the average number of neighbors in the range
2 ≤ 〈k〉 ≤ 30. The legend is provided in the inset for both figures.

on the system is the product of the load of single fibers and of the fraction of
intact fibers 1 − P (Eε). Substituting the Weibull distribution of thresholds
Eq. (2) we obtain the mean field constitutive equation of our model

σ(ε) = Eεe−(
Eε

λ
)
m

, (6)

which is presented by the inset of Fig. 4 for m = 1. In a load controlled
experiment the constitutive curve can only be realized up to the maximum,
where immediate failure occurs in the form of a catastrophic cascade. Hence,
the value σc and the position εc of the maximum define the critical load and
strain of the bundle, respectively.

In computer simulations of finite bundles of localized load sharing, the
stress σ and strain ε of the system can be obtained on any network topology
by summing up the load σi of fibers (nodes) F =

∑N
i=1 σi and dividing it

by the bundle size σ = F/N and by the total number of intact fibers ε =
F/Nintact, respectively. It has been shown by means of computer simulations
that for localized load sharing on regular lattices the constitutive curve of
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the bundle follows the mean field solution Eq. (5) [38, 19]. However, the
response becomes more brittle in the sense that the σ(ε) curve stops earlier
at lower σc and εc closer to the initial linear regime. Figure 4 demonstrates
that this behaviour remains valid for all the networks considered, however, as
the rewiring probability p increases, the constitutive curves reach to higher
σc and εc values.

To have a more transparent view on the effect of the network structure
on the strength of the bundle, we determined the average value of the critical
load 〈σc〉 and strain 〈εc〉 as function of the rewiring probability p. It can be
observed in the inset of Fig. 5 for the Weibull parameter m = 1 that for small
values of p the randomized contacts hardly have any effect on the strength
of the bundle so that both the critical load 〈σc〉 and strain 〈εc〉 retain their
original values characteristic for the square lattice at p = 0. However, when
the rewiring probability exceeds a threshold value 0.01 . p the strength
starts to increase and saturates to a limit value for completely randomized
networks p → 1. Note that in the figure the strength values are scaled with
their mean field (equal load sharing) counterparts

εELS
c =

λ

E

(

1

m

)1/m

, (7)

σELS
c = λ

(

1

m

)1/m

e−1/m, (8)

obtained as the position and value of the maximum of the σ(ε) curve of Eq.
(6). This comparison shows that as random connections start to dominate
the load transmission among fibers, the strength of the bundle approaches
the equal load sharing limit but saturates at a lower value. The reason is
that the average number of interacting partners of fibers is fixed to 〈k〉 = 4
which still gives rise to a significant stress concentration on the network, and
hence, reduces the fracture strength of the bundle compared to the mean
field limit. To support this argument we performed computer simulations on
random graphs corresponding to the p = 1 limit of our system with the same
number of nodes N as the original square lattice varying the average number
of neighbors 〈k〉 in a broad range. Figure 5 demonstrates that increasing the
average number of interacting partners 〈k〉 of fibers in a completely random
network p = 1 the strength values 〈σc〉 and 〈εc〉 converge to their mean field
counterparts as expected.
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Start

End

Figure 6: Spreading of a failure cascade on the network of load sharing connections at
p = 0.5 with Weibull distributed failure thresholds at m = 1. The cascade starts and ends
with a single breaking indicated by the arrows. All fibers of the network which receive
load from broken fibers are indicated by black circles, and among them the ones which
break as a consequence of load sharing are highlighted by colors different from black. For
clarity, the circles representing broken fibers have also a larger size. Fibers breaking in
the same load redistribution step have the same color. The cascade in the example has
the size ∆ = 87, which was generated in 24 load redistribution steps. For clarity, nodes of
the network which do not participate in the cascade are not shown.

