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Abstract

This paper is concerned with the relationship between the discrete and the continu-

ous decreasing minimization problem on base-polyhedra. The continuous version (under

the name of lexicographically optimal base of a polymatroid) was solved by Fujishige

in 1980, with subsequent elaborations described in his book (1991). The discrete coun-

terpart of the dec-min problem (concerning M-convex sets) was settled only recently by

the present authors, with a strongly polynomial algorithm to compute not only a single

decreasing minimal element but also the matroidal structure of all decreasing minimal

elements and the dual object called the canonical partition. The objective of this paper

is to offer a complete picture on the relationship between the continuous and discrete

dec-min problems on base-polyhedra by establishing novel technical results and inte-

grating known results. In particular, we derive proximity results, asserting the geometric

closeness of the decreasingly minimal elements in the continuous and discrete cases, by

revealing the relation between the principal partition and the canonical partition. We also

describe decomposition-type algorithms for the discrete case following the approach of

Fujishige and Groenevelt.
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1 Introduction

An element of a set of vectors, in general, is called decreasingly minimal (dec-min) if its

largest component is as small as possible, within this, its second largest component is as

small as possible, and so on. The term “decreasing minimization” means the problem of

finding a dec-min element of a given set of vectors (or a minimum cost dec-min element

with respect to a given linear cost-function). When the given set of vectors consists of in-

tegral vectors, this problem is also referred to as discrete decreasing minimization. In the

literature, typically the term lexicographic optimization is used, but we prefer “decreasing

minimization” because we also consider its natural counterpart “increasing maximization,”

and the use of these two symmetric terms seems more appropriate to distinguish the two re-

lated notions. An element of a set of vectors is called increasingly maximal (inc-max) if

its smallest component is as large as possible, within this, its second smallest component is

as large as possible, and so on. For example, the vector (2, 2, 1, 1) is both dec-min and inc-

max in the set {(2, 2, 1, 1), (2, 2, 2, 0), (2, 1, 3, 0)}. In another set {(2, 0, 0, 0), (1,−1, 1, 1)}, the

dec-min element is (1,−1, 1, 1) and the inc-max element is (2, 0, 0, 0).

The decreasing minimization (even its weighted form) on a base-polyhedron B was inves-

tigated by Fujishige [13] around 1980 under the name of lexicographically optimal bases, as

a generalization of lexicographically optimal maximal flows considered by Megiddo [28]. (A

lexicographically optimal base in [13] means an inc-max member of B, and a lexicograph-

ically optimal maximal flow in [28] means a maximum flow that is inc-max on the set of

source-edges.) Lexicographically optimal bases are discussed in detail in the book of Fu-

jishige [14, Sections 8 and 9]. Among others, two important features of base-polyhedra are

discovered. The first is that the unique dec-min element of a base-polyhedron B is the unique

inc-max element of B, while the second is that the unique dec-min element of B is the unique

square-sum minimizer (that is, the minimum ℓ2-norm element) of B. These coincidences are

surprising in the light that neither of the analogous statements hold for the intersection of two

base-polyhedra [9]. Furthermore, the concept of principal partition of the ground-set defined

by a base-polyhedron [15, 24] plays a crucial role, and the critical values associated with the

partition characterizes the lexicographically optimal base (see Section 3.1). Fujishige devel-

oped two algorithms for finding the dec-min element of base-polyhedron B. His “monotone

algorithm” [14, Section 9.2] is not polynomial in its original form but it can immediately be

made strongly polynomial with the aid of the Newton–Dinkelbach algorithm [17, 34]. The

other algorithm [14, Section 8.2], called “decomposition algorithm,” is strongly polynomial

and does not rely on Newton–Dinkelbach. In game theory, the lexicographically optimal base

was discussed under the name of egalitarian allocation by Dutta and Ray [5] with reference

to the framework of majorization [1, 27]; see also Dutta [4].

The discrete version of the problem considers dec-min elements of the set of integral

elements of an integral base-polyhedron, which set is called an M-convex set in discrete

convex analysis [30, 31, 32]; the M-convex set arising from an integral base-polyhedron B is

denoted as
....

B. Discrete decreasing minimization on an M-convex set has been studied recently

by the present authors [9, 10]. It was shown in [9] that there are interesting coincidences with

the continuous case. For example, an element z of an M-convex set
....

B is dec-min if and

only if z is inc-max and if and only if z is a square-sum minimizer. On the other hand,

there are fundamental differences between the discrete and continuous cases. For example,

it was shown in [9] that there may be several dec-min elements of an M-convex set
....

B, and

the set of dec-min elements of
....

B is itself an M-convex set, which can be obtained from a
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matroid by translating the set of characteristic vectors of its bases by an integral vector. This

property made it possible to solve algorithmically even the minimum cost dec-min problem

for M-convex sets (a problem which makes no sense in the continuous case where the dec-

min element is unique). Furthermore, as a discrete counterpart of the principal partition,

the concept of “canonical partition” of the ground-set was introduced to characterize the set

of all dec-min elements of an M-convex set (see Section 3.2). The subsequent paper [10]

presented a strongly polynomial algorithm for computing a dec-min element of an M-convex

set together with the canonical partition, and discussed applications to a variety of problems

including graph orientations [7] and resource allocation problems [19, 23, 26]. This algorithm

relied on a discrete variant of the Newton–Dinkelbach algorithm, and it may be considered a

discrete counterpart of the “monotone algorithm” of Fujishige. While the dec-min problem

on an M-convex set contains the discrete version of Megiddo’s problem as a special case,

it does not capture an extension of Megiddo’s problem in which we seek a feasible integral

flow that is inc-max (or dec-min) on an arbitrarily specified set of edges. This more general

problem for network flows was investigated recently in [11], and a further generalization to

submodular integral flows in [12].

The objective of this paper is to offer a complete picture on the relationship between the

continuous and discrete dec-min problems on base-polyhedra by establishing novel techni-

cal results and integrating known results from the literature. As such this paper is partly a

research paper and partly a survey paper.

Our novel technical results include a theorem that reveals a precise relation between the

dual objects, namely, the principal partition of the ground-set in the continuous case and

the canonical partition in the discrete case. This theorem is used to prove proximity results,

asserting the geometric closeness of the decreasingly minimal elements in the continuous

and discrete cases. The obtained proximity results, in turn, give rise to continuous relaxation

algorithms for computing a dec-min element of an M-convex set in strongly polynomial time

using the (fractional) dec-min element of a base-polyhedron.

Another major topic of this paper is concerned with decomposition-type algorithms for

computing a dec-min element of an M-convex set. The decomposition method was initiated

by Fujishige [13] for computing a dec-min element of a base-polyhedron, or equivalently for

minimizing a quadratic function on a base-polyhedron, and was extended by Groenevelt [18]

to separable convex functions on a base-polyhedron and also on the set of integral points of

an integral base-polyhedron (namely, an M-convex set). With a scrutiny of what is known

in the literature about these decomposition algorithms, we give precise description of two

decomposition algorithms for an M-convex set in a self-contained manner, one based on

Groenevelt [18] and the other based on Fujishige [14, Section 8.2].

The paper is organized as follows. Major ingredients and properties of decreasing mini-

mization on base-polyhedra and M-convex sets are compared in Section 2. In Section 3 we

reveal the precise relation between the principal partition and the canonical partition through a

novel characterization of the canonical partition. Using these results, we derive, in Section 4,

proximity results and a continuous relaxation algorithm for computing a dec-min element of

an M-convex set. Finally, in Section 5, we deal with decomposition algorithms to compute a

dec-min element of an M-convex set.

Notation We basically follow notation in [9]. Let S be a finite ground-set. For a vector

x ∈ RS or a function x : S → R, we define the set-function x̃ : 2S → R by x̃(Z) :=
∑

[x(s) :

s ∈ Z] (Z ⊆ S ). The characteristic (or incidence) vector of a subset Z ⊆ S is denoted by
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χZ, that is, χZ(s) = 1 if s ∈ Z and χZ(s) = 0 otherwise. The vector with all components 1 is

denoted by 1, while 0 is the zero vector. For any real number α ∈ R, ⌊α⌋ denotes the largest

integer not larger than α, and ⌈α⌉ the smallest integer not smaller than α. This notation is

extended to vectors by componentwise applications. For any integral polyhedron P ⊆ RS ,

we use the notation
....

P to denote the set of integral elements of P, that is,
....

P := P ∩ ZS , where
....

P may be pronounced “dotted P.” The notation is intended to refer intuitively to the set of

lattice points of P.

2 Comparison of continuous and discrete cases

In this section we compare the decreasing minimization problems on a base-polyhedron and

on an M-convex set in terms of various aspects. Most of them are based on our present knowl-

edge from [9, 10, 13, 14], while some others serve as motivations for the investigations to be

made in the present paper. From these comparisons, it may safely be said that the discrete

case is, in spite of some important similarities, significantly different from the continuous

case, being endowed with a number of intriguing combinatorial structures on top of the geo-

metric structures known in the continuous case. The continuous case is referred to as Case R

and the discrete case as Case Z. We use notation mR and mZ for a dec-min element in Case R

and Case Z, respectively.

2.1 Underlying set

Let b be a set-function on a ground-set S with b(∅) = 0, for which b(X) = +∞ is allowed

but b(X) = −∞ is not. We say that b is submodular (or fully submodular) if the submodular

inequality

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y) (2.1)

holds for every pair of subsets X, Y ⊆ S with finite b-values. A set-function p with p(∅) = 0,

for which p(X) = −∞ is allowed but p(X) = +∞ is not, is said to be supermodular if −p is

submodular.

For a submodular set-function b on S with b(S ) finite, the base-polyhedron B is defined

by

B = B(b) := {x ∈ RS : x̃(S ) = b(S ), x̃(Z) ≤ b(Z) for every Z ⊂ S }, (2.2)

which is possibly unbounded but never empty. The empty set, however, is also considered

a base-polyhedron by convention. When b is integer-valued, B(b) is an integral polyhedron,

which is referred to as integral base-polyhedron. A non-empty base-polyhedron B can also

be defined by a supermodular function p with p(S ) finite as follows:

B = B′(p) := {x ∈ RS : x̃(S ) = p(S ), x̃(Z) ≥ p(Z) for every Z ⊂ S }. (2.3)

We have B′(p) = B(b) if p is a complementary function of b, that is, if p(X) = b(S )−b(S −X)

for all X ⊆ S .

The set
....

B of integral elements of an integral base-polyhedron B is called an M-convex

set in discrete convex analysis [30, 31, 32]. To be more precise, an M-convex set is defined

as a set of integral points satisfying a certain exchange axiom, and it is known that these two

properties are equivalent ([31, Theorem 4.15]). It should be mentioned, however, that the set

of integer elements of an integral base-polyhedron itself has long been recognized as a com-

binatorially nice object (although no particular name was coined). Indeed, this recognition is
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already evident in Edmonds’ classic paper [6], and Fujishige’s book [14] presents the theory

of submodular systems over an arbitrary totally additive group, of which the set Z of integers

is a special case. It is noted that the set of integral elements of a non-integral base-polyhedron

is not necessarily an M-convex set.

In Case R of the dec-min problem, we seek a dec-min element of a base-polyhedron B

described by a real-valued supermodular function p or a submodular function b. In Case Z,

the dec-min problem is defined on an M-convex set
....

B, which is the set of integral members

of an integral base-polyhedron B described by an integer-valued p or b.

2.2 Decreasing minimality and increasing maximality

In Case R the terminology of “lexicographically optimal base” (or “lexico-optimal base”) is

used in [13, 14]. A lexico-optimal base is the same as an inc-max element in our terminology,

whereas a dec-min element is called a “co-lexicographically optimal base” in [14].

In both Case R and Case Z, decreasing minimality is equivalent to increasing maximality.

Theorem 2.1 ([13, 14]). The unique decreasingly minimal element of B is the unique increas-

ingly maximal element of B.

Theorem 2.2 ([9, Theorem 3.3]). An element of an M-convex set
....

B is decreasingly minimal

in
....

B if and only if it is increasingly maximal in
....

B.

2.3 Characterizations

Let m be an element of an M-convex set
....

B. A 1-tightening step replaces m by m′ := m+χs−

χt, where s and t are elements of S for which m(t) ≥ m(s) + 2 and m′ belongs to
....

B. A subset

X ⊆ S is called m-tight (with respect to p) if m̃(X) = p(X). A subset X ⊆ S is called an

m-top set if m(s) ≥ m(t) holds whenever s ∈ X and t ∈ S − X. (For example, for m = (3, 2, 2)

indexed by S = {s1, s2, s3}, there are five m-top sets: the empty set, {s1}, {s1, s2}, {s1, s3}, and

S .) We call an integral vector x ∈ ZS near-uniform on a subset S ′ of S if its largest and

smallest components on S ′ differ by at most 1, that is, if there exists some integer ℓ for which

x(s) ∈ {ℓ, ℓ + 1} for every s ∈ S ′.

