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The transparence of a laser-driven optical resonator containing an ensemble of cold atoms can have
two distinct, robust states. Atoms in their initially prepared pure state blockade the transmission
by detuning the cavity mode from the laser drive. The interacting system can, however, transition
into an uncoupled state via a non-linear channel opening up in a critical run-away process toward
a transparent bright phase. The experiment enables a time-resolved observation of the dynamical
transmission blockade breakdown phase transition as well as quantification of enhanced fluctuations
in the critical region.

Phase transitions are ubiquitous in macroscopic sys-
tems of interacting particles. The large size of macro-
scopic bodies generically inhibits investigation of the dy-
namics of a phase transition. Mesoscopic systems with
controllable interaction between the particles open a
route to study this fundamental phenomenon in a quan-
titative way. To this end, many-atom cavity QED sys-
tems represent an outstanding platform where the in-
teraction between the components, i.e. atoms and a few
selected modes of the radiation field, is particularly well-
controlled [1]. There are several cavity QED effects that
can be cast into the class of phase transitions. One family
is based on atomic self-organization [2, 3] when an ensem-
ble of atoms in an optical resonator, illuminated by an
external laser drive, can occupy various distinct spatial
configurations depending on the intensity and frequency
fine-tuning of the laser [4–10]. The other family of dy-
namical phase transitions is rooted in optical bistability
[11, 12], which occurs also for few atoms [13–15]. In the
corresponding laser-driven cavity configuration, there are
examples where bistability arises from the collective mo-
tion of an atomic cloud [16] or Bose condensate [17].

The ultimate quantum limit of phase transitions in the
optical bistability configuration is the breakdown of the
photon blockade [18–22]. A cavity mode is driven reso-
nantly by an external laser pump field which is transmit-
ted through the empty cavity. However, when a single
resonant atom is strongly coupled to the cavity mode,
the system goes out of resonance with the pump, due
to the vacuum Rabi splitting [23]. The quantized energy
eigenstates of the coupled system form a very unequally
separated level structure [24], such that the frequency
mismatch of the driving laser with any of the transitions
results in a blockade of the transmission. It has been
shown that the blockade breaks down at very high in-
tensities in the form of a phase transition [25–28]. The
required regime of strong coupling constants is available
only with circuit QED systems [29, 30] using supercon-
ducting artificial atoms coupled to microwave resonators
[31]. In optical resonators, and with a single atom, the
photon blockade breakdown can only be realized far from
the phase transition regime.

In this paper we present a many-atom variant of the

photon-blockade breakdown. It takes place in an optical
cavity with moderate electric dipole coupling to atoms.
The many-atom enhancement leads to a large collective
coupling strength. The transmission of an originally res-
onant laser probe through the cavity can be suppressed
by the frequency shift of the cavity mode due to a collec-
tive dispersive effect of the atoms. This is the mechanism
for the transmission blockade. As the atoms are sitting
in the dark, the blockaded phase protects itself and is ro-
bust. The alternative phase is that the atoms are all in a
state decoupled from the cavity mode, the cavity is filled
with photons and resonant transmission of the drive laser
can be observed. The change between them happens in a
phase transition process which is continuously monitored
by a photodetector at the cavity output. The transition is
incited by fluctuations and driven by positive feedback.
Our experiment enables time-resolved recording of the
evolution of the order parameter during the transition.
Moreover, we report on the observation of thermal pho-
ton fluctuations when the system is in between the two
phases, and we demonstrate that the intensity of fluctu-
ations diverges as a power law when the thermodynamic
limit is approached.

The system and the basics of the transmission blockade
phase transition are schematically represented in Fig. 1.
A single, standing-wave mode of a cavity with frequency,
ωC , and linewidth, κ, is externally driven by coherent
laser light at a frequency, ω. The transmission of the laser
through the cavity exhibits a Lorentzian resonance which
is modified if atoms are present in the cavity. Consider
a number of atoms, N , with electric dipole resonance,
ωA, which is far from the laser frequency, such that the
atomic detuning, ∆A = ω−ωA, satisfies |∆A| � γ, where
γ is the linewidth of the atomic resonance. In this limit,
the atoms act on the light field as a dispersive medium.
Each atom in its electronic ground state, |g〉, shifts the
frequency of the mode by δ · |f(rj)|2 where δ = g2/∆A, g

is the single photon Rabi frequency, g =
√

ωC

2ε0~V deg, and

deg is the atomic dipole moment. The second factor of the
shift is the spatial mode function for atom j = 1 . . .N . As
the mode function, f(r), is real and normalized to have
a maximum of 1, the mode volume is V =

∫
d3r|f(r)|2.

