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Non-differentiable potentials, such as the V -shaped (linear) potential, appear in various areas
of physics. For example, the effective action for branons in the framework of the brane world
scenario contains a Liouville-type interaction, i.e., an exponential of the V -shaped function. Another
example is coming from particle physics when the standard model Higgs potential is replaced by
a periodic self-interaction of an N-component scalar field which depends on the length, thus it is
O(N) symmetric. We first compare classical and quantum dynamics near non-analytic points and
discuss in this context the role of quantum fluctuations. We then study the renormalisation of
such potentials, focusing on the Exact Wilsonian Renormalisation approach, and we discuss how
quantum fluctuations smoothen the bare singularity of the potential. Applications of these results to
the non-differentiable effective branon potential and to the O(N) models when the spatial dimension
is varied and to the O(N) extension of the sine-Gordon model in (1+1) dimensions are presented.
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I. INTRODUCTION

Non-differentiable potentials appear in various areas
of physics. In classical physics they can emerge from the
occurrence of particular constraints in certain points of
the space and are typically associated to the presence
of discontinuous forces. The latter are in turn associ-
ated to non-analytic points of the potential energy V ,
an example being a potential of the form V (x) ∝ |x|,
where the discontinuity takes place in x = 0. Since the
quantum properties of the models with such potential
can be studied by Renormalisation Group (RG) relating
via the flow equations their properties at different length
scales, a natural question is to study how these poten-
tials are renormalized and how in the flow equations the
non-analytic behaviour is evolving.

As a first motivation for the study of their quantiza-
tion and their properties in the context of RG, we observe
that in the framework of models of large extra dimen-
sions, in particular in the so-called brane world scenario
(BWS), elementary particles except for the graviton are
localized on (3+1)-dimensional branes. Although exper-
imental tests from the Large Hadron Collider severely
constrain theories of large extra dimensions, the BWS
served as one of the simplest extensions of the Stan-
dard Model. The brane fluctuations of the BWS in a

5th dimensional bulk lead to a low energy effective four-
dimensional theory, where branons (representing quanta
of the brane fluctuations) are described by a scalar field
living on a flat brane (for references on branon studies see
e.g., [1–7]). Assuming the brane centered on a Randall-
Sundrum [8] warp factor, the effective branon theory in
(3+1) dimensions involves then the absolute value of the
branon field, leading to a non-differentiable potential and
wave function renormalization,

SBranon =

∫
d4x

(
e−2a|φ|

2
∂µφ∂µφ− f4e−4a|φ|

)
, (1)

where the Liouville-type terms in the potential and in the
wave function renormalization depend on the absolute
value of the scalar field, i.e., it is non-differentiable, as
further discussed in Appendix A.

Another major example for non-differentiable poten-
tials is coming from particle physics when the standard
model quartic and quadratic Higgs potential is replaced
by a periodic one, with the Higgs part given by the fol-
lowing Euclidean action [9, 10]:

SHiggs =

∫
d4x

(1

2
∂µφ∂µφ + u cos(β

√
φ · φ)

)
(2)

where φ(x) is an N -component scalar field, see Ap-
pendix B.

A third example is a non-differentiable potential of the
form

V (φ) = V0

(
1− [A+ θ(φ− φ0)∆A](φ− φ0)

)
, (3)
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used in an inflationary scenario [11, 12], where the field
φ sees a discontinuous slope at φ0, in order to obtain a
better data fit to the power spectrum for density pertur-
bations during inflation.

These examples show how discontinuities can emerge
in different effective models, and we note that we con-
sider here interactions which are not differentiable in the
field, unlike involving a background field which is not dif-
ferentiable with respect to space time coordinates [13].

Exact solutions of the one-dimensional Schrödinger
equation with non-differentiable linear V -shaped poten-
tial V (x) = u|x|, and exponential potentials of the
form V (x) = −g2 exp(−|x|) or V (x) = g2 exp(2|x|),
have already been discussed in literature, see [14] and
[15, 16], respectively. The exponential potentials are
simplified ”toy” versions of the more general branon ac-
tion discussed above. The exact solutions for these non-
relativistic, non-differentiable potentials suggest that
their non-differentiable nature makes no difficulties if one
considers their quantised theory compared to the classi-
cal description. However, interesting questions are re-
lated to show whether one might expect a similar result
for higher dimensions (d > 1), if one considers the quan-
tum theory corresponding to these non-analytic poten-
tials; and whether their non-differentiable nature could
create any difficulties in their renormalization. To answer
these questions is the main goal of the present paper.
One can expect on general ground that quantum fluc-
tuations may provide a mechanism to soften/round the
non-analyticities present in the bare models. We plan to
use a variety of methods, including renormalization group
based calculations, to clarify qualitatively and quantita-
tively such point.

To present a defined path for a clear formulation of the
problem, we first illustratively give a hint of the classi-
cal dynamics around non-analytic point and discuss how
the dynamics of a wave function is modified in the quan-
tum case. This will give an hint on the understanding
of how quantum fluctuations smoothen the behaviour of
a system near such non-analytic points, a result that we
confirm via RG techniques extending it to O(N) field the-
ories. The advantage of the RG formulation we are going
to present is that one can then study different dimensions
within a single formalism.

As a further application of the present formalism, we
will study periodic extension of O(N) models. It is well
known that for N = 1 the non-differentiable periodic
model (2), known as the sine-Gordon model, has a topo-
logical phase transition. We will study the phase struc-
ture of (2) for N > 1 and compare the obtained results
with large-N findings.

Summarizing, our goal in this work is two-fold: from
one side we aim at studying whether the non-analitycal
behavior of the potential such as the one in (1) con-
flicts with its quantisation and renormalization; from the
other, we investigate whether O(N) sine-Gordon has a
topological phase transition for N > 1.