The following theorem from [9] gives fundamental characterizations of a dec-min element

of an M-convex set.

Theorem 2.3 ([9, Theorem 3.3]). For an element m of an M-convex set
....

B =
....

B′(p), the

following three conditions are pairwise equivalent.

(A) m is decreasingly minimal in
....

B.

(B) There is no 1-tightening step for m. That is,

m(t) ≥ m(s) + 2 =⇒ m + χs − χt <
....

B. (2.4)

(C) There is a chain (∅ ⊂) C1 ⊂ C2 ⊂ · · · ⊂ Cℓ (= S ) such that each Ci is an m-top and

m-tight set (with respect to p) and m is near-uniform on each S i := Ci −Ci−1 (i = 1, 2, . . . , ℓ),

where C0 := ∅.

The corresponding theorem for Case R can be formulated from known results [13, 14] as

follows, where a direct proof can also be obtained from an easy adaptation of the proof of [9,

Theorem 3.3]. For an element m of a base-polyhedron B = B′(p) defined by a real-valued
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supermodular function p, a subset X ⊆ S is called m-tight (with respect to p) if m̃(X) = p(X),

and an m-top set if m(s) ≥ m(t) holds whenever s ∈ X and t ∈ S − X. We call a vector x ∈ RS

uniform on a subset S ′ of S if x(s) = x(t) for all s, t ∈ S ′.

Theorem 2.4. For an element m of a base-polyhedron B = B′(p), the following three condi-

tions are pairwise equivalent.

(A) m is decreasingly minimal in B.

(B) m satisfies the following condition:

m(t) > m(s), α > 0 =⇒ m + α(χs − χt) < B. (2.5)

(C) There is a chain (∅ ⊂) C1 ⊂ C2 ⊂ · · · ⊂ Cℓ (= S ) such that each Ci is an m-top and

m-tight set (with respect to p) and m is uniform on each S i := Ci−Ci−1 (i = 1, 2, . . . , ℓ), where

C0 := ∅.

2.4 Uniqueness

The structures of dec-min elements have a striking difference in Case R and Case Z. In

Case R the dec-min element mR of B is uniquely determined. (The dec-min element, if any,

is uniquely determined in an arbitrary polyhedron.) In Case Z the dec-min elements mZ of
....

B are endowed with the structure of basis family of a matroid. This is stated in Theorem 2.5

below, where a matroidal M-convex set means an M-convex set in which the ℓ∞-distance of

any two distinct members is equal to one.

Theorem 2.5 ([9, Theorem 5.7]). The set of dec-min elements of an M-convex set
....

B is a

matroidal M-convex set. In other words, there exist a matroid M∗ and an integral vector ∆∗

such that an element m of
....

B is decreasingly minimal if and only if m can be obtained as

m = χL + ∆
∗ with a basis L of M∗.

The minimum cost dec-min element problem is to compute a dec-min element that has

the smallest cost with respect to a given cost-function c : S → R on the ground-set S . In

Case Z, this problem is meaningful and interesting, and was solved in [9, Section 5.3] on the

basis of Theorem 2.5; see [10] for its instances in graph orientation problems. In Case R,

in contrast, this problem does not make any sense because of the uniqueness of the dec-min

element of B.

2.5 Square-sum minimization

In both Case R and Case Z, a dec-min element is characterized as a minimizer of square-sum

of the components:

W(x) :=
∑

[x(s)2 : s ∈ S ]. (2.6)

Theorem 2.6 ([13, Theorem 3.3]). An element m of a base-polyhedron B is a square-sum

minimizer on B if and only if m is a dec-min element of B.

Theorem 2.7 ([9, Corollary 6.4]). An element m of an M-convex set
....

B is a square-sum mini-

mizer on
....

B if and only if m is a dec-min element of
....

B.
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In Case R, the variable x for minimization is a real vector, x ∈ RS , whereas in Case Z it

is an integer vector, x ∈ ZS . In Case R, the minimizer of W(x) over B is unique, and is often

referred to as the minimum norm point of B. (Actually, the minimizer of W(x) is unique

for an arbitrary polyhedron, and is a rational vector for a rational polyhedron. However, the

minimum norm point may not be the dec-min element.)

In both Case R and Case Z, there are min-max formulas for the square-sum. The min-

max formulas refer to the well-known concept of linear extension (or Lovász extension) p̂ of

p, which is defined for π ∈ RS by

p̂(π) := p(S n)π(sn) +

n−1∑

j=1

p(S j)[π(s j) − π(s j+1)], (2.7)

where n = |S |, the elements of S are indexed in such a way that π(s1) ≥ π(s2) ≥ · · · ≥ π(sn),

and S j := {s1, s2, . . . , s j} for j = 1, 2, . . . , n. Here p(S j)[π(s j) − π(s j+1)] is defined to be 0

when π(s j) − π(s j+1) = 0 even if p(S j) = −∞. In Case Z we have the min-max identity [9,

Theorem 6.10]:

min{
∑

[m(s)2 : s ∈ S ] : m ∈
....

B}

= max{p̂(π) −
∑

s∈S

⌊
π(s)

2

⌋ ⌈
π(s)

2

⌉
: π ∈ ZS }. (2.8)

In Case R, the corresponding formula is

min{
∑

[m(s)2 : s ∈ S ] : m ∈ B}

= max{p̂(π) −
∑

s∈S

(
π(s)

2

)2

: π ∈ RS }, (2.9)

which may be regarded as an adaptation of the standard quadratic programming duality to the

case where the feasible region is a base-polyhedron.

2.6 Principal and canonical partitions

In either of the continuous and discrete problems, a certain partition of the ground-set S is

known to play an essential role as the dual object to characterize dec-min elements. In Case R,

the partition is called the principal partition, which is used to characterize the (unique) dec-

min element mR of B. In Case Z, another partition of S , called the canonical partition,

characterizes the set of all dec-min elements mZ of
....

B. So far these two notions are introduced

independently and nothing is known about their mutual relation. In Section 3, we shall reveal

the precise relation between these partitions as well as the associated numbers called critical

values and essential values.

2.7 Proximity

In general terms, proximity results refer to statements that the solutions to discrete and contin-

uous versions of an optimization problem are geometrically close to each other. In Section 4

we shall obtain proximity results, showing that dec-min elements mZ of
....

B are located near
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the dec-min element mR of B. The obtained proximity results, in turn, give rise to continuous

relaxation algorithms for computing a dec-min element mZ of an M-convex set in strongly

polynomial time when the (fractional) dec-min element mR of a base-polyhedron is given.

2.8 Algorithm

In Case R, the decomposition algorithm of Fujishige [13] in 1980 was already a strongly

polynomial algorithm to find the (unique) dec-min element. This decomposition algorithm

for computing the dec-min element, or equivalently for minimizing a quadratic function on a

base-polyhedron, was extended by Groenevelt [18] to separable convex functions on a poly-

matroid.

Fujishige gave, in his book [14], two algorithms for finding the dec-min element for

Case R. The first algorithm called “decomposition algorithm” [14, Section 8.2] is not com-

pletely the same as, but a variant of, the (original) decomposition algorithm of [13]. This

variant is also strongly polynomial. The other algorithm called “monotone algorithm” [14,

Section 9.2] is a procedure that computes iteratively the members of the principal parti-

tion belonging to B, as well as the critical values (which define the dec-min element mR

immediately). The algorithm is quite simple and natural but it relies on a subroutine for

computing a certain number λ∗ which is, in the present context, equivalent to computing

max{p(X)/|X| : ∅ , X ⊆ S }. Though not mentioned explicitly in [14], this λ∗ can be com-

puted in strongly polynomial time with the help of the Newton–Dinkelbach algorithm, which

follows, for example, from a result of Iwata et al. [25] for a more general problem. See

Radzik [34] and Goemans et al. [17] for the Newton–Dinkelbach algorithm.

For Case Z, a strongly polynomial algorithm was devised in [10]. The algorithm in [10]

relies on a discrete version of the Newton–Dinkelbach algorithm, and may be viewed as a

discrete counterpart of Fujishige’s monotone algorithm. In particular, the algorithm of [10]

computes iteratively the canonical chain and partition belonging to
....

B, along with the essential

value-sequence and a dec-min element itself. It is emphasized that the canonical chain and

the essential value-sequence provide us with a structural description (Theorem 2.5) of the set

of all dec-min elements of
....

B, which, in turn, enables us to compute a minimum cost dec-min

element of
....

B with respect to a linear cost-function. It is noted here that, if a single dec-

min element of
....

B is available, the canonical chain and the essential value-sequence can be

computed quite easily [10, Algorithm 2.3].

By the equivalence of dec-minimization and square-sum minimization (Theorem 2.7),

any algorithm for square-sum minimization solves the dec-min problem. Groenevelt’s de-

composition algorithm [18] for separable convex minimization on the set of integral points

of an integral polymatroid can be adapted to minimizing the square-sum on an M-convex

set in strongly polynomial time, which we describe in Section 5.2. It is natural to expect

that Fujishige’s decomposition algorithm [14, Section 8.2] for Case R can be adapted to

Case Z through a piecewise-linear extension of a given separable convex function in integer

variables, as is suggested in [14, Section 8.3]. This approach leads indeed to another decom-

position algorithm for minimizing the square-sum on an M-convex set, which we describe in

Section 5.3. To realize strong polynomiality we need to devise a non-trivial gadget to cope

with complications arising from integrality.

Table 1 summarizes the development of the decomposition algorithms for Case R and

Case Z. In Section 5.1 we remark on the differences of these decomposition algorithms.
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Table 1: Decomposition algorithms for minimization on a base-polyhedron

Case R Case Z

Quadratic Fujishige [13] (Sec. 5 of this paper)

(square-sum) ↓

Separable Groenevelt [18] → Groenevelt [18]

convex ↓

Fujishige [14, Sec. 8.2] → Fujishige [14, Sec. 8.3]

2.9 Weighting

In Case R a weight vector was introduced to define and analyze lexico-optimality in [13, 14,

38]. In Case Z the unweighted problem has been investigated in [9, 10] and the weighted

case will be treated in a forthcoming paper. Although we restrict ourselves, in this paper, to

unweighted problems in Case R and Case Z, some facts about the weighted dec-min problem

are mentioned below. (The ‘weighted’ dec-min problem here should not be confused with

the ‘minimum cost’ dec-min problem discussed after Theorem 2.5.)

Let w be a positive vector on S , which is assumed to be an integral vector in Case Z.

The decreasing minimization problem with weighting w is to find an element m of B (resp.,
....

B in Case Z) for which the vector (w(s)m(s) : s ∈ S ) is decreasingly minimal in B (resp.,
....

B in Case Z). Such an element is called a w-dec-min element. We define w-inc-max in an

obvious manner. The (original) decreasing minimization without weighting corresponds to

the case of w = (1, 1, . . . , 1). (It is noted that the weight vector w in [13, 14] corresponds to

the (componentwise) reciprocal of the vector w here.) The w-dec-min problem should not be

confused with the minimum cost dec-min problem with respect to a given linear cost-function

on S . Even for the weighted dec-min problem, we can formulate its minimum cost version,

which is to find the minimum cost w-dec-min element with respect to a given cost-function

c : S → R on S .

According to the results of [13, 14, 38], we may say, roughly, that there is not much

difference between the weighted and unweighted problems in Case R. In Case Z, however,

weighting causes substantial complications. For example, w-dec-min and w-inc-max coincide

in Case R, but not in Case Z. In Case R, there is a unique w-dec-min element in B and is

characterized as the unique minimizer of the weighted square-sum

Ww(x) :=
∑

[w(s)x(s)2 : s ∈ S ]. (2.10)

In contrast, square-sum minimization does not characterize w-dec-minimality in Case Z.

As a concrete example, consider the line segment B on the plane R2 connecting (2, 0) and

(0, 2). This B is an integral base-polyhedron, and the corresponding M-convex set is
....

B =

{(2, 0), (1, 1), (0, 2)}. For the weight vector w = (1, 2), m1 := (2, 0) is the (unique) w-

dec-min element of
....

B and m2 := (1, 1) is the (unique) w-inc-max element of
....

B. Since

Ww(m1) = 4 > 3 = Ww(m2), w-dec-minimality is not characterized by square-sum mini-

mality.

3 Principal partition and canonical partition

A review of the principal partition is offered in Section 3.1 with emphasis on its role in

decreasing minimization, while Section 3.2 is a review of the canonical partition for discrete
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decreasing minimization. Section 3.3 gives a new characterization of the canonical partition,

which is used in Section 3.4 to clarify the relationship between the principal and canonical

partitions. It is mentioned that this section is based on our (unpublished) technical report [8].

