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Abstract. In this paper, we obtain some new results on radicals of an ideal in BL-algebras. Fur-
ther, we introduce I-balls in BL-algebras and prove that I-balls constitutes a basis for a topology
on BL-algebras. We also derive some new relations of sequences in BL-algebras.
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1. INTRODUCTION

In 1958, C. C. Chang [2] devised the notion of MV -algebra in order to provide
an algebraic proof of the completeness theorem of Łukasiewicz axioms for infinite
valued propositional logic. In 1998, P. Hájek [7] introduced a very general many-
valued logic, called Basic Logic (or BL), with the idea to formalize the many-valued
semantics induced by a continuous t-norm on the unit real interval [0, 1]. This Basic
Logic turns to be a fragment common to three important many-valued logics: ℵ0-
valued Łukasiewicz logic, Gödel logic and Product logic. The Lindenbaum-Tarski
algebras for Basic Logic are called BL-algebras. Apart from their logical attention,
BL-algebras have important algebraic properties and they have been hard studied
from an algebraic point of view. Some well-known examples of a BL-algebra are
Łukasiewicz, Gödel and Product structures. These examples are defined by the unit
interval [0,1] endowed with the structure induced by a continuous t-norm [7].

In 2013, C. Lele and J. B. Nganou [9], introduced the concept of ideals in BL-
algebras by generalizing the notion of an ideal in MV -algebras and showed that,
unlike what is in MV -algebras, in BL-algebras, the notions of filter and ideal are not
dual.

A. Paad in [14], defined the notion of rad(I) on a BL-algebra L, where rad(I) is
the radical of an ideal I of L. G. Georgescu and A. Popescu [6] defined the sequences
in BL-algebras. C. Luan and Y. Yang in [10] defined the I-balls on MV -algebras.
Also, the same authors, introduce a topology on MV -algebras by filters and studied
some properties of the filters in MV -algebras.
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Proved by Höhle [8], a BL-algebra becomes an MV -algebra if, we adjoin to the
axioms the double negation law, x = x∗∗. Thus, a BL-algebra is in some intuitive way,
a non-double negation MV -algebra. Hence the theory of MV -algebras, becomes one
of the guides to the development of the theory of BL-algebras. Therefore, we define
the notion of an I-ball on a BL-algebra L and derive a topology with respect to I-balls
on L. We also obtain some new results of radicals and sequences in BL-algebras.

This paper is organized as follows:
In Section 2, we recall some definitions and results related to the BL-algebra and

operations, which we need for the rest of the paper. In Section 3, we derive some
relations on ideals, quotient ideals and rad(I) on BL-algebras. We further define
open I-balls and prove that open I-balls constitutes a basis for a topology. In Section
4, we obtain some new results on sequences in BL-algebras.

2. PRELIMINARIES

In this section, we recall some definitions and properties of BL-algebras which will
be used throughout of the paper.

Definition 1 ([7]). An algebraic structure (L,∧,∨,⊙,→,0,1) of type (2,2,2,2,0,0)
is called a BL-algebra, if it satisfies the following conditions for all x,y,z ∈ L:

BL1: (L,∧,∨,0,1) is a bounded lattice relative to the order ≤;
BL2: (L,⊙,1) is a commutative monoid;
BL3: x⊙ y ≤ z if and only if x ≤ y → z;
BL4: x∧ y = x⊙ (x → y);
BL5: (x → y)∨ (y → x) = 1.

By L, we denote the universe of a BL-algebra (L,∧,∨,⊙,→,0,1) for any x ∈ L and a
natural number n, we define x∗ = x → 0, xn = xn−1 ⊙ x, for n ≥ 1, x0 = 1. Let x ∈ L,
if there is the least integer n ∈ N such that xn = 0. We set ord(x) = n, if there is no
such an integer, we set ord(x) = ∞.

A BL-algebra L is called MV -algebra, if x∗∗ = x, for all x ∈ L. Also an element
x ∈ L is called an nilpotent element of L, if xn = 0, for some n ∈ N.

A BL-algebra L is linear, if for every x,y ∈ L, x ≤ y or y ≤ x [3].
An MV -algebra L is locally finite iff every element 0 ̸= x ∈ L has a finite order, or

equivalently, for every 0 ̸= x ∈ L, nx = 1, for some n ∈ N [2].

The following properties are well known in BL-algebras.

Proposition 1 ([7, 15]). Let L be a BL-algebra. For all x,y,z ∈ L, and n ∈ N, the
following statements hold:
(1) x⊙ y ≤ z iff x ≤ y → z;
(2) x⊙ y ≤ x∧ y ≤ x,y;
(3) x ≤ y implies that x⊙ z ≤ y⊙ z;
(4) x ≤ y iff x → y = 1;
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(5) 1 → x = x, x → x = 1, x ≤ y → x and x → 1 = 1;
(6) x⊙ x∗ = 0 and x⊙0 = 0;
(7) x⊙ y = 0 iff x ≤ y∗;
(8) 1∗ = 0, 0∗ = 1, x ≤ x∗∗, x∗ = x∗∗∗;
(9) x → (y → z) = (x⊙ y)→ z = y → (x → z);

(10) x ≤ y implies that z → x ≤ z → y, y → z ≤ x → z and y∗ ≤ x∗;
(11) x∨ y = [(x → y)→ y]∧ [(y → x)→ x];
(12) (x∧ y)∗∗ = x∗∗∧ y∗∗, (x∨ y)∗∗ = x∗∗∨ y∗∗, (x⊙ y)∗∗ = x∗∗⊙ y∗∗ and

(x → y)∗∗ = x∗∗ → y∗∗;
(13)

∨
i∈I
(yi → x) ≤ (

∧
i∈I

yi) → x, where L is complete and {yi}i∈I ⊆ L; x ↔ y =

(x → y)∧ (y → x).