The frequency shift is additive and so the collective effect
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FIG. 1. Schematic representation of the transmission blockade breakdown phase transition. Atoms can be in ‘red’, (a), or
‘green’, (c), states, blocking or permitting the light transmission through the cavity, respectively. In the transition domain,
(b), the atoms are in a mixture of red and green states. Upper level schemes show the cavity mode frequency with respect to
the angular frequency of the pump laser, ω and in panel (d), red and green states are identified with the hyperfine states of
87Rb (only a part of the 52S3/2 ↔ 52P5/2 structure is shown). Far-off-resonance σ−-polarized light provides an excitation path
that assists the atoms’ escape from the blockading state, |g〉, to the F = 1 manifold of the electronic ground state. Atoms are
first weakly excited to an intermediary state, |i〉 = (F,mF ) = (2, 1), before spontaneously decaying to the manifold, which is
optically dark with respect to the cavity mode. The time evolution of the transmitted intensity is plotted in (e), exhibiting
the switch from blockaded to transparent phase around 100 ms after turning on the cavity drive. It is expressed in units of
cavity photon number deduced from the detected photon flux. The transition is accompanied by the increase in cavity field
fluctuations, represented in (f), in terms of thermal photon numbers extracted from the statistics of the transmitted light.

of the atoms gives a diminished transmission

Iout
I0

=
1

(∆C −Nδ)2/κ2 + 1
, (1)

relative to the resonant transmitted intensity of the
empty cavity, I0. For resonant driving, ∆C = ω−ωC = 0,
and a resonance shift much larger than the linewidth,
Nδ � κ, the transmission is suppressed, which is the
blockaded phase. The key variable governing the phase
transition is the effective number of atoms, N , which de-
pends both on the atomic positions and the internal state
of the atoms,

N =

N∑
j=0

|f(rj)|2 · pj . (2)

The internal state is represented by pj , the difference in
probability for the jth atom to occupy the ground or
excited state respectively, Tr{ρ̂ (|g〉〈g| − |e〉〈e|)}, where
|g〉 ↔ |e〉 labels the electric dipole transition coupled
to the cavity mode. This concisely accounts for both
a change in sign of the resonance, −δ, due to popula-
tion inversion and the actual number of atoms coupled
to the mode, as optical pumping into dark states leads
to Tr{ρ̂ (|g〉〈g|+ |e〉〈e|)} 6= 1.

Initially, all of the atoms are prepared in the state |g〉,
such that pj = 1 for all j (Fig. 1a). After the probe

light is turned on however, some light infiltrating into
the cavity leads to a small atomic excitation into |e〉, and
an even smaller component into another state, |i〉 (cf. the
level scheme in Fig. 1d). From this latter state, the atoms
can decay into a state decoupled from the cavity mode
(‘green’ atoms in Fig. 1b). Both of these processes, in
turn, reduce the variable N and thus the collective mode
shift, letting more light enter the cavity. This positive
feedback loop is closed, causing a system runaway into
the fully transparent state (Fig. 1c). The occurrence of
the transmission blockade breakdown after a significantly
long time (200 ms� γ−1, κ−1) and its associated dynam-
ics are represented by the transmitted mean intensity in
Fig. 1e.

In our system, we used 87Rb atoms: first captured from
vapour in an ultra-high vacuum chamber and then pre-
cooled in a magneto-optical trap (MOT) above a high
finesse optical resonator. The atoms were further cooled
by polarization gradient cooling to reach typical tempera-
tures of T ∼ 100µK. Following an optical pumping cycle,
the magnetically polarized sample of cold 87Rb atoms in
the (F,mF ) = (2, 2) hyperfine ground state was loaded
into a magnetic quadrupole trap. The magnetic trap cen-
ter was shifted, in a controlled way, to transport the
atoms vertically ∼ 1 cm into the horizontally aligned cav-
ity. The cavity is l = 15 mm long and so has a relatively
large access from the direction transverse to the propa-
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gation axis. The mode waist, w = 127µm, was an order
of magnitude smaller than the size of the atomic cloud
in this direction, placing approximately N ∼ 105 atoms
within the cavity mode volume. The mode linewidth
was measured to be κ = 2π · 3.22 MHz (HWHM),
and the single-atom coupling constant was calculated as
g = 2π · 0.33 MHz on the (F,mF ) = (2, 2) ↔ (3, 3) hy-
perfine transition of the D2 line.

