Miskolc Mathematical Notes

SOME RESULTS ON I-BALLS, RADICALS, SEQUENCES AND TOPOLOGY IN BL-ALGEBRAS

M. H. NASR ESFAHANI, F. KHAKSAR HAGHANI, AND SHAHRAM HEIDARIAN
Received 03 February, 2020

Abstract

In this paper, we obtain some new results on radicals of an ideal in $B L$-algebras. Further, we introduce I-balls in $B L$-algebras and prove that I-balls constitutes a basis for a topology on $B L$-algebras. We also derive some new relations of sequences in $B L$-algebras

2010 Mathematics Subject Classification: 06D99; 06B99; 03G22
Keywords: radical, congruence classes, I-ball, sequence, maximal ideal

1. Introduction

In 1958, C. C. Chang [2] devised the notion of $M V$-algebra in order to provide an algebraic proof of the completeness theorem of Łukasiewicz axioms for infinite valued propositional logic. In 1998, P. Hájek [7] introduced a very general manyvalued logic, called Basic Logic (or BL), with the idea to formalize the many-valued semantics induced by a continuous t-norm on the unit real interval [0, 1]. This Basic Logic turns to be a fragment common to three important many-valued logics: \aleph_{0-} valued Łukasiewicz logic, Gödel logic and Product logic. The Lindenbaum-Tarski algebras for Basic Logic are called $B L$-algebras. Apart from their logical attention, $B L$-algebras have important algebraic properties and they have been hard studied from an algebraic point of view. Some well-known examples of a $B L$-algebra are Łukasiewicz, Gödel and Product structures. These examples are defined by the unit interval [0,1] endowed with the structure induced by a continuous t-norm [7].

In 2013, C. Lele and J. B. Nganou [9], introduced the concept of ideals in $B L$ algebras by generalizing the notion of an ideal in $M V$-algebras and showed that, unlike what is in $M V$-algebras, in $B L$-algebras, the notions of filter and ideal are not dual.
A. Paad in [14], defined the notion of $\operatorname{rad}(I)$ on a $B L$-algebra L, where $\operatorname{rad}(I)$ is the radical of an ideal I of L. G. Georgescu and A. Popescu [6] defined the sequences in $B L$-algebras. C. Luan and Y. Yang in [10] defined the I-balls on $M V$-algebras Also, the same authors, introduce a topology on $M V$-algebras by filters and studied some properties of the filters in $M V$-algebras.

Proved by Höhle [8], a $B L$-algebra becomes an $M V$-algebra if, we adjoin to the axioms the double negation law, $x=x^{* *}$. Thus, a $B L$-algebra is in some intuitive way, a non-double negation $M V$-algebra. Hence the theory of $M V$-algebras, becomes one of the guides to the development of the theory of $B L$-algebras. Therefore, we define the notion of an I-ball on a $B L$-algebra L and derive a topology with respect to I-balls on L. We also obtain some new results of radicals and sequences in $B L$-algebras.

This paper is organized as follows:
In Section 2, we recall some definitions and results related to the $B L$-algebra and operations, which we need for the rest of the paper. In Section 3, we derive some relations on ideals, quotient ideals and $\operatorname{rad}(I)$ on $B L$-algebras. We further define open I-balls and prove that open I-balls constitutes a basis for a topology. In Section 4, we obtain some new results on sequences in $B L$-algebras.

2. Preliminaries

In this section, we recall some definitions and properties of $B L$-algebras which will be used throughout of the paper.

Definition 1 ([7]). An algebraic structure $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ of type $(2,2,2,2,0,0)$ is called a $B L$-algebra, if it satisfies the following conditions for all $x, y, z \in L$:

$$
\begin{aligned}
& B L_{1}:(L, \wedge, \vee, 0,1) \text { is a bounded lattice relative to the order } \leq \text {; } \\
& B L_{2}:(L, \odot, 1) \text { is a commutative monoid; } \\
& B L_{3}: x \odot y \leq z \text { if and only if } x \leq y \rightarrow z ; \\
& B L_{4}: x \wedge y=x \odot(x \rightarrow y) ; \\
& B L_{5}:(x \rightarrow y) \vee(y \rightarrow x)=1
\end{aligned}
$$

By L, we denote the universe of a $B L$-algebra $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ for any $x \in L$ and a natural number n, we define $x^{*}=x \rightarrow 0, x^{n}=x^{n-1} \odot x$, for $n \geq 1, x^{0}=1$. Let $x \in L$, if there is the least integer $n \in \mathbb{N}$ such that $x^{n}=0$. We set $\operatorname{ord}(x)=n$, if there is no such an integer, we set $\operatorname{ord}(x)=\infty$.

A $B L$-algebra L is called $M V$-algebra, if $x^{* *}=x$, for all $x \in L$. Also an element $x \in L$ is called an nilpotent element of L, if $x^{n}=0$, for some $n \in \mathbb{N}$.

A $B L$-algebra L is linear, if for every $x, y \in L, x \leq y$ or $y \leq x$ [3].
An $M V$-algebra L is locally finite iff every element $0 \neq x \in L$ has a finite order, or equivalently, for every $0 \neq x \in L, n x=1$, for some $n \in \mathbb{N}$ [2].

The following properties are well known in $B L$-algebras.
Proposition 1 ([7,15]). Let L be a BL-algebra. For all $x, y, z \in L$, and $n \in \mathbb{N}$, the following statements hold:
(1) $x \odot y \leq z$ iff $x \leq y \rightarrow z$;
(2) $x \odot y \leq x \wedge y \leq x, y$;
(3) $x \leq y$ implies that $x \odot z \leq y \odot z$;
(4) $x \leq y$ iff $x \rightarrow y=1$;
(5) $1 \rightarrow x=x, x \rightarrow x=1, x \leq y \rightarrow x$ and $x \rightarrow 1=1$;
(6) $x \odot x^{*}=0$ and $x \odot 0=0$;
(7) $x \odot y=0$ iff $x \leq y^{*}$;
(8) $1^{*}=0,0^{*}=1, x \leq x^{* *}, x^{*}=x^{* * *}$;
(9) $x \rightarrow(y \rightarrow z)=(x \odot y) \rightarrow z=y \rightarrow(x \rightarrow z)$;
(10) $x \leq y$ implies that $z \rightarrow x \leq z \rightarrow y, y \rightarrow z \leq x \rightarrow z$ and $y^{*} \leq x^{*}$;
(11) $x \vee y=[(x \rightarrow y) \rightarrow y] \wedge[(y \rightarrow x) \rightarrow x]$;
(12) $(x \wedge y)^{* *}=x^{* *} \wedge y^{* *},(x \vee y)^{* *}=x^{* *} \vee y^{* *},(x \odot y)^{* *}=x^{* *} \odot y^{* *}$ and $(x \rightarrow y)^{* *}=x^{* *} \rightarrow y^{* *}$
(13) $\bigvee_{i \in I}\left(y_{i} \rightarrow x\right) \leq\left(\bigwedge_{i \in I} y_{i}\right) \rightarrow x$, where L is complete and $\left\{y_{i}\right\}_{i \in I} \subseteq L ; x \leftrightarrow y=$ $(x \rightarrow y) \wedge(y \rightarrow x)$.

Definition 2 ([4]). Let L be a $B L$-algebra. We define the following operations which is known for any $x, y \in L$:
(i) $x \oplus y=\left(x^{*} \odot y^{*}\right)^{*}$;
(ii) $x \ominus y=x \odot y^{*}$.

From [9], for every $x, y \in L, x \oslash y=x^{*} \rightarrow y$.
Proposition 2 ([9]). In every BL-algebra L, the following statements hold for any $x, y, z, t \in L:$
(i) The operation \oslash is associative;
(ii) $x \leq y$ and $z \leq t$ imply $x \oslash z \leq y \oslash t$.