3.1 Review of the principal partition

As is pointed out by Fujishige [13], the dec-min element in the continuous case is closely

related to the principal partition. The principal partition is the central concept in a structural

theory for submodular functions; see Iri [24] for an early survey and Fujishige [15] for a

comprehensive historical and technical account. In this section we summarize the results that

are relevant to the analysis of the dec-min element in the continuous case. Originally [13],

the results are stated for a real-valued submodular function, and the description below is a

translation for a real-valued supermodular function p : 2S → R ∪ {−∞} with p(∅) = 0.

For any real number λ, let L(λ) denote the family of all maximizers of p(X) − λ|X|. Then

L(λ) is a ring family (lattice), and we denote its smallest member by L(λ). That is, L(λ)

denotes the smallest maximizer of p(X) − λ|X|.

The following is a well-known basic fact. The proof is included for completeness.

Proposition 3.1. (1) If λ > λ′, X ∈ L(λ), and Y ∈ L(λ′), then X ⊆ Y.

(2) If λ ≥ λ′, then L(λ) ⊆ L(λ′).

Proof. (1) Let X ∈ L(λ) and Y ∈ L(λ′) for λ > λ′. We have

p(X) + p(Y) ≤ p(X ∩ Y) + p(X ∪ Y), (3.1)

λ|X| + λ′|Y | = λ|X ∩ Y | + λ′|X ∪ Y | + (λ − λ′)|X − Y |

≥ λ|X ∩ Y | + λ′|X ∪ Y |. (3.2)

From these inequalities it follows that

(p(X) − λ|X|) + (p(Y) − λ′|Y |)

≤ (p(X ∩ Y) − λ|X ∩ Y |) + (p(X ∪ Y) − λ′|X ∪ Y |).

Here we also have the reverse inequality ≥, since X is a maximizer for λ and Y is a maximizer

for λ′. Therefore, we have equality in (3.2), from which follows (λ − λ′)|X − Y | = 0. Since

λ − λ′ > 0, this implies X ⊆ Y .

(2) This follows immediately from (1). �

There are finitely many numbers λ for which |L(λ)| ≥ 2. We denote such numbers as

λ1 > λ2 > · · · > λr, which are called the critical values. Note that the condition |L(λ)| ≥ 2

for a critical value is equivalent to saying that the largest element of L(λ) is distinct from

the smallest element of L(λ). Since the largest element of L(λ) is equal to L(λ − ε) for a

sufficiently small ε > 0, we can say that λ is a critical value if and only if L(λ) , L(λ − ε) for

any ε > 0. Thus we obtain:

∅ = L(λ1) ⊂ L(λ1 − ε) = · · · = L(λ2) ⊂ L(λ2 − ε) = · · ·

· · · = L(λr) ⊂ L(λr − ε) = S (3.3)

for sufficiently small ε > 0.
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The principal partition {Ŝ 1, Ŝ 2, . . . , Ŝ r} of the ground-set S is defined by

Ŝ i := L(λi+1) − L(λi) = L(λi − ε) − L(λi) (i = 1, 2, . . . , r), (3.4)

where L(λr+1) := S by convention and ε is a sufficiently small positive number. By defining

Ĉi := Ŝ 1 ∪ Ŝ 2 ∪ · · · ∪ Ŝ i (= L(λi − ε)) (3.5)

for i = 1, 2, . . . , r, we obtain a chain:

Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ Ĉr, (3.6)

where Ĉ1 , ∅ and Ĉr = S . In this paper we call this chain the principal chain. We have

Ŝ i = Ĉi − Ĉi−1 for i = 1, 2, . . . , r, where Ĉ0 := ∅.

Remark 3.1. The principal partition {Ŝ 1, Ŝ 2, . . . , Ŝ r} defined here by (3.4) is, in fact, an ag-

gregation of what is usually meant under the name of “principal partition” [15, 24]. The latter

is defined as follows. Not only each L(λ) is a lattice, but their unionLall :=
⋃
λ∈RL(λ) is also

a lattice by Proposition 3.1(1), and we haveLall =
⋃r

i=1L(λi). A maximal chain of this lattice

Lall induces a partition of the ground-set S , and the induced partition is determined indepen-

dently of the choice of a maximal chain. In [15, 24], this is called the principal partition of S .

Furthermore, a partial order can be defined among the members of the partition. The chain

(∅ =) Ĉ0 ⊂ Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ Ĉr (= S ) (3.7)

associated with our partition {Ŝ 1, Ŝ 2, . . . , Ŝ r} is certainly a chain ofLall, which, however, may

not be maximal. If the chain in (3.7) is not maximal, our partition is an aggregation of the

principal partition in the sense of [15, 24].

The following theorem shows the close relationship between the principal partition and

the unique dec-min element (minimum norm point) of a base-polyhedron B = B′(p).

Theorem 3.2 (Fujishige [13]). Let B = B′(p) be a base-polyhedron defined by a supermodu-

lar function p.

(1) Let {Ŝ 1, Ŝ 2, . . . , Ŝ r} be the principal partition and λ1 > λ2 > · · · > λr the critical values.

The unique dec-min element mR of B is given by mR(s) = λi for s ∈ Ŝ i and i = 1, 2, . . . , r. In

particular, mR is uniform on each member Ŝ i of the principal partition.

(2) Let mR be the unique dec-min element of B. The critical values λ1 > λ2 > · · · > λr are

precisely those numbers that appear as component values of mR, and the principal partition

{Ŝ 1, Ŝ 2, . . . , Ŝ r} is given by Ŝ i = {s ∈ S : mR(s) = λi} for i = 1, 2, . . . , r.

The following characterization of dec-minimality can be formulated by combining Theo-

rem 3.2 and Theorem 2.4.

Theorem 3.3. Let B = B′(p) be a base-polyhedron defined by a supermodular function p.

An element m ∈ B with distinct component values λ′
1
> λ′

2
> · · · > λ′

ℓ
is the unique dec-

min element of B if and only if each “level set” Ĉi := {s ∈ S : m(s) ≥ λ′
i
} is m-tight

(m̃(Ĉi) = p(Ĉi)) for i = 1, 2, . . . , ℓ.

Proof. The only-if part is immediate from Theorem 3.2(2). For the if-part, note that Ĉi is an

m-top set by definition, which is also m-tight by assumption. Then we can use (C)⇒ (A) in

Theorem 2.4. �
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3.2 Review of the canonical partition

In the discrete case, the canonical partition describes the structure of dec-min elements. The

canonical partition is defined iteratively using contractions as follows [9].

Let p : 2S → Z ∪ {−∞} be an integer-valued supermodular function with p(∅) = 0 and

p(S ) > −∞, and define C0 := ∅. For j = 1, 2, . . . , q, define

β j := max

{⌈
p(X ∪C j−1) − p(C j−1)

|X|

⌉
: ∅ , X ⊆ C j−1

}
, (3.8)

h j(X) := p(X ∪C j−1) − (β j − 1)|X| − p(C j−1) (X ⊆ C j−1), (3.9)

S j := smallest subset of C j−1 maximizing h j, (3.10)

C j := C j−1 ∪ S j, (3.11)

where C j−1 = S − C j−1 and the index q is determined by the condition that Cq−1 , S and

Cq = S .

The resulting chain C1 ⊂ C2 ⊂ · · · ⊂ Cq is called the canonical chain, and the partition

{S 1, S 2, . . . , S q} is the canonical partition. The integers β j, known [9, Theorem 5.5] to be

decreasing, are called the essential values, and this decreasing sequence β1 > β2 > · · · > βq

is named the essential value-sequence. We have S j = C j −C j−1 for j = 1, 2, . . . , q.

The following theorem characterizes dec-min elements of
....

B using these concepts.

Theorem 3.4 ([9, Corollary 5.2]). Let B = B′(p) be an integral base-polyhedron on ground-

set S . Let {C1,C2, . . . ,Cq} be the canonical chain, {S 1, S 2, . . . , S q} the canonical partition of

S , and β1 > β2 > · · · > βq the essential value-sequence belonging to
....

B. Then an element

m ∈
....

B is decreasingly minimal in
....

B if and only if each C j is m-tight (that is, m̃(C j) = p(C j))

and β j − 1 ≤ m(s) ≤ β j holds for each s ∈ S j ( j = 1, 2, . . . , q).

This theorem implies, in particular, that every dec-min element mZ of
....

B is near-uniform

on each member of the canonical partition. That is, |mZ(s)−mZ(t)| ≤ 1 if {s, t} ⊆ S j for some

member S j of the canonical partition.

The following theorem shows that any dec-min element mZ of
....

B, in turn, determines the

essential value-sequence, the canonical chain, and canonical partition.

Theorem 3.5 ([9, Corollary 5.4]). Let mZ be an arbitrary dec-min element of
....

B. The first

essential value β1 is the largest mZ-value and the first member C1 of the canonical chain is

the smallest mZ-tight set containing all β1-valued elements. Moreover, for j = 2, . . . , q, the

j-th essential value β j is the largest value of mZ(s) for s ∈ S −C j−1 and the j-th member C j of

the canonical chain is the smallest mZ-tight set (with respect to p) containing each element

of mZ-value at least β j.

These results (Theorems 3.4 and 3.5) may be viewed as a discrete counterpart of Theo-

rem 3.2 for the continuous case.

3.3 An alternative characterization of the canonical partition

Originally [9], the canonical partition was defined iteratively using contractions, as described

by (3.8)–(3.11) in Section 3.2. In this section we give a non-iterative construction of this

canonical partition, which reflects the underlying structure more directly. This alternative
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construction enables us to reveal, in Section 3.4, the precise relation between the canonical

partition and the principal partition.

By the definition given in (3.8)–(3.11), we have that

C j is the smallest maximizer of p(X) − (β j − 1)|X| among all X ⊇ C j−1. (3.12)

We will show, in Proposition 3.6 below, that C j is, in fact, the smallest maximizer of p(X) −

(β j − 1)|X| among all subsets X of S without the constraint of being a superset of C j−1.

For any integer β, letL(β) denote the family of all maximizers of p(X)−β|X|, and L(β) be

the smallest element of L(β), where the smallest element exists inL(β) since L(β) is a lattice

(ring family). (These notations are consistent with the ones introduced in Section 3.1.)

Proposition 3.6. Let β j and C j ( j = 1, 2, . . . , q) be defined by (3.8)–(3.11).

(1) β1 > β2 > · · · > βq.

(2) For each j with 1 ≤ j ≤ q, C j is the smallest maximizer of p(X) − (β j − 1)|X| among all

subsets X of S .

Proof. (1) The monotonicity of the β-values is already shown in [9, Theorem 5.5], but we

give an alternative proof here. Let j ≥ 2. By (3.8), we have β j−1 > β j if and only if

β j−1 >

⌈
p(X ∪C j−1) − p(C j−1)

|X|

⌉
(3.13)

for every X with ∅ , X ⊆ C j−1. Furthermore, we can rewrite the condition (3.13) as follows:

(3.13)⇔ β j−1 − 1 ≥
p(X ∪C j−1) − p(C j−1)

|X|

⇔ p(X ∪C j−1) − p(C j−1) ≤ (β j−1 − 1)|X|

⇔ p(X ∪C j−1) − (β j−1 − 1)|X ∪C j−1| ≤ p(C j−1) − (β j−1 − 1)|C j−1|.

The last inequality holds for every X ⊆ C j−1, since C j−1 is the (smallest) maximizer of p(X)−

(β j−1 − 1)|X| among all X containing C j−2, and the set X ∪ C j−1 does contain C j−2. We have

thus shown β j−1 > β j.

(2) We prove C j = L(β j − 1) for j = 1, 2, . . . , q by induction on j. This holds for j = 1

by definition. Let j ≥ 2. By Proposition 3.1(2) for λ = β j−1 − 1 and λ′ = β j − 1, we have

L(β j − 1) ⊇ L(β j−1 − 1), whereas L(β j−1 − 1) = C j−1 by the induction hypothesis. Combining

this with (3.12), we obtain C j = L(β j − 1). �

We now give an alternative characterization of the essential value-sequence β1 > β2 >

· · · > βq defined by (3.8)–(3.11). We consider the family {L(β) : β ∈ Z} of the smallest

maximizers of p(X) − β|X| for all integers β. Each C j is a member of this family, since

C j = L(β j − 1) ( j = 1, 2, . . . , q) by Proposition 3.6(2).