II. NON-ANALYTIC POTENTIALS IN
CLASSICAL MECHANICS

Let us first discuss the physics of non-differential po-
tentials in the framework of classical (non-relativistic and
not quantised) mechanics. We consider two different non-
differentiable potentials in d = 1 dimensions:

V 1(x) = u|x|, (4)

V 2(x) = u exp(a|x|). (5)

In particular we are interested in the solution of the equa-
tion of motion for the potentials (4) and (5). In order to
investigate the impact of the non-differentiable nature of
the potential in x = 0 on the classical solution one can
use its regularised form. This can be achieved by intro-
ducing a regularised form of the potentials, such as

V 1
reg(x) = u

√
r2 + x2, (6)

V 2
reg(x) = u exp(a

√
r2 + x2). (7)

which are differentiable in x = 0, with the limit r → 0
recovering the original potentials (4) and (5).

If one considers the classical motion of a ball with a
finite radius R in the regularised (1-dimensional) poten-
tial (6) with u = 1 one finds two different cases with two
different type of motions. For large values of r, when
r/R � 1, the ball can smoothly roll or slide over to the
other side of the potential, since the largest radius of cur-
vature is r at x = 0. In this case the ball oscillates on
both sides of the potential hill, see the top panel of Fig. 1.
When r/R � 1 the ball cannot smoothly roll or slide
over to the other side, and a different motion occurs. For
example considering the potential as a hard surface in a
constant gravitational field, the ball might bounce up, see
the bottom panel of Fig. 1. Thus, the non-differentiable
nature of the potential does matter for extended objects
and in this case the limit r → 0 is non-analytic. However,
if one considers the force derived from the regularised po-
tential acting on a point-like particle, the limit r → 0 is
analytic and one finds oscillating motion on both sides
even for r = 0.

One can think of many ways to regularize a non-
analytic potential other than the examples presented in
Eq. (6) and (7). One of the possibilities is to simply re-
place the original non-analytic potential in an interval
(−r, r) around the point of non-analycity with a differ-
entiable function f(x), while outside this interval the po-
tential remains unchanged. Here we give two examples
of this kind of regularization in the case of a one dimen-
sional u|x| type potential.

Similar to the initial potential we require f(x) to be
an even function f(−x) = f(x). For the regularized po-
tential to be continuous and differentiable the relations
f(r) = V (r), f ′(r) = V ′(r) must hold as well. The sim-
plest function which can fulfill all the given requirements
is a quadratic polynomial, thus the regularized potential
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FIG. 1: Classical motion of a ball with a finite radius R in the
regularized potential (6) with u = 1, which is characterized
by the radius of curvature r at x = 0, visualized by the dotted
osculating circle. The motion of the ball depends on the ratio
r/R. If r/R� 1, then the ball can smoothly roll to the other
side (top panel), while if r/R� 1, then it hits the other side
of the potential (considering it as a hard surface) and might
bounce up (bottom panel).

takes the form

V 3(x) =

{
u|x|, |x| ≥ r
u
2rx

2 + ur
2 , |x| < r .

(8)

This model essentially interpolates between the non-
analytic linear potential and the potential of a harmonic
oscillator.

With this regularization method it is also possible to
require the continuity of higher order derivatives using
higher order polynomials. In the case of the linear type
potential the higher order derivatives are continuous (up
to the second order) if the replacement function is a quar-
tic polynomial

V 4(x) =

{
u|x|, |x| ≥ r
−u
8r3x

4 + 3u
4r x

2 + 3ur
8 , |x| < r .

(9)

In the next section we study these potentials and ob-
serve how quantum physics modifies the classical results.

III. NON-ANALYTIC POTENTIALS IN
QUANTUM MECHANICS

As a next step one should consider the quantum ver-
sion of the 1-dimensional problems considered in the pre-
vious Section. Let us note, that in d = 1 dimensions
the quantum field theory for a single scalar field reduces

to a simple 1-dimensional quantum mechanical problem,
since the field variable can be replaced by the position
of a particle φ → x. It can be shown that due to the
fact that the potential is non-differentiable only at a sin-
gle point (at x = 0), its quantum theory does not suffer
from the non-analytic behaviour of the potential. Thus,
the non-differentiable nature of the potential does not
matter in the quantum theory if it is non-differentiable
only at a single point. We want also to discuss if and how
the classical regimes represented in Fig. 1 are present in
the quantum case. We will also discuss the ground state
energy of the quantum mechanical problem, and simi-
lar to the classical case, see whether the limit r → 0 is
non-analytic.

For this reason let us examine the eigeinvalues and
eigenvectors of the one-dimensional Hamiltonian defined
as

H = − d2

dx2
+ V (x) (10)

omitting the prefactor of the derivative for simplicity
(h̄ = m = 1). For both potentials (4), (5) there are
analytic solutions. To deal with the absolute value the
parameter space is restricted to x ≥ 0. The potentials
have Z2 symmetry therefore the solutions must have even
or odd parity with either ψ(x = 0) = 0 or ψ′(x = 0) = 0.
Using these conditions one can extend the solutions for
the negative region.

The eigenvector for the linear potential can be de-
scribed by the Airy function ψ ∝ Ai[u1/3(x−E/u)] [14].
The energy spectrum is determined by the zeros of the
Airy function and the zeros of its first derivative, thus the
ground state energy is E0 ≈ 1.019u2/3. The eigenvector
for the exponential potential (5) can be constructed with
Bessel functions [16], and the energy state is, again, given
by the zeros of the Bessel function and the zeros of its
derivative. Therefore the ground state for a = 2 (and for
u = 1) is approximately E0 ≈ 3.676.

