

SOME RESULTS ON *I*-BALLS, RADICALS, SEQUENCES AND TOPOLOGY IN *BL*-ALGEBRAS

M. H. NASR ESFAHANI, F. KHAKSAR HAGHANI, AND SHAHRAM HEIDARIAN

Received 03 February, 2020

Abstract. In this paper, we obtain some new results on radicals of an ideal in *BL*-algebras. Further, we introduce *I*-balls in *BL*-algebras and prove that *I*-balls constitutes a basis for a topology on *BL*-algebras. We also derive some new relations of sequences in *BL*-algebras.

2010 Mathematics Subject Classification: 06D99; 06B99; 03G22

Keywords: radical, congruence classes, I-ball, sequence, maximal ideal

1. INTRODUCTION

In 1958, C. C. Chang [2] devised the notion of *MV*-algebra in order to provide an algebraic proof of the completeness theorem of Łukasiewicz axioms for infinite valued propositional logic. In 1998, P. Hájek [7] introduced a very general manyvalued logic, called Basic Logic (or BL), with the idea to formalize the many-valued semantics induced by a continuous t-norm on the unit real interval [0, 1]. This Basic Logic turns to be a fragment common to three important many-valued logics: \aleph_0 valued Łukasiewicz logic, Gödel logic and Product logic. The Lindenbaum-Tarski algebras for Basic Logic are called *BL*-algebras. Apart from their logical attention, *BL*-algebras have important algebraic properties and they have been hard studied from an algebraic point of view. Some well-known examples of a *BL*-algebra are Łukasiewicz, Gödel and Product structures. These examples are defined by the unit interval [0,1] endowed with the structure induced by a continuous t-norm [7].

In 2013, C. Lele and J. B. Nganou [9], introduced the concept of ideals in *BL*-algebras by generalizing the notion of an ideal in *MV*-algebras and showed that, unlike what is in *MV*-algebras, in *BL*-algebras, the notions of filter and ideal are not dual.

A. Paad in [14], defined the notion of rad(I) on a *BL*-algebra *L*, where rad(I) is the radical of an ideal *I* of *L*. G. Georgescu and A. Popescu [6] defined the sequences in *BL*-algebras. C. Luan and Y. Yang in [10] defined the *I*-balls on *MV*-algebras. Also, the same authors, introduce a topology on *MV*-algebras by filters and studied some properties of the filters in *MV*-algebras.

© 2022 Miskolc University Press

Proved by Höhle [8], a *BL*-algebra becomes an *MV*-algebra if, we adjoin to the axioms the double negation law, $x = x^{**}$. Thus, a *BL*-algebra is in some intuitive way, a non-double negation *MV*-algebra. Hence the theory of *MV*-algebras, becomes one of the guides to the development of the theory of *BL*-algebras. Therefore, we define the notion of an *I*-ball on a *BL*-algebra *L* and derive a topology with respect to *I*-balls on *L*. We also obtain some new results of radicals and sequences in *BL*-algebras.

This paper is organized as follows:

In Section 2, we recall some definitions and results related to the *BL*-algebra and operations, which we need for the rest of the paper. In Section 3, we derive some relations on ideals, quotient ideals and rad(I) on *BL*-algebras. We further define open *I*-balls and prove that open *I*-balls constitutes a basis for a topology. In Section 4, we obtain some new results on sequences in *BL*-algebras.

2. PRELIMINARIES

In this section, we recall some definitions and properties of *BL*-algebras which will be used throughout of the paper.

Definition 1 ([7]). An algebraic structure $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 0, 0) is called a *BL*-algebra, if it satisfies the following conditions for all $x, y, z \in L$:

*BL*₁: $(L, \land, \lor, 0, 1)$ is a bounded lattice relative to the order \leq ;

*BL*₂: $(L, \odot, 1)$ is a commutative monoid;

*BL*₃: $x \odot y \le z$ if and only if $x \le y \to z$;

 $BL_4: x \wedge y = x \odot (x \to y);$

$$BL_5: (x \to y) \lor (y \to x) = 1$$

By *L*, we denote the universe of a *BL*-algebra $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ for any $x \in L$ and a natural number *n*, we define $x^* = x \rightarrow 0$, $x^n = x^{n-1} \odot x$, for $n \ge 1$, $x^0 = 1$. Let $x \in L$, if there is the least integer $n \in \mathbb{N}$ such that $x^n = 0$. We set ord(x) = n, if there is no such an integer, we set $ord(x) = \infty$.