Proposition 3.7. As β is decreased from +∞ to −∞ (or from β1 to βq − 1), the smallest

maximizer L(β) is monotone non-decreasing. We have L(β) , L(β − 1) if and only if β is

equal to an essential value. Therefore, the essential value-sequence β1 > β2 > · · · > βq is

characterized by the property:

∅ = L(β1) ⊂ L(β1 − 1) = · · · = L(β2) ⊂ L(β2 − 1) = · · ·

· · · = L(βq) ⊂ L(βq − 1) = S . (3.14)
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Proof. The monotonicity of L(β) follows from Proposition 3.1(2). We will show (i) L(β1) =

∅, (ii) L(β j−1 − 1) = L(β j) for j = 2, . . . , q, and (iii) L(β j) ⊂ L(β j − 1) for j = 1, 2, . . . , q.

(i) Since β1 = max {⌈p(X)/|X|⌉ : X , ∅}, we have p(X) − β1|X| ≤ 0 for all X , ∅, whereas

p(X) − β1|X| = 0 for X = ∅. Therefore, L(β1) = ∅.

(ii) Let 2 ≤ j ≤ q. For short we put C := C j−1 and define

h(Y) := p(Y) − β j|Y |

for any subset Y of S . Let A be the smallest maximizer of h, which means A = L(β j). For any

non-empty subset X of C (= S − C) we have

β j ≥

⌈
p(X ∪ C) − p(C)

|X|

⌉
≥

p(X ∪ C) − p(C)

|X|
,

which implies p(X ∪C) − β j|X ∪C| ≤ p(C) − β j|C|, that is,

h(Y) ≤ h(C) for all Y ⊇ C. (3.15)

By supermodularity of p we have

h(A) + h(C) ≤ h(A ∪ C) + h(A ∩C),

whereas h(C) ≥ h(A ∪ C) by (3.15). Therefore, h(A) ≤ h(A ∩ C). Since A is the smallest

maximizer of h, this implies that A = A ∩ C, i.e., A ⊆ C. On recalling notations A = L(β j)

and C = C j−1 = L(β j−1 − 1), we obtain L(β j) ⊆ L(β j−1 − 1). We also have L(β j) ⊇ L(β j−1 − 1)

by the monotonicity. Therefore, L(β j) = L(β j−1 − 1).

(iii) Let 1 ≤ j ≤ q and put C := C j−1. Take a non-empty subset Z of C which gives the

maximum in the definition of β j, i.e.,

β j = max

{⌈
p(X ∪C) − p(C)

|X|

⌉
: ∅ , X ⊆ C

}
=

⌈
p(Z ∪C) − p(C)

|Z|

⌉
.

Then we have

p(Z ∪C) − p(C)

|Z|
> β j − 1,

which implies

p(Z ∪ C) − (β j − 1)|Z ∪ C| > p(C) − (β j − 1)|C|.

This shows that C = C j−1 = L(β j−1 − 1) is not a maximizer of p(X) − (β j − 1)|X|, and

hence L(β j−1 − 1) , L(β j − 1). On the other hand, we have L(β j−1 − 1) = L(β j) by (ii) and

L(β j) ⊆ L(β j − 1) by the monotonicity. Therefore, L(β j) ⊂ L(β j − 1). �

Proposition 3.7 justifies the following alternative definitions of the essential value-sequence,

the canonical chain, and the canonical partition.

Proposition 3.8. The essential value-sequence, the canonical chain, and the canonical par-

tition can also be defined as follows:
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Consider the smallest maximizer L(β) of p(X) − β|X| for each integer β. There

are finitely many β for which L(β) , L(β − 1). Denote such integers as β1 >

β2 > · · · > βq and call them the essential value-sequence. Furthermore, define

C j := L(β j − 1) for j = 1, 2, . . . , q to obtain a chain: C1 ⊂ C2 ⊂ · · · ⊂ Cq. Call

this the canonical chain. Finally define a partition {S 1, S 2, . . . , S q} of S by

S j := C j −C j−1 = L(β j − 1) − L(β j) ( j = 1, 2, . . . , q), (3.16)

where C0 := ∅, and call this the canonical partition.

This alternative construction clearly exhibits the parallelism between the canonical parti-

tion in Case Z and the principal partition in Case R. In particular, the essential values are the

discrete counterpart of the critical values. This is discussed in the next section.

3.4 Canonical partition from the principal partition

The characterization of the canonical partition shown in Section 3.3 enables us to construct

the canonical partition and essential values for Case Z from the principal partition and critical

values for Case R as follows.

Theorem 3.9. Let B be an integral base-polyhedron defined by an integer-valued supermod-

ular function p.

(1) The essential values β1 > β2 > · · · > βq are obtained from the critical values λ1 >

λ2 > · · · > λr as the distinct members of the rounded-up integers ⌈λ1⌉ ≥ ⌈λ2⌉ ≥ · · · ≥ ⌈λr⌉.

In particular, an integer β is an essential value if and only if there exists a critical value λ

satisfying β ≥ λ > β − 1.

(2) The canonical partition {S 1, S 2, . . . , S q} is an aggregation of the principal partition {Ŝ 1, Ŝ 2,

. . . , Ŝ r} given by

S j =
⋃

i∈I( j)

Ŝ i ( j = 1, 2, . . . , q), (3.17)

where I( j) := {i : ⌈λi⌉ = β j} for j = 1, 2, . . . , q.

(3) The canonical chain {C j} is a subchain of the principal chain {Ĉi}; we have C j = Ĉi for

i = max I( j).

Proof. (1) By Proposition 3.8, an integer β is an essential value if and only if L(β) , L(β−1),

whereas a real number λ is a critical value if and only if L(λ) , L(λ− ε) for any ε > 0. Hence

follows the claim.

(2) For each j = 1, 2, . . . , q, let imax and imin denote the maximum and minimum elements

of I( j), respectively. By (3.4) and (3.16) we have

⋃

i∈I( j)

Ŝ i =
⋃

i∈I( j)

(L(λi+1) − L(λi)) = L(λimax+1) − L(λimin
)

= L(λimax
− ε) − L(λimin

) = L(β j − 1) − L(β j) = S j.

(3) By (3.17) we have

C j =
⋃

k≤ j

S k =
⋃

k≤ j

⋃

i∈I(k)

Ŝ i =
⋃

i≤imax

Ŝ i = Ĉimax
.

This completes the proof of Theorem 3.9. �
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The following two examples illustrate Theorem 3.9. The first example treats the simplest

case to demonstrate the basic idea as well as the notation. The second is a running example,

to be considered repeatedly to illustrate our subsequent arguments.

Example 3.1. Let S = {s1, s2} and
....

B = {(0, 3), (1, 2), (2, 1)}, where B is the line segment con-

necting (0, 3) and (2, 1). There are two dec-min elements of
....

B, m
(1)

Z
= (1, 2) and m

(2)

Z
= (2, 1).

The minimum norm point (dec-min element) of B is mR = (3/2, 3/2). The supermodular

function p for B = B′(p) is given by

p(∅) = 0, p({s1}) = 0, p({s2}) = 1, p({s1, s2}) = 3,

and we have

p(X) − λ|X| =



0 (X = ∅),

−λ (X = {s1}),

1 − λ (X = {s2}),

3 − 2λ (X = {s1, s2}).

There is only one (r = 1) critical value λ1 = 3/2 and the associated sublattice is L(λ1) =

{∅, S }. The principal partition is a trivial partition {Ŝ 1} consisting of only one member Ŝ 1 = S .

Since ⌈λ1⌉ = 2, we have β1 = 2 with q = 1, and the (only) member S 1 in the canonical

partition is given by S 1 = C1 = L(β1 − 1) = L(1) = S .

Example 3.2. Let S = {s1, s2, s3, s4} and consider five vectors

m1 = (2, 1, 1, 0), m2 = (2, 1, 0, 1), m3 = (1, 2, 1, 0),

m4 = (1, 2, 0, 1), m5 = (2, 2, 0, 0).

These vectors are obtained by adding vector (1, 1, 0, 0) to (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0),

(0, 1, 0, 1), (1, 1, 0, 0), which are the characteristic vectors of bases of a rank-2 matroid on S .

Let B denote the convex hull of {m1,m2, . . . ,m5}. Then B is an integral base-polyhedron and
....

B = {m1,m2, . . . ,m5} is an M-convex set. The dec-min elements of
....

B are m1, m2, m3, and m4,

whereas m5 = (2, 2, 0, 0) is not dec-min. The supermodular function p for B = B′(p) is given

by

p(∅) = 0, p({s1}) = p({s2}) = 1, p({s3}) = p({s4}) = 0,

p({s1, s2}) = 3, p({s3, s4}) = 0,

p({s1, s3}) = p({s2, s3}) = p({s1, s4}) = p({s2, s4}) = 1,

p({s1, s2, s3}) = p({s1, s2, s4}) = 3,

p({s1, s3, s4}) = p({s2, s3, s4}) = 2,

p({s1, s2, s3, s4}) = 4.

We have

max{p(X) − λ|X| : X ⊆ S } = max{0, 1 − λ, 3 − 2λ, 3 − 3λ, 4 − 4λ}.

There are two (r = 2) critical values λ1 = 3/2 and λ2 = 1/2, with the associated sublattices

L(λ1) = {∅, {s1, s2}} and L(λ2) = {{s1, s2}, S }. The principal chain is given by {s1, s2} ⊂

{s1, s2, s3, s4}, and the principal partition is a bipartition with Ŝ 1 = {s1, s2} and Ŝ 2 = {s3, s4}.

The minimum norm point (unique dec-min element) of the base-polyhedron B is given by

mR = (3/2, 3/2, 1/2, 1/2) by Theorem 3.2. Since ⌈λ1⌉ = 2 and ⌈λ2⌉ = 1, we have β1 = 2 and

β2 = 1 with q = 2. The canonical chain consists of two members C1 = L(β1 − 1) = L(1) =

{s1, s2} and C2 = L(β2 − 1) = L(0) = S . Accordingly, the canonical partition is given by

S 1 = {s1, s2} and S 2 = {s3, s4}. Any of m1, . . . ,m5 is near-uniform on S 1 and on S 2, but m5 is

not dec-min because it fails to satisfy the tightness condition m̃(C1) = p(C1).

17



4 Proximity results and continuous relaxation algorithm

In general terms, a proximity result means a statement that the solutions to discrete and

continuous versions of an optimization problem are geometrically close to each other. In this

section we obtain proximity results for dec-min elements mZ of an M-convex set
....

B. We shall

establish two proximity theorems, which refer to two different continuous problems. The first

proximity theorem refers to the (fractional) dec-min element mR of the base-polyhedron B,

and the second to the minimizer of a piecewise-linear function associated with the square-

sum W(x) =
∑

[x(s)2 : s ∈ S ]. Both types of proximity results will be used as a basis for the

continuous relaxation algorithm to be described in Section 4.3.

4.1 Proximity theorem using the fractional dec-min element

Our first proximity theorem reveals the geometric closeness of the dec-min element mZ of
....

B

to the dec-min element mR of B. By Theorem 3.2, the dec-min element mR of B is uniform

on each member Ŝ i of the principal partition (mR(s) = λi for s ∈ Ŝ i), whereas the dec-

min element mZ of
....

B is near-uniform on each member S j of the canonical partition (mZ(s) ∈

{β j, β j−1} for s ∈ S j) by Theorem 3.4. Combining these results with Theorem 3.9 connecting

the principal and canonical partitions, we can obtain the following proximity theorem.

Theorem 4.1. Let mR be the dec-min element (minimum norm point) of an integral base-

polyhedron B. Then every dec-min element mZ of the associated M-convex set
....

B satisfies

⌊mR⌋ ≤ mZ ≤ ⌈mR⌉ . (4.1)

Proof. Fix s ∈ S and let Ŝ i denote the member of the principal partition containing s, and

λi be the associated critical value. We have mR(s) = λi by Theorem 3.2. By Theorem 3.9,

⌈λi⌉ is an essential value, say, ⌈λi⌉ = β j, where 1 ≤ j ≤ q. Since the canonical partition is an

aggregation of the principal partition, the corresponding member S j of the canonical partition

contains the element s. We have mZ(s) ∈ {β j, β j − 1} by Theorem 3.4. Therefore, mZ ≤ ⌈mR⌉.

Next we apply the above argument to −B, which is also an integral base-polyhedron.

Since −mR is the minimum norm point of −B and −mZ is a dec-min (=inc-max) element for

−
....

B, we obtain −mZ ≤ ⌈−mR⌉, which is equivalent to mZ ≥ ⌊mR⌋. This completes the proof of

(4.1). �

The above theorem states that every dec-min element mZ of
....

B is located near the dec-min

element mR of B, satisfying ⌊mR⌋ ≤ mZ ≤ ⌈mR⌉. However, the converse is not true, that is,

not every member m of
....

B satisfying ⌊mR⌋ ≤ m ≤ ⌈mR⌉ is a dec-min element of
....

B. This is

demonstrated by the following example.