Lemma 1 ([15]). Let L be a BL-algebra. For all $x, y, z \in L$, if $x \leq y$, then the following hold:
(i) $x \odot z \leq y \odot z$;
(ii) $x \oplus z \leq y \oplus z$;
(iii) $z \ominus y \leq z \ominus x$;
(iv) $z \oslash x \leq z \oslash y$ and $y \oslash z \leq x \oslash z$.

Definition 3 ([9]). Let L be a $B L$-algebra and I be a nonempty subset of L, then I is an ideal of L if it satisfies the following conditions:
(I_{1}) For every $x, y \in I, x \oslash y \in I$;
(I_{2}) For every $x, y \in L$, if $x \leq y$ and $y \in I$, then $x \in I$.
It is trivial to see that for any ideal $I, 0 \in I$ and for every $x \in L, x \in I$ if and only if $x^{* *} \in I$ [9]. A proper ideal I is called a maximal ideal of L, if it is not properly contained in any other ideal of L.

From [5, 15], $B L$-algebras are distributive lattices and a distributive lattice $\langle L, \leq, \wedge, \vee\rangle$ in which for every element $x \in L$ there is an associated element $x^{*} \in L$ such that for every $y \in L,\left(x \wedge x^{*}\right) \vee y=y$ and $\left(x \vee x^{*}\right) \wedge y=y$ is called a Boolean
algebra. The element x^{*} is called the lattice complement of x. The set of all complemented elements of the corresponding distributive lattice to the $B L$-algebra L, is a Boolean algebra and denoted by $B(L)$.

Theorem 1 ([5,7]). Let L be a BL-algebra. Then for $x \in L$, the following statements are equivalent:
(i) $x \in B(L)$;
(ii) $x \odot x=x$ and $x^{* *}=x$;
(iii) $x \odot x=x, x^{*} \rightarrow x=x$;
(iv) $x^{*} \vee x=1$;
(v) $(x \rightarrow y) \rightarrow x=0$, for any $y \in L$.

Theorem 2 ([13]). Let M be a proper ideal of a BL-algebra L. Then the following conditions are equivalent:
(i) M is a maximal ideal of L;
(ii) For all $x \notin M$, there exists $n \in \mathbb{N},\left(x^{*}\right)^{n} \in M$;
(iii) $\frac{L}{M}$ is a locally finite $M V$-algebra.

Definition 4 ([9]). Let I be a proper ideal of a $B L$-algebra L. Then the intersection of all maximal ideals of L that contain I is called the radical of I and is denoted by $\operatorname{rad}(I)$.

From [14], $\operatorname{rad}(I)$ is an ideal of L and $I \subseteq \operatorname{rad}(I)$.
Theorem 3 ([14]). Let L be a BL-algebra and I be a proper ideal of L. Then $\operatorname{rad}(I)=\left\{x \in L \mid\left(x \rightarrow\left(x^{*}\right)^{n}\right)^{*} \in I\right.$, for all $\left.n \in \mathbb{N}\right\}$.

Definition 5 ([14]). An element a of a $B L$-algebra L is called unity if, for all $n \in \mathbb{N}$, $\left(\left(\mathrm{a}^{n}\right)^{*}\right)^{k}=0$, for some $k \in \mathbb{N}$, i.e., $\left(\mathrm{a}^{n}\right)^{*}$ is a nilpotent element of L.

Definition 6 ([7]). Let X and Y be two $B L$-algebras. A map $f: X \longrightarrow Y$ is called a $B L$-homomorphism if, for all $x, y \in X$:
(i) $f(x \odot y)=f(x) \odot f(y)$;
(ii) $f(x \rightarrow y)=f(x) \rightarrow f(y)$;
(iii) $f\left(0_{X}\right)=0_{Y}$.

If $f: X \longrightarrow Y$ is a $B L$-homomorphism, then the kernel of f is the set

$$
\operatorname{ker}(f)=\left\{x \in X \mid f(x)=0_{Y}\right\}
$$

From [9] the following, as immediate consequent of Definition 6, are hold, for all $x, y \in X$:
(i) $f(x \wedge y)=f(x) \wedge f(y)$;
(ii) $f(x \vee y)=f(x) \vee f(y)$;
(iii) $f\left(x^{*}\right)=(f(x))^{*}$;
(iv) $f\left(1_{X}\right)=1_{Y}$;
(v) If $x \leq y$, then $f(x) \leq f(y)$;
(vi) $f(x \oslash y)=f(x) \oslash f(y)$.

Definition 7 ([3]). In a $B L$-algebra L, the distance function $d: L \times L \longrightarrow L$ is defined by $d(x, y)=(x \rightarrow y) \wedge(y \rightarrow x)$, for all $x, y \in L$.

Proposition 3 ([3, 6]). Let L be a BL-algebra. Then the following statements hold:
(i) $d(x, y)=d(y, x)$;
(ii) $d(x, y)=1$ if and only if $x=y$;
(iii) $d(x, 1)=x, d(x, 0)=x^{*}$;
(iv) $d(x, z) \odot d(z, y) \leq d(x, y)$;
(v) $d(x, y) \leq d(x \odot u, y \odot u)$;
(vi) $d(x, u) \odot d(y, v) \leq d(y \rightarrow x, v \rightarrow u)$;
(vii) $d(x, u) \wedge d(y, v) \leq d(x \wedge y, u \wedge v)$;
(viii) $d(x, u) \wedge d(y, v) \leq d(x \vee y, u \vee v)$;
(ix) $d(x, y) \leq d\left(x^{*}, y^{*}\right)$.

Definition 8 ([3]). Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in a $B L$-algebra L. If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is increasing, we denote $\left(x_{n}\right)_{n \in \mathbb{N}} \uparrow$. Similarly, if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is decreasing, we denote $\left(x_{n}\right)_{n \in \mathbb{N}} \downarrow$. If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is increasing, $\bigwedge x_{n}$ exists and $\bigwedge x_{n}=x$, we denote $\left(x_{n}\right)_{n \in \mathbb{N}} \uparrow x$. Similarly, if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is decreasing, $\bigvee_{n}^{n} x_{n}$ exists and $\bigvee_{n}^{n} x_{n}=x$, we denote $\left(x_{n}\right)_{n \in \mathbb{N}} \downarrow x$.

Definition 9 ([3]). Let L be a $B L$-algebra and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in L. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to $x \in L$, if there exists a sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ in L such that $\left(s_{n}\right)_{n \in \mathbb{N}} \uparrow 1$ and $d\left(x_{n}, x\right) \geq s_{n}$ for all $n \in \mathbb{N}$, which we denote by $x_{n} \rightarrow_{s} x$.

Definition 10 ([3]). A $B L$-algebra L is called special if, $(x \rightarrow y)^{*}=(y \rightarrow x)^{*}$, for all $x, y \in L$.

We denote a special $B L$-algebra L by L^{*}.
Proposition 4 ([11]). For a BL-algebra L, the following conditions are equivalent:
(i) L is a special BL-algebra;
(ii) $x^{*}=0$, for any $0 \neq x \in L$.

Note that if I is an ideal of a special $B L$-algebra L, then $\frac{L}{I}$ is a special $B L$-algebra.

3. SOME RESULTS ON RADICALS AND TOPOLOGY ON $B L$-ALGEBRAS

In this section, we obtain some new results on radical of an ideal of a $B L$-algebra L. We also define the open I-balls on L and prove that these open I-balls constitute a basis for a topology on L.

Lemma 2. Let L be a BL-algebra. Then for all $x, y, z \in L$, the following hold:
(i) $x \oslash(y \oslash z)=(x \oplus y) \oslash z$;
(ii) $x \ominus(y \oplus z)=(x \ominus y) \ominus z$;
(iii) $x \oslash(y \oslash z)=y \oslash(x \oslash z)$;
(iv) $x \oslash(y \odot z) \leq(x \oslash y) \oslash z$.