A *BL*-algebra *L* is called *MV*-algebra, if $x^{**} = x$, for all $x \in L$. Also an element $x \in L$ is called an nilpotent element of *L*, if $x^n = 0$, for some $n \in \mathbb{N}$.

A *BL*-algebra *L* is linear, if for every $x, y \in L, x \leq y$ or $y \leq x$ [3].

An *MV*-algebra *L* is locally finite iff every element $0 \neq x \in L$ has a finite order, or equivalently, for every $0 \neq x \in L$, nx = 1, for some $n \in \mathbb{N}$ [2].

The following properties are well known in BL-algebras.

Proposition 1 ([7, 15]). *Let L be a BL-algebra. For all* $x, y, z \in L$, and $n \in \mathbb{N}$, the following statements hold:

(1) $x \odot y \le z$ iff $x \le y \to z$;

(2) $x \odot y \le x \land y \le x, y;$

(3) $x \le y$ implies that $x \odot z \le y \odot z$;

(4) $x \le y$ iff $x \to y = 1$;

(5) $1 \to x = x, x \to x = 1, x \le y \to x \text{ and } x \to 1 = 1;$ (6) $x \odot x^* = 0 \text{ and } x \odot 0 = 0;$ (7) $x \odot y = 0 \text{ iff } x \le y^*;$ (8) $1^* = 0, 0^* = 1, x \le x^{**}, x^* = x^{***};$ (9) $x \to (y \to z) = (x \odot y) \to z = y \to (x \to z);$ (10) $x \le y$ implies that $z \to x \le z \to y, y \to z \le x \to z$ and $y^* \le x^*;$ (11) $x \lor y = [(x \to y) \to y] \land [(y \to x) \to x];$ (12) $(x \land y)^{**} = x^{**} \land y^{**}, (x \lor y)^{**} = x^{**} \lor y^{**}, (x \odot y)^{**} = x^{**} \odot y^{**}$ and $(x \to y)^{**} = x^{**} \to y^{**};$ (13) $\lor (v_i \to x) \le (\land y_i) \to x$, where L is complete and $\{y_i\}_{i \in I} \subseteq L; x \in Y \in Y$.

(13) $\bigvee_{i \in I} (y_i \to x) \leq (\bigwedge_{i \in I} y_i) \to x$, where L is complete and $\{y_i\}_{i \in I} \subseteq L$; $x \leftrightarrow y = (x \to y) \land (y \to x)$.

Definition 2 ([4]). Let *L* be a *BL*-algebra. We define the following operations which is known for any $x, y \in L$:

(i)
$$x \oplus y = (x^* \odot y^*)^*$$

(ii) $x \ominus y = x \odot y^*$.

From [9], for every $x, y \in L$, $x \oslash y = x^* \to y$.

Proposition 2 ([9]). *In every BL-algebra L, the following statements hold for any* $x, y, z, t \in L$:

(*i*) The operation \oslash is associative;

(ii) $x \leq y$ and $z \leq t$ imply $x \oslash z \leq y \oslash t$.

Lemma 1 ([15]). Let L be a BL-algebra. For all $x, y, z \in L$, if $x \leq y$, then the following hold:

(i) $x \odot z \le y \odot z$; (ii) $x \oplus z \le y \oplus z$; (iii) $z \oplus y \le z \oplus x$; (iv) $z \oslash x \le z \oslash y$ and $y \oslash z \le x \oslash z$.

Definition 3 ([9]). Let *L* be a *BL*-algebra and *I* be a nonempty subset of *L*, then *I* is an ideal of *L* if it satisfies the following conditions:

(*I*₁) For every $x, y \in I$, $x \oslash y \in I$;

(*I*₂) For every $x, y \in L$, if $x \le y$ and $y \in I$, then $x \in I$.

It is trivial to see that for any ideal $I, 0 \in I$ and for every $x \in L, x \in I$ if and only if $x^{**} \in I$ [9]. A proper ideal I is called a maximal ideal of L, if it is not properly contained in any other ideal of L.