Now the question is whether the regularized potentials
(6), (7) and (8), (9) recover the above analytic solutions
in the r → 0 limit. Fig. 2 shows the numerical solution
for the regularized potentials (6) and (7). As r increases
the ground state energy as a function of r tends to a
linear or exponential function respectively, which follows
from examining the minimum value of the potentials. It
is also clear that in the r → 0 the ground state energy
is recovered continuously. Similarly, Fig. 3 shows the nu-
merical solution for the regularized potentials (8) and
(9). As expected for the linear potential regularized with
a quadratic function (8), the ground state energy of the
model interpolates between the ground state energy of
the non-analytic linear potential and the potential of a
harmonic oscillator. As Fig. 3 shows, in the r → 0 limit,
the result obtained from the analytic solution for the lin-
ear potential is recovered, while for r � 1 the result is
a close approximation of a harmonic oscillator, since the
|x| ≥ r region can be neglected. Fig. 3 also shows that the
requirement of the continuity of higher order derivatives,
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FIG. 2: Dependence of the ground state energy E0 on the
regularization parameter r calculated for the quantum me-
chanical system with linear potential (6) with u = 1 (top)
and exponential potential (7) with a = 2 and u = 1 (bot-
tom). The dotted lines indicate the results obtained from the
analytic solutions for the original (r → 0) potentials (4) and
(5).

which is achieved by the regularization of the linear po-
tential with a quartic function (9), only slightly modifies
the results. Importantly, in all cases the known solu-
tion in the r → 0 limit is continuously recovered, thus
the limit is indeed analytic.

Let us also examine the dynamics of this quantum me-
chanical problem, solving the Schrödinger equation

i∂tψ(x, t) = Hψ(x, t), (11)

where the Hamiltonian is given by (10). The question
is what happens to a Gaussian wave packet in a non-
differentiable, V shaped potential (4). The initial condi-
tion for the wave packet is given as

ψ(x, 0) =
1

(2πσ2
0)4

exp

[
− (x− x0)2

4σ2
0

]
. (12)

In order to solve (11), one can as usual expand the initial
Gaussian wave packet (12) in terms of the eigenfunctions
φn of the Hamiltonian by calculating the overlaps as

ψ(x, 0) =
∑
n

cnφn(x), cn =

∫
dxψ∗(x, 0)φn(x). (13)

As discussed above, in the case of a linear potential the
eigenfunctions are Airy functions, thus for the potential
(4) we have

φn = An sign(x)n+1Ai
[
u1/3(|x|+ En/u)

]
, (14)
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FIG. 3: Dependence of E0 on r calculated for the quantum
mechanical system with linear potential regularized using a
quadratic polynomial (8) with u = 1 (top) and a quartic
polynomial (9) with u = 1 (bottom). The dotted lines in-
dicate the results obtained from the analytic solutions for the
original (r → 0) potential (4).

where An is the normalization factor and En is the en-
ergy spectrum, which as stated before, can determined by
the zeros of the Airy function and its derivative. Then,
applying the time evolution operator e−iHt is straigthfor-
ward, since one has to simply multiply each eigenfunction
with the corresponding factor e−iEnt. This yields the de-
sired solution of the wavefunction at time t,

ψ(x, t) =
∑
n

e−iEntcnφn(x). (15)

To see how this wave packet evolves, the expectation
value of x and x2 is plotted as a function of time in
Fig. 4. The consistency of the solutions has been checked
also by directly solving the Schrödinger equation numer-
ically. As Fig. 4 shows, the wave packet is oscillating
on both the positive and negative region of the poten-
tial. The wavefunction remains smooth and well defined
during its evolution and of course quite different from
the harmonic x2 potential. When comparing Fig. 4 with
Fig. 1, one sees that the dynamics of the wave packet is
clearly more the counterpart of the oscillating dynamics
in the top part of Fig. 1. Since the bouncing dynamics in
the bottom part of Fig. 1 is due to the effect of the sin-
gularity in x = 0 seen by the ball as a wall there present,
we see an example of how the quantum fluctuations pre-
vents the bouncing of the wave packet and the effective
rounding of the effective potential seen by it. Another
way to understand this result is by observing that the
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FIG. 4: Expectation value of x and x2 of a wave packet as
a function of time moving in a V shaped potential (4) with
u = 1. The initial wave packet is Gaussian (12) with x0 = 5
and σ0 = 1 .

motion of the center of motion is given by Ehrenfest’s
theorem, in which the center of mass is the counterpart
of the a point-like particle, being therefore in the situa-
tion r/R� 1 case of the top part of Fig. 1. We conclude
that in quantum mechanics the ground state energy and
the dynamics of a wave packet can be determined for
the studied non-differentiable potentials and the quan-
tum fluctuations effectively smoothen the potential near
the non-analytic point.

One might expect a similar result for higher dimen-
sions (d > 1), i.e., if one considers the quantum theory of
the non-analytic potentials, their non-differentiable na-
ture might not create any difficulties. In other words,
the renormalization group transformations can be per-
formed by for example the grid-method and the single
point where the potential is non-differentiable can be
handled. Our goal in the next sections is to perform
this RG study.

IV. FUNCTIONAL RG EQUATION FOR
SINGLE SCALAR MODELS

A. Differentiability and the Wilsonian effective
potential

We show here that, even for a non-differentiable micro-
scopic potential, the Wilsonian effective potential Veff
should be differentiable. The latter can be defined by in-
tegrating over all Fourier components of the field, except

for the constant mode, which is fixed to some value φ0

eiVVeff (φ0) =

∫
D[φ]eiS[φ] δ

(∫
ddx(φ− φ0)

)
, (16)

where V is the spacetime volume, which needs to be fixed
in order to regularise the path integral. Note the use of
the Minkowski metric, which is essential for the following
argument to be valid.