Proof. Let $x, y, z \in L$, then by Definition 2 and Proposition 1, we conclude:
$(i) x \oslash(y \oslash z)=x^{*} \rightarrow(y \oslash z)=x^{*} \rightarrow\left(y^{*} \rightarrow z\right)=\left(x^{*} \odot y^{*}\right) \rightarrow z=\left(x^{* * *} \odot y^{* * *}\right) \rightarrow$ z. By Proposition 1, (12), we have, $\left(x^{* * *} \odot y^{* * *}\right) \rightarrow z=\left(x^{*} \odot y^{*}\right)^{* *} \rightarrow z=$ $\left(x^{*} \odot y^{*}\right)^{*} \oslash z=(x \oplus y) \oslash z$.
(ii) $x \ominus(y \oplus z)=x \odot(y \oplus z)^{*}=x \odot\left(y^{*} \odot z^{*}\right)=\left(x \odot y^{*}\right) \odot z^{*}=\left(x \odot y^{*}\right) \ominus z=$ $(x \ominus y) \ominus z$.
(iii) $x \oslash(y \oslash z)=x \oslash\left(y^{*} \rightarrow z\right)=x^{*} \rightarrow\left(y^{*} \rightarrow z\right)$. By Proposition 1, (9), $x^{*} \rightarrow\left(y^{*} \rightarrow z\right)=y^{*} \rightarrow\left(x^{*} \rightarrow z\right)=y \oslash\left(x^{*} \rightarrow z\right)=y \oslash(x \oslash z)$.
(iv) By applying $B L_{3}$, we have, $0=z \odot 0=z \odot\left(y \odot y^{*}\right)=(y \odot z) \odot y^{*} \leq z$ if and only if $y \odot z \leq y^{*} \rightarrow z=y \oslash z$, therefore, $x \oslash(y \odot z) \leq x \oslash(y \oslash z)=(x \oslash y) \oslash z$.

Lemma 3. Let L be a BL-algebra and $x, y \in L$. Then, the following conditions are equivalent:
(i) $x^{*} \oplus y=1$;
(ii) $x \ominus y=0$;
(iii) $x \leq y^{* *}$.

Proof. $(i) \Rightarrow(i i)$ By Definition 2, $1=x^{*} \oplus y=\left(x^{* *} \odot y^{*}\right)^{*}=\left(x^{* *} \odot y^{* * *}\right)^{*}=$ $\left(x \odot y^{*}\right)^{* * *}=\left(x \odot y^{*}\right)^{*}$. This means that $x \odot y^{*}=0$, i.e., $x \ominus y=0$.
(ii) \Rightarrow (iii) Suppose $x \ominus y=0$. Thus $x \odot y^{*}=0$, i.e., $x \leq y^{* *}$.
(iii) $\Rightarrow(i)$ Since $x \leq y^{* *}$, so $y^{* * *} \leq x^{*}$, i.e., $y^{*} \leq x^{*}$. This means that $y^{*} \odot x=0$. By Proposition 1, $\left(y^{*} \odot x\right)^{*}=\left(y^{*} \odot x\right)^{* * *}=\left(y^{* * *} \odot x^{* *}\right)^{*}=\left(y^{*} \odot x^{* *}\right)^{*}=1$, therefore $x^{*} \oplus y=1$.

Corollary 1. Let L be a BL-algebra and $x, y, z \in L$. If $x \ominus y \leq z$, then $x \leq y \oslash z$.
Proof. $x \ominus y \leq z$ iff $x \odot y^{*} \leq z$ iff $x \leq y^{*} \rightarrow z$, which is equivalent to $x \leq y \oslash z$.
Theorem 4. Let I and K be two ideals of a $B L$-algebra L such that $K \subseteq I$. Then $\frac{I}{K}$ is a proper ideal of $\frac{L}{K}$ if and only if $\operatorname{rad}\left(\frac{I}{K}\right)$ is a proper ideal of $\frac{L}{K}$.

Proof. Let $\frac{I}{K}$ be a proper ideal of $\frac{L}{K}$ and $\operatorname{rad}\left(\frac{I}{K}\right)$ is not a proper ideal, then $\operatorname{rad}\left(\frac{I}{K}\right)=$ $\frac{L}{K}$, i.e., $\bigcap_{\frac{M}{K} \in \operatorname{Max}\left(\frac{L}{K}\right)} \frac{M}{K}=\frac{L}{K}$, such that $\frac{I}{K} \subseteq \frac{M}{K}$ and $\operatorname{Max}\left(\frac{L}{K}\right)$ is the set of all maximal ideals of $\frac{L}{K}$, this means that $\frac{M}{K}=\frac{L}{K}$ and $\operatorname{rad}\left(\frac{I}{K}\right)=\frac{I}{K}$, therefore $\frac{L}{K}=\frac{I}{K}$, which is a contradiction.

Conversely, let $\operatorname{rad}\left(\frac{I}{K}\right)$ be a proper ideal of $\frac{L}{K}$. Then $\frac{y}{K} \notin \operatorname{rad}\left(\frac{I}{K}\right)$, for some $\frac{y}{K} \in \frac{L}{K}$. There exists a maximal ideal $\frac{M}{K}$ such that $\frac{I}{K} \subseteq \frac{M}{K}$ with $\frac{y}{K} \notin \frac{M}{K}$. We suppose that $\frac{I}{K}$ is not proper, then $\frac{I}{K}=\frac{L}{K}$, i.e., for all $\frac{x}{K} \in \frac{L}{K}$. Since $\frac{I}{K} \subseteq \frac{M}{K}$, so $\frac{x}{K} \in \frac{M}{K}$ for all $\frac{x}{K} \in \frac{L}{K}$. Therefore, $\frac{y}{K} \in \frac{M}{K}$, which is a contradiction.

Theorem 5. Let I, J and K be proper ideals of a BL-algebra L such that $K \subseteq I$, $K \subseteq J$. Then the following assertions hold:
(i) If for all $x \in L, x^{*}=1$, then $\operatorname{rad}(I)=L$;
(ii) If $\frac{I}{K} \subseteq \frac{J}{K}$, then $\operatorname{rad}\left(\frac{I}{K}\right) \subseteq \operatorname{rad}\left(\frac{J}{K}\right)$;
(iii) $\operatorname{rad}\left(\frac{I}{K}\right)=\frac{L}{K}$ if and only if $\frac{I}{K}=\frac{L}{K}$;
(iv) $\operatorname{rad}\left(\operatorname{rad}\left(\frac{I}{K}\right)\right)=\operatorname{rad}\left(\frac{I}{K}\right)$.

Proof. (i) Let for all $x \in L, x^{*}=1$, then $\left(x \rightarrow\left(x^{*}\right)^{n}\right)^{*}=(x \rightarrow 1)^{*}=1^{*}=0 \in I$. So by Theorem $3, x \in \operatorname{rad}(I)$. Then $L \subseteq \operatorname{rad}(I)$. Thus $\operatorname{rad}(I)=L$.
(ii) If $\frac{I}{K} \subseteq \frac{J}{K}$ and $\frac{x}{K} \in \operatorname{rad}\left(\frac{I}{K}\right)$, then by Theorem $3,\left(\frac{x}{K} \rightarrow\left(\frac{x}{K}\right)^{n}\right)^{*} \in \frac{I}{K} \subseteq \frac{J}{K}$, for all $n \in \mathbb{N}$, i.e., $\frac{x}{K} \in \operatorname{rad}\left(\frac{J}{K}\right)$. Hence $\operatorname{rad}\left(\frac{I}{K}\right) \subseteq \operatorname{rad}\left(\frac{J}{K}\right)$.
(iii) Suppose $\operatorname{rad}\left(\frac{I}{K}\right)=\frac{L}{K}$. Since $\frac{0}{K} \in \frac{L}{K}$, so $\frac{0}{K} \in \operatorname{rad}\left(\frac{I}{K}\right)$ and by Theorem 3, $\frac{0}{K} \rightarrow\left(\left(\left(\frac{0}{K}\right)^{*}\right)^{n}\right)^{*} \in \frac{I}{K}$ for all $n \in \mathbb{N}$. We conclude $\left(\frac{0}{K} \rightarrow \frac{1}{K}\right)^{*} \in \frac{I}{K}$, i.e., $\left(\frac{1}{K}\right)^{*} \in \frac{I}{K}$ and $\frac{0}{K} \in \frac{I}{K}$, therefore, $\frac{I}{K}=\frac{L}{K}$.