4. Size distribution of failure cascades

The microscopic mechanism of the failure of the system is the cascading
failure of nodes (fibers) triggered by single breaking events as a consequence
of external load increments. Our simulations revealed that the structure
of the load transmission network plays an essential role in the growth of
avalanches which in turn also determines the macroscopic behaviour of the
bundle. A cascade always starts from a single failing node and spreads over
the transmission network, which is demonstrated in Fig. 6 for a network at
the rewiring probability p = 0.5 with the Weibull shape parameter m = 1 of
strength values. In the figure all fibers (nodes) which receive load from break-
ing fibers are indicated by black color, and among them those ones which
suffer breaking are highlighted by colors different from black. Fibers break-
ing as a consequence of the same load redistribution step, are represented
by the same color. Starting from the externally imposed fiber breaking in
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Figure 7: The size distribution of failure cascades p(∆) for several values of the rewiring
probability p at the Weibull parameter m = 1 of the strength of fibers. For low p values a
crossover occurs between two power law regimes of different exponents. The two straight
lines represent power laws of exponents 2.3 and 3.4, characteristic for p = 1 and p = 0,
respectively. The vertical dashed line highlights the crossover burst size ∆c estimated for
p = 0.01.

the top of the figure, one can easily follow the development of the cascade
through the consecutive colors. Note that the cascade forms a connected
cluster of broken fibers on the network, however, fibers breaking in the same
sub-cascade can be far from each other. The number of fibers breaking in
the cascade defines the cascade size ∆.

To characterize the statistics of failure cascades we determined the prob-
ability distribution of their size p(∆), which proved to have a strong depen-
dence on the network topology of load transmitting connections. It can be
observed in Fig. 7 for the Weibull parameter m = 1 that on the regular
square lattice (p = 0) where strong spatial localization of load occurs around
failed regions, the distribution p(∆) can be approximated as a power law

p(∆) ∼ ∆−τ , (9)

which is followed by a finite size cutoff. The value of the exponent is rather
high τ = 3.4 ± 0.1 in agreement with former studies of the fiber bundle
model [31, 38, 19]. The rapidly decreasing distribution and the low cutoff
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mean field value of the cascade size exponent τELS = 5/2. All the results were obtained
at the Weibull parameter m = 1.

burst size ∆max clearly show that cascades are typically small compared to
the system size N . Due to the strong localization large avalanches would
lead to immediate collapse of the bundle on the regular lattice. However,
increasing the fraction of long range connections by increasing the rewiring
probability p, the stress localization gets gradually reduced, hence, the system
can tolerate larger and larger failure cascades without suffering catastrophic
collapse. As a consequence, the cutoff burst size ∆max increases and the
distribution p(∆) exhibits a crossover to a second power law regime with a
lower exponent. The smaller value of τ shows the growing fraction of large
size cascades in the failure dynamics of the system (see Fig. 7).

Of course, the crossover burst size ∆c, which separates the two power
law regimes, depends on the rewiring probability, i.e. ∆c gradually shifts
to smaller values with increasing p in such a way that in the limit p → 1
practically a single power law remains with a significantly lower exponent
than that of the original square lattice at p = 0. To characterize this evolution
of p(∆) we determined the average size of the largest avalanche 〈∆max〉 and
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the power law exponent τ of the regime of large avalanches as function of the
rewiring probability p. It can be observed in Fig. 8 for the Weibull parameter
m = 1 that up to the rewiring probability pl ≈ 0.01 the cutoff cascade size
〈∆max〉 is nearly constant, although the exponent τ suffered some change.
This behaviour implies that the small fraction of randomized contacts has
a minor effect on the cascading failure dynamics in this parameter range
p . 0.01. However, above this threshold probability a rapid change of the
cascade size distribution sets on indicated by the steep increase of 〈∆max〉
and decrease of the exponent τ . For high values of the rewiring probability
p → 1, the exponent τ converges to a constant τ ≈ 2.3, which falls very close
to the mean field burst size exponent of FBMs τELS = 5/2 [18, 12]. The
result indicates that on sufficiently randomized load transmission networks
the statistics of failure cascades of the localized load sharing FBM becomes
equivalent to the mean field universality class of the system in agreement
with the behaviour of the macroscopic strength of the bundle. The result
is consistent with Ref. [33] where FBMs were analyzed on Watts-Strogatz
networks in the range of high rewiring probabilities p ≥ 0.2 recovering the
mean field behaviour.