We write the Dirac distribution as the Fourier trans-
form of an exponential, such that

eiVVeff (φ0) =

∫
D[φ]eiS[φ]

∫
dj eij

∫
ddx(φ−φ0) (17)

=

∫
dj e−ijVφ0 Z[j] ,

where Z[j] is the partition function for the constant
source j. The right-hand side integral is differentiable
in φ0, hence we expect the Wilsonian effective potential
Veff to be differentiable. In the following subsections we
study a specific example which illustrates this feature.

For this we will use the functional RG (FRG), which
is defined with the Euclidean metric, and we focus more
specifically on the Wetterich equation [17–25]. For a sin-
gle scalar field, this equation reads

k∂kΓk[φ] =
1

2
Tr

[
k∂kRk

Γ
(2)
k [φ] +Rk

]
, (18)

where Γk[φ] is the average effective action at the momen-
tum scale k, and Rk is an infrared regulator which freezes
the infrared (IR) modes with momentum smaller than the
scale k. A thorough account of the traditional and cur-
rent applications of functional RG in various fields can
be found in Ref. [26].

In order to solve the previous equation we use the local
potential approximation (LPA), where the ansatz for the
average effective action takes the form

Γk[φ] =

∫
ddx

[
1

2
∂µφ∂

µφ+ Vk(φ)

]
. (19)

and corresponds to the leading order expression for the
action in the gradient expansion. The Wetterich equation
(18) reduces then to a differential equation for the scale
dependent potential Vk(φ)

k∂kVk(φ) =
1

2

∫ ∞
0

ddp

(2π)2

k∂kRk
Rk + p2 + V ′′k

, (20)

where V ′′k = ∂2
φVk. An important comment is the fol-

lowing: the latter equation depends only on the second
field derivative of the running potential, which allows to
consider the singularity |φ|. Indeed,

∂

∂φ

(
Vk(|φ|)

)
= sign(φ)V ′k(|φ|) (21)

∂2

∂φ2

(
Vk(|φ|)

)
= V ′′k (|φ|) ,
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and the equation (20) is not sensitive to the absolute
value of the field. An alternative argument is based on
the regularisation introduced earlier

Vreg,k(φ) ≡ Vk
(√

r2 + φ2
)
, (22)

from which one can note that

lim
r→0

V ′′reg,k(φ) = V ′′k (|φ|) . (23)

Let us demonstrate this general feature on a specific
example. We consider the second derivative of the regu-
larised and original dimensionful exponential potentials

VEXP(φ) = −uk exp(−a|φ|)
VEXP,reg(φ) = −uk exp(−a

√
r2 + φ2) (24)

where the scale dependence is encoded in the amplitude
uk. Important to note that the dimensionful parameter a
is scale-independent in LPA since in this case the wave-
function renormalization z is kept constant and by an
appropriate rescaling of the field φ′ → aφ these two cou-
plings can be related to each other z = 1/a2. The second
derivative of the regularised potential can be taken in the
limit r → 0

V ′′EXP,reg(φ) = −uk
a2φ2

√
r2 + φ2 − r2

(r2 + φ2)3/2
exp(−a

√
r2 + φ2)

lim
r→0

V ′′EXP,reg(φ) = −uka2 exp(−a|φ|), (25)

which is equivalent to the second derivative of the original
non-analytic potential. This indicates that the functional
RG equation (26) is not sensitive to the non-analytic na-
ture of the potential.

Before studying more general non-differentiable poten-
tials and the exact RG flow let us first discuss the lin-
earised RG equations and the existence of topological
phases.

B. Linearised RG and topological phases

One can write eq.(20) as

k∂kVk(φ) = −αdkd
∫ ∞

0

dy
r′ y

d
2 +1

[1 + r] y +
V ′′k
k2

, (26)

with αd = Ωd/(2(2π)d) where Ωd = 2πd/2/Γ(d/2) and
r(y) = R/p2 is the dimensionless regulator with y =
p2/k2 while r′ = dr/dy.

One can also introduce the dimensionless quantities,

φ̃ = k−
d−2
2 φ, Vk(φ) = kdṼk(φ̃) where the corresponding

dimensionless FRG equation reads as(
d− d− 2

2
φ̃∂φ̃ + k∂k

)
Ṽk(φ̃) =

−αd
∫ ∞

0

dy
r′ y

d
2 +1

[1 + r] y + Ṽ ′′k
(27)

which is valid for the scale-dependent dimensionless po-
tential with arbitrary regulator functions. One can apply
further approximations, e.g, the linearisation of the FRG
equation around the Gaussian fixed point where one finds(

d− d− 2

2
φ̃∂φ̃ + k∂k

)
Ṽk(φ̃) ≈ −αd C Ṽ ′′k (φ̃) (28)

where the constant C is usually regulator-dependent (ex-
cept for d = 2 where C = 1 for any choice of the regulator
function). One can use for example the Litim regulator
[27–29] given by

Rk(p2) = (k2 − p2)Θ(k2 − p2) , (29)

where one finds C = 2/d or the sharp-cutoff which gives
C = 1 in arbitrary dimension. In this section we use the
sharp-cutoff regulator function.