Conversely, let $\frac{I}{K}=\frac{L}{K}$. Since $\frac{I}{K} \subseteq \frac{M}{K}$, so we have, $\operatorname{rad}\left(\frac{I}{K}\right)=\bigcap_{\frac{M}{K} \in \operatorname{Max}\left(\frac{L}{K}\right)} \frac{M}{K}=\frac{L}{K}$.
(iv) By (ii) and the fact $\frac{I}{K} \subseteq \operatorname{rad}\left(\frac{I}{K}\right)$, we conclude, $\operatorname{rad}\left(\frac{I}{K}\right) \subseteq \operatorname{rad}\left(\operatorname{rad}\left(\frac{I}{K}\right)\right)$.

Conversely, let $\frac{x}{K} \in \operatorname{rad}\left(\operatorname{rad}\left(\frac{I}{K}\right)\right)$, then $\frac{x}{K} \in \frac{M}{K}$ for any $\frac{M}{K} \in \operatorname{Max}\left(\frac{L}{K}\right)$ with $\operatorname{rad}\left(\frac{I}{K}\right) \subseteq$ $\frac{M}{K}$. Now, let $\frac{N}{K}$ be a arbitrary maximal ideal of $\frac{L}{K}$ such that $\frac{I}{K} \subseteq \frac{N}{K}$. Then by (ii), $\operatorname{rad}\left(\frac{I}{K}\right) \subseteq \operatorname{rad}\left(\frac{N}{K}\right)=\frac{N}{K}$, so $\frac{x}{K} \in \frac{N}{K}$ and $\frac{x}{K} \in \operatorname{rad}\left(\frac{I}{K}\right)$. Thus $\operatorname{rad}\left(\operatorname{rad}\left(\frac{I}{K}\right)\right) \subseteq \operatorname{rad}\left(\frac{I}{K}\right)$ and hence $\operatorname{rad}\left(\operatorname{rad}\left(\frac{I}{K}\right)\right)=\operatorname{rad}\left(\frac{I}{K}\right)$.

Theorem 6. Let I and J be two ideals of a BL-algebra L. If $a \in I$ and $a \leq b$, for some $b \in J$, then $\operatorname{rad}(I) \subseteq \operatorname{rad}(J)$.

Proof. Let $a \leq b$ for some $b \in J$. Since J is an ideal, so $a \in J$, i.e., $I \subseteq J$. Thus by Theorem 5, $\operatorname{rad}(I) \subseteq \operatorname{rad}(J)$.

Theorem 7. Let I, J and K be ideals of a BL-algebra L such that $K \subseteq I, J$. Then $\operatorname{rad}\left(\frac{I \cap J}{K}\right)=\operatorname{rad}\left(\frac{I}{K}\right) \bigcap \operatorname{rad}\left(\frac{J}{K}\right)$.

Proof. We know that $\frac{I}{K} \subseteq \operatorname{rad}\left(\frac{I}{K}\right)$ and $\frac{J}{K} \subseteq \operatorname{rad}\left(\frac{J}{K}\right)$. Then $\frac{I \cap J}{K} \subseteq \frac{I}{K} \subseteq \operatorname{rad}\left(\frac{I}{K}\right)$. So by Theorem 5, $\operatorname{rad}\left(\frac{I \cap J}{K}\right) \subseteq \operatorname{rad}\left(\operatorname{rad}\left(\frac{I}{K}\right)\right)=\operatorname{rad}\left(\frac{I}{K}\right)$. Similarly, $\operatorname{rad}\left(\frac{I \cap J}{K}\right) \subseteq \operatorname{rad}\left(\frac{J}{K}\right)$. Thus $\operatorname{rad}\left(\frac{I \cap J}{K}\right) \subseteq \operatorname{rad}\left(\frac{J}{K}\right) \bigcap \operatorname{rad}\left(\frac{J}{K}\right)$.

Conversely, let $\frac{x}{K} \in \operatorname{rad}\left(\frac{I}{K}\right) \bigcap \operatorname{rad}\left(\frac{J}{K}\right)$, then $\frac{x}{K} \in \operatorname{rad}\left(\frac{I}{K}\right)$ and $\frac{x}{K} \in \operatorname{rad}\left(\frac{J}{K}\right)$. By Theorem 3, $\left(\frac{x}{K} \rightarrow\left(\frac{x}{K}\right)^{n}\right)^{*} \in \frac{I}{K}$ and $\left(\frac{x}{K} \rightarrow\left(\frac{x}{K}\right)^{*}\right)^{*} \in \frac{J}{K}$ for all $n \in \mathbb{N}$. Therefore $\left(\frac{x}{K} \rightarrow\left(\frac{x}{K}\right)^{*}\right)^{*} \in \frac{I}{K} \bigcap \frac{J}{K}=\frac{I \cap J}{K}$, for all $n \in \mathbb{N}$, i.e., $\frac{x}{K} \in \operatorname{rad}\left(\frac{I \cap J}{K}\right)$ and hence $\operatorname{rad}\left(\frac{I}{K}\right) \bigcap \operatorname{rad}\left(\frac{J}{K}\right) \subseteq \operatorname{rad}\left(\frac{I \cap J}{K}\right)$.

Theorem 8. Let I and K be two ideals of a BL-algebra L such that $K \subseteq I$. Then $\operatorname{rad}\left(\frac{I}{K}\right) \cap B\left(\frac{L}{K}\right) \subseteq \frac{I}{K}$, where $B\left(\frac{L}{K}\right)$ is the Boolean center of BL-algebra $\frac{L}{K}$.

Proof. Let $\frac{x}{K} \in \operatorname{rad}\left(\frac{I}{K}\right) \bigcap B\left(\frac{L}{K}\right)$, then $\frac{x}{K} \in \operatorname{rad}\left(\frac{I}{K}\right)$ and $\frac{x}{K} \in B\left(\frac{L}{K}\right)$. By Theorem 1 and Theorem 3, we conclude that $\left(\frac{x}{K} \rightarrow\left(\frac{x^{*}}{K}\right)^{n}\right)^{*} \in \frac{I}{K}$, for all $n \in \mathbb{N}, \frac{x}{K} \odot \frac{x}{K}=\frac{x}{K}$ and
$\frac{x^{* *}}{K}=\frac{x}{K}$. This means that $\left(\frac{x}{K} \rightarrow\left(\frac{x^{*}}{K}\right)^{n}\right)^{*} \in \frac{I}{K}$, for all $n \in \mathbb{N}$, i.e., $\frac{x^{n}}{K}=\frac{x}{K}$ and $\frac{x^{* *}}{K}=\frac{x}{K}$. Therefore $\left(\frac{x}{K} \rightarrow \frac{x^{*}}{K}\right)^{*} \in \frac{I}{K}$. Since $\frac{x^{*}}{K} \rightarrow \frac{x}{K}=\frac{x}{K}$, so $\frac{x^{*}}{K} \rightarrow \frac{x^{*}}{K}=\frac{x^{*}}{K}$. We have, $\frac{x^{* *}}{K}=\frac{x}{K}$, i.e., $\frac{x}{K} \rightarrow \frac{x^{*}}{K}=\frac{x^{*}}{K}$, therefore $\left(\frac{x^{*}}{K}\right)^{*} \in I$ and hence $\frac{x}{K} \in I$.