Definition 2 ([4]). Let L be a BL-algebra. We define the following operations
which is known for any x,y ∈ L:

(i) x⊕ y = (x∗⊙ y∗)∗;
(ii) x⊖ y = x⊙ y∗.

From [9], for every x,y ∈ L, x⊘ y = x∗ → y.

Proposition 2 ([9]). In every BL-algebra L, the following statements hold for any
x,y,z, t ∈ L:

(i) The operation ⊘ is associative;
(ii) x ≤ y and z ≤ t imply x⊘ z ≤ y⊘ t.

Lemma 1 ([15]). Let L be a BL-algebra. For all x,y,z ∈ L, if x ≤ y, then the
following hold:

(i) x⊙ z ≤ y⊙ z;
(ii) x⊕ z ≤ y⊕ z;

(iii) z⊖ y ≤ z⊖ x;
(iv) z⊘ x ≤ z⊘ y and y⊘ z ≤ x⊘ z.

Definition 3 ([9]). Let L be a BL-algebra and I be a nonempty subset of L, then I
is an ideal of L if it satisfies the following conditions:

(I1) For every x,y ∈ I, x⊘ y ∈ I;
(I2) For every x,y ∈ L, if x ≤ y and y ∈ I, then x ∈ I.

It is trivial to see that for any ideal I, 0 ∈ I and for every x ∈ L, x ∈ I if and only
if x∗∗ ∈ I [9]. A proper ideal I is called a maximal ideal of L, if it is not properly
contained in any other ideal of L.

From [5, 15], BL-algebras are distributive lattices and a distributive lattice
⟨L,≤,∧,∨⟩ in which for every element x ∈ L there is an associated element x∗ ∈ L
such that for every y ∈ L, (x∧ x∗)∨ y = y and (x∨ x∗)∧ y = y is called a Boolean
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algebra. The element x∗ is called the lattice complement of x. The set of all com-
plemented elements of the corresponding distributive lattice to the BL-algebra L, is a
Boolean algebra and denoted by B(L).

Theorem 1 ([5, 7]). Let L be a BL-algebra. Then for x ∈ L, the following state-
ments are equivalent:

(i) x ∈ B(L);
(ii) x⊙ x = x and x∗∗ = x;

(iii) x⊙ x = x, x∗ → x = x;
(iv) x∗∨ x = 1;
(v) (x → y)→ x = 0, for any y ∈ L.

Theorem 2 ([13]). Let M be a proper ideal of a BL-algebra L. Then the following
conditions are equivalent:

(i) M is a maximal ideal of L;
(ii) For all x /∈ M, there exists n ∈ N,(x∗)n ∈ M;

(iii) L
M is a locally finite MV -algebra.

Definition 4 ([9]). Let I be a proper ideal of a BL-algebra L. Then the intersection
of all maximal ideals of L that contain I is called the radical of I and is denoted by
rad(I).

From [14], rad(I) is an ideal of L and I ⊆ rad(I).

Theorem 3 ([14]). Let L be a BL-algebra and I be a proper ideal of L. Then
rad(I) = {x ∈ L| (x → (x∗)n)∗ ∈ I, for all n ∈ N}.

Definition 5 ([14]). An element a of a BL-algebra L is called unity if, for all n∈N,
((an)∗)k = 0, for some k ∈ N, i.e., (an)∗ is a nilpotent element of L.

Definition 6 ([7]). Let X and Y be two BL-algebras. A map f : X −→ Y is called
a BL-homomorphism if, for all x,y ∈ X :
(i) f (x⊙ y) = f (x)⊙ f (y);
(ii) f (x → y) = f (x)→ f (y);
(iii) f (0X) = 0Y .

If f : X −→ Y is a BL-homomorphism, then the kernel of f is the set

ker( f ) = {x ∈ X | f (x) = 0Y} .
From [9] the following, as immediate consequent of Definition 6, are hold, for all
x,y ∈ X :
(i) f (x∧ y) = f (x)∧ f (y);
(ii) f (x∨ y) = f (x)∨ f (y);
(iii) f (x∗) = ( f (x))∗;
(iv) f (1X) = 1Y ;
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(v) If x ≤ y, then f (x)≤ f (y);
(vi) f (x⊘ y) = f (x)⊘ f (y).

Definition 7 ([3]). In a BL-algebra L, the distance function d : L × L −→ L is
defined by d(x,y) = (x → y)∧ (y → x), for all x,y ∈ L.