Such conditions were achieved by driving the funda-
mental Gaussian mode of the resonator with an appro-
priate laser through the in-coupling mirror. The driving
laser was locked to an atomic resonance and the resonator
length was actively stabilized to the same atomic refer-
ence line via a transfer cavity at a far-detuned wavelength
(805 nm). Thus the detuning, ∆C , was an actively con-
trolled variable, set on resonance, ∆C = 0, and far below
the F=2 ↔ 3 atomic resonance by ∆A = −2π · 35 MHz.
The single-atom frequency shift was δ ≈ 2π · 3 kHz, thus
an effective number of atoms N ≈ 104 led to a shift of
the mode by more than 10κ away from resonance. The
transmission was blockaded under these conditions.

The magnetic quadrupole trap was centred in the cav-
ity mode, i.e. the mode was situated in the central plane
of the trap where the magnetic field points radially out-
ward from the symmetry axis. The atoms typically re-
volved around the (vertical) symmetry axis at a distance
much larger than the mode waist. Within the cavity mode
therefore, the atoms experienced a magnetic field ori-
ented parallel to the cavity axis. The quantization axis
was thus aligned with the cavity axis, although pointing
in opposite directions within each (longitudinal) half of
the cavity mode. The circularly polarized light injected
into the cavity, σ+, excited the (F,mF ) = (2, 2)↔ (3, 3)
closed-cycle transition with a Clebsch-Gordan coefficient
equal to 1 in one half of the cavity. In the other half
however, the light effectively had a σ− polarization with
respect to the quantisation axis and weakly drove the
(F,mF ) = (2, 2) ↔ (3, 1) transition and, off-resonantly,
the (F,mF ) = (2, 2) ↔ (2, 1) transitions with Clebsch-
Gordan coefficients of 1/15 and 1/3, respectively. This
latter off-resonant excitation (∆′A = 230 MHz) by σ−

light led to optical pumping into the F = 1 manifold of
the electronic ground state, which were dark states for
the cavity field (cf. Fig. 1(d)). As this two-photon tran-
sition involved a virtual excitation of the state |i〉, intra-
cavity intensity was needed. This constituted a non-linear
decay channel for losing atoms from state |g〉, the state
blockading the cavity transmission. Such an effect can
underly the phase-transition-like switch from the ensem-
ble of atoms in the state (F,mF ) = (2, 2) to the state
(F,mF ) = (1,mF ), with mF = 0, 1.

A simple semiclassical model captures the phase transi-
tion dynamics. The usual atom-cavity interaction is com-
plemented by an additional loss process with rate Γ de-
scribing the escape to the dark states by spontaneous
emission from the excited state. The mean-field approx-
imation to the full quantum problem leads to the equa-
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FIG. 2. The time evolution of the intracavity intensity around
the phase transition for both measurement data (solid line)
and the mean-field simulation (dashed line). A selection of ex-
ternal laser drive powers, in units of the corresponding empty
cavity photon number (η/κ)2, are presented, where increasing
drive power leads gradually from a crossover to the transmis-
sion blockade breakdown phase transition. After horizontally
shifting the curves to have a common midpoint, the simplified
model, with a single fitting parameter Γ, simultaneously ac-
counts well for the slope of the transition for all drive powers
(Γ = 0.93 · 10−3γ).

tions

ȧ = (i∆C − κ)a+ gM + η,

Ṁ = (i∆A − γ − Γ)M + g [Ne −Ng] a,
Ṅe = −g [a∗M +M∗a]− 2(γ + Γ)Ne and

Ṅg = g [a∗M +M∗a] + 2γNe ,

(3)

where a is the complex amplitude of the cavity field mode
driven by the effective amplitude, η. Concerning the other
variables, M = N Tr {|g〉〈e|} describes the atomic po-
larization and Ng = N Tr {|g〉〈g|}, Ne = N Tr {|e〉〈e|}
the atomic populations. In this mean-field model the
atoms are assumed to identically couple to the mode
with an average coupling constant. The effective atom
number in the transmission formula of Eq. (1) is then
N = (Ng − Ne)/2, where the factor 1

2 accounts for the
reduction of the average coupling constant compared to
its maximum. On integrating these equations from the
appropriate initial conditions, i.e. cavity vacuum, a = 0,
and all of the atoms in the ground state, Ng = N ,
Ne = M = 0, one can obtain the time evolution of the
transmitted intensity signal, 2κ|a|2, which serves as an
order parameter for the phase transition.