Example 4.1. Recall Example 3.2, where
....

B consists of five vectors: m1 = (2, 1, 1, 0), m2 =

(2, 1, 0, 1), m3 = (1, 2, 1, 0), m4 = (1, 2, 0, 1), and m5 = (2, 2, 0, 0). The first four mem-

bers, m1 to m4, are the dec-min elements of the M-convex set
....

B, whereas m5 = (2, 2, 0, 0)

is not dec-min. The unique dec-min element of the (integral) base-polyhedron B is mR =

(3/2, 3/2, 1/2, 1/2), for which ⌊mR⌋ = (1, 1, 0, 0) and ⌈mR⌉ = (2, 2, 1, 1). Every member m

of
....

B satisfies (1, 1, 0, 0) = ⌊mR⌋ ≤ m ≤ ⌈mR⌉ = (2, 2, 1, 1). In particular, m5 = (2, 2, 0, 0)

satisfies ⌊mR⌋ ≤ m5 ≤ ⌈mR⌉, but it is not a dec-min element of
....

B.
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There is another connection between the dec-min elements in the continuous and discrete

cases. While Theorem 4.1 above prescribes a region (box) for mZ in terms of mR, the fol-

lowing theorem is a statement in the reverse direction, showing that mR is embraced by the

dec-min elements mZ for the discrete case.

Theorem 4.2. The unique dec-min element mR of an integral base-polyhedron B can be

represented as a convex combination of the dec-min elements mZ of the associated M-convex

set
....

B.

Proof. It was shown in [9, Section 5.1] that the dec-min elements of
....

B lie on the face B⊕ of

B defined by the canonical chain C1 ⊂ C2 ⊂ · · · ⊂ Cq. This face is the intersection of B with

the hyperplanes

{x ∈ RS : x̃(C j) = p(C j)} ( j = 1, 2, . . . , q).

On the other hand, it is known ([13], [14, Section 9.2]) that the minimum norm point mR

of B lies on the face of B defined by the principal chain Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ Ĉr, which is the

intersection of B with the hyperplanes

{x ∈ RS : x̃(Ĉi) = p(Ĉi)} (i = 1, 2, . . . , r).

Since the principal chain is a refinement of the canonical chain (Theorem 3.9), the latter face

is a face of B⊕. Therefore, mR belongs to B⊕. The point mR also belongs to

T ∗ := {x ∈ RS : β j − 1 ≤ x(s) ≤ β j for s ∈ S j ( j = 1, 2, . . . , q)},

since mR(s) = λi for s ∈ Ŝ i (Theorem 3.2) and S j =
⋃
{Ŝ i : ⌈λi⌉ = β j} (Theorem 3.9).

Therefore, mR is a member of B• := B⊕ ∩ T ∗. Here B• is an integral base-polyhedron, and

Theorem 5.1 of [9] states that the vertices of B• are precisely the dec-min elements of
....

B.

Therefore, mR can be represented as a convex combination of the dec-min elements of
....

B. �

Remark 4.1. The convex combination property stated in Theorem 4.2 is no longer true for

the intersection of two integral base-polyhedra. See [9, Example 7.1].

4.2 Proximity theorem using a piecewise-linear square-sum minimizer

Our second proximity theorem shows the geometric closeness of the dec-min element mZ of
....

B to the minimizer of a piecewise-linear function, to be denoted by W(x), arising from the

square-sum W(x) =
∑

[x(s)2 : s ∈ S ]. Recall from Theorem 2.7 that an element of
....

B is

dec-min if and only if it is a minimizer of W(x) over
....

B.

To define the piecewise-linear function W(x), we first consider a piecewise-linear exten-

sion of the quadratic function ϕ(k) = k2 in a single integer variable k ∈ Z. The piecewise-

linear extension ϕ : R → R is a function in a real variable whose graph consists of line

segments connecting (k, k2) and (k + 1, (k + 1)2) for all k ∈ Z. That is,

ϕ(ξ) := (2k + 1)|ξ| − k(k + 1) with k = ⌊|ξ|⌋ (ξ ∈ R). (4.2)

It is noted that ϕ(ξ) = ξ2 for integers ξ and ϕ(ξ) > ξ2 for non-integral ξ ; for example,

ϕ(1/2) = 1/2 > 1/4. The piecewise-linear function W(x) is defined by

W(x) :=
∑

[ϕ(x(s)) : s ∈ S ] (x ∈ RS ). (4.3)

We have W(x) = W(x) for integral vectors x and W(x) > W(x) for non-integral vectors x.

The following fact is implicit in the proof of [14, Theorem 8.3].
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Proposition 4.3. The minimum value of W over B is equal to the minimum square-sum on

the M-convex set
....

B. Moreover, for any minimizer xR ∈ RS of the function W over B, there

exists a minimizer xZ of W over B satisfying xZ ∈ ZS and ⌊xR⌋ ≤ xZ ≤ ⌈xR⌉.

Proof. (This proof is essentially the same as the proof of [14, Theorem 8.3].) Let xR be a

minimizer of W over B, and denote the intersection of B with the box {x : ⌊xR⌋ ≤ x ≤ ⌈xR⌉}

by B′, which is also an integral base-polyhedron. Since ‖ ⌈xR⌉ − ⌊xR⌋ ‖∞ ≤ 1, the function

W is linear on B′. This implies that xR can be expressed as a convex combination of some

vertices z1, z2, . . . , zk of B′ and the function value W(xR) is given by the corresponding convex

combination of their function values. That is,

xR =

k∑

i=1

αizi, W(xR) =

k∑

i=1

αiW(zi),

where
∑k

i=1 αi = 1 and αi > 0 for all i. Since xR is a minimizer of W, we have W(xR) ≤ W(zi)

for all i, and hence each zi is a minimizer of W over B, for which W(xR) = W(zi). Moreover,

zi is an integral vector satisfying ⌊xR⌋ ≤ zi ≤ ⌈xR⌉. Therefore, we can take any zi as xZ. �

By combining Proposition 4.3 with Theorem 2.7 (characterizing dec-min elements of
....

B

as square-sum minimizers), we obtain the following proximity statement.

Theorem 4.4. For any minimizer xR of the function W over B, there exists a dec-min element

mZ of the associated M-convex set
....

B satisfying

⌊xR⌋ ≤ mZ ≤ ⌈xR⌉ . (4.4)

Proof. By Proposition 4.3, there exists an integral vector xZ that minimizes W over B and

satisfies ⌊xR⌋ ≤ xZ ≤ ⌈xR⌉. Since W coincides with W on
....

B, this vector xZ is a minimizer of

W over
....

B. This implies, by Theorem 2.7, that xZ is a dec-min element of
....

B satisfying (4.4).

Therefore, we can take this xZ as mZ in (4.4). �

There are substantial differences between the two proximity results given in Theorem 4.4

and in Theorem 4.1. First, the vector xR in Theorem 4.4, being an arbitrary minimizer of W,

is not uniquely determined, whereas mR in Theorem 4.1 denotes the unique dec-min element

of B. In particular, xR is not necessarily dec-min in B (see Example 4.2 below). Second, the

box ⌊xR⌋ ≤ x ≤ ⌈xR⌉ in (4.4) of Theorem 4.4 may possibly miss some dec-min elements of
....

B (see Example 4.2), while the box ⌊mR⌋ ≤ x ≤ ⌈mR⌉ in (4.1) of Theorem 4.1 contains all

dec-min elements of
....

B.

Example 4.2. We continue with the problem treated in Examples 3.2 and 4.1. The M-convex

set
....

B consists of five vectors: m1 = (2, 1, 1, 0), m2 = (2, 1, 0, 1), m3 = (1, 2, 1, 0), m4 =

(1, 2, 0, 1), and m5 = (2, 2, 0, 0). We have W(mi) = 6 for i = 1, 2, 3, 4 and W(m5) = 8. Hence

the minimum of W over B is equal to 6. Consider a vector xR = (2, 1, 1/3, 2/3), which is a

minimizer of W(x) since

W(xR) = ϕ(2) + ϕ(1) + ϕ(1/3) + ϕ(2/3) = 4 + 1 + 1/3 + 2/3 = 6.

For this vector, we have ⌊xR⌋ = (2, 1, 0, 0) and ⌈xR⌉ = (2, 1, 1, 1). The box ⌊xR⌋ ≤ x ≤ ⌈xR⌉

contains m1 = (2, 1, 1, 0) and m2 = (2, 1, 0, 1), but misses the other two dec-min elements,
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m3 and m4, of
....

B. Another possible choice of a minimizer of W is the minimum norm point

mR = (3/2, 3/2, 1/2, 1/2), which is indeed a minimizer of W (see Proposition 4.5 below) with

W(mR) = ϕ(3/2) + ϕ(3/2) + ϕ(1/2) + ϕ(1/2) = 5/2 + 5/2 + 1/2 + 1/2 = 6.

For this vector, we have ⌊mR⌋ = (1, 1, 0, 0) and ⌈mR⌉ = (2, 2, 1, 1). The box ⌊mR⌋ ≤ x ≤ ⌈mR⌉

contains all the four dec-min elements, and additionally, m5 = (2, 2, 0, 0) (which is not dec-

min).

We point out here that the minimum norm point mR, which is the unique minimizer of

the square-sum W(x) over B, is also a minimizer of the associated piecewise-linear function

W. This fact is quite natural to expect, but it is a non-trivial fact whose proof relies on the

property (Theorem 4.2) that mR lies in the convex hull of the dec-min elements of
....

B.

Proposition 4.5. The minimum norm point mR of B is a minimizer of the piecewise-linear

function W on B.

Proof. Theorem 4.2 ensures a convex combination mR =
∑k

i=1 αimi, where m1,m2, . . . ,mk are

dec-min elements of
....

B,
∑k

i=1 αi = 1, and αi > 0 for all i. Since ‖mi − m j‖∞ ≤ 1, the function

W is linear on the convex hull of m1,m2, . . . ,mk, from which follows that

W(mR) =

k∑

i=1

αiW(mi) =

k∑

i=1

αiW(mi).

Here each of m1,m2, . . . ,mk is a minimizer of W (by Theorem 2.7) and min{W(x) : x ∈

B} = min{W(x) : z ∈
....

B} by the definition of W and the integrality of B. Therefore, mR is a

minimizer of W. �

4.3 Continuous relaxation algorithm

In our continuous relaxation algorithm for computing a dec-min element of
....

B, it is assumed

that we are given a real vector x∗ such that the box bounded by ⌊x∗⌋ and ⌈x∗⌉ contains at least

one dec-min element of
....

B. That is, we assume that

⌊x∗⌋ ≤ mZ ≤ ⌈x
∗⌉ (4.5)

holds for some dec-min element mZ of
....

B. By Theorem 4.1 the minimum norm point mR of

B serves as such x∗. Another possibility for x∗ is an arbitrary minimizer xR of the piecewise-

linear function W(x), as shown in Theorem 4.4. The algorithm of this section relies only on

the property (4.5) of the vector x∗, which is regarded as an input of the algorithm. At the

end of this section, we indicate some references concerning the computation of mR and xR in

Remarks 4.3 and 4.4, respectively.

Using the given vector x∗ satisfying (4.5), define

ℓ := ⌊x∗⌋ , u := ⌈x∗⌉ , (4.6)

and denote the intersection of
....

B and box [ℓ, u] by
....

Bu
ℓ
, that is,

....

Bu
ℓ :=

....

B ∩ {x : ℓ ≤ x ≤ u}. (4.7)
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By our assumption,
....

Bu
ℓ

contains at least one dec-min element of
....

B. This implies that we

can find a dec-min element of
....

B by computing a dec-min element of
....

Bu
ℓ
. Thus the dec-min

problem on the M-convex set
....

B is reduced to that on a smaller M-convex set
....

Bu
ℓ
.

A dec-min element of
....

Bu
ℓ

can be computed as follows. Since 0 ≤ u− ℓ ≤ 1, the set
....

Bu
ℓ

is a

matroidal M-convex set, and hence it can be represented as

....

Bu
ℓ = {ℓ + χL : L is a base of M•}

for some matroid M• on S . Define a weight function ω : S → Z by

ω(s) := u(s)2 − ℓ(s)2 (s ∈ S ). (4.8)

Then the square-sum W(x) of x = ℓ + χL ∈
....

Bu
ℓ

can be expressed as

W(x) =
∑

s∈S

x(s)2 =
∑

s∈L

u(s)2 +
∑

s∈S−L

ℓ(s)2 = ω̃(L) +
∑

s∈S

ℓ(s)2.

This shows that minimizing W(x) over
....

Bu
ℓ

is equivalent to finding a minimum ω-weight base

of M•, whereas, by Theorem 2.7, an element of
....

Bu
ℓ

is a minimizer of W(x) over
....