Proposition 3 ([3,6]). Let L be a BL-algebra. Then the following statements hold:
(i) d(x,y) = d(y,x);

(ii) d(x,y) = 1 if and only if x = y;
(iii) d(x,1) = x,d(x,0) = x∗;
(iv) d(x,z)⊙d(z,y)≤ d(x,y);
(v) d(x,y)≤ d(x⊙u,y⊙u);

(vi) d(x,u)⊙d(y,v)≤ d(y → x,v → u);
(vii) d(x,u)∧d(y,v)≤ d(x∧ y,u∧ v);

(viii) d(x,u)∧d(y,v)≤ d(x∨ y,u∨ v);
(ix) d(x,y)≤ d(x∗,y∗).

Definition 8 ([3]). Let (xn)n∈N be a sequence in a BL-algebra L. If (xn)n∈N is
increasing, we denote (xn)n∈N ↑. Similarly, if (xn)n∈N is decreasing, we denote
(xn)n∈N ↓. If (xn)n∈N is increasing,

∧
n

xn exists and
∧
n

xn = x, we denote (xn)n∈N ↑ x.

Similarly, if (xn)n∈N is decreasing,
∨
n

xn exists and
∨
n

xn = x, we denote (xn)n∈N ↓ x.

Definition 9 ([3]). Let L be a BL-algebra and (xn)n∈N be a sequence in L. Then
(xn)n∈N converges to x∈ L, if there exists a sequence (sn)n∈N in L such that (sn)n∈N ↑ 1
and d(xn,x)≥ sn for all n ∈ N, which we denote by xn →s x.

Definition 10 ([3]). A BL-algebra L is called special if, (x → y)∗ = (y → x)∗, for
all x,y ∈ L.

We denote a special BL-algebra L by L∗.

Proposition 4 ([11]). For a BL-algebra L, the following conditions are equivalent:
(i) L is a special BL-algebra;

(ii) x∗ = 0, for any 0 ̸= x ∈ L.

Note that if I is an ideal of a special BL-algebra L, then L
I is a special BL-algebra.

3. SOME RESULTS ON RADICALS AND TOPOLOGY ON BL-ALGEBRAS

In this section, we obtain some new results on radical of an ideal of a BL-algebra
L. We also define the open I-balls on L and prove that these open I-balls constitute a
basis for a topology on L.

Lemma 2. Let L be a BL-algebra. Then for all x,y,z ∈ L, the following hold:
(i) x⊘ (y⊘ z) = (x⊕ y)⊘ z;

(ii) x⊖ (y⊕ z) = (x⊖ y)⊖ z;
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(iii) x⊘ (y⊘ z) = y⊘ (x⊘ z);
(iv) x⊘ (y⊙ z)≤ (x⊘ y)⊘ z.

Proof. Let x,y,z ∈ L, then by Definition 2 and Proposition 1, we conclude:
(i) x⊘ (y⊘ z) = x∗ → (y⊘ z) = x∗ → (y∗ → z) = (x∗⊙ y∗)→ z = (x∗∗∗⊙ y∗∗∗)→

z. By Proposition 1, (12), we have, (x∗∗∗ ⊙ y∗∗∗) → z = (x∗ ⊙ y∗)∗∗ → z =
(x∗⊙ y∗)∗⊘ z = (x⊕ y)⊘ z.

(ii) x ⊖ (y ⊕ z) = x ⊙ (y ⊕ z)∗ = x ⊙ (y∗ ⊙ z∗) = (x ⊙ y∗)⊙ z∗ = (x ⊙ y∗)⊖ z =
(x⊖ y)⊖ z.

(iii) x⊘ (y⊘ z) = x⊘ (y∗ → z) = x∗ → (y∗ → z). By Proposition 1, (9),
x∗ → (y∗ → z) = y∗ → (x∗ → z) = y⊘ (x∗ → z) = y⊘ (x⊘ z).

(iv) By applying BL3, we have, 0 = z⊙ 0 = z⊙ (y⊙ y∗) = (y⊙ z)⊙ y∗ ≤ z if and
only if y⊙ z ≤ y∗ → z = y⊘ z, therefore, x⊘ (y⊙ z)≤ x⊘ (y⊘ z) = (x⊘ y)⊘ z.

□

Lemma 3. Let L be a BL-algebra and x,y ∈ L. Then, the following conditions are
equivalent:

(i) x∗⊕ y = 1;
(ii) x⊖ y = 0;

(iii) x ≤ y∗∗.

Proof. (i) ⇒ (ii) By Definition 2, 1 = x∗ ⊕ y = (x∗∗ ⊙ y∗)∗ = (x∗∗ ⊙ y∗∗∗)∗ =
(x⊙ y∗)∗∗∗ = (x⊙ y∗)∗. This means that x⊙ y∗ = 0, i.e., x⊖ y = 0.
(ii)⇒ (iii) Suppose x⊖ y = 0. Thus x⊙ y∗ = 0, i.e., x ≤ y∗∗.
(iii) ⇒ (i) Since x ≤ y∗∗, so y∗∗∗ ≤ x∗, i.e., y∗ ≤ x∗. This means that y∗ ⊙ x = 0.
By Proposition 1, (y∗⊙x)∗ = (y∗⊙x)∗∗∗ = (y∗∗∗⊙x∗∗)∗ = (y∗⊙x∗∗)∗ = 1, therefore
x∗⊕ y = 1. □

Corollary 1. Let L be a BL-algebra and x,y,z ∈ L. If x⊖ y ≤ z, then x ≤ y⊘ z.