Let us first apply the linearised FRG equation (28) for
the sine-Gordon model (B2) in d = 2 dimensions which
has the following potential,

ṼSG(φ) = ũk cos(βφ) (30)

where the dimensionless Fourier amplitude carries the
scale-dependence since in LPA the frequency β does not
depend on the running momentum cutoff k. The reason is
that in LPA the wavefunction renormalization (z) is kept
constant (it is not a running coupling) and this results
in a constant frequency since 1/β2 ≡ z which can be
shown by rescaling the field variable. Let us note, the
field carries no dimensions in d = 2, thus, φ̃ = φ and
consequently β̃ = β. It is clear that the linearised FRG
equation (28) preserves the functional form of the bare
potential (no higher harmonics are generated) and one
finds

(2 + k∂k)ũk cos(βφ) =
1

4π
β2ũk cos(βφ) (31)

and the RG flow equation for the Fourier amplitude reads

k∂kũk = ũk

(
−2 +

1

4π
β2

)
(32)

exhibiting the solution

ũk = ũΛ

(
k

Λ

)−2+ β2

4π

→ β2
c = 8π (33)

where ũΛ is the initial (bare) value of the Fourier am-
plitude at the high energy ultra-violet (UV) cutoff Λ.
Eq. (33) determines the critical frequency β2

c = 8π where
the model undergoes a topological phase transition. The
coupling ũk is irrelevant (decreasing) for β2 > β2

c and
relevant (increasing) for β2 < β2

c .
Now we turn to the non-differential potential (5), more

precisely the one defined in (1)

ṼEXP(φ̃) = −ũk exp(−ãk|φ̃|). (34)
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If one first considers (34) in d = 2 dimensions, similarly
to the SG model, the dimensionless amplitude ũk carries
the scale-dependence and the parameter ak = a does not
depend on the running momentum cutoff k in LPA. In
this case the linearised FRG equation gives,

(2 + k∂k)ũk exp(−a|φ|) = − 1

4π
a2ũk exp(−a|φ|) (35)

and the RG flow equations for φ > 0 and for φ < 0 are
identical and reads

k∂kũk = ũk

(
−2− 1

4π
a2

)
(36)

which clearly shows the absence of any topological phase
transitions (note the sign change compared to the SG
model). It is useful to compare our results with those
obtained for the Liouville model which depends on the
field and not its absolute value which are discussed in [30].
One expects the same findings. Indeed, the linearised
RG flow equation (35) is identical to Eq. (28) of [30] (for
Q2 = 1) and the solution (36) is the same as Eq. (29) of
[30] (for Q2 = 1). Note that the RG flow of the Liouville
model (with or without the absolute value of the field) is
identical to that of the so called sinh-Gordon model, see
[31].

Let us now consider the d 6= 2 case where the linearised
RG equation results in(

d− d− 2

2
φ̃∂φ̃ + k∂k

)
ũk exp(−ãk|φ̃|)

= −αdã2
kũk exp(−ãk|φ̃|) (37)

where a scale-dependent (dimensionless) frequency ãk
should be introduced in order to keep the argument of
the exponential term dimensionless. Thus, one expects
a trivial scaling for the frequency, i.e., ãk ∼ k(d−2)/2.
In order to show this, one has to rewrite Eq. (37) for
φ > 0 and for φ < 0 and simultaneously one should
separate the FRG equations into RG flow equations for
|φ̃| exp(−ãk|φ̃|) and for exp(−ãk|φ̃|),

(d+ k∂k) ũk = −αdã2
kũk

±
(
−d− 2

2
+ k∂k

)
ãk = 0 (38)

where the sign ± of the left hand side of the last equation
depends on whether we consider the case φ > 0 or φ < 0,
nevertheless, this difference does not matter because the
right hand side of this equation is zero. Thus, the RG
flow equations reads as

k∂kũk = ũk
(
−d− αdã2

k

)
,

k∂kãk = d−2
2 ãk → ã2

k = ã2
Λ

(
k
Λ

)d−2
(39)

where the second RG flow equation gives back exactly
the trivial scaling for the dimensionless frequency. We

conclude that the RG study of the non-differentiable Li-
ouville potential is identical to the that of the differen-
tiable one, at least in the linearised regime. It is useful
to rewrite (39) for dimensionfull couplings, uk = kdũk,
a = k2−dãk,

k∂kuk = −kd−2ukαda
2. (40)

Next, we focus on the solution of the linearised RG
equation for a simple example of V ∝ |φ| in order to
confirm, as could be expected, that quantum fluctuations
smoothen the bare potential and leads to a differentiable
Wilsonian effective potential.

C. Smoothening through quantum fluctuations

We give here a simple illustration of how quantum fluc-
tuations smoothen an non-differentiable microscopic po-
tential. We start with the microscopic piecewise linear
potential

V∞(φ) = µd/2+1|φ| , (41)

where µ > 0 is the only bare parameter of the model.
A linear potential does not get quantum corrections, so
that we expect the IR effective potential V0(φ) to be close
to the bare potential (41) for |φ| >> µ, where the singu-
larity is not felt. Hence we consider the natural ansatz,

Vk(φ) = ck + µd/2+1|φ|+ uk exp(−|φ|/µd/2−1) , (42)

where uk is to be determined and ck corresponds to a
redefinition of the origin of energies, for each value of k.

For the sake of simplicity we consider the cut-off func-
tion (29), in which case eq.(20) leads to

k∂kVk =
2αd
d

kd+2

k2 + V ′′k
. (43)

Plugging the ansatz (42) in the latter evolution equation
and ignoring field-independent terms gives

ku′ke
−|φ|/µd/2−1

=
2αd
d
kd
(
− uk
µd−2k2

e−|φ|/µ
d/2−1

+ · · ·
)
,

where dots denote higher orders in the exponential.
Dropping the higher order terms one finds,

ku′k = −2αd
d

(
k

µ

)d−2

uk . (44)

Case d > 2
In this case the solution of the latter equation reads

uk = A exp

(
−2αd(k/µ)d−2

d(d− 2)

)
, (45)
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FIG. 5: Quantum corrections turn the singularity into a
smooth IR potential (d = 4): the V-shaped bare potential
corresponds to k = ∞ and the smooth Wilsonian effective
potential to k = 0. The intermediate running potentials cor-
respond to finite values of k. Note that the latter potentials
are not differentiable, and only the deep IR effective potential
is differentiable.

and the constant A can be determined by imposing the
IR potential V0(φ) to be differentiable and minimum at
φ = 0:

V ′0(0) = ±
(
µd/2+1 − A

µd/2−1

)
= 0 , (46)

where the sign ± depends on which side of 0 the deriva-
tive is taken from. Hence the running average effective
potential is

Vk(φ) = ck + µd/2+1|φ| (47)

+µd exp

(
−2αd(k/µ)d−2

d(d− 2)
− |φ|
µd/2−1

)
,

and indeed corresponds to what is expected - see Fig.(5)
for the case d = 4:

• the ultraviolet limit k → ∞ reproduces the bare
potential;

• the IR limit k → 0 leads a differentiable effective
potential.