Bu
ℓ

if and

only if it is dec-min in
....

Bu
ℓ
. Therefore, a dec-min element of

....

Bu
ℓ

can be computed by finding a

minimum ω-weight base of matroid M•. The latter can be done in strongly polynomial time

by the greedy algorithm (see, e.g., [7, 35]). In order to apply the greedy algorithm, one needs

an evaluation oracle that outputs the rank r•(Z) of any input subset Z ⊆ S in matroid M•.

But r•(Z) can be computed from the supermodular function p associated with
....

B and from the

bounding vectors ℓ and u defined in (4.6) with the aid of a submodular function minimization

algorithm. Therefore, the above procedure, when x∗ is given, finds a dec-min element of
....

B in

strongly polynomial time.

Example 4.3. We illustrate the continuous relaxation algorithm for the problem considered

in Examples 3.2, 4.1, and 4.2, where
....

B consists of five vectors: m1 = (2, 1, 1, 0), m2 =

(2, 1, 0, 1), m3 = (1, 2, 1, 0), m4 = (1, 2, 0, 1), and m5 = (2, 2, 0, 0); mk is dec-min for

k = 1, 2, 3, 4, while m5 is not.

Suppose first that the minimum norm point mR = (3/2, 3/2, 1/2, 1/2) is chosen as x∗.

Then we obtain ℓ = ⌊mR⌋ = (1, 1, 0, 0) and u = ⌈mR⌉ = (2, 2, 1, 1), and hence
....

Bu
ℓ
=
....

B and

ω = (3, 3, 1, 1). For x = m1 we have m1 − ℓ = (2, 1, 1, 0) − (1, 1, 0, 0) = (1, 0, 1, 0) = χL1
with

L1 = {s1, s3} and ω̃(L1) = 3 + 0 + 1 + 0 = 4. Similarly, we have mk − ℓ = χLk
with ω̃(Lk) = 4

for k = 2, 3, 4. For x = m5 we have m5 − ℓ = (2, 2, 0, 0) − (1, 1, 0, 0) = (1, 1, 0, 0) = χL5
with

L5 = {s1, s2} and ω̃(L5) = 3 + 3 + 0 + 0 = 6. Therefore, Lk is a minimum ω-weight base for

k = 1, 2, 3, 4, while L5 is not. In other words, mk is dec-min in
....

B for k = 1, 2, 3, 4, while m5 is

not.

As the second choice of x∗, consider a minimizer xR = (2, 1, 1/3, 2/3) of W(x), for which

ℓ = ⌊xR⌋ = (2, 1, 0, 0), u = ⌈xR⌉ = (2, 1, 1, 1), and hence
....

Bu
ℓ
= {m1,m2} and ω = (0, 0, 1, 1).

We have m1 − ℓ = (0, 0, 1, 0) = χL1
with L1 = {s3} and ω̃(L1) = 1, while m2 − ℓ = (0, 0, 0, 1) =

χL2
with L2 = {s4} and ω̃(L2) = 1. Therefore, we can conclude that both m1 and m2 are

dec-min in
....

B. The other two dec-min elements of
....

B, m3 and m4, are not captured when

x∗ = xR = (2, 1, 1/3, 2/3).
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Remark 4.2. The continuous relaxation algorithm using the minimum norm point mR can

cope with the minimum cost dec-min element problem (Section 2.4), since all dec-min ele-

ments of
....

B are captured by
....

Bu
ℓ

(Theorem 4.1). In contrast, the continuous relaxation algorithm

using a minimizer xR of W(x) cannot be used to solve this problem.

Remark 4.3. Several different algorithms are known for computing the minimum norm point

mR, with varying theoretical complexity and practical efficiency. Fujishige’s decomposition

algorithm [13] (also [14, Section 8.2]) computes mR in strongly polynomial time. We can

also compute mR by Wolfe’s minimum norm point algorithm [39] tailored to base-polyhedra

[14, Section 7.1], which algorithm has drawn a renewed interest as a practically effective

subroutine in submodular function minimization (Chakrabarty–Jain–Kothari [2], De Loera–

Haddock–Rademacher [3], Fujishige–Isotani [16]).

Remark 4.4. Minimization of a separable convex function on a base-polyhedron has been in-

vestigated in the literature of resource allocation under the name of “resource allocation prob-

lems under submodular constraints” (Hochbaum [21], Ibaraki–Katoh [23], Katoh–Shioura–

Ibaraki [26]). The continuous relaxation approach for discrete variables is considered, e.g.,

by Hochbaum [20] and Hochbaum–Hong [22]. A paper by Moriguchi–Shioura–Tsuchimura

[29] discusses this approach in the more general context of M-convex function minimiza-

tion. It is known ([22, 29, 36], [26, Theorem 23]) that a convex quadratic function
∑

aix
2
i in

discrete variables can be minimized over an integral base-polyhedron in strongly polynomial

time. See Végh [37] for a recent development on the complexity of separable convex function

minimization.

5 Decomposition algorithms for square-sum minimization

on an M-convex set

5.1 General remarks

As a continuation from Section 2.8, we shall present details of the decomposition algorithms

for square-sum minimization on an M-convex set. Recall from Theorem 2.7 that minimizing

the square-sum W(x) =
∑

[x(s)2 : s ∈ S ] on an M-convex set
....

B is equivalent to computing a

dec-min element of
....

B.

In order to present a clear overview of the existing approaches, we consider two vari-

ants of the decomposition algorithms, one based on Groenevelt [18] and the other based on

Fujishige [14, Section 8.2] (see Table 1). Although the same name of “decomposition algo-

rithm” is used, Groenevelt’s and Fujishige’s are not exactly the same. To be specific, Groen-

evelt’s algorithm features a subproblem named “single constraint problem” and decomposes

the ground-set into two disjoint subsets, whereas Fujishige’s algorithm uses a variable cor-

responding to a subgradient (denoted η in [14, Section 8.2]) and decomposes the ground-set

into three disjoint subsets. It is noted that Fujishige’s original algorithm [13], targeted to

quadratic functions in continuous variables, was based on a simplest special case of “single

constraint problem” (without using this terminology) and decomposes the ground-set into

two disjoint subsets.

In Section 5.2, we show an adaptation of Groenevelt’s decomposition algorithm to square-

sum minimization on an M-convex set, and call it the “Groenevelt-type decomposition algo-

rithm.” In its original form, Groenevelt’s algorithm [18] for Case Z dealt with an integral
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polymatroid (not an integral base-polyhedron). Although the adaptation to an M-convex set

is not that difficult, it will be important to have a precise description of the algorithm at hand

along with proofs of correctness and strong polynomiality of the algorithm.

In Section 5.3, we develop another decomposition algorithm for square-sum minimization

on an M-convex set on the basis of the framework of Fujishige [14, Section 8.2] for separa-

ble convex minimization on a base-polyhedron. We refer to the resulting algorithm as the

“Fujishige-type decomposition algorithm.” As suggested in [14, Section 8.3], the framework

of [14, Section 8.2] for Case R can be adapted to Case Z with the use of the piecewise-linear

extension W(x) in (4.3). Our contribution consists in devising a concrete computational pro-

cedure for a key subroutine assumed in the general framework, giving self-contained rigorous

proofs of correctness and strong polynomiality of the algorithm, and revealing the relation be-

tween the computed decomposition and the canonical chain as well as the certifying chain in

Theorem 2.3.

In relation to the structural and algorithmic results in [9, 10], the two decomposition

algorithms, Groenevelt-type and Fujishige-type, have the following characteristics.

• Unlike the algorithm in [10], the two decomposition algorithms do not rely on the

Newton–Dinkelbach algorithm.

• The two decomposition algorithms decompose the ground-set, but the resulting decom-

position may or may not coincide with the canonical partition, whereas the algorithm

in [10] iteratively construct the canonical partition. It should be noted, however, that if

a single dec-min element of an M-convex set is available, the canonical partition can

be computed quite easily [10, Algorithm 2.3].

• The Groenevelt-type algorithm is simpler than the Fujishige-type, both in steps of the

algorithm and the proof of correctness, and is rather independent of the structural re-

sults found in [9]. In contrast, the decomposition computed in the Fujishige-type al-

gorithm is consistent with a characterization of dec-minimality given in [9], as pointed

out in Remark 5.3.

5.2 Groenevelt-type decomposition algorithm

In this section, we show an adaptation of Groenevelt’s decomposition algorithm to square-

sum minimization on an M-convex set, which we call “Groenevelt-type decomposition algo-

rithm” in this paper.

Let B = B′(p) be an integral base-polyhedron on a ground-set S described by an integer-

valued supermodular function p, and
....

B = B ∩ ZS be the associated M-convex set. For any

subset S + of S , the restriction of B to S + means the base-polyhedron B+ := B′(p+) described

by the supermodular function p+ defined by p+(X) = p(X) for X ⊆ S +. For any subset

S − of S , the contraction of B to S − is the base-polyhedron B− := B′(p−) described by the

supermodular function p− defined by p−(X) = p(X ∪ (S − S −)) − p(S − S −) for X ⊆ S −. We

also define the supermodular polyhedron

Q = {y ∈ RS : y(X) ≥ p(X) (∀X ⊆ S )}, (5.1)

which can also be defined as Q = {y ∈ RS : y ≥ x for some x ∈ B}.
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Groenevelt’s framework employs an auxiliary subproblem, called “single constraint prob-

lem.” In our case of square-sum minimization, this subproblem is given by

Minimize
∑

s∈S

x(s)2 subject to x ∈ ZS , x(S ) = p(S ), (5.2)

which (fortunately) admits an explicit solution. Let

a := ⌊p(S )/|S |⌋, k := p(S ) − a|S |, (5.3)

where 0 ≤ k ≤ |S | − 1. Then a vector x is a solution to the problem (5.2) if and only if

x(s) ∈ {a, a + 1} for all s ∈ S and precisely k of x(s) are equal to a + 1; that is,

x = aχS + χU (5.4)

for any U ⊂ S with |U | = k. For example, x = (

k︷             ︸︸             ︷
a + 1, . . . , a + 1, a, . . . , a).

With above preparations we can describe the algorithm to minimize the square-sum W(x)

on an M-convex set.

Groenevelt-type decomposition algorithm for square-sum on an M-convex set
....

B

1: Let a := ⌊p(S )/|S |⌋, k := p(S ) − a|S |, and x := aχS + χU for an arbitrary U with |U | = k.

2: If x belongs to
....

B, then let z∗ := x and stop.

3: Find a minimal vector y satisfying y ≥ x and y ∈
....

Q.

4: Let S + be the largest subset X ⊆ S satisfying y(X) = p(X), and let S − := S \ S +.

5: Apply this algorithm recursively to the restriction
....

B+ to S +. Let z∗+ ∈ ZS + be the output.

6: Apply this algorithm recursively to the contraction
....

B− to S −. Let z∗− ∈ ZS − be the output.

7: Define z∗(s) := z∗+(s) for s ∈ S + and z∗(s) := z∗−(s) for s ∈ S −, and stop.

Basic properties of the above algorithm are given below. The second property (2) implies

that the recursive calls in Step 5 and Step 6 make sense.

Proposition 5.1.

(1) When the algorithm terminates in Step 2, the output z∗ is a square-sum minimizer.

(2) In Step 4, we have ∅ , S + , S and ∅ , S − , S .

(3) z∗ defined in Step 7 is a member of
....

B.

(4) y(s) = x(s) for all s ∈ S − S +.

Proof. (1) z∗ is near-uniform at the termination in Step 2, and hence it is decreasingly mini-

mal, or equivalently, a square-sum minimizer.

(2) We have y ≥ x, y , x, x <
....

B, and y ∈
....

Q in Step 4. Since y is not equal to x, there

exists an element s ∈ S with y(s) > x(s). Then the minimality of y implies that such s must

belong to S +, implying S + , ∅. Because of such s, we have ỹ(S ) > x̃(S ) = p(S ), which

shows S + , S .

(3) This is immediate from the fact that z∗|S + = z∗+ ∈
....

B+ and z∗|S − = z∗− ∈
....

B−, where
....

B+

is the restriction of
....

B to S + and
....

B− is the contraction of
....

B to S −.

(4) By definition, y is a minimal element of
....

Q satisfying y ≥ x, and S + is the largest

y-tight set with respect to p. Suppose, indirectly, that y(s) > x(s) for some s ∈ S −S +. Define

ŷ := y − χs. This ŷ belongs to
....

Q, since y(X) > p(X) for any X containing s. Also we have

ŷ ≥ x, a contradiction to the minimality of y. �
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The correctness of the algorithm is established in the following proposition.

Proposition 5.2. The output z∗ of the Groenevelt-type decomposition algorithm is a minimizer

of square-sum W(x) over
....