Proof. x⊖ y ≤ z iff x⊙ y∗ ≤ z iff x ≤ y∗ → z, which is equivalent to x ≤ y⊘ z. □

Theorem 4. Let I and K be two ideals of a BL-algebra L such that K ⊆ I. Then I
K

is a proper ideal of L
K if and only if rad( I

K ) is a proper ideal of L
K .

Proof. Let I
K be a proper ideal of L

K and rad( I
K ) is not a proper ideal, then rad( I

K )=
L
K , i.e.,

⋂
M
K ∈Max( L

K )
M
K = L

K , such that I
K ⊆ M

K and Max( L
K ) is the set of all maximal

ideals of L
K , this means that M

K = L
K and rad( I

K ) =
I
K , therefore L

K = I
K , which is a

contradiction.
Conversely, let rad( I

K ) be a proper ideal of L
K . Then y

K /∈ rad( I
K ), for some y

K ∈ L
K .

There exists a maximal ideal M
K such that I

K ⊆ M
K with y

K /∈ M
K . We suppose that I

K is
not proper, then I

K = L
K , i.e., for all x

K ∈ L
K . Since I

K ⊆ M
K , so x

K ∈ M
K for all x

K ∈ L
K .

Therefore, y
K ∈ M

K , which is a contradiction. □
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Theorem 5. Let I, J and K be proper ideals of a BL-algebra L such that K ⊆ I,
K ⊆ J. Then the following assertions hold:

(i) If for all x ∈ L, x∗ = 1, then rad(I) = L;
(ii) If I

K ⊆ J
K , then rad

( I
K

)
⊆ rad

( J
K

)
;

(iii) rad ( I
K ) =

L
K if and only if I

K = L
K ;

(iv) rad(rad
( I

K

)
) = rad

( I
K

)
.

Proof. (i) Let for all x ∈ L, x∗ = 1, then (x → (x∗)n)∗ = (x → 1)∗ = 1∗ = 0 ∈ I. So
by Theorem 3, x ∈ rad(I). Then L ⊆ rad(I). Thus rad(I) = L.

(ii) If I
K ⊆ J

K and x
K ∈ rad( I

K ), then by Theorem 3, ( x
K → ( x

K
∗)n)∗ ∈ I

K ⊆ J
K , for all

n ∈ N, i.e., x
K ∈ rad( J

K ). Hence rad( I
K )⊆ rad( J

K ).
(iii) Suppose rad( I

K ) =
L
K . Since 0

K ∈ L
K , so 0

K ∈ rad( I
K ) and by Theorem 3,

0
K → ((( 0

K )
∗)n)∗ ∈ I

K for all n ∈ N. We conclude ( 0
K → 1

K )
∗ ∈ I

K , i.e., ( 1
K )

∗ ∈ I
K

and 0
K ∈ I

K , therefore, I
K = L

K .
Conversely, let I

K = L
K . Since I

K ⊆ M
K , so we have, rad( I

K ) =
⋂

M
K ∈Max( L

K )
M
K = L

K .
(iv) By (ii) and the fact I

K ⊆ rad( I
K ), we conclude, rad( I

K )⊆ rad(rad( I
K )).

Conversely, let x
K ∈ rad(rad( I

K )), then x
K ∈ M

K for any M
K ∈Max( L

K ) with rad( I
K )⊆

M
K . Now, let N

K be a arbitrary maximal ideal of L
K such that I

K ⊆ N
K . Then by (ii),

rad( I
K )⊆ rad(N

K ) =
N
K , so x

K ∈ N
K and x

K ∈ rad( I
K ). Thus rad(rad( I

K ))⊆ rad( I
K ) and

hence rad(rad( I
K )) = rad( I

K ). □

Theorem 6. Let I and J be two ideals of a BL-algebra L. If a ∈ I and a ≤ b, for
some b ∈ J, then rad(I)⊆ rad(J).

Proof. Let a ≤ b for some b ∈ J. Since J is an ideal, so a ∈ J, i.e., I ⊆ J. Thus by
Theorem 5, rad(I)⊆ rad(J). □

Theorem 7. Let I, J and K be ideals of a BL-algebra L such that K ⊆ I, J. Then
rad( I

⋂
J

K ) = rad( I
K )

⋂
rad( J

K ).

Proof. We know that I
K ⊆ rad( I

K ) and J
K ⊆ rad( J

K ). Then I
⋂

J
K ⊆ I

K ⊆ rad( I
K ). So

by Theorem 5, rad( I
⋂

J
K ) ⊆ rad(rad( I

K )) = rad( I
K ). Similarly, rad( I

⋂
J

K ) ⊆ rad( J
K ).