It is interesting to note that in Fig. 8 the average largest cascade size
〈∆max〉 has a maximum around the rewiring probability p∗ ≈ 0.1 which
practically coincides with the position of the minimum value of the exponent
τ . This behaviour indicates that there exists a network topology determined
by p∗ where the network can tolerate the largest cascades with a considerable
frequency. The reason is that increasing the rewiring probability the growing
randomness of the network increases the perimeter of the failed clusters,
hence, reducing the load concentration on it. This mechanism stabilizes the
system in the sense that cascades can reach larger sizes without becoming
instable destroying the system. However, at higher p a counter effect occurs
that low degree fibers appear on the network with a growing fraction, which
increases the load concentration in their vicinity and makes the system more
vulnerable to cascades. The value p∗ provides the optimum for the cascade
tolerance of the system.

5. Effect of the degree of threshold disorder on the LLS-ELS tran-

sition

We carried out a large amount of simulations of the failure process of
the network of fibers at several values of the Weibull exponent m varying the
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Figure 9: The average critical load 〈σc〉 (a) and the average size of the largest cascade
〈∆max〉 (b) scaled with their mean field values σELS

c and
〈

∆ELS
max

〉

as function of the rewiring
probability p for several values of the Weibull parameter m. In (b) the position of the local
maximum of 〈∆max〉 determines the rewiring probability p∗ where the network tolerates
the largest failure cascades. (c) The relative scatter of the size of the largest cascade,
i.e. the standard deviation σ∆max

divided by the average 〈∆max〉 of the largest cascade
size. The dashed lines serve to guide the eye indicating the position of the maximum of
the curves for the Weibull parameters m = 1, 3, 10, 15. For (a, b, c) the legend is provided
in (b). (d) The rewiring probability pl of the onset of the transition from LLS to ELS
behaviour obtained as the position of the maximum of the curves in (c) (numerical) and
as the solution of Eq. (14) (analytical).

15



degree of strength disorder in a broad range. These calculations revealed that
the LLS to ELS transition has a high complexity as the network structure
is gradually changed where the degree of strength disorder of nodes plays a
crucial role. Figure 9(a) demonstrates for the average critical load 〈σc〉 that as
the strength disorder is reduced by increasing m, the onset of the transition,
i.e. the rewiring probability pl where the first significant deviation occurs from
the LLS result of the regular lattice, shifts to higher values. For instance, for
m = 7 the transition starts at about pl ≈ 0.1, which is an order of magnitude
higher than the corresponding value pl ≈ 0.01 obtained at m = 1. The
transition is completed at a rewiring probability pu beyond which the bundle
strength practically does not change. With decreasing strength disorder the
value of pu also increases and tends towards 1 in such a way that the transition
regime shrinks. Note that the asymptotic strength 〈σc〉 (p = 1) decreases with
increasing m compared to its mean field counterpart σELS

c , indicating that
at lower threshold disorder randomization of the network structure provides
less and less improvement of the overall load bearing capacity of the system.
It is interesting to note that at the lowest disorders considered, starting from
m = 10, the 〈σc〉 (p) curves proved to be non-monotonous, i.e. for m = 10, 15
the onset of the increase of the ultimate strength of the system is preceded
by a local minimum. Additionally, for m = 22 the limit value of the strength
attained at p → 1 falls below the strength of the original square lattice. The
result implies that when the strength of nodes is sampled from a sufficiently
narrow interval the rewiring process gives rise to a reduction of the bundle
strength at any rewiring probability.