From Theorem 8, we conclude the following results:
Corollary 2. $\operatorname{rad}\{1\} \bigcap B(L)=\{1\}$.
Corollary 3. $\operatorname{rad}\{0\} \subseteq\{x \in L \mid x$ is a nilpotent element $\}$.
Proof. Let $x \in \operatorname{rad}\{0\}$. Then by Theorem $3,\left(x \rightarrow\left(x^{*}\right)^{n}\right)^{*}=0$, for all $n \in \mathbb{N}$, i.e., $x \rightarrow\left(x^{*}\right)^{n}=1$, and $x \rightarrow\left(x^{n}\right)^{*}=1$, thus by Proposition 1 , (4), $x \leq\left(x^{n}\right)^{*}$ and hence $x \odot x^{n}=0$. This means that $x^{n+1}=0$ and x is a nilpotent element.

Theorem 9. Let I be an ideal of a BL-algebra L. Then the following assertions hold:
(i) $D(I) \subseteq \operatorname{rad}(I)$, where $D(I)=\left\{x \in I \mid x^{*}=1\right\}$;
(ii) $\operatorname{rad}\left(\frac{I}{D(I)}\right)=\frac{\operatorname{rad}(I)}{D(I)}$.

Proof. (i) Let $x \in D(I)$. Then $x^{*}=1$ and $\left(x \rightarrow\left(x^{*}\right)^{n}\right)^{*}=(x \rightarrow 1)^{*}=1^{*}=0 \in I$, i.e., $x \in \operatorname{rad}(I)$.
(ii) We know that $\operatorname{rad}\left(\frac{I}{D(I)}\right)=\bigcap \frac{N}{D(I)}$. Since N is a maximal ideal and $D(I) \subseteq I \subseteq$ N, so $\operatorname{rad}\left(\frac{I}{D(I)}\right)=\frac{\cap N}{D(I)}=\frac{\operatorname{rad}(I)}{D(I)}$.

Theorem 10. Let I be an ideal of a BL-algebra L. If $D(L) \subseteq I$, then $\frac{L}{I}$ is an MV-algebra.

Proof. Suppose $D(L) \subseteq I$ and $\frac{L}{I}$ is not an $M V$-algebra. Then there exists $x \in L$ such that $\left(\frac{x}{I}\right)^{* *} \neq \frac{x}{I}$. We have $\frac{x}{I} \leq\left(\frac{x}{I}\right)^{* *}$ and $\left(\frac{x}{I}\right)^{* *} \not \leq \frac{x}{I}$. Thus $\left(\frac{x}{I}\right)^{* *} \rightarrow \frac{x}{I} \neq 1$, i.e., $x^{* *} \rightarrow x \notin I$ and $x^{* *} \rightarrow x \notin D(I)$. Therefore $\left(x^{* *} \rightarrow x\right)^{*} \neq 1$, i.e., $x^{* *} \rightarrow x \neq 0$ which is a contradiction.

Theorem 11. Let L be a linear BL-algebra and I be a proper ideal of BL-algebra L. If x is a unity element of L, then $x^{*}<x$.

Proof. Let x be a unity element in L and $x<x^{*}$, then $\left(x^{n}\right)^{*}=0$, for all $n \in \mathbb{N}$. We have $x \leq x^{*}$, i.e., $x^{2}=x \odot x=0$. Therefore, $\left(x^{2}\right)^{*}=1$, which is a contradiction with $\left(x^{n}\right)^{*}=0$. Since L is a linear $B L$-algebra and $x \not \leq x^{*}$, thus $x^{*}<x$.

Lemma 4. Let X and Y be two BL-algebras and $f: X \longrightarrow Y$ be a BL-homomorphism. Then $f(d(x, y))=d(f(x), f(y))$, for all $x, y \in X$.

Proof. By Definitions 6 and 7, we have:

$$
\begin{aligned}
f(d(x, y)) & =f((x \rightarrow y) \wedge(y \rightarrow x)) \\
& =f(x \rightarrow y) \wedge f(y \rightarrow x)
\end{aligned}
$$

$$
\begin{aligned}
& =(f(x) \rightarrow f(y)) \wedge(f(y) \rightarrow f(x)) \\
& =d(f(x), f(y))
\end{aligned}
$$

Theorem 12. Let X and Y be two BL-algebras, and $f: X \longrightarrow Y$ be a BL-homomorphism. If K and J are two ideals of Y such that $K \subseteq J$, then the following assertions hold:
(i) $\operatorname{rad}\left(f^{-1}\left(\frac{J}{K}\right)\right)=f^{-1}\left(\operatorname{rad}\left(\frac{J}{K}\right)\right)$;
(ii) $\operatorname{rad}(\operatorname{ker}(f))=f^{-1}(\operatorname{rad}\{1\})$.

Proof. (i) Let $\frac{x}{K} \in \operatorname{rad}\left(f^{-1}\left(\frac{J}{K}\right)\right)$, then by Theorem 3, $\left(\frac{x}{K} \rightarrow\left(\left(\frac{x}{K}\right)^{*}\right)^{n}\right)^{*} \in f^{-1}\left(\frac{J}{K}\right)$, for all $n \in \mathbb{N}$. So $f\left(\frac{x}{K} \rightarrow\left(\left(\frac{x}{K}\right)^{*}\right)^{n}\right)^{*} \in \frac{J}{K}$ and by Definition $6, f\left(\left(\frac{x}{K}\right) \rightarrow\left(\left(\frac{x}{K}\right)^{*}\right)^{n}\right)^{*}=$ $\left(\frac{f(x)}{K} \rightarrow\left(\frac{f\left(x^{*}\right)}{K}\right)^{n}\right)^{*} \in \frac{J}{K}$. Therefore $f\left(\frac{x}{K}\right) \in \operatorname{rad}\left(\frac{J}{K}\right)$ and hence $\frac{x}{K} \in f^{-1}\left(\operatorname{rad}\left(\frac{J}{K}\right)\right)$. Conversely, it is clear by the similar way.
(ii) Let $x \in \operatorname{rad}(\operatorname{ker}(f))$, then by Theorem $3,\left(x \rightarrow\left(x^{*}\right)^{n}\right)^{*} \in \operatorname{ker}(f)$, for all $n \in \mathbb{N}$. So by Definition $\left.6,\left(f(x) \rightarrow f\left(x^{*}\right)\right)^{n}\right)^{*}=0$, for all $n \in \mathbb{N}$, i.e., $\left(f(x) \rightarrow f\left(x^{*}\right)\right)^{n}=1$, for all $n \in \mathbb{N}$. This means that $f(x) \in \operatorname{rad}\{1\}$ and $x \in f^{-1}(\operatorname{rad}\{1\})$. Conversely, it is clear by the same way.

Definition 11. Let L be a $B L$-algebra and I be an ideal of L. By $U_{x_{0}, r}^{*}$, we define the open I-ball of radius $r \in I$, with center x_{0} (around x_{0}), by

$$
U_{x_{0}, r}^{*}=\left\{x \in L \mid\left(r \oslash d\left(x, x_{0}\right)\right)^{*} \in I\right\}
$$

Proposition 5. Let L be a BL-algebra and I be an ideal of L. Then the following assertions hold, for all $x, y \in L$ and $r, s \in I$:
(i) $U_{1,0}^{*}=\left\{x \in L \mid x^{*} \in I\right\}$;
(ii) If $y \in U_{x, r}^{*}$ then $y^{*} \in U_{x^{*}, r}^{*}$;
(iii) If $s \leq r$ then $U_{x, s}^{*} \subseteq U_{x, r}^{*}$.