Thus rad( I
⋂

J
K )⊆ rad( J

K )
⋂

rad( J
K ).

Conversely, let x
K ∈ rad( I

K )
⋂

rad( J
K ), then x

K ∈ rad( I
K ) and x

K ∈ rad( J
K ). By

Theorem 3, ( x
K → ( x

K
∗)n)∗ ∈ I

K and ( x
K → ( x

K
∗)n)∗ ∈ J

K for all n ∈ N. Therefore
( x

K → ( x
K
∗)n)∗ ∈ I

K
⋂ J

K = I
⋂

J
K , for all n ∈ N, i.e., x

K ∈ rad( I
⋂

J
K ) and hence

rad( I
K )

⋂
rad( J

K )⊆ rad( I
⋂

J
K ). □

Theorem 8. Let I and K be two ideals of a BL-algebra L such that K ⊆ I. Then
rad( I

K )
⋂

B( L
K )⊆

I
K , where B( L

K ) is the Boolean center of BL-algebra L
K .

Proof. Let x
K ∈ rad( I

K )
⋂

B( L
K ), then x

K ∈ rad( I
K ) and x

K ∈ B( L
K ). By Theorem 1

and Theorem 3, we conclude that ( x
K → ( x∗

K )n)∗ ∈ I
K , for all n ∈ N, x

K ⊙ x
K = x

K and
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x∗∗
K = x

K . This means that ( x
K → ( x∗

K )n)∗ ∈ I
K , for all n ∈ N, i.e., xn

K = x
K and x∗∗

K = x
K .

Therefore ( x
K → x∗

K )∗ ∈ I
K . Since x∗

K → x
K = x

K , so x∗∗
K → x∗

K = x∗
K . We have, x∗∗

K = x
K ,

i.e., x
K → x∗

K = x∗
K , therefore ( x∗

K )∗ ∈ I and hence x
K ∈ I. □

From Theorem 8, we conclude the following results:

Corollary 2. rad{1}
⋂

B(L) = {1}.

Corollary 3. rad{0} ⊆ {x ∈ L| x is a nilpotent element}.

Proof. Let x ∈ rad{0}. Then by Theorem 3, (x → (x∗)n)∗ = 0, for all n ∈ N, i.e.,
x → (x∗)n = 1, and x → (xn)∗ = 1, thus by Proposition 1, (4), x ≤ (xn)∗ and hence
x⊙ xn = 0. This means that xn+1 = 0 and x is a nilpotent element. □

Theorem 9. Let I be an ideal of a BL-algebra L. Then the following assertions
hold:

(i) D(I)⊆ rad(I), where D(I) = {x ∈ I| x∗ = 1};
(ii) rad

(
I

D(I)

)
= rad(I)

D(I) .

Proof. (i) Let x ∈ D(I). Then x∗ = 1 and (x → (x∗)n)∗ = (x → 1)∗ = 1∗ = 0 ∈ I,
i.e., x ∈ rad(I).

(ii) We know that rad
(

I
D(I)

)
=

⋂ N
D(I) . Since N is a maximal ideal and D(I)⊆ I ⊆

N, so rad
(

I
D(I)

)
=

⋂
N

D(I) =
rad(I)
D(I) . □

Theorem 10. Let I be an ideal of a BL-algebra L. If D(L) ⊆ I, then L
I is an

MV -algebra.

Proof. Suppose D(L) ⊆ I and L
I is not an MV -algebra. Then there exists x ∈ L

such that
( x

I

)∗∗ ̸= x
I . We have x

I ≤
( x

I

)∗∗ and
( x

I

)∗∗ ≰ x
I . Thus

( x
I

)∗∗ → x
I ̸= 1, i.e.,

x∗∗ → x /∈ I and x∗∗ → x /∈ D(I). Therefore (x∗∗ → x)∗ ̸= 1, i.e., x∗∗ → x ̸= 0 which is
a contradiction. □

Theorem 11. Let L be a linear BL-algebra and I be a proper ideal of BL-algebra
L. If x is a unity element of L, then x∗ < x.

Proof. Let x be a unity element in L and x < x∗, then (xn)∗ = 0, for all n ∈ N. We
have x ≤ x∗, i.e., x2 = x⊙ x = 0. Therefore, (x2)∗ = 1, which is a contradiction with
(xn)∗ = 0. Since L is a linear BL-algebra and x ≰ x∗, thus x∗ < x. □

Lemma 4. Let X and Y be two BL-algebras and f : X −→ Y be a BL-homo-
morphism. Then f (d(x,y)) = d( f (x), f (y)), for all x,y ∈ X.

Proof. By Definitions 6 and 7, we have:

f (d(x,y)) = f ((x → y)∧ (y → x))

= f (x → y)∧ f (y → x)
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= ( f (x)→ f (y))∧ ( f (y)→ f (x))

= d( f (x), f (y)).