From [5, 15], *BL*-algebras are distributive lattices and a distributive lattice $\langle L, \leq, \wedge, \vee \rangle$ in which for every element $x \in L$ there is an associated element $x^* \in L$ such that for every $y \in L$, $(x \wedge x^*) \vee y = y$ and $(x \vee x^*) \wedge y = y$ is called a Boolean

algebra. The element x^* is called the lattice complement of x. The set of all complemented elements of the corresponding distributive lattice to the *BL*-algebra *L*, is a Boolean algebra and denoted by B(L).

Theorem 1 ([5,7]). *Let L be a BL-algebra. Then for* $x \in L$ *, the following statements are equivalent:*

(i) $x \in B(L)$; (ii) $x \odot x = x$ and $x^{**} = x$; (iii) $x \odot x = x$, $x^* \to x = x$; (iv) $x^* \lor x = 1$; (v) $(x \to y) \to x = 0$, for any $y \in L$.

Theorem 2 ([13]). *Let M be a proper ideal of a BL-algebra L. Then the following conditions are equivalent:*

- (i) M is a maximal ideal of L;
- (ii) For all $x \notin M$, there exists $n \in \mathbb{N}, (x^*)^n \in M$;
- (iii) $\frac{L}{M}$ is a locally finite MV-algebra.

Definition 4 ([9]). Let *I* be a proper ideal of a *BL*-algebra *L*. Then the intersection of all maximal ideals of *L* that contain *I* is called the radical of *I* and is denoted by rad(I).

From [14], rad(I) is an ideal of L and $I \subseteq rad(I)$.

Theorem 3 ([14]). Let L be a BL-algebra and I be a proper ideal of L. Then $rad(I) = \{x \in L | (x \to (x^*)^n)^* \in I, \text{ for all } n \in \mathbb{N}\}.$

Definition 5 ([14]). An element *a* of a *BL*-algebra *L* is called unity if, for all $n \in \mathbb{N}$, $((a^n)^*)^k = 0$, for some $k \in \mathbb{N}$, i.e., $(a^n)^*$ is a nilpotent element of *L*.

Definition 6 ([7]). Let *X* and *Y* be two *BL*-algebras. A map $f : X \longrightarrow Y$ is called a *BL*-homomorphism if, for all $x, y \in X$:

- (i) $f(x \odot y) = f(x) \odot f(y);$
- (*ii*) $f(x \to y) = f(x) \to f(y);$
- $(iii) f(0_X) = 0_Y.$

If $f: X \longrightarrow Y$ is a *BL*-homomorphism, then the kernel of f is the set

$$\ker(f) = \{x \in X | f(x) = 0_Y\}.$$

From [9] the following, as immediate consequent of Definition 6, are hold, for all $x, y \in X$:

- (i) $f(x \land y) = f(x) \land f(y);$ (ii) $f(x \lor y) = f(x) \lor f(y);$ (iii) $f(x^*) = (f(x))^*;$
- $(iv) f(1_X) = 1_Y;$

(v) If $x \le y$, then $f(x) \le f(y)$; (vi) $f(x \oslash y) = f(x) \oslash f(y)$.

Definition 7 ([3]). In a *BL*-algebra *L*, the distance function $d : L \times L \longrightarrow L$ is defined by $d(x,y) = (x \rightarrow y) \land (y \rightarrow x)$, for all $x, y \in L$.

Proposition 3 ([3,6]). Let L be a BL-algebra. Then the following statements hold:

(i) d(x,y) = d(y,x);(ii) d(x,y) = 1 if and only if x = y;(iii) $d(x,1) = x, d(x,0) = x^*;$ (iv) $d(x,2) \odot d(z,y) \le d(x,y);$ (v) $d(x,y) \le d(x \odot u, y \odot u);$ (vi) $d(x,u) \odot d(y,v) \le d(y \to x, v \to u);$ (vii) $d(x,u) \land d(y,v) \le d(x \land y, u \land v);$ (viii) $d(x,u) \land d(y,v) \le d(x \lor y, u \lor v);$ (ix) $d(x,y) \le d(x^*,y^*).$

Definition 8 ([3]). Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in a *BL*-algebra *L*. If $(x_n)_{n \in \mathbb{N}}$ is increasing, we denote $(x_n)_{n \in \mathbb{N}} \uparrow$. Similarly, if $(x_n)_{n \in \mathbb{N}}$ is decreasing, we denote $(x_n)_{n \in \mathbb{N}} \downarrow$. If $(x_n)_{n \in \mathbb{N}}$ is increasing, $\bigwedge_n x_n$ exists and $\bigwedge_n x_n = x$, we denote $(x_n)_{n \in \mathbb{N}} \uparrow x$. Similarly, if $(x_n)_{n \in \mathbb{N}}$ is decreasing, $\bigvee_n x_n$ exists and $\bigvee_n x_n = x$, we denote $(x_n)_{n \in \mathbb{N}} \downarrow x$.