Proof. (i) By Definition 11,

$$
\begin{aligned}
U_{1,0}^{*} & =\left\{x \in L \mid(0 \oslash d(x, 1))^{*} \in I\right\}=\left\{x \in L \mid\left(0^{*} \rightarrow d(x, 1)\right)^{*} \in I\right\} \\
& =\left\{x \in L \mid \quad(1 \rightarrow x)^{*} \in I\right\}=\left\{x \in L \mid x^{*} \in I\right\} .
\end{aligned}
$$

(ii) Suppose $y \in U_{x, r}^{*}$, then $(r \oslash d(x, y))^{*} \in I$. By Proposition 3, since $d(x, y) \leq$ $d\left(x^{*}, y^{*}\right)$, so $r \oslash d(x, y) \leq r \oslash d\left(x^{*}, y^{*}\right)$. Therefore $\left(r \oslash d\left(x^{*}, y^{*}\right)\right)^{*} \leq(r \oslash d(x, y))^{*}$. I is an ideal, thus $\left(r \oslash d\left(x^{*}, y^{*}\right)\right)^{*} \in I$. Therefore $y^{*} \in U_{x^{*}, r}^{*}$.
(iii) Suppose $y \in U_{x, s}^{*}$, then $(s \oslash d(x, y))^{*} \in I$. By assumption $s \leq r$, then $s \oslash$ $d(x, y) \leq r \oslash d(x, y)$. Thus $(r \oslash d(x, y))^{*} \leq(s \oslash d(x, y))^{*}$. Since I is an ideal, so $(r \oslash$ $d(x, y))^{*} \in I$. Therefore $y \in U_{x, r}^{*}$.

From [12], we recall that if X is a set, a basis for a topology on X is a collection \mathcal{B} of subsets of X (called basis element) such that the following hold:
(i) For each $x \in X$, there is at least one basis element B containing x.
(ii) If x belongs to the intersection of two basis element B_{1} and B_{2}, then there is a basis element B_{3} containing x such that $B_{3} \subseteq B_{1} \cap B_{2}$.

Proposition 6. Let L be a BL-algebra and I be an ideal of L. Then the open I-balls constitute a basis for a topology on L (we call this topology, ideal topology).

Proof. Let $x \in L$ and $r \in I$. By Propositions 1 and 3, $0=1^{*}=\left(r^{*} \rightarrow 1\right)^{*}=$ $\left(r^{*} \rightarrow d(x, x)\right)^{*}=(r \oslash d(x, x))^{*}$. Since I is an ideal and $0 \in I$, so $(r \oslash d(x, x))^{*} \in I$, i.e., $x \in U_{x, r}^{*}$. Thus there exists an element of the I-balls of topology, which is contains x, for all $x \in L$. Now, let $t \in U_{x, r}^{*} \cap U_{y, s}^{*}$, then $(r \oslash d(x, t))^{*} \in I$ and $(s \oslash d(t, y))^{*} \in I$. This means that there exist $c^{*}, d^{*} \in I$, such that $c=r \oslash d(x, t), d=s \oslash d(t, y)$. We put $e=c^{*} \vee d^{*}$ and claim that $U_{t, e}^{*} \subseteq U_{x, r}^{*} \cap U_{y, s}^{*}$. Let $z \in U_{t, e}^{*}$, then $(e \oslash d(z, t))^{*}=k^{*} \in I$, for some $k^{*} \in I$. By Proposition 3, since $d(z, t) \odot d(t, x) \leq d(z, x)$, so $r \oslash(d(z, t) \odot$ $d(t, x)) \leq r \oslash d(z, x)$. Also, by Lemma 2, $\left.(r \oslash d(x, t))^{*} \oslash d(z, t)\right) \leq r \oslash(d(x, t) \odot$ $d(z, t))$. Since $c^{*} \leq c^{*} \vee d^{*}$, we conclude $\left(c^{*} \vee d^{*}\right) \oslash d(z, t) \leq c^{*} \oslash d(z, t)$, hence $e \oslash d(z, t) \leq r \oslash d(z, t)$. Therefore $(r \oslash d(z, t))^{*} \leq(e \oslash d(z, t))^{*}$. Since I is an ideal, so $(r \oslash d(z, x))^{*} \in I$ and it follows that $z \in U_{x, r}^{*}$. By the similar way, we conclude that, if $z \in U_{t, e}^{*}$, then $z \in U_{y, s}^{*}$. Therefore, $t \in U_{x, r}^{*} \cap U_{y, s}^{*}$.

Proposition 7. Every ideal topology on a BL-algebra of L, makes L into a topological BL-algebra.

Proof. By [1,16], it is enough to show that the operations \odot and $*$ are continuous. First, we consider the mapping $\odot: L \times L \longrightarrow L$ by $(x, y) \longmapsto x \odot y$. For $e \in I$, let U be an open I-ball of radius e around $t \odot s$ and V be an open I-ball of radius e around t. Then, $V=\left\{x \in L \mid(e \oslash d(x, t))^{*} \in I\right\}$ and $U=\left\{x \in L \mid(e \oslash d(x, t \odot s))^{*} \in I\right\}$. Take $x \in V$ and we assume that $e \oslash d(x, t)=e_{x} \in I$. Let W be an open I-ball of radius e_{x} around s, then $V \times W$ is an open neighborhood around (t, s). So, by Proposition 3 and Lemma 2, we have

$$
\begin{aligned}
(e \oslash d(x \odot y, t \odot s))^{*} & \leq(e \oslash(d(x, t) \odot d(y, s)))^{*} \\
& \leq((e \oslash d(x, t)) \oslash d(y, s))^{*} \\
& =\left(e_{x} \oslash d(y, s)\right)^{*} \in I .
\end{aligned}
$$

Since I is an ideal of L, so $(e \oslash d(x \odot y, t \odot s))^{*} \in I$ and hence $\odot(V \times W) \subseteq U$.
Now, we prove that the mapping $*: L \rightarrow L, x \mapsto x^{*}$ is continuous. Let $e \in L, t \in I$ and U be an open I-ball of radius e around t^{*} and V be an open I-ball of radius e around t. By Propositions 2 and 3 , since $d(x, t) \leq d\left(x^{*}, t^{*}\right)$, so $e \oslash d(x, t) \leq e \oslash$ $d\left(x^{*}, t^{*}\right) \in I$. Then $\left(e \oslash d\left(x^{*}, t^{*}\right)\right)^{*} \leq(e \oslash d(x, t))^{*} \in I$. Since I is an ideal of L, so $\left(e \oslash d\left(x^{*}, t^{*}\right)\right)^{*} \in I$ and $x^{*} \in U$. Therefore $V^{*} \subseteq U$ and hence the mapping $*$ is continuous.

4. SEQUENCES IN $B L$-ALGEBRAS

In this section we derive some new results on sequences in $B L$-algebras.
Theorem 13. Let I be an ideal of a BL-algebra L and $\left(\frac{x_{n}}{I}\right)_{n \in \mathbb{N}},\left(\frac{y_{n}}{I}\right)_{n \in \mathbb{N}}$ be two sequences in $\frac{L}{I}$ such that $\left(\frac{x_{n}}{I}\right)_{n \in \mathbb{N}} \uparrow 1_{I}$ and $\left(\frac{y_{n}}{I}\right)_{n \in \mathbb{N}} \uparrow 1_{I}$, then $\left(\frac{x_{n} \odot y_{n}}{I}\right)_{n \in \mathbb{N}} \uparrow 1_{I}$.