□

Theorem 12. Let X and Y be two BL-algebras, and f : X −→ Y be a BL-homo-
morphism. If K and J are two ideals of Y such that K ⊆ J, then the following asser-
tions hold:

(i) rad( f−1( J
K )) = f−1(rad( J

K ));
(ii) rad(ker( f )) = f−1(rad{1}).

Proof. (i) Let x
K ∈ rad( f−1( J

K )), then by Theorem 3, ( x
K → (( x

K )
∗)n)∗ ∈ f−1( J

K ),
for all n ∈ N. So f ( x

K → (( x
K )

∗)n)∗ ∈ J
K and by Definition 6, f (( x

K )→ (( x
K )

∗)n)∗ =

( f (x)
K → ( f (x∗)

K )n)∗ ∈ J
K . Therefore f ( x

K )∈ rad( J
K ) and hence x

K ∈ f−1(rad( J
K )). Con-

versely, it is clear by the similar way.
(ii) Let x ∈ rad(ker( f )), then by Theorem 3, (x → (x∗)n)∗ ∈ ker( f ), for all n ∈ N.

So by Definition 6, ( f (x)→ f (x∗))n)∗ = 0, for all n ∈ N, i.e., ( f (x)→ f (x∗))n = 1,
for all n ∈ N. This means that f (x) ∈ rad{1} and x ∈ f−1(rad{1}). Conversely, it is
clear by the same way. □

Definition 11. Let L be a BL-algebra and I be an ideal of L. By U∗
x0,r, we define

the open I-ball of radius r ∈ I, with center x0 (around x0), by

U∗
x0,r = {x ∈ L| (r⊘d(x,x0))

∗ ∈ I} .

Proposition 5. Let L be a BL-algebra and I be an ideal of L. Then the following
assertions hold, for all x,y ∈ L and r,s ∈ I:

(i) U∗
1,0 = {x ∈ L| x∗ ∈ I};

(ii) If y ∈U∗
x,r then y∗ ∈U∗

x∗,r;
(iii) If s ≤ r then U∗

x,s ⊆U∗
x,r.

Proof. (i) By Definition 11,

U∗
1,0 = {x ∈ L| (0⊘d(x,1))∗ ∈ I}= {x ∈ L| (0∗ → d(x,1))∗ ∈ I}

= {x ∈ L| (1 → x)∗ ∈ I}= {x ∈ L| x∗ ∈ I}.

(ii) Suppose y ∈ U∗
x,r, then (r ⊘ d(x,y))∗ ∈ I. By Proposition 3, since d(x,y) ≤

d(x∗,y∗), so r ⊘ d(x,y) ≤ r ⊘ d(x∗,y∗). Therefore (r ⊘ d(x∗,y∗))∗ ≤ (r ⊘ d(x,y))∗.
I is an ideal, thus (r⊘d(x∗,y∗))∗ ∈ I. Therefore y∗ ∈U∗

x∗,r.
(iii) Suppose y ∈ U∗

x,s, then (s ⊘ d(x,y))∗ ∈ I. By assumption s ≤ r, then s ⊘
d(x,y)≤ r⊘d(x,y). Thus (r⊘d(x,y))∗ ≤ (s⊘d(x,y))∗. Since I is an ideal, so (r⊘
d(x,y))∗ ∈ I. Therefore y ∈U∗

x,r. □

From [12], we recall that if X is a set, a basis for a topology on X is a collection B
of subsets of X (called basis element) such that the following hold:
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(i) For each x ∈ X , there is at least one basis element B containing x.
(ii) If x belongs to the intersection of two basis element B1 and B2, then there is a

basis element B3 containing x such that B3 ⊆ B1 ∩B2.

Proposition 6. Let L be a BL-algebra and I be an ideal of L. Then the open I-balls
constitute a basis for a topology on L (we call this topology, ideal topology).

Proof. Let x ∈ L and r ∈ I. By Propositions 1 and 3, 0 = 1∗ = (r∗ → 1)∗ =
(r∗ → d(x,x))∗ = (r⊘d(x,x))∗. Since I is an ideal and 0∈ I, so (r⊘d(x,x))∗ ∈ I, i.e.,
x ∈ U∗

x,r. Thus there exists an element of the I-balls of topology, which is contains
x, for all x ∈ L. Now, let t ∈ U∗

x,r ∩U∗
y,s, then (r⊘d(x, t))∗ ∈ I and (s⊘d(t,y))∗ ∈ I.

This means that there exist c∗,d∗ ∈ I, such that c = r⊘d(x, t), d = s⊘d(t,y). We put
e = c∗∨d∗ and claim that U∗

t,e ⊆U∗
x,r ∩U∗

y,s. Let z ∈U∗
t,e, then (e⊘d(z, t))∗ = k∗ ∈ I,

for some k∗ ∈ I. By Proposition 3, since d(z, t)⊙ d(t,x) ≤ d(z,x), so r⊘ (d(z, t)⊙
d(t,x)) ≤ r ⊘ d(z,x). Also, by Lemma 2, (r ⊘ d(x, t))∗ ⊘ d(z, t)) ≤ r ⊘ (d(x, t)⊙
d(z, t)). Since c∗ ≤ c∗ ∨ d∗, we conclude (c∗ ∨ d∗)⊘ d(z, t) ≤ c∗ ⊘ d(z, t), hence
e⊘ d(z, t) ≤ r⊘ d(z, t). Therefore (r⊘ d(z, t))∗ ≤ (e⊘ d(z, t))∗. Since I is an ideal,
so (r⊘d(z,x))∗ ∈ I and it follows that z ∈U∗

x,r. By the similar way, we conclude that,
if z ∈U∗

t,e, then z ∈U∗
y,s. Therefore, t ∈U∗

x,r ∩U∗
y,s. □

Proposition 7. Every ideal topology on a BL-algebra of L, makes L into a topolo-
gical BL-algebra.