Definition 9 ([3]). Let *L* be a *BL*-algebra and $(x_n)_{n \in \mathbb{N}}$ be a sequence in *L*. Then $(x_n)_{n \in \mathbb{N}}$ converges to $x \in L$, if there exists a sequence $(s_n)_{n \in \mathbb{N}}$ in *L* such that $(s_n)_{n \in \mathbb{N}} \uparrow 1$ and $d(x_n, x) \ge s_n$ for all $n \in \mathbb{N}$, which we denote by $x_n \to s x$.

Definition 10 ([3]). A *BL*-algebra *L* is called special if, $(x \to y)^* = (y \to x)^*$, for all $x, y \in L$.

We denote a special *BL*-algebra L by L^* .

Proposition 4 ([11]). For a BL-algebra L, the following conditions are equivalent:

(i) L is a special BL-algebra;

(*ii*) $x^* = 0$, for any $0 \neq x \in L$.

Note that if I is an ideal of a special *BL*-algebra L, then $\frac{L}{I}$ is a special *BL*-algebra.

3. SOME RESULTS ON RADICALS AND TOPOLOGY ON BL-ALGEBRAS

In this section, we obtain some new results on radical of an ideal of a *BL*-algebra *L*. We also define the open *I*-balls on *L* and prove that these open *I*-balls constitute a basis for a topology on *L*.

Lemma 2. Let *L* be a BL-algebra. Then for all $x, y, z \in L$, the following hold: (*i*) $x \oslash (y \oslash z) = (x \oplus y) \oslash z$; (*ii*) $x \ominus (y \oplus z) = (x \ominus y) \ominus z$;

(iii) $x \oslash (y \oslash z) = y \oslash (x \oslash z);$ (iv) $x \oslash (y \odot z) \le (x \oslash y) \oslash z.$

Proof. Let $x, y, z \in L$, then by Definition 2 and Proposition 1, we conclude:

- (i) $x \oslash (y \oslash z) = x^* \to (y \oslash z) = x^* \to (y^* \to z) = (x^* \odot y^*) \to z = (x^{***} \odot y^{***}) \to z$. By Proposition 1, (12), we have, $(x^{***} \odot y^{***}) \to z = (x^* \odot y^*)^{**} \to z = (x^* \odot y^*)^* \oslash z = (x \oplus y) \oslash z$.
- $\begin{array}{l} (ii) \ x \ominus (y \oplus z) = x \odot (y \oplus z)^* = x \odot (y^* \odot z^*) = (x \odot y^*) \odot z^* = (x \odot y^*) \ominus z = \\ (x \ominus y) \ominus z. \end{array}$
- (*iii*) $x \oslash (y \oslash z) = x \oslash (y^* \to z) = x^* \to (y^* \to z)$. By Proposition 1, (9), $x^* \to (y^* \to z) = y^* \to (x^* \to z) = y \oslash (x^* \to z) = y \oslash (x \oslash z)$.
- (*iv*) By applying BL_3 , we have, $0 = z \odot 0 = z \odot (y \odot y^*) = (y \odot z) \odot y^* \le z$ if and only if $y \odot z \le y^* \to z = y \oslash z$, therefore, $x \oslash (y \odot z) \le x \oslash (y \oslash z) = (x \oslash y) \oslash z$.

Lemma 3. Let *L* be a *BL*-algebra and $x, y \in L$. Then, the following conditions are equivalent:

- (*i*) $x^* \oplus y = 1$; (*ii*) $x \ominus y = 0$;
- (iii) $x \leq y^{**}$.