Proof. Let $\left(\frac{x_{n}}{I}\right)_{n \in \mathbb{N}} \uparrow 1_{I},\left(\frac{y_{n}}{I}\right)_{n \in \mathbb{N}} \uparrow 1_{I}$ and $\frac{t}{I} \in \frac{L}{I}$ such that for each $n \in \mathbb{N},\left(\frac{x_{n} \odot y_{n}}{I}\right) \leq$ $\frac{t}{I}$. We show that $\frac{t}{I}=1_{I}$. Since $\left(\frac{y_{n}}{I}\right)_{n \in \mathbb{N}} \uparrow 1_{I}$, so by Definition 8 , there exists $m \in \mathbb{N}$ such that $\bigvee_{n}\left(\frac{y_{n}}{I}\right)=1_{I}$, for all $n \in \mathbb{N}$ with $n \geq m$. By the assumption $\frac{x_{n}}{I} \odot \frac{y_{n}}{I}=\frac{x_{n} \odot y_{n}}{I} \leq \frac{t}{I}$, we have $\frac{y_{n}}{I} \leq \frac{x_{n}}{I} \rightarrow \frac{t}{I}$. So $\frac{y_{n}}{I} \leq \bigvee_{n \geq m}\left(\frac{x_{n}}{I} \rightarrow \frac{t}{I}\right)$ and $\bigvee \frac{y_{n}}{I} \leq \bigvee_{n \geq m}\left(\frac{x_{n}}{I} \rightarrow \frac{t}{I}\right)$. Therefore $\bigvee_{n \geq m}\left(\frac{x_{n}}{I} \rightarrow \frac{t}{I}\right)=1_{I}$. By Proposition 1 , (13), V $\left(\frac{x_{n}}{I} \rightarrow \frac{t}{I}\right) \leq\left(\wedge \frac{x_{n}}{I}\right) \rightarrow \frac{t}{I}$ for $n \geq m$ and $1_{I} \leq\left(\frac{x_{m}}{I} \wedge \frac{x_{m+1}}{I} \wedge \ldots\right) \rightarrow \frac{t}{I}$. So $1_{I} \leq \frac{x_{m}}{I} \rightarrow \frac{t}{I}$ and $\frac{x_{m}}{I} \rightarrow \frac{t}{I}=1_{I}$, i.e., $\frac{x_{m}}{I} \leq \frac{t}{I}$. This means that $\bigvee_{n \geq m} \frac{x_{m}}{I} \leq \frac{t}{I}$ and $1_{I} \leq \frac{t}{I}$, thus $\frac{t}{I}=1_{I}$.

Proposition 8. Let I be an ideal of a BL-algebra Land $\left(\frac{x_{n}}{I}\right)_{n \in \mathbb{N}}$ be a sequence in $\frac{L}{I}$. If $\frac{x_{n}}{I} \rightarrow_{s} \frac{x_{1}}{I}$ and $\frac{x_{n}}{I} \rightarrow_{s} \frac{x_{2}}{I}$, then $\frac{x_{1}}{I}=\frac{x_{2}}{I}$.

Proof. By the assumption, since $\frac{x_{n}}{I} \rightarrow \frac{x_{1}}{I}, \frac{x_{n}}{I} \rightarrow \frac{x_{2}}{I}$, so by Definition 9, $\left(\frac{s_{n}}{I}\right)_{n \in \mathbb{N}} \uparrow$ $1_{I},\left(\frac{t_{n}}{I}\right)_{n \in \mathbb{N}} \uparrow 1_{I}$ with $d\left(\frac{x_{n}}{I}, \frac{x_{1}}{I}\right) \geq \frac{s_{n}}{I}, d\left(\frac{x_{n}}{I}, \frac{x_{2}}{I}\right) \geq \frac{t_{n}}{I}$. By Proposition 3, d($\left.\frac{x_{1}}{I}, \frac{x_{2}}{I}\right) \geq$ $d\left(\frac{x_{1}}{I}, \frac{x_{n}}{I}\right) \odot d\left(\frac{x_{n}}{I}, \frac{x_{2}}{I}\right)$, then $d\left(\frac{x_{1}}{I}, \frac{x_{2}}{I}\right) \geq \frac{s_{n}}{I} \odot \frac{t_{n}}{I}$. By Theorem $13,\left(\frac{s_{n}}{I} \odot \frac{t_{n}}{I}\right)_{n \in \mathbb{N}} \uparrow 1_{I}$, therefore $d\left(\frac{x_{1}}{I}, \frac{x_{2}}{I}\right)=1_{I}$ and hence $\frac{x_{1}}{I}=\frac{x_{2}}{I}$.

Proposition 9. Let L be a BL-algebra and $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}$ be two sequences in L such that $x_{n} \rightarrow_{s} x, y_{n} \rightarrow y$. Then $\left(x_{n} \leftrightarrow y_{n}\right) \rightarrow_{s}(x \leftrightarrow y)$.

Proof. First we show that if $x_{n} \rightarrow_{s} x, y_{n} \rightarrow_{s} y$, then, (i) $x_{n} \wedge y_{n} \rightarrow_{s} x \wedge y$, (ii) $\left(x_{n} \rightarrow y_{n}\right) \rightarrow_{s}(x \rightarrow y)$. Since $x_{n} \rightarrow_{s} x$ and $y_{n} \rightarrow_{s} y$, by Definition 9, there exist $\left(s_{n}\right)_{n \in \mathbb{N}}$ and $\left(t_{n}\right)_{n \in \mathbb{N}}$ such that $\left(s_{n}\right)_{n \in \mathbb{N}} \uparrow 1,\left(t_{n}\right)_{n \in \mathbb{N}} \uparrow 1$ and $d\left(x_{n}, x\right) \geq s_{n}, d\left(y_{n}, y\right) \geq t_{n}$. By Proposition 3, $d\left(x_{n} \wedge y_{n}, x \wedge y\right) \geq d\left(x_{n}, x\right) \wedge d\left(y_{n}, y\right) \geq s_{n} \wedge t_{n}$. Since $\left(s_{n} \wedge t_{n}\right)_{n \in \mathbb{N}} \uparrow 1$, so $x_{n} \wedge y_{n} \rightarrow_{s} x \wedge y$.

From Proposition 3, $d\left(x_{n} \rightarrow y_{n}, x \rightarrow y\right) \geq d\left(x_{n}, x\right) \odot d\left(y_{n} \rightarrow y\right) \geq s_{n} \odot t_{n}$. Since $\left(s_{n} \odot t_{n}\right)_{n \in \mathbb{N}} \uparrow 1$, so $\left(x_{n} \rightarrow y_{n}\right) \rightarrow_{s}(x \rightarrow y)$. By Proposition 1, (14), d($x_{n} \leftrightarrow y_{n}$, $x \leftrightarrow y)=d\left(\left(x_{n} \rightarrow y_{n}\right) \wedge\left(y_{n} \rightarrow x_{n}\right),(x \rightarrow y) \wedge(y \rightarrow x)\right) \geq d\left(x_{n} \rightarrow y_{n}, x \rightarrow y\right) \wedge d\left(y_{n} \rightarrow\right.$ $\left.x_{n}, y \rightarrow x\right) \geq\left(s_{n} \odot t_{n}\right) \wedge\left(t_{n} \odot s_{n}\right)=s_{n} \odot t_{n} \uparrow 1$, therefore $\left(x_{n} \leftrightarrow y_{n}\right) \rightarrow_{s}(x \leftrightarrow y)$.

Theorem 14. Let X and Y be two BL-algebras and $f: X \longrightarrow Y$ be a BL-homomorphism. If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in X, then $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ is a sequence in Y such that $f\left(x_{n}\right) \rightarrow_{s} f(x)$.