This can be seen in Figure 2, where, focussing on the
transition region, the slow cross-over from the blockaded
transmission to the empty cavity phase (Ng = Ne = 0)
develops into ever faster switching on increasing the laser
drive. Three different drive amplitudes are shown, span-
ning an intensity range of over two orders of magnitude.
For the largest power (blue lines), the mean field solution
is matched to the experimental data by using the escape
rate, Γ, as the only fitting parameter and the number of
atoms set to N = 104. For the same value of the escape
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FIG. 3. Left: The width of the transition as a function of the
laser drive power, highlighting a finite-size feature of the tran-
sition in the transmission blockade breakdown. Right: The
scaling of thermal photon number as a function of transition
width, where the latter indicates distance from the thermo-
dynamic limit. The fitted power law suggests an exponent of
−1.9± 0.1.

rate, Γ = 0.93 · 10−3γ, the slope of the transition around
the midpoint exhibits good agreement between measure-
ment and simulation simultaneously for the other two
drive powers. Suggesting that the essence of the phase
transition dynamics is well captured by Eqs. (3).

With increasing laser drive power the transition hap-
pens more quickly, as plotted in Fig. 3. Here, the transi-
tion width was defined as the time taken for the trans-
mitted intensity to rise from 10% to 90% of the resonant
empty cavity transmission (cf. the shaded region of the
sample trajectory in Fig. 1(e)). In order to approach the
thermodynamic limit, the enhanced drive power should
be accompanied by increasing the number of atoms so
that the collective dispersive effect counteracts the larger
incoming light intensity. On doing this scaling, the transi-
tion tends to an instantaneous change. In our experiment
the atom number is not varied, however, the transition
width can be operationally used as a measure for how far
the system is from the thermodynamic limit.

Our experiment reveals a generic feature of phase tran-
sitions beyond the mean-field level, i.e. the emergence of
enhanced fluctuations in the course of the transition [32].
The intensity of cavity field fluctuations was extracted
from the running variance of the recorded transmission
signal with 500 µs time resolution [33]. The variance can
be connected to the g(2) intensity correlation function
of the single-mode field [34–36] which expresses the en-
hancement of the cavity field fluctuations with respect
to the Poissonian statistics. As can be seen in Fig. 1(f),
the cavity photon fluctuations exhibit a sharp peak in
the time evolution, just at the moment where the order
parameter transitions from the blockaded phase. This ex-
cess noise can be expressed in terms of a thermal pho-
ton number by using the ansatz for the state of the
cavity mode that it is a statistical mixture of coher-

ent states with a Gaussian distribution, Pth,disp(α) =
1

πnth
exp

(
−|α− β|2/nth

)
. This is the P -function of a dis-

placed thermal state, with mean field denoted by the
complex amplitude β and where the distribution width,
nth, can be interpreted as the number of thermally dis-
tributed photons. For this mixed state, the intensity cor-

relation function obeys g(2)(0) = 2 − |β|4
(nth+|β|2)2 . This

value lies between 1 and 2 for a coherent (nth = 0) and
thermal (β = 0) state, respectively. In the course of the
transition, the mean-field amplitude evolves from β = 0
to β = η/κ, as shown in Fig. 1(e). The width of the dis-
tribution, nth, also changes during the transition, and its
time resolved evolution was derived from the measured
data, as exemplified in Fig. 1(f).

The thermal noise is related to the internal dynamics
of the atoms and its description is beyond the scope of
our mean-field model (3). In the blockaded regime the
transmitted field must be close to a vacuum state. In
the transparent phase the transmitted field statistics is
expected to retain the Poissonian statistics of the laser
source. In between, when the atoms are partially excited,
the atomic state can be a statistical mixture of states |g〉
and |e〉, which is encoded via the distribution of the prob-
abilities, pj , in the effective atom number, N , in Eq. (2).
This mixture amounts to additional statistical features
in the detected field above the Poissonian noise.

Finally, we show that the fluctuations generated in the
transition increase as a power law as the thermodynamic
limit is approached. In Figure 3, the integrated thermal
photon number, nth, is plotted as a function of the tran-
sition width in a log-log scale together with a power law
fit. This function represents a finite-size scaling. Theoret-
ical confirmation of the measured exponent, −1.9 ± 0.1,
requires more involved modelling. Nevertheless, the good
agreement with the fit over two orders of magnitude con-
firms a characteristic feature of phase transitions, i.e. the
power law divergence of the fluctuations as the thermo-
dynamic limit is approached. We can conclude that the
experimentally observed breakdown of the transmission
blockade corresponds to a finite-size realization of a gen-
uine phase transition.
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