Proof. (*i*) \Rightarrow (*ii*) By Definition 2, $1 = x^* \oplus y = (x^{**} \odot y^*)^* = (x^{**} \odot y^{***})^* = (x \odot y^*)^{***} = (x \odot y^*)^*$. This means that $x \odot y^* = 0$, i.e., $x \ominus y = 0$. (*ii*) \Rightarrow (*iii*) Suppose $x \ominus y = 0$. Thus $x \odot y^* = 0$, i.e., $x \le y^{**}$. (*iii*) \Rightarrow (*ii*) Since $x \le y^{**}$ so $y^{***} \le x^*$ i.e. $y^* \le x^*$. This means that $y^* \odot x = 0$.

 $(iii) \Rightarrow (i)$ Since $x \le y^{**}$, so $y^{***} \le x^*$, i.e., $y^* \le x^*$. This means that $y^* \odot x = 0$. By Proposition 1, $(y^* \odot x)^* = (y^* \odot x)^{***} = (y^{***} \odot x^{**})^* = (y^* \odot x^{**})^* = 1$, therefore $x^* \oplus y = 1$.

Corollary 1. *Let L be a BL-algebra and* $x, y, z \in L$ *. If* $x \ominus y \leq z$ *, then* $x \leq y \oslash z$ *.*

Proof. $x \ominus y \le z$ iff $x \odot y^* \le z$ iff $x \le y^* \to z$, which is equivalent to $x \le y \oslash z$. \Box

Theorem 4. Let *I* and *K* be two ideals of a *BL*-algebra *L* such that $K \subseteq I$. Then $\frac{1}{K}$ is a proper ideal of $\frac{L}{K}$ if and only if $rad(\frac{1}{K})$ is a proper ideal of $\frac{L}{K}$.

Proof. Let $\frac{I}{K}$ be a proper ideal of $\frac{L}{K}$ and $rad(\frac{I}{K})$ is not a proper ideal, then $rad(\frac{I}{K}) = \frac{L}{K}$, i.e., $\bigcap_{\frac{M}{K} \in Max(\frac{L}{K})} \frac{M}{K} = \frac{L}{K}$, such that $\frac{I}{K} \subseteq \frac{M}{K}$ and $Max(\frac{L}{K})$ is the set of all maximal ideals of $\frac{L}{K}$, this means that $\frac{M}{K} = \frac{L}{K}$ and $rad(\frac{I}{K}) = \frac{I}{K}$, therefore $\frac{L}{K} = \frac{I}{K}$, which is a contradiction.

Conversely, let $rad(\frac{1}{K})$ be a proper ideal of $\frac{L}{K}$. Then $\frac{y}{K} \notin rad(\frac{1}{K})$, for some $\frac{y}{K} \in \frac{L}{K}$. There exists a maximal ideal $\frac{M}{K}$ such that $\frac{1}{K} \subseteq \frac{M}{K}$ with $\frac{y}{K} \notin \frac{M}{K}$. We suppose that $\frac{1}{K}$ is not proper, then $\frac{1}{K} = \frac{L}{K}$, i.e., for all $\frac{x}{K} \in \frac{L}{K}$. Since $\frac{1}{K} \subseteq \frac{M}{K}$, so $\frac{x}{K} \in \frac{M}{K}$ for all $\frac{x}{K} \in \frac{L}{K}$. Therefore, $\frac{y}{K} \in \frac{M}{K}$, which is a contradiction.

Theorem 5. Let I, J and K be proper ideals of a BL-algebra L such that $K \subseteq I$, $K \subseteq J$. Then the following assertions hold:

(i) If for all $x \in L$, $x^* = 1$, then rad(I) = L;

(ii) If $\frac{1}{K} \subseteq \frac{J}{K}$, then rad $\left(\frac{1}{K}\right) \subseteq rad\left(\frac{J}{K}\right)$;

(iii) rad $\left(\frac{I}{K}\right) = \frac{L}{K}$ if and only if $\frac{I}{K} = \frac{L}{K}$;

(iv) $rad(rad\left(\frac{I}{K}\right)) = rad\left(\frac{I}{K}\right)$.

Proof. (*i*) Let for all $x \in L$, $x^* = 1$, then $(x \to (x^*)^n)^* = (x \to 1)^* = 1^* = 0 \in I$. So by Theorem 3, $x \in rad(I)$. Then $L \subseteq rad(I)$. Thus rad(I) = L.