Proof. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X. There exists a sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ of X such that $\left(s_{n}\right)_{n \in \mathbb{N}} \uparrow 1, d\left(x_{n}, x\right) \geq s_{n}$. Since $f(1)=1$, so $\left(f\left(s_{n}\right)\right) \uparrow f(1)=1$. We also have $d\left(x_{n}, x\right) \geq s_{n}$, then by Definition 6, $d\left(f\left(x_{n}\right), f(x)\right)=f\left(d\left(x_{n}\right), d(x)\right) \geq f\left(s_{n}\right)$, i.e., $f\left(x_{n}\right) \rightarrow_{s} f(x)$.

Corollary 4. Let X and Y be two BL-algebras, $f: X \rightarrow Y$ be a BL-homomorphism and $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}$ be sequences in X, in which $x_{n} \rightarrow_{s} x, y_{n} \rightarrow_{s} y$, then $f\left(x_{n} \leftrightarrow y_{n}\right) \rightarrow_{s} f(x \leftrightarrow y)$.

Proof. By Proposition 9 and Theorem 14, it is clear.
Proposition 10. Let I be a proper ideal of special BL-algebra L^{*}. Then $\frac{L^{*}}{I}$ is not an MV-algebra.

Proof. Suppose that there exists a proper ideal I of L^{*} such that $\frac{L^{*}}{I}$ is an $M V$ algebra. Then we have $\frac{x}{I}=\frac{x^{* *}}{I}$, for all $x \in L^{*}$ and $x \rightarrow x^{* *} \in I$. Since $x \in L^{*}$, so $x^{*}=0$ and $x^{* *}=1$. Thus $x \rightarrow 1 \in I$ and $1 \in I$. This means that $I=L^{*}$, which is a contradiction.

Theorem 15. Let I be an ideal of $M V$-algebra L. Then $\frac{L}{I}$ is a special BL-algebra if and only if I is a maximal ideal of L.

Proof. We know that $\frac{L}{I}$ is special $B L$-algebra iff $\frac{x^{*}}{I}=\left(\frac{x}{I}\right)^{*}=\frac{0}{I}$, for all $0 \neq x \in L$. It is equal to $x^{*} \rightarrow 0 \in I$, for all $0 \neq x \in L$ iff $x^{* *}=x \in L$, for all $0 \neq x \in L$ which in turn equals to $I=L-\{0\}$.

Definition 12. Let L be a $B L$-algebra and I be an ideal of L. Then I is a special ideal if, for all $x, y \in I, \quad(x \rightarrow y)^{*}=(y \rightarrow x)^{*}$.

Example 1. Let $L=\{0, a, b, 1\}$. Define $" \odot "$ and $" \rightarrow "$ as follows:

\odot	0	a	b	1
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
1	0	a	b	1

\rightarrow	0	a	b	1
0	1	1	1	1
a	b	1	b	1
b	0	a	1	1
1	0	a	b	1

It is easy to see that L is a $B L$-algebra and $I=\{0, a\}$ is a special ideal of L.
Theorem 16. Let I be an ideal of BL-algebra L. Then I is a special ideal of L if and only if $D^{*}(I)=I$, where $D^{*}(I)=\left\{x \in I \mid x^{* *}=0\right\}$.

Proof. Since $0 \in D^{*}(I)$, it is clear that $\varnothing \neq D^{*}(I) \subseteq I$. Let I be a special ideal of L and $t \in I$, then for every $x, y \in I,(x \rightarrow y)^{*}=(y \rightarrow x)^{*}$. We put $x=t$ and $y=0$, then, by Proposition $1,(t \rightarrow 0)^{*}=(0 \rightarrow t)^{*}$, i.e., $t^{* *}=1^{*}=0$. This means that $t \in D^{*}(I)$ and hence, $I \subseteq D^{*}(I)$.

Conversely, let $D^{*}(I)=I$, and $x, y \in I$, then $x^{* *}=y^{* *}=0$. By Proposition 1 , we have $(x \rightarrow y)^{*}=(x \rightarrow y)^{* * *}=\left((x \rightarrow y)^{* *}\right)^{*}=\left(x^{* *} \rightarrow y^{* *}\right)^{*}=(0 \rightarrow 0)^{*}=\left(y^{* *} \rightarrow\right.$ $\left.x^{* *}\right)^{*}=\left((y \rightarrow x)^{* *}\right)^{*}=(y \rightarrow x)^{* * *}=(y \rightarrow x)^{*}$. Therefore, I is a special ideal of L.

Acknowledgements

The authors thank the executive editor, technical editor and anonymous reviewer for their valuable comments and suggestions.

REFERENCES

[1] R. A. Borzooei, R. Rezaei, and N. Kouhestani, "On (semi) topological BL-algebras," Iran. J. Math. Sci. Inform., vol. 6, no. 1, pp. 59-77, 2011, doi: 10.7508/ijmsi.2011.01.006.
[2] C. C. Chang, "Algebraic analysis of many valued logics," Trans. Amer. Math. Soc., vol. 88, pp. 467-490, 1958.
[3] L. C. Ciungu, "Convergence in perfect BL-algebras," Mathware and Soft Computing., vol. 88, no. 14, pp. 67-80, 2007.
[4] L. C. Ciungu, A. Dvurečenskig, and M. Hyčko, "State BL-algebras," Soft. Comput., vol. 15, no. 4, pp. 619-634, 2001, doi: 10.1007/s00500-010-0571-5.
[5] A. Di Nola, G. Georgescu, and A. Loregulescu, "Pseudo BL-algebras: Part I," Mult. Val. Logic., vol. 8, no. 5, pp. 673-714, 2002.
[6] G. Georgescu and A. Popescu, "Similarity convergence in residuated structures," Log. J. IGPL., vol. 13, no. 4, pp. 389-413, 2005, doi: 10.1093/jigpal/jzi031.
[7] P. Hajek, Methamathematics of Fuzzy Logic. Dordrecht: Kluwer Academic Publisher, 1998. doi: 10.1007/978-94-011-5300-3.
[8] U. Höhle, Residuated l-monoids in Non-classical logic and Their Applications to Fuzzy Subset: A Handbook of the Mathematical Foundations of Fuzzy Set Theory. Boston: Kluwer, 1994. doi: 10.1007/978-94-011-0215-5.
[9] C. Lele and J. B. Nganou, "MV-algebras derived from ideals in BL-algebras," Fuzzy Sets and Systems., vol. 218, pp. 103-113, 2013, doi: 10.1016/j.fss.2012.09.014.
[10] C. Luan and Y. Yang, "Filter topologies on MV-algebras," Soft. Comput., vol. 21, no. 14, pp. 2531-2535, 2017, doi: 10.1007/s00500-017-2574-y.
[11] N. Mohtashamnia and A. Borumand Saeid, "A special type of BL-algebras," Annals of the University of Craiova, Mathematics and Computer Science Series., vol. 39, no. 1, pp. 8-20, 2012.
[12] J. R. Munkres, Topology; a First Course. Boston: Pearson College Div, 1974.
[13] A. Paad, "Integral ideals and maximal ideals in BL-algebras," Annals of the University of Craiova, Mathematics and Computer Science Series., vol. 43, no. 2, pp. 231-242, 2016.
[14] A. Paad, "Radicals of ideals in BL-algebras," Ann. Fuzzy Math. Inform., vol. 3, pp. 1-15, 2017, doi: 10.30948/afmi.2017.14.3.249.
[15] E. Turunen, Mathematics Behind Fuzzy Logic. Heidelberg: Physica-Verlag, 1999.
[16] O. Zahiri and R. A. Borzooei, "Topology on BL-algebras," Fuzzy Sets and Systems., vol. 289, pp. 137-150, 2016, doi: 10.1016/j.fss.2014.11.014.

Authors' addresses

M. H. Nasr Esfahani

Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
E-mail address: mohammadnasr135@yahoo.com

F. Khaksar Haghani

(Corresponding author) Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

E-mail address: haghani1351@yahoo.com

Shahram Heidarian

Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran E-mail address: Heidarianshm@gmail.com