We note that Wilsonian renormalisation flows depend
on the blocking procedure, but the IR effective potential
obtained in the limit k → 0 does not. As an illustra-
tion we consider here the alternative Wegner-Houghton
exact Wilsonian renormalisation equation [32], which cor-
responds to the use of a sharp cut-off function, and which
can be used in the local potential approximation. This
equation is, up to field-independent terms,

k∂kUk(φ) = −αdkd ln

(
k2 + U ′′k (φ)

µ2

)
, (48)

and the ansatz (42), followed by the steps described
above, leads to

Uk(φ) = c̃k + µd/2+1|φ| (49)

+µd exp

(
−αd(k/µ)d−2

d− 2
− |φ|
µd/2−1

)
,

where c̃k corresponds to a redefinition of the origin of
the energies. One notes the factor αd instead of 2αd/d
in the running potential (47), which is due to a differ-
ent blocking procedure, but the IR effective potential is
identical to the one obtained with the Wetterich equation
and reads (for c0 = c̃0 = 0)

U0(φ) = V0(φ) = µd/2+1|φ|+µd exp

(
− |φ|
µd/2−1

)
. (50)

Case d = 2
In this case the differential equation (44) leads to

uk = uΛ

(
Λ

k

)1/4π

, (51)

where one recovers the anomalous dimension 1/4π ap-
pearing in Eq. (36) for a = 1.

V. FUNCTIONAL RG EQUATION FOR O(N)
SYMMETRIC SCALAR MODELS

In general the action of a scalar field theory which is
symmetric under the O(N) transformations where the
wave-function renormalization is set to one, takes the
form

SON[φ] =

∫ [
1

2
(∂µφ)2 + VON(φ)

]
(52)

where φ is a vector withN components, and the potential
depends on the magnitude of φ due to the O(N) symme-
try. A new field variable ρ = (1/2)φ2 can be introduced,
and the FRG equation in LPA reads as

k∂kVk = (53)∫
p

k∂kRk
2

(
1

p2 +Rk + V ′k + 2ρV ′′k
+

N − 1

p2 +Rk + V ′k

)
where the prime means taking the derivative with respect
to ρ. Note that one could also rewrite the flow equation
in Eq. (53) in terms of the variable

√
2ρ as it is done

in Ref. [33]. Using the Litim regulator [27–29] the mo-
mentum integral can be evaluated analytically and the
following FRG equation can be derived for the dimen-
sionless potential Ṽk ≡ k−dVk

k∂kṼk = (d− 2)ρṼ ′k − dṼk +
(N − 1)Ad

1 + Ṽ ′k
(54)

+
Ad

1 + Ṽ ′k + 2ρṼ ′′k
,

Ad =
1

2d+1

1

πd/2
1

Γ(d/2)

4

d
,
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where Ṽ ′k = ∂ρṼk and Γ(x) is the gamma function.
Let us now consider the O(N) extension of the poten-

tial (4),

Ṽk(ρ) = ũk
√
ρ (55)

where, in contrast to the N = 1 case, ρ = φ · φ/2 is
now the modulus of N fields. Let us see whether the
FRG approach can be applied and whether the non-
differentiability at ρ = 0 presents a problem. Substi-
tuting this potential into Eq. (54) and neglecting field-
independent terms yields

k∂kũk
√
ρ = −(d/2 + 1)ũk

√
ρ+

(N − 1)Ad
1 + ũk/(2

√
ρ)
. (56)

Since almost every term depends on the field
√
ρ it is

natural to expand this expression in the Taylor series
of
√
ρ. This however, in case of N > 1, generates higher

powers of
√
ρ which should be included in our ansatz (55).

Considering only the first order term, the renormalization
scaling of the only coupling ũk writes as

k∂kũk = −(d/2 + 1)ũk + 2(N − 1)Ad/ũk. (57)

For the dimensionful coupling the expression is simpler,

k∂ku = kd+22(N − 1)Ad/uk, (58)

with the solution,

uk =

√
u2

Λ +
4(N − 1)Ad

d+ 2
(kd+2 − Λd+2), (59)

where the initial condition uk=Λ = uΛ is given. It is clear,
that when k decreases uk decreases as well, however the
running reaches a point at ukc = 0 when it becomes
unstable. This can be avoided using uk=0 = uIR as a
boundary condition. In this case, the coupling has the
following scaling

uk =

√
u2

IR +
4(N − 1)Ad

d+ 2
kd+2, (60)

that can result a vanishing potential at k = 0 if uIR = 0
is chosen.

Thus, in the O(N) extension of the V shaped poten-
tial, in contrast to the N = 1 case, the coupling uk is
running, but in the lowest order approximation, the ini-
tial condition can be chosen such that the potential and
its non-analycitiy vanish. As noted before, the full analy-
sis of this model would require higher order terms of

√
ρ,

which are automatically generated by the RG running.
However, the conclusion can be drawn, namely that the
renormalization of (55) can be performed using the FRG
approach without the need to resort to the regulariza-
tions presented in the potential (6).