Proof. By [1,16], it is enough to show that the operations ⊙ and ∗ are continuous.
First, we consider the mapping ⊙ : L×L −→ L by (x,y) 7−→ x⊙ y. For e ∈ I, let U
be an open I-ball of radius e around t ⊙ s and V be an open I-ball of radius e around
t. Then, V = {x ∈ L| (e⊘d(x, t))∗ ∈ I} and U = {x ∈ L| (e⊘d(x, t ⊙ s))∗ ∈ I}. Take
x ∈ V and we assume that e⊘ d(x, t) = ex ∈ I. Let W be an open I-ball of radius ex
around s, then V ×W is an open neighborhood around (t,s). So, by Proposition 3 and
Lemma 2, we have

(e⊘d(x⊙ y, t ⊙ s))∗ ≤ (e⊘ (d(x, t)⊙d(y,s)))∗

≤ ((e⊘d(x, t))⊘d(y,s))∗

= (ex ⊘d(y,s))∗ ∈ I.

Since I is an ideal of L, so (e⊘d(x⊙ y, t ⊙ s))∗ ∈ I and hence ⊙(V ×W )⊆U .
Now, we prove that the mapping ∗ : L → L,x 7→ x∗ is continuous. Let e ∈ L, t ∈ I

and U be an open I-ball of radius e around t∗ and V be an open I-ball of radius
e around t. By Propositions 2 and 3, since d(x, t) ≤ d(x∗, t∗), so e⊘ d(x, t) ≤ e⊘
d(x∗, t∗) ∈ I. Then (e ⊘ d(x∗, t∗))∗ ≤ (e ⊘ d(x, t))∗ ∈ I. Since I is an ideal of L,
so (e⊘ d(x∗, t∗))∗ ∈ I and x∗ ∈ U . Therefore V ∗ ⊆ U and hence the mapping ∗ is
continuous. □
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4. SEQUENCES IN BL-ALGEBRAS

In this section we derive some new results on sequences in BL-algebras.

Theorem 13. Let I be an ideal of a BL-algebra L and ( xn
I )n∈N , ( yn

I )n∈N be two
sequences in L

I such that ( xn
I )n∈N ↑ 1I and ( yn

I )n∈N ↑ 1I , then ( xn⊙yn
I )n∈N ↑ 1I .

Proof. Let ( xn
I )n∈N ↑ 1I , ( yn

I )n∈N ↑ 1I and t
I ∈

L
I such that for each n∈N, ( xn⊙yn

I )≤
t
I . We show that t

I = 1I . Since ( yn
I )n∈N ↑ 1I , so by Definition 8, there exists m∈N such

that
∨
n
( yn

I ) = 1I , for all n ∈ N with n ≥ m. By the assumption xn
I ⊙ yn

I = xn⊙yn
I ≤ t

I ,

we have yn
I ≤ xn

I → t
I . So yn

I ≤
∨

n≥m
( xn

I → t
I ) and

∨ yn
I ≤

∨
n≥m

( xn
I → t

I ). Therefore∨
n≥m

( xn
I → t

I ) = 1I . By Proposition 1, (13), ∨( xn
I → t

I ) ≤ (∧ xn
I ) →

t
I for n ≥ m and

1I ≤ ( xm
I ∧ xm+1

I ∧ . . .)→ t
I . So 1I ≤ xm

I → t
I and xm

I → t
I = 1I , i.e., xm

I ≤ t
I . This means

that
∨

n≥m

xm
I ≤ t

I and 1I ≤ t
I , thus t

I = 1I . □

Proposition 8. Let I be an ideal of a BL-algebra L and ( xn
I )n∈N be a sequence in

L
I . If xn

I →s
x1
I and xn

I →s
x2
I , then x1

I = x2
I .

Proof. By the assumption, since xn
I → x1

I , xn
I → x2

I , so by Definition 9, ( sn
I )n∈N ↑

1I , ( tn
I )n∈N ↑ 1I with d( xn

I ,
x1
I ) ≥

sn
I , d( xn

I ,
x2
I ) ≥

tn
I . By Proposition 3, d( x1

I ,
x2
I ) ≥

d( x1
I ,

xn
I )⊙ d( xn

I ,
x2
I ), then d( x1

I ,
x2
I ) ≥

sn
I ⊙ tn

I . By Theorem 13, ( sn
I ⊙ tn

I )n∈N ↑ 1I ,

therefore d( x1
I ,

x2
I ) = 1I and hence x1

I = x2
I . □

Proposition 9. Let L be a BL-algebra and (xn)n∈N,(yn)n∈N be two sequences in L
such that xn →s x, yn → y. Then (xn ↔ yn)→s (x ↔ y).