B, or equivalently, z∗ is a dec-min element of
....

B.

Proof. By induction on the size of the ground-set S , we prove that the output of the algorithm

is a square-sum minimizer. By Proposition 5.1(2), we have |S +| < |S | and |S −| < |S |. First we

show that the output z∗ of the algorithm satisfies

z∗(s) ≥ a (s ∈ S +), z∗(s) ≤ a + 1 (s ∈ S −). (5.5)

To prove the first inequality z∗(s) ≥ a (s ∈ S +) in (5.5), let z∗+ denote the subvector of z∗

on S + (i.e., z∗+ = z∗|S +), which is the outcome of the recursive call to the restriction
....

B+ to S +.

By the induction hypothesis, z∗+ minimizes the square-sum
∑

[x(s)2 : s ∈ S +] over
....

B+. This

implies, by Theorems 2.2 and 2.7, that z∗+ is an inc-max element of
....

B+. On the other hand,

y|S + is a member of
....

B+ (since S + is y-tight with respect to p) satisfying (y|S +)(s) ≥ x(s) ≥ a

for all s ∈ S +. It then follows that each component of z∗+ is bounded from below by a.

Therefore, z∗(s) ≥ a for s ∈ S +.

The second inequality z∗(s) ≤ a + 1 (s ∈ S −) in (5.5) can be proved as follows. By the

induction hypothesis, the vector z∗− := z∗|S − minimizes the square-sum over the contraction
....

B− to S −, and hence z∗− is a dec-min element of
....

B− by Theorem 2.7, which further implies

that z∗− is a dec-min element of
....

Q− = {v ∈ ZS − : v ≥ u for some u ∈
....

B−}. On the other hand,

y|S − is a member of
....

Q− satisfying (y|S −)(s) ≤ a + 1 for all s ∈ S −, since y(s) = x(s) ≤ a + 1

for all s ∈ S − by Proposition 5.1(4) and (5.4). Therefore z∗(s) ≤ a + 1 for all s ∈ S −. Thus

(5.5) is proved.

Finally we show that z∗ satisfies the condition

z∗(t) ≥ z∗(s) + 2 =⇒ z∗ + χs − χt <
....

B (5.6)

for all (s, t) with s, t ∈ S + ∪ S −. Suppose that z∗(t) ≥ z∗(s) + 2. By (5.5) we may assume

(s, t) < S + × S −. The condition (5.6) holds when (s, t) ∈ S + × S +, since the vector z∗+ = z∗|S +

is a dec-min element of
....

B+. Similarly, (5.6) holds when (s, t) ∈ S − × S −, since the vector

z∗− = z∗|S − is a dec-min element of
....

B−. It remains to consider the case of (s, t) ∈ S − × S +.

Since z∗+ ∈
....

B+, the set S + is z∗-tight with respect to p. It then follows that z∗ + χs − χt <
....

B if

s ∈ S − S + and t ∈ S +. Hence, the condition (5.6) holds for (s, t) ∈ S − × S +. By Theorems

2.3 and 2.7, this completes the proof of Proposition 5.2. �

For clarity we make an explicit statement about strong polynomiality of the algorithm.

Proposition 5.3. The Groenevelt-type decomposition algorithm computes a square-sum min-

imizer (i.e., dec-min element) of an M-convex set in strongly polynomial time.

Proof. The number of recursive calls is bounded by |S |, and each step can be done in strongly

polynomial time (using a submodular function minimization subroutine). �

The algorithm is illustrated for a simple example.

Example 5.1. Let S = {s1, s2} and
....

B = {(3, 2), (4, 1), (5, 0)}, which has a unique dec-min

element mZ = (3, 2). The defining supermodular function p is given by

p(∅) = 0, p({s1}) = 3, p({s2}) = 0, p({s1, s2}) = 5.
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In Step 1 of the Groenevelt-type decomposition algorithm, we obtain a = ⌊p(S )/|S |⌋ =

⌊5/2⌋ = 2 and k = p(S ) − a|S | = 1. We have two choices for x, namely, x(1) = (2, 3)

and x(2) = (3, 2).

The first vector x(1) = (2, 3) does not belong to
....

B, and the vector y in Step 3 is given

(uniquely) by y = (3, 3), for which we obtain S + = {s1} and S − = {s2} in Step 4. In Step 5,

the restriction
....

B+ consists of a single number (one-dimensional vector) 3, that is,
....

B+ = {3},

for which z∗+ = 3. In Step 6, the contraction is given by
....

B− = {2}, for which z∗− = 2. In Step 7,

we obtain z∗ = (z∗+, z
∗
−) = (3, 2), which is the dec-min element of

....

B.

The second vector x(2) = (3, 2) is already in the given M-convex set
....

B. Therefore, the

algorithm terminates at Step 2 with z∗ = x(2) = (3, 2). Note that no recursive calls are involved,

which means that the dec-min element is computed without decomposing the ground-set.

The Groenevelt-type decomposition algorithm may not find the canonical partition. The

resulting decomposition can be coarser or finer than the canonical partition, which is shown

in the following examples.

Example 5.2. For the problem of Example 5.1, we have

p(X) − β|X| =



0 (X = ∅),

3 − β (X = {s1}),

−β (X = {s2}),

5 − 2β (X = {s1, s2}).

By Proposition 3.8, there are two essential values β1 = 3 and β2 = 2, and the canonical

partition is a bipartition {S 1, S 2} given by

S 1 = L(β1 − 1) − L(β1) = L(2) − L(3) = {s1} − ∅ = {s1},

S 2 = L(β2 − 1) − L(β2) = L(1) − L(2) = {s1, s2} − {s1} = {s2}.

The first choice x(1) = (2, 3) in Example 5.1 results in the decomposition with S + = {s1}

and S − = {s2}, which coincides with the canonical partition, whereas the second choice

x(2) = (3, 2) does not decompose S at all, that is, results in a decomposition coarser than the

canonical partition.

Example 5.3. Let S = {s1, s2, s3, s4} and
....

B = {(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 1, 1, 0)},

in which every element is dec-min. The defining supermodular function p is given by

p(∅) = 0, p(S ) = 2, p({si}) = 0, p(S − {si}) = 1 (i = 1, . . . , 4),

p({s1, s2}) = p({s3, s4}) = 1, p(X) = 0 for other X with |X| = 2.

We can verify, as in Example 5.2, that the canonical partition is a trivial partition consisting of

S itself. The Groenevelt-type decomposition algorithm may result in a finer decomposition.

In Step 1, we get a = ⌊p(S )/|S |⌋ = ⌊2/4⌋ = 0 and k = p(S ) − a|S | = 2. Suppose we have

chosen x = (0, 0, 1, 1), which does not belong to
....

B. For this x, we may take y = (0, 1, 1, 1) ∈
....

Q

in Step 3, for which S + = {s1, s2} and S − = {s3, s4}. We have
....

B+ = {(1, 0), (0, 1)} and may take

z∗+ = (1, 0), whereas we have
....

B− = {(1, 0), (0, 1)} and may take z∗− = (1, 0). Then we obtain

z∗ = (z∗+, z
∗
−) = (1, 0, 1, 0). The resulting decomposition of S is a bipartition {{s1, s2}, {s3, s4}},

which is finer than the canonical partition. It is noteworthy that the first member S + = {s1, s2}

is not even a z∗-top set.
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5.3 Fujishige-type decomposition algorithm

In this section, we develop another decomposition algorithm for square-sum minimization

on an M-convex set using the framework of Fujishige [14, Section 8.2] for separable convex

minimization on a base-polyhedron. The proposed algorithm is based on the natural idea

to apply the framework of [14, Section 8.2] to the piecewise-linear extension W(x) in (4.3).

To ensure strong polynomiality, however, we need to devise a non-trivial gadget to cope

with complications arising from integrality. The relation of the proposed algorithm to the

framework of [14, Section 8.2] is explained in Remark 5.4 at the end of this section.

By definition, an element z of an M-convex set
....

B admits no 1-tightening step if it satisfies

the condition:

z(t) ≥ z(s) + 2 =⇒ z + χs − χt <
....

B. (5.7)

This condition, Condition (B) in Theorem 2.3, is necessary and sufficient for z ∈
....

B to be a dec-

min element of
....

B. It is worth noting that this condition coincides with the local optimality

condition [31, Theorem 6.26] for M-convex function minimization applied to the function

W(x) over
....

B.

We consider a relaxation of the condition (5.7) on z, which, for any given integer a,

requires that

z(s) ≤ a, z(t) ≥ a + 1, z(t) ≥ z(s) + 2 =⇒ z + χs − χt <
....

B. (5.8)

Obviously, the condition (5.7) is stronger than (5.8) for any fixed a.

To consider algorithmic aspects of (5.8), it is convenient to relate (5.8) to convex mini-

mization. Define functions

ga(k) := max(a − k, 0, k − a − 1) (k ∈ Z), (5.9)

Ga(x) :=
∑

s∈S

ga(x(s))

=
∑

s∈S

max(a − x(s), 0, x(s) − a − 1) (x ∈ ZS ). (5.10)

Then, (5.8) can be recognized as a local optimality condition for the minimization of Ga(x)

over
....

B.

Proposition 5.4. z ∈
....

B satisfies (5.8) if and only if z is a minimizer of Ga over
....

B.

Proof. Since Ga is a separable convex function, its restriction to the M-convex set
....

B is an

M-convex function (see [31, (6.31)]). By the optimality criterion [31, Theorem 6.26] for M-

convex functions, z is a minimizer of Ga over
....

B if and only if, for any s, t ∈ S , we have the

local optimality that

z + χs − χt ∈
....

B =⇒ Ga(z + χs − χt) ≥ Ga(z),

which is equivalent to

Ga(z + χs − χt) < Ga(z) =⇒ z + χs − χt <
....

B.

Here we have

Ga(z + χs − χt) < Ga(z)

⇐⇒ (ga(z(s) + 1) − ga(z(s))) + (ga(z(t) − 1) − ga(z(t))) < 0

⇐⇒ [z(s) ≤ a, z(t) ≥ a + 1, z(t) ≥ z(s) + 2].

Hence follows the claim of Proposition 5.4. �
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The following proposition shows that an integral vector z ∈
....

B satisfying (5.8) can be

computed in strongly polynomial time.

Proposition 5.5. For any given a ∈ Z, the function Ga can be minimized over
....

B in strongly

polynomial time. Equivalently, a member of
....

B satisfying (5.8), for any given a ∈ Z, can be

found in strongly polynomial time.

Proof. We express a vector x ∈ ZS as x = x1+ x2+ x3, where x1, x2, and x3 are integer vectors

and

x1(s) ≤ a, 0 ≤ x2(s) ≤ 1, 0 ≤ x3(s) (s ∈ S ).

Consider three disjoint copies S 1, S 2, S 3 of the ground-set S , and regard xi as a vector on S i

for i = 1, 2, 3. The set defined by

....

B′ ={(x1, x2, x3) ∈ ZS 1∪S 2∪S 3

|

x1 + x2 + x3 ∈
....

B, x1 ≤ a1, 0 ≤ x2 ≤ 1, 0 ≤ x3}

is an M-convex set (which can be proved directly or by using [33, Proposition 3.3]). Further-

more, the minimization of Ga(x) over
....

B is reduced to the minimization of
∑

s∈S 1
(a − x1(s)) +

∑
s∈S 3

x3(s) over
....

B′. The latter problem is a linear optimization over a base-polyhedron, and

the required subroutines for
....

B′ can be realized from those of the given M-convex set
....

B with

the aid of a submodular function minimization algorithm. For technical details, the reader is

referred to [7] (Section 14.3 (in particular, Theorem 14.3.39) and Section 14.5). �

We are now ready to present the Fujishige-type decomposition algorithm for computing a

dec-min element of
....

B. We assume that B is given by an integer-valued supermodular function

p as B = B′(p) in (2.3).

Fujishige-type decomposition algorithm for square-sum on an M-convex set
....

B

1: Set a := ⌊p(S )/|S |⌋.

2: Find z ∈
....

B that satisfies (5.8) (by the method in the proof of Proposition 5.5).

3: Define S +, S −, S 0 by

S + :=
⋃

t∈S :z(t)≥a+2

{s ∈ S | z + χs − χt ∈
....

B}, (5.11)

S − :=
⋃

s∈S :z(s)≤a−1

{t ∈ S | z + χs − χt ∈
....

B}, (5.12)

S 0 := S − (S + ∪ S −), (5.13)

and let z∗(s) := z(s) for each s ∈ S 0.

4: If S + , ∅, then apply the present algorithm recursively to the restriction to S +.

If S − , ∅, then apply the present algorithm recursively to the contraction to S −.

5: If both S + and S − are empty, then stop.