The analysis of the statistics of cascade size revealed a similar effect of the
strength disorder of fibers on the LLS-ELS transition of the failure process:
It can be observed in Fig. 9(b) for the average size of the largest cascade
〈∆max〉 that as the degree of threshold disorder gets reduced with increasing
m the value of 〈∆max〉 remains constant keeping its p = 0 value for a broader
and broader range of the rewiring probability p. The estimated lower bounds
pl of the transition regime are consistent in Figs. 9(a) and 9(b) for the macro-
scopic and microscopic quantities showing that pl increases with decreasing
threshold disorder. Note that the 〈∆max〉 (p) curves rise sharper than the
bundle strength 〈σc〉 (p) making the transition regime more transparent. It
can be expected that at the onset of the LLS-ELS transition the value of
∆max has large fluctuations. To quantify this Fig. 9(c) presents the relative
scatter of ∆max, i.e. the ratio of its standard deviation σ∆max

and average
〈∆max〉. For each degree of disorder m, a sharp maximum can be observed
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whose position provides a good measure of pl. The vertical dashed lines high-
light for a few Weibull exponents m that indeed the maximum of the relative
scatter of ∆max well coincides with the onset of the sharp rise of 〈∆max〉 (p)
in Fig. 9(b).

It is important to note that as the strength disorder decreases the posi-
tion p∗ of the maximum of 〈∆max〉 where the network tolerates the largest
avalanches, shifts to higher values. Additionally, the maximum gradually de-
creases and eventually disappears around m ≈ 4, where the 〈∆max(p)〉 curves
become monotonous. It follows that for threshold disorder in the rangem > 4
the fully random graph provides the highest tolerance of cascades. In agree-
ment with the behaviour of the ultimate strength of the bundle, at lower
strength disorder of the nodes, the randomization of the network structure
provides less and less improvement compared to the LLS limit of regular
lattices.

For each degree of disorder m the size distribution of cascades p(∆) goes
over the same evolution as form = 1 in Fig. 7: below the rewiring probability
pl the cascade size distribution practically remains the same as on the original
regular lattice at p = 0. The second power law regime with a lower exponent
emerges for networks with p ≥ pl accompanied by the growth of the cutoff
cascade size 〈∆max〉 and by the gradual decrease of the crossover cascade size
∆c. When p exceeds pu, the transition gets completed and a single power
law remains of p(∆).

5.1. Rewiring probability of the onset of the transition

In order to understand how the transition emerges from LLS to ELS with
the rewiring probability p at different degrees of disorder m, we construct an
analytical argument based on the changing structure of the underlying load
transmission network. On the original square lattice of fibers, localized load
sharing dynamics leads to early failure of the entire bundle due to the strong
stress concentration on the perimeter of failed clusters [39, 31, 38]. In the last
stable configuration of the bundle failed clusters are very small compared to
the system size so that the majority of fibers break in the last catastrophic
cascade. Adding randomized long range connections leads to the reduction
of the local stress concentration by increasing the perimeter of the growing
failed cluster. As a consequence, the system can tolerate larger cascades and
has a higher overall load bearing capacity.

At a given value of p the average number of rewired connections can be
estimated as 2Np since each of the initial 2N links is rewired with probability
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p. When p is low only a very small fraction of fibers is affected in the bundle
by the rewiring either by having a removed nearest neighbor link or by getting
a newly established long range contact. So it is reasonable to assume that at
low p values the majority of spreading cascades have a high chance to avoid
fibers with rewired links so that cascades remain small following the same
statistics as on the original square lattice at p = 0. Those cascades which
involve fibers with rewired connections may grow to larger sizes resulting in
a statistics different from the one of the small avalanches. This mechanism
leads to the emergence of a crossover in the distribution of the size of cascades
presented in Fig. 7.