Proof. First we show that if xn →s x, yn →s y, then, (i) xn ∧ yn →s x∧ y,
(ii) (xn → yn) →s (x → y). Since xn →s x and yn →s y, by Definition 9, there exist
(sn)n∈N and (tn)n∈N such that (sn)n∈N ↑ 1, (tn)n∈N ↑ 1 and d(xn,x)≥ sn, d(yn,y)≥ tn.
By Proposition 3, d(xn∧yn, x∧y)≥ d(xn,x)∧d(yn,y)≥ sn∧tn. Since (sn∧tn)n∈N ↑ 1,
so xn ∧ yn →s x∧ y.

From Proposition 3, d(xn → yn, x → y) ≥ d(xn,x)⊙ d(yn → y) ≥ sn ⊙ tn. Since
(sn ⊙ tn)n∈N ↑ 1, so (xn → yn) →s (x → y). By Proposition 1, (14), d(xn ↔ yn,
x↔ y) = d((xn → yn) ∧(yn → xn), (x→ y)∧ (y→ x))≥ d(xn → yn, x→ y)∧d(yn →
xn, y → x)≥ (sn ⊙ tn)∧ (tn ⊙ sn) = sn ⊙ tn ↑ 1, therefore (xn ↔ yn)→s (x ↔ y). □

Theorem 14. Let X and Y be two BL-algebras and f : X −→ Y be a BL-homo-
morphism. If (xn)n∈N is a sequence in X, then ( f (xn))n∈N is a sequence in Y such
that f (xn)→s f (x).

Proof. Let (xn)n∈N be a sequence in X . There exists a sequence (sn)n∈N of X
such that (sn)n∈N ↑ 1,d(xn,x) ≥ sn. Since f (1) = 1, so ( f (sn)) ↑ f (1) = 1. We also
have d(xn,x)≥ sn, then by Definition 6, d( f (xn), f (x)) = f (d(xn),d(x))≥ f (sn), i.e.,
f (xn)→s f (x). □
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Corollary 4. Let X and Y be two BL-algebras, f : X →Y be a BL-homomorphism
and (xn)n∈N,(yn)n∈N be sequences in X, in which xn →s x, yn →s y, then
f (xn ↔ yn)→s f (x ↔ y).

Proof. By Proposition 9 and Theorem 14, it is clear. □

Proposition 10. Let I be a proper ideal of special BL-algebra L∗. Then L∗

I is not
an MV -algebra.

Proof. Suppose that there exists a proper ideal I of L∗ such that L∗

I is an MV -
algebra. Then we have x

I = x∗∗
I , for all x ∈ L∗ and x → x∗∗ ∈ I. Since x ∈ L∗, so

x∗ = 0 and x∗∗ = 1. Thus x → 1 ∈ I and 1 ∈ I. This means that I = L∗, which is a
contradiction. □

Theorem 15. Let I be an ideal of MV -algebra L. Then L
I is a special BL-algebra

if and only if I is a maximal ideal of L.

Proof. We know that L
I is special BL-algebra iff x∗

I = ( x
I )

∗ = 0
I , for all 0 ̸= x ∈ L.

It is equal to x∗ → 0 ∈ I, for all 0 ̸= x ∈ L iff x∗∗ = x ∈ L, for all 0 ̸= x ∈ L which in
turn equals to I = L−{0}. □

Definition 12. Let L be a BL-algebra and I be an ideal of L. Then I is a special
ideal if, for all x,y ∈ I, (x → y)∗ = (y → x)∗.

Example 1. Let L = {0,a,b,1}. Define ”⊙ ” and ” → ” as follows:

⊙ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b 0 a 1 1
1 0 a b 1

It is easy to see that L is a BL-algebra and I = {0,a} is a special ideal of L.

Theorem 16. Let I be an ideal of BL-algebra L. Then I is a special ideal of L if
and only if D∗(I) = I, where D∗(I) = {x ∈ I| x∗∗ = 0}.

Proof. Since 0 ∈ D∗(I), it is clear that ∅ ̸= D∗(I)⊆ I. Let I be a special ideal of L
and t ∈ I, then for every x,y ∈ I, (x → y)∗ = (y → x)∗. We put x = t and y = 0, then,
by Proposition 1, (t → 0)∗ = (0 → t)∗, i.e., t∗∗ = 1∗ = 0. This means that t ∈ D∗(I)
and hence, I ⊆ D∗(I).

Conversely, let D∗(I) = I, and x,y ∈ I, then x∗∗ = y∗∗ = 0. By Proposition 1, we
have (x → y)∗ = (x → y)∗∗∗ = ((x → y)∗∗)∗ = (x∗∗ → y∗∗)∗ = (0 → 0)∗ = (y∗∗ →
x∗∗)∗ = ((y → x)∗∗)∗ = (y → x)∗∗∗ = (y → x)∗. Therefore, I is a special ideal of
L. □
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