When the algorithm terminates in Step 5, the component values z∗(s) have already been

defined for all s ∈ S . The computed vector z∗ is a dec-min element of
....

B, which we show in

Proposition 5.7. Step 3 of the algorithm defines the component values z∗(s) for s ∈ S 0 (the

subset S 0 may be an empty), whereas the component values on S + and S − are determined

within the recursive calls in Step 4. The recursive call to the restriction to S + means applying
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the above algorithm to B+ = B′(p+) on S +, where p+ is the supermodular function on S +
defined by p+(X) = p(X) for X ⊆ S +. The recursive call to the contraction to S − means

applying the above algorithm to B− = B′(p−) on S −, where p− is the supermodular function

on S − defined by p−(X) = p(X ∪ (S − S −)) − p(S − S −) for X ⊆ S −.

The following proposition implies the termination of the algorithm with at most |S | recur-

sive calls.

Proposition 5.6. S + , S and S − , S .

Proof. (This is an adaptation of the argument of [14, Section 8.2] to the discrete case.) To

show S + , S by contradiction, assume S + = S . By (5.11), this implies that for every s ∈ S ,

there exists t ∈ S such that z(t) ≥ a + 2 and z + χs − χt ∈
....

B. Combining this with (5.8) we

have z(s) ≥ a+ 1 for all s ∈ S , which implies p(S ) =
∑

[z(s) : s ∈ S ] ≥ (a+ 1)|S |. We cannot

have equality here, because, by (5.11), our assumption S + = S implies z(t0) ≥ a+ 2 for some

t0 ∈ S . Therefore, p(S ) > (a + 1)|S |, which is a contradiction to a = ⌊p(S )/|S |⌋.

To show S − , S by contradiction, assume S − = S . By (5.12), this implies that for every

t ∈ S , there exists s ∈ S such that z(s) ≤ a − 1 and z + χs − χt ∈
....

B. Combining this with

(5.8) we have z(t) ≤ a for all t ∈ S , which implies p(S ) =
∑

[z(t) : t ∈ S ] ≤ a|S |. We cannot

have equality here, because, by (5.12), our assumption S − = S implies z(s0) ≤ a−1 for some

s0 ∈ S . Therefore, p(S ) < a|S |, which is a contradiction to a = ⌊p(S )/|S |⌋. �

The correctness of the algorithm is established in the following proposition.

Proposition 5.7. The output z∗ of the Fujishige-type decomposition algorithm is a minimizer

of square-sum W(x) over
....

B, or equivalently, z∗ is a dec-min element of
....

B.

Proof. (This is an adaptation of the argument in [14, Section 8.2] to the discrete case.) We

prove that the output of the algorithm is a square-sum minimizer by induction on the size |S |

of the ground-set S . We have |S +| < |S | and |S −| < |S | by Proposition 5.6. By the definition

in Step 3 and the property (5.8) of z, we have

{s : z(s) ≥ a + 2} ⊆ S + ⊆ {s : z(s) ≥ a + 1}, (5.14)

{s : z(s) ≤ a − 1} ⊆ S − ⊆ {s : z(s) ≤ a}, (5.15)

which imply that S + and S − are disjoint and

S 0 ⊆ {s : a ≤ z(s) ≤ a + 1}. (5.16)

First we show that the output z∗ of the algorithm satisfies

z∗(s)



≥ a + 1 (s ∈ S +),

≤ a (s ∈ S −),

∈ {a, a + 1} (s ∈ S 0).

(5.17)

To prove z∗(s) ≥ a+1 for s ∈ S +, let z∗+ denote the subvector of z∗ on S +, which is the outcome

of the recursive call to the restriction to S +. By the induction hypothesis, z∗+ minimizes the

square-sum
∑

[x(s)2 : s ∈ S +] over the M-convex set
....

B+, where B+ = B′(p+) is the restriction

to S +. Then Theorems 2.3 and 2.7 show that z∗+ is an inc-max element of
....

B+, whereas the

subvector of z on S + is a member of
....

B+ satisfying z(s) ≥ a + 1 for all s ∈ S +. Therefore,

z∗(s) ≥ a + 1 for s ∈ S +. The second case, z∗(s) ≤ a for s ∈ S −, can be proved symmetrically.
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Namely, by the induction hypothesis, the subvector z∗− of z∗ on S − minimizes the square-sum

over the M-convex set
....

B− defined by the contraction B− = B′(p−) to S −, and hence z∗− is a dec-

min element of
....

B− by Theorem 2.7. This implies z∗(s) ≤ a for s ∈ S −, since the subvector of

z on S − is a member of
....

B− satisfying z(s) ≤ a for all s ∈ S −. The third case, z∗(s) ∈ {a, a + 1}

for s ∈ S 0, is obvious from (5.16) and the definition z∗(s) = z(s) for s ∈ S 0 in Step 3.

We will show that z∗ satisfies the condition (5.7) for all (s, t) with s, t ∈ S + ∪ S 0 ∪ S −.

Suppose that z∗(t) ≥ z∗(s) + 2. By (5.17) we may assume (s, t) < (S + ∪ S 0) × (S − ∪ S 0).

The condition (5.7) holds when (s, t) ∈ S +×S +, since the subvector z∗+ is an inc-max (and

hence dec-min) element of
....

B+, as already mentioned. Similarly, (5.7) holds when (s, t) ∈

S − × S −, since the subvector z∗− is a dec-min element of
....

B−.

It remains to consider the other three cases: (s, t) ∈ S − × S +, (s, t) ∈ S 0 × S +, and

(s, t) ∈ S −×S 0. Since z∗+ is a base of the restriction B+, we have z̃∗(S +) = p(S +), that is, S + is

z∗-tight with respect to p. It then follows that z∗+χs−χt <
....

B if s ∈ S −S + and t ∈ S +. Hence,

the condition (5.7) holds for (s, t) ∈ (S − S +) × S + = (S − ∪ S 0) × S +. Similarly, since z∗− is a

base of the contraction B−, we have z̃∗(S −) = p−(S −) = p(S )− p(S −S −) = z̃∗(S )− p(S −S −),

which shows that S − S − is z∗-tight with respect to p. Hence z∗ + χs − χt <
....

B if s ∈ S − and

t ∈ S − S −. Hence, the condition (5.7) holds for (s, t) ∈ S − × (S − S −) = S − × (S + ∪ S 0). This

completes the proof of Proposition 5.7. �

The Fujishige-type decomposition algorithm can be executed in strongly polynomial time.

The key fact here is that we can carry out Step 2, which is characteristic of the discrete case,

in polynomial time.

Proposition 5.8. The Fujishige-type decomposition algorithm computes a

square-sum minimizer (i.e., dec-min element) of an M-convex set in strongly polynomial time.

Proof. By Proposition 5.6, the number of recursive calls is bounded by |S |. In each call of the

algorithm, the vector z in Step 2 can be found in strongly polynomial time by Proposition 5.5.

The subsets S + and S − in Step 3 can be determined in strongly polynomial time by a standard

method using submodular function minimization [14, 35]. �

Remark 5.1. The subsets S + and S − constructed in the Fujishige-type decomposition algo-

rithm have crucial properties that each of S + and S − S − is a z∗-top and z∗-tight set (with

respect to p), where the former property is obvious from (5.17) and the latter property is

shown in the proof of Proposition 5.7. In addition, z∗ is near-uniform on their difference

S 0 = (S − S −) − S +, where S 0 may possibly be empty. It follows from these properties that

an integral vector z = (z+, z0, z−) is a dec-min element of
....

B if and only if z+ is a dec-min

element of
....

B+, z− is a dec-min element of
....

B−, and z0 is a near-uniform element of
....

B0, where

B0 = B′(p0) with p0(X) = p(X ∪S +)− p(S +) for X ⊆ S 0. This fact justifies the recursive calls

in Step 4.

Remark 5.2. Condition (C) in Theorem 2.3 refers to a chain C1 ⊂ C2 ⊂ · · · ⊂ Cℓ to char-

acterize a dec-min element. The subsets S + and S − constructed in the algorithm correspond

to this chain as follows. First note that S + ⊆ S − S −, where equality may occur. As men-

tioned in Remark 5.1, both S + and S − S − are z∗-top and z∗-tight sets, and moreover, z∗ is

near-uniform on their difference S 0 = (S − S −) − S +. Through the recursive calls to S + and

S −, the algorithm constructs, in effect, the chain C1 ⊂ C2 ⊂ · · · ⊂ Cℓ. More precisely, if S +
and S − S − are distinct, they are consecutive members of the chain; otherwise, S + (= S − S −)

is a member of the chain.
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Remark 5.3. The Fujishige-type decomposition algorithm may not find the canonical chain,

in spite of the fact explained in Remark 5.2. In Example 5.1, for instance, we have S = {s1, s2}

and a = ⌊p(S )/|S |⌋ = ⌊5/2⌋ = 2. The element of
....

B satisfying (5.8) in Step 2 is given

(uniquely) by z = (3, 2), for which S + = ∅, S − = ∅, and S 0 = S in Step 3. Thus the

ground-set S is not decomposed at all, which corresponds to a trivial chain consisting of a

single member S . In contrast, as we have seen in Example 5.2, the canonical partition is a

bipartition {S 1, S 2} with S 1 = {s1} and S 2 = {s2}, which corresponds to the canonical chain:

{s1} ⊂ {s1, s2}.

Remark 5.4. We explain here how our Fujishige-type decomposition algorithm is derived

from the framework in [14, Section 8.2] with additional integrality considerations. We apply

the framework to the piecewise-linear function W(x) =
∑

[ϕ(x(s)) : s ∈ S ] defined in (4.3),

where ϕ : R→ R is the piecewise-linear extension (4.2) of ϕ(k) = k2 (k ∈ Z).

The notation of [14, Section 8.2] is as follows. The ground-set is E, and a base-polyhedron

B is described by a submodular function f . For x ∈ B, the smallest x-tight set (with respect

to f ) containing e ∈ E is denoted as dep(x, e). The objective function to be minimized on B

is a separable convex function
∑

e∈E we(x(e)), where each we : R→ R is a real-valued convex

function on R. The left and right derivatives of we at ξ ∈ R are denoted, respectively, by

we
−(ξ) and we

+(ξ). For any η ∈ R, [ie
−(η), ie

+(η)] denotes the set (interval) of minimizers ξ of

function we(ξ) − ηξ. In our problem to minimize W, we have

we(ξ) = ϕ(ξ), ie
−(η) =

⌈
η − 1

2

⌉
, ie

+(η) =

⌊
η + 1

2

⌋
(5.18)

for all e ∈ E.

Step 1 in [14, page 258] says:

Choose η ∈ R such that
∑

e∈E

ie
−(η) ≤ f (E) ≤

∑

e∈E

ie
+(η).

It follows from (5.18) that the choice of η = 2a+1 with a = ⌊ f (E)/|E|⌋ satisfies this condition;

then ie
−(η) = a and ie

+(η) = a + 1. This explains our Step 1 to set a := ⌊p(S )/|S |⌋.

Step 2 in [14, page 258] is a tricky step where the substantial condition (5.8) is hidden.

This step requires to find a base x ∈ B such that, for each s, t ∈ E,

1. if w+s (x(s)) < η and w−t (x(t)) > η, then we have t < dep(x, s),

2. if w+s (x(s)) < η and w−t (x(t)) = η, and t ∈ dep(x, s), then for any α > 0 we have

w−t (x(t) − α) < η, i.e., x(t) = it
−(η),

3. if w+s (x(s)) = η and w−t (x(t)) > η, and t ∈ dep(x, s), then for any α > 0 we have

w+s (x(s) + α) > η, i.e., x(s) = is
+(η).

In our case, B is an integral base-polyhedron, x ∈
....

B, and ws(ξ) = ϕ(ξ), for which w+s (ξ) =

2ξ + 1 and w−s (ξ) = 2ξ − 1 for integer ξ. Under the integrality requirement, the first condition

is replaced by

x(s) < a, x(t) > a + 1 =⇒ x + χs − χt <
....

B. (5.19)

A literal translation of the second condition results in the condition

x(s) < a, x(t) = a + 1, x + χs − χt ∈
....

B =⇒ x(t) = a,
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which should be interpreted as

x(s) < a, x(t) = a + 1 =⇒ x + χs − χt <
....

B. (5.20)

Similarly, the third condition is replaced by

x(s) = a, x(t) > a + 1 =⇒ x + χs − χt <
....

B. (5.21)

The combination of (5.19)–(5.21) is equivalent to

x(s) ≤ a, x(t) ≥ a + 1, x(t) ≥ x(s) + 2 =⇒ x + χs − χt <
....

B,

which coincides with the condition (5.8) in our Step 2.

The remaining steps of our algorithm is a straightforward translation of the corresponding

steps in [14, page 258] with obvious integrality requirements.
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