To estimate the crossover burst size ∆c, it is instructive to determine
the probability that a randomly selected node of the network is affected by
rewiring. The probability that none of the 4 nearest neighbor connections
is rewired for a fiber is (1 − p)4, while the probability that it does not get
connected to any new fiber can be estimated as exp (−4p) for large N [40].
Hence, the probability pr that a node is affected by rewiring can be cast into
the form

pr = 1− (1− p)4e−4p. (10)

We assume that crossover occurs at a cascade size ∆c above which cascades
involve on average at least one fiber affected by the rewiring process. Hence,
the relation

∆cpr(p) ≈ 1 (11)

follows between ∆c and the rewiring probability p, from which we obtain

∆c ≈
1

pr(p)
. (12)

Note that for p → 0 the crossover avalanche size diverges ∆c → ∞, while it
tends to 1 for p → 1.

It follows from the above arguments that at very low rewiring probabilities
p ≪ 1 the crossover cascade size is larger than the average largest avalanche
〈∆max〉 (p = 0) on the original regular lattice at p = 0. It has the consequence
that the dynamics and statistics of stable cascades is practically not affected
by the rewiring in this p range, no crossover occurs, so that the distributions
of the cascade size remain practically the same as on the square lattice (see
Fig. 7). Crossover of the distributions emerges for those p values where the
condition

〈∆max〉 (p = 0, m) > ∆c(p) (13)
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holds. Note that 〈∆max〉 of the original lattice p = 0 also depends on the
strength disorder m. This first occurs at the lower bound pl of the transition
regime

〈∆max〉 (p = 0, m) = ∆c(pl) (14)

from which pl can be obtained as a function of the degree of strength disorder
pl = pl(m). In the regime p > pl(m) the crossover cascade size separating the
two power law regimes of different exponents can be approximated by Eq.
(12). The smallest possible value of ∆c we could identify in our numerical
measurements is ∆c ≈ 1−3, from which the upper bound of the crossover pu
can be determined. Further increasing p above pu no qualitative change of
the failure process occurs so that the statistics of the size of cascades remains
the same.

It follows from the above arguments that the dependence of the LLS-ELS
transition on the degree of strength disorder of the fibers (nodes) originates
from the disorder dependence of the cascade activity of the system on the
unperturbed regular lattice. For each Weibull exponent m we estimated
numerically the crossover point ∆c of the cascade size distributions p(∆) by
determining the value of ∆ where the two fitted straight lines of the two power
law regimes of the distributions cross each other at each rewiring probability
p. It can be observed in Fig. 10 that the analytical curve of ∆c(p) obtained
from Eq. (12) underestimates the numerical values, however, its functional
form provides a reasonable description of the numerical findings. In Figure 10
the rewiring probability of the lower pl and upper pu bounds of the transition
at a given disorder m can be identified as the p values where the crossover
first occurs, and where ∆c becomes constant, respectively. To obtain a more
precise estimate of the transition regime, we solved numerically Eq. (14) for
pl substituting the value of the average largest cascade size 〈∆max〉 (p = 0)
at each m. This semi-analytical value of pl is compared in Fig. 9(d) to
the numerical one obtained as the position of the maximum of the relative
scatter of ∆max in Fig. 9 (c). The analytical results again underestimate the
numerical ones but they have the same functional form. The value of pu we
can estimate from the numerical results falls between 0.2 and 1.

5.2. Failure triggered by low degree fibers

Our simulations revealed that the competition of two mechanisms deter-
mine the behaviour of the loaded network both on the micro- and macro-
scales. At higher rewiring probabilities p the growing randomness of the
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Figure 10: The symbols represent the crossover cascade size ∆c obtained from the size dis-
tribution of cascades for several Weibull exponentsm. The analytic prediction (continuous
curve) somewhat underestimates ∆c, however, its functional form provides a reasonable
description of the numerical findings.