(*ii*) If $\frac{I}{K} \subseteq \frac{J}{K}$ and $\frac{x}{K} \in rad(\frac{I}{K})$, then by Theorem 3, $(\frac{x}{K} \to (\frac{x}{K}^*)^n)^* \in \frac{I}{K} \subseteq \frac{J}{K}$, for all $n \in \mathbb{N}$, i.e., $\frac{x}{K} \in rad(\frac{J}{K})$. Hence $rad(\frac{I}{K}) \subseteq rad(\frac{J}{K})$.

(*iii*) Suppose $rad(\frac{I}{K}) = \frac{L}{K}$. Since $\frac{0}{K} \in \frac{L}{K}$, so $\frac{0}{K} \in rad(\frac{I}{K})$ and by Theorem 3, $\frac{0}{K} \to (((\frac{0}{K})^*)^n)^* \in \frac{I}{K}$ for all $n \in \mathbb{N}$. We conclude $(\frac{0}{K} \to \frac{1}{K})^* \in \frac{I}{K}$, i.e., $(\frac{1}{K})^* \in \frac{I}{K}$ and $\frac{0}{K} \in \frac{I}{K}$, therefore, $\frac{I}{K} = \frac{L}{K}$.

Conversely, let $\frac{I}{K} = \frac{L}{K}$. Since $\frac{I}{K} \subseteq \frac{M}{K}$, so we have, $rad(\frac{I}{K}) = \bigcap_{\frac{M}{K} \in Max(\frac{L}{K})} \frac{M}{K} = \frac{L}{K}$.

(*iv*) By (*ii*) and the fact $\frac{I}{K} \subseteq rad(\frac{I}{K})$, we conclude, $rad(\frac{I}{K}) \subseteq rad(rad(\frac{I}{K}))$. Conversely, let $\frac{x}{K} \in rad(rad(\frac{I}{K}))$, then $\frac{x}{K} \in \frac{M}{K}$ for any $\frac{M}{K} \in Max(\frac{L}{K})$ with $rad(\frac{I}{K}) \subseteq rad(rad(\frac{I}{K}))$. $\frac{M}{K}. \text{ Now, let } \frac{N}{K} \text{ be a arbitrary maximal ideal of } \frac{L}{K} \text{ such that } \frac{I}{K} \subseteq \frac{N}{K}. \text{ Then by } (ii), \\ rad(\frac{I}{K}) \subseteq rad(\frac{N}{K}) = \frac{N}{K}, \text{ so } \frac{x}{K} \in \frac{N}{K} \text{ and } \frac{x}{K} \in rad(\frac{I}{K}). \text{ Thus } rad(rad(\frac{I}{K})) \subseteq rad(\frac{I}{K}) \text{ and } (\frac{I}{K}) = \frac{N}{K}.$ hence $rad(rad(\frac{I}{K})) = rad(\frac{I}{K})$.

Theorem 6. Let I and J be two ideals of a BL-algebra L. If $a \in I$ and $a \leq b$, for some $b \in J$, then $rad(I) \subseteq rad(J)$.

Proof. Let $a \leq b$ for some $b \in J$. Since J is an ideal, so $a \in J$, i.e., $I \subseteq J$. Thus by Theorem 5, $rad(I) \subseteq rad(J)$. \square

Theorem 7. Let I, J and K be ideals of a BL-algebra L such that $K \subseteq I$, J. Then $rad(\frac{I\cap J}{K}) = rad(\frac{I}{K}) \cap rad(\frac{J}{K}).$

Proof. We know that $\frac{I}{K} \subseteq rad(\frac{I}{K})$ and $\frac{J}{K} \subseteq rad(\frac{J}{K})$. Then $\frac{I \cap J}{K} \subseteq \frac{I}{K} \subseteq rad(\frac{I}{K})$. So by Theorem 5, $rad(\frac{I\cap J}{K}) \subseteq rad(rad(\frac{I}{K})) = rad(\frac{I}{K})$. Similarly, $rad(\frac{I\cap J}{K}) \subseteq rad(\frac{J}{K})$. Thus $rad(\frac{I\cap J}{K}) \subseteq rad(\frac{J}{K}) \cap rad(\frac{J}{K})$.