Let us now consider the O(N) extension of the SG
model in d = 2 dimensions where topological phase tran-
sition occurs for N = 1.

The question is, again, whether one can apply the
above FRG equation for the potential

Ṽk(ρ) = ũk cos(β
√

2
√
ρ) (61)

which is O(N) symmetric but also non-differentiable at
ρ = 0. In two dimensions the FRG equation for O(N)
models reduces to

k∂kṼk = −2Ṽk +
1

4π

(N − 1)

1 + Ṽ ′k
+

1

4π

1

1 + Ṽ ′k + 2ρṼ ′′k
. (62)

and can be further simplified by linearising it around the
Gaussian fixed point,

k∂kṼk ≈ −2Ṽk −
N − 1

4π
Ṽ ′k −

1

4π
(Ṽ ′k + 2ρṼ ′′k ). (63)

According to our previous arguments namely, if the non-
differentiability appears at a single point (single value
for the field) the application of the usual FRG method is
straightforward. Thus one finds,

k∂kũk cos(β
√

2
√
ρ) ≈ −2ũk cos(β

√
2
√
ρ)

+
N − 1

4π
ũkβ

sin(β
√

2
√
ρ)

√
2
√
ρ

+
1

4π
ũkβ

2 cos(β
√

2
√
ρ), (64)

and substituting back ρ = φ2/2 the FRG equation reads

k∂kũk cos(β
√

φ2) ≈ −2ũk cos(β
√

φ2)

+
N − 1

4π
ũkβ

sin(β
√

φ2)√
φ2

+
1

4π
ũkβ

2 cos(β
√
φ2), (65)

which contains periodic and non-periodic terms. ForN =
1, the non-periodic term vanishes and the flow equation
for the dimensionless Fourier amplitude is

k∂kũk ≈ −2uk +
1

4π
ũkβ

2, (66)

which gives the well-known critical frequency β2
c = 8π of

the single component SG model. This signals the pres-
ence of a topological type (infinite order) phase transi-
tion. For N > 1, let us do the Fourier series of the
non-periodic term keeping only a single mode. One ob-
tains

k∂kũk cos(β
√
φ2) ≈ −2ũk cos(β

√
φ2)

+
N − 1

4π
ũkβ

2Si(2π)

π
cos(β

√
φ2)

+
1

4π
ũkβ

2 cos(β
√
φ2), (67)

where Si(x) is the sine integral. This gives the critical
frequency

β2
c (N) =

8π

1 + (N − 1)Si(2π)/π
(68)

which is a decreasing function of N and runs to zero in
the large N limit. However, using the notation of [34],
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rescaling the field and the frequency as ρ̂ = (φ · φ)/N

and β̂ = β
√
N , one obtains a finite value in the large N

limit,

β̂2
c (N) = Nβ2

c (N)
N→∞−−−−→ 8π2

Si(2π)
≈ 17.72π . (69)

The value determined in [34] is 24π.
To have a better accuracy, the treatment of the non-

periodic term would require a more careful analysis. Non-
periodicity appears due to the fact that the Hessian in
the FRG equation contains derivatives with respect to
the Cartesian components of the field where an expansion
around the field vector φ = (

√
2ρ, 0, · · · , 0) was made to

derive Eq. (54). This is a sensible assumption for critical
points where one expects an O(N) symmetry breaking,
as the expectation value of φ is directed only along a sin-
gle direction, i.e. the first component. This assumption
leads to the anisotropy between massive and Goldstone
modes, which, in turns, causes the periodicity breaking.
A possible solution is to perform the FRG analysis of the
model in a spherical coordinate system, which deserves
further studies.

Finally, we comment about the relation between these
results and the well known Mermin-Wagner-Hohenberg-
Coleman (MWHC) theorem [35–37]: the latter applies
to the O(1) sine-Gordon model, and therefore when one
finds a phase transition in it, one has to conclude that the
transition is displaying spontaneous symmetry breaking
(SSB) of a discrete symmetry (periodicity) not a contin-
uous one, and we know that it is in the BKT class. One
could do a similar argument for the O(N) sine-Gordon
model for any N , so that if one finds a phase transition in
such model for N > 1, one could conclude that the tran-
sition is not a SSB of the continuous O(N) symmetry,
but an SSB of the discrete symmetry, i.e., the periodic-
ity. Indeed, we notice that the MWHC theorem prevents
the SSB of the O(N) symmetry, but not that of period-
icity. One needs then to clarify what universality class
the phase transition belongs to. So, if one can confirm
(possibly by other tools) that at finite N > 1 there is
such a phase transition, it would be extremely interest-
ing to classify what universality it is, what could be a
lattice model realizing it, and what is the fate of such a
transition for large N .

VI. SUMMARY

The main point of this article is to confirm an intuitive
guess: quantum fluctuations smoothen a bare singular-
ity. In quantum mechanics we have seen that the quan-
tisation of a ”regularised singularity” continuously leads
to the result obtained without regularisation, when the
regulator vanishes. In quantum field theory (QFT) we
have seen that the Wilsonian running potential dresses
the ultraviolet singularity along the renormalisation flow,
to lead to a differentiable infrared potential. A more de-
tailed analysis of the O(N) SG model is necessary, but

our results potentially open a new area of studies, allow-
ing the treatment of singularities in a QFT, which could
effectively arise from some high-energy models.

It is worth noting that the smoothing of non-analytic
potentials evidenced in our work appears to be a gen-
eral property of the RG flow. This phenomenon has
been linked to the entropy production that occurs during
the RG flow, which, in turns, can be derived by relating
Eq. (26) to a non-linear advection diffusion process [38],
see also Refs. [39, 40].