network reduces the local load concentration in the system. This mecha-
nism can substantially increase the cascade tolerance and the overall load
bearing capacity of the network especially at high disorder of the strength
of nodes, see Fig. 9(a, b). However, as the degree distribution ρ(k) broadens
with increasing rewiring probability p, low degree nodes appear which have
the counter effect of increasing the local load concentration when they fail.
This effect becomes crucial at low node strength disorder, where the failure
of a low degree node can easily trigger a catastrophic avalanche of failure
events. In order to quantify this mechanism we characterize the degree of
strength disorder of nodes by estimating the average of the smallest 〈σmin

th 〉
and largest 〈σmax

th 〉 failure thresholds in the bundle. Among N independent
random numbers sampled from the same probability distribution P , the av-
erage of the smallest and largest values can be obtained as

〈

σmin
th

〉

= P−1

(

1

N + 1

)

, and 〈σmax
th 〉 = P−1

(

1−
1

N + 1

)

, (15)

where P−1 denotes the inverse of the cumulative distribution [41]. Substi-
tuting the Weibull distribution Eq. (2), the limit thresholds in a bundle of
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N fibers can be cast into the form

〈

σmin
th

〉

= λ

(

1

N

)1/m

, and 〈σmax
th 〉 = λ (lnN)1/m . (16)

The ratio r of the two values provides a measure of the degree of threshold
disorder of the nodes

r = 〈σmax
th 〉 /

〈

σmin
th

〉

= (N lnN)1/m . (17)

For the stability of the bundle the worst case is when a node of degree
k = 1 has the smallest failure threshold σmin

th , since at failure it will double
the load on its neighbor right at the beginning of the failure process. This
load sharing will definitely result in failure of the neighbor if the elevated
load 2σmin

th is greater than the largest threshold σmax
th in the bundle so that

the condition follows
2σmin

th > σmax
th . (18)

Since this secondary failure event gives rise to a large load increment on its
own neighbors, it is reasonable to assume that the cascade does not stop
anymore and it becomes catastrophic. Equation (18) implies that this mech-
anism determines the response of the bundle only when the strength distribu-
tion is sufficiently narrow r < 2, and the rewiring probability p is sufficiently
high to have a finite fraction of nodes of degree k = 1. Using the expression
of r Eq. (17), the condition Eq. (18) can be cast into a condition for the
Weibull shape parameter

m >
ln (N lnN)

ln 2
, (19)

which yields m > 20.9 for the setup of our fiber bundle. It follows that
the highest m value we considered m = 22 fulfills the condition so that the
ultimate failure of the network at this m should be dominantly triggered by
fibers of degree 1 at sufficiently high rewiring probabilities. To support the
above arguments Fig. 11 presents the average number of intact neighbors 〈kt〉
of fibers the failure of which initiated the catastrophic cascade along with its
original degree

〈

korig
t

〉

. It can be observed that both quantities monotonically
decrease with increasing rewiring probability p, i.e. as the degree distribution
of nodes gets broader with increasing p the triggering node has a lower and
lower degree. At high strength disorder (lowWeibull exponentm) the original
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Figure 11: The average number of intact neighbors 〈kt〉 (empty symbols) and the average
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(filled symbols) of the fiber the failure of which triggers the

final breakdown of the network of fibers. Results are presented for three values of the
Weibull exponent m.

〈

korig
t

〉

and final degrees 〈kt〉 of triggering fibers have a larger difference,
however, as the strength disorder gets reduced with increasing m both curves
shift to lower values in such a way that their difference gets also smaller. It
is important to emphasize that the

〈

korig
t

〉

and 〈kt〉 curves tend to 1, which
confirms that at low strength disorder the lowest degree nodes make the
system vulnerable to cascading failure triggering the catastrophic breakdown
of the system. The most remarkable outcome of these calculations is that the
LLS-ELS transition is limited to a disorder range of the strength of nodes.
At too low disorder rewiring makes the system more vulnerable to cascades
which prevents any improvement of the strength and cascade tolerance of the
system. For Weibull exponents fulfilling the condition Eq. (19) no LLS-ELS
transition emerges.

6. Discussion and conclusions

We presented a theoretical study of the evolution of the failure dynamics
of the fiber bundle model as the underlying network of load transmitting
connections is gradually changed from a regular lattice to a random network.
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A complex network of fibers was constructed by randomizing a regular square
lattice using the Watts-Strogatz rewiring technique. Fibers assigned to the
nodes of the network are assumed to have a finite load bearing capacity which
is a random variable. Initially all fibers are intact and their state is switched
to failed when the local load on them exceeds their strength. The system
was subject to a slowly increasing external load by adding the same load
increment to each intact fiber in such a way that the failure of a single fiber
is provoked. The load of failed fibers is transmitted to their intact nearest
neighbors which may trigger an entire cascade of failure events under the
constraint of load conservation.

Gradually increasing the rewiring probability, we showed that the chang-
ing network structure gives rise to a transition from the localized to the mean
field behaviour of failure processes accompanied by a complex evolution both
on the macro- and micro-scales. The first deviations from the LLS behaviour
of the regular lattice appear at a threshold probability pl where the transi-
tion sets on and it gets completed by reaching the upper bound pu, beyond
which no further change occurs in the system. In the transition regime the
probability distribution of the size of failure cascades exhibits a crossover
between two power laws of different exponents. On the macroscopic scale
the σ(ε) curve of LLS bundles follow the mean field solution of the model
at all rewiring probabilities but with a lower strength. The critical load and
strain where ultimate failure occurs increase with the rewiring probability
and tend towards limits which fall close to their mean field values.

We demonstrated that the degree of disorder of the strength of fibers
has a substantial effect on the transition: as the disorder gets reduced the
transition regime shrinks and shifts to higher rewiring probabilities. Most
notably the LLS-ELS transition is limited to a well-defined range of disorder
of the strength of nodes. In particular, there exists a threshold amount of
node strength disorder below which the randomization of the network of
load transmitting connections does not provide any improvement neither of
the overall load bearing capacity nor of the cascade tolerance of the system.
Computer simulations revealed that at low strength disorder the fully random
network is the most stable one, while at high disorder best cascade tolerance
is obtained at a lower structural randomness.

Based on the interplay of the network structure and node strength dis-
order we constructed an analytical argument which provided a reasonable
description of the numerical findings. These calculations revealed that two
competing mechanisms determine the response of the network: the rewiring
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of the underlying lattice introduces long range random connections in the
load transmission network which reduce the load concentration around failed
regions, and in turn allow the system to tolerate larger cascades without
becoming instable. At low rewiring probabilities due to the low fraction
of long range contacts, small sized cascades remain practically unaffected.
However, beyond a characteristic size, cascades involve more and more fibers
with rewired contacts which increase their stability. This mechanism leads to
the increase of the cutoff cascade size and the emergence of a second power
law regime of the distributions with a lower exponent than for the small cas-
cades. However, as the rewiring probability increases the degree distribution
broadens which increases the fraction of low degree nodes. This gives rise
to the counter effect that in the vicinity of failing low degree nodes a large
load concentration emerges, which can trigger catastrophic cascades. As a
consequence, at high rewiring probabilities the network becomes vulnera-
ble to early cascades when the strength of nodes is sampled from a narrow
distribution.

The failure mechanism of the fiber bundle model we focused on is quite
generic with four key elements: (I) the total load on the system is increased
by adding the same load increments to all the intact elements; (II) nodes fail
irreversibly such that they are removed from the bundle together with their
links; (III) failed nodes transfer their load to their intact nearest neighbors
through their links; (IV ) the load on the system is conserved during the
spreading of failure cascades. The fiber bundle model has been used to study
the emergence of cascading breakdown of roads carrying traffic, flow channels,
and power grids. Due to the minimum amount of additional assumptions we
made, our results should be relevant for these modelling approaches as well.
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[23] C. Barré, J. Talbot, Cascading blockages in channel bundles, Phys. Rev.
E 92 (2015) 052141.
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