We note that the present QFT studies are based on the
Wilsonian quantisation, and that the One-Particle Irre-
ducible (1PI) quantisation of a singular potential might
not be straightforward. Indeed, the usual perturba-
tive expansions featured in the 1PI approach is based
on Gaussian integrals, whereas the V -shaped potential
would introduce error-functions instead, with the exter-
nal source as the argument. A comparison between the
two quantisation approaches would shed new light on the
equivalence between the two effective potentials though,
and is planned for a future work.

Finally, we observe that, since here we considered a
finite number of isolated non-analytic points in which the
singularity takes place, it would interesting to consider
other types of non-differentiable potentials.
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Appendix A: Effective Branon Action

To deal with a specific example of non-differentiable
bare potential, we show here the construction of an ef-
fective description of brane fluctuations, described in the
low energy limit by “branons”, which are particles living
in 3+1 dimensions, and representing quanta of the brane
fluctuations in the 5th dimension.

Let us start with a general setup where a single brane
model in large extra dimensions is considered. The four-
dimensional space-time is embedded in the D = 4 + N
dimensional bulk space. In what follows, the brane co-
ordinates are denoted with the indices µ, ν and the bulk
coordinates with M,N . In this general framework the
coordinates parametrizing the points of in a bulk are de-
noted by XM = (xµ, ym) and the position of the brane
in the bulk is given by XM = (xµ, Y m(x)), so thus
ym = Y m(x). Let us now switch back to the simplest
case, i.e., for N = 1 and consider a 5-dimensional Uni-
verse with generic coordinates XM = (xµ, y), where x
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are the coordinates on the brane, which is defined by the
equation y = Y (x).

Motivated by scenarios involving confinement on the
brane, we consider the following block-diagonal bulk met-
ric

gMN =

(
e2σ(y)ηµν 0

0 −1

)
, (A1)

with the Randall-Sundrum warp factor, defined by

σ(y) = −a|y|, (A2)

where a is a constant. The induced metric hµν on the
brane is

hµν(x) = ∂µX
M∂νX

NgMN (X) = e2σ(Y )ηµν − ∂µY ∂νY,

and, if f4 is the brane tension, the brane action is then

Sbrane = −f4

∫
d4x
√
−h = −f4

∫
d4x e4σ(Y ) (A3)(

1− 1

2
e−2σ(Y )ηµν∂µY ∂νY + · · ·

)
,

where dots represent higher orders in derivatives of Y ,
which will be disregarded in the framework of the gradi-
ent expansion.
The dynamical variable is the canonically normalized
branon field φ = f2Y , with mass dimension 1, and the
classical brane ground state is Y = 0. The resulting ef-
fective action for branons is then

Sbranon =

∫
d4x

(
e2σ(φ)

2
∂µφ∂µφ− f4e4σ(φ)

)
, (A4)

and contains derivative and polynomial interactions. For
the details of the derivation see [5].

Appendix B: Periodic Higgs Potential

In the standard model (SM) of particle physics the un-
derlying symmetry of the electroweak sector is SU(2)L×
U(1)Y and the Higgs Lagrangian reads as

L = (Dµφ)?(Dµφ)− V (φ)− 1
2Tr (FµνF

µν),

Dµ = ∂µ + igT ·Wµ + ig′yjBµ

V = µ2φ?φ+ λ(φ?φ)2,

where the SM Higgs field is an SU(2) complex scalar
doublet with four real components

φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
.

It is interesting to investigate the possibility of a false
vacuum at large Higgs field values which can be realised
by adding new interaction terms to the Lagrangian, such
as λ2(φ?φ)3. In the renormalization group (RG) point

of view the phase structure has not been modified sig-
nificantly if the Higgs potential remains polynomial. In-
stead, a periodic self-interaction, [9, 10],

V = u[cos(β
√
φ?φ)− 1] = −uβ

2

2
|φ?φ|+ uβ4

4
(φ?φ)2 + ...

can influence more drastically the phase structure and
the RG running of the couplings due to the periodicity.
The first two terms of the Taylor expansion reproduce the
SM Higgs potential but periodicity should be protected
by the RG approach, so, no Taylor expansion can be
applied.

Thus, it is worthwhile to study the phase structure of
a periodic potential defined by the following Euclidean
action

S[φ] =

∫
ddx

(1

2
∂µφi∂µφi + u cos(β

√
φ · φ)

)
(B1)

where summations over repeated indexes is intended.
The index i runs over the N component of the field vector
φ(x), while µ is the spatial coordinate index. It is worth
noting that the whole action is O(N) invariant since the
potential part depend only on the O(N) invariant com-
position of the fields φ · φ = φi(x)φi(x).

Its phase structure has already been investigated for
d = 2 dimensions. For N = 1, the scalar model (2)
reduces to the 2-dimensional sine-Gordon (SG) theory

S[φ] =

∫
d2x

(1

2
∂µφ∂µφ+ u cos(βφ)

)
(B2)

where we used the fact that cosine is an even function, so,

its argument
√
φ2 = |φ| can be replaced by φ dropping

its absolute value. In this case the non-analytic nature
plays no role and the 2-dimensional SG model undergoes
a topological phase transition and its two phases are sep-
arated by the critical frequency

β2
N=1 = 8π. (B3)

The O(N) extension of the 2-dimensional SG scalar the-
ory has been investigated in [34] with the following ex-
plicit form,

S[φ] =

∫
d2x

(1

2
∂µφ∂µφ +N

α0

β̂2
cos(β̂

√
ρ̂)
)

(B4)

where ρ̂ = (φ · φ)/N and β̂ = β
√
N . It was argued that

similarly to the N = 1 case, the general N-vector model
has two phases and the critical frequency in the large N
limit (N →∞) reads as

β̂2
N→∞ = 24π. (B5)

However, the complete study of the phase structure of
the general model, which is the O(N) extension of the
usual SG scalar theory is still missing.
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