Conversely, let $\frac{x}{K} \in rad(\frac{I}{K}) \cap rad(\frac{J}{K})$, then $\frac{x}{K} \in rad(\frac{I}{K})$ and $\frac{x}{K} \in rad(\frac{J}{K})$. By Theorem 3, $(\frac{x}{K} \to (\frac{x}{K}^*)^n)^* \in \frac{I}{K}$ and $(\frac{x}{K} \to (\frac{x}{K})^n)^* \in \frac{J}{K}$ for all $n \in \mathbb{N}$. Therefore $(\frac{x}{K} \to (\frac{x}{K}^*)^n)^* \in \frac{I}{K} \cap \frac{J}{K} = \frac{I \cap J}{K}$, for all $n \in \mathbb{N}$, i.e., $\frac{x}{K} \in rad(\frac{I \cap J}{K})$ and hence $rad(\frac{I}{K}) \cap rad(\frac{J}{K}) \subseteq rad(\frac{I \cap J}{K}).$

Theorem 8. Let I and K be two ideals of a BL-algebra L such that $K \subseteq I$. Then $rad(\frac{I}{K}) \cap B(\frac{L}{K}) \subseteq \frac{I}{K}$, where $B(\frac{L}{K})$ is the Boolean center of BL-algebra $\frac{L}{K}$.

Proof. Let $\frac{x}{K} \in rad(\frac{1}{K}) \cap B(\frac{L}{K})$, then $\frac{x}{K} \in rad(\frac{1}{K})$ and $\frac{x}{K} \in B(\frac{L}{K})$. By Theorem 1 and Theorem 3, we conclude that $(\frac{x}{K} \to (\frac{x^*}{K})^n)^* \in \frac{I}{K}$, for all $n \in \mathbb{N}$, $\frac{x}{K} \odot \frac{x}{K} = \frac{x}{K}$ and $\frac{x^{**}}{K} = \frac{x}{K}. \text{ This means that } (\frac{x}{K} \to (\frac{x^*}{K})^n)^* \in \frac{I}{K}, \text{ for all } n \in \mathbb{N}, \text{ i.e., } \frac{x^n}{K} = \frac{x}{K} \text{ and } \frac{x^{**}}{K} = \frac{x}{K}.$ Therefore $(\frac{x}{K} \to \frac{x^*}{K})^* \in \frac{I}{K}.$ Since $\frac{x^*}{K} \to \frac{x}{K} = \frac{x}{K}, \text{ so } \frac{x^{**}}{K} \to \frac{x^*}{K} = \frac{x^*}{K}.$ We have, $\frac{x^{**}}{K} = \frac{x}{K},$ i.e., $\frac{x}{K} \to \frac{x^*}{K} = \frac{x^*}{K},$ therefore $(\frac{x^*}{K})^* \in I$ and hence $\frac{x}{K} \in I.$

From Theorem 8, we conclude the following results:

Corollary 2. $rad\{1\} \cap B(L) = \{1\}.$

Corollary 3. $rad\{0\} \subseteq \{x \in L | x \text{ is a nilpotent element}\}.$

Proof. Let $x \in rad\{0\}$. Then by Theorem 3, $(x \to (x^*)^n)^* = 0$, for all $n \in \mathbb{N}$, i.e., $x \to (x^*)^n = 1$, and $x \to (x^n)^* = 1$, thus by Proposition 1, (4), $x \le (x^n)^*$ and hence $x \odot x^n = 0$. This means that $x^{n+1} = 0$ and x is a nilpotent element.

Theorem 9. Let I be an ideal of a BL-algebra L. Then the following assertions hold:

(i) $D(I) \subseteq rad(I)$, where $D(I) = \{x \in I \mid x^* = 1\}$; (ii) $rad\left(\frac{I}{D(I)}\right) = \frac{rad(I)}{D(I)}$.

Proof. (i) Let $x \in D(I)$. Then $x^* = 1$ and $(x \to (x^*)^n)^* = (x \to 1)^* = 1^* = 0 \in I$, i.e., $x \in rad(I)$.

(*ii*) We know that $rad\left(\frac{I}{D(I)}\right) = \bigcap \frac{N}{D(I)}$. Since N is a maximal ideal and $D(I) \subseteq I \subseteq N$, so $rad\left(\frac{I}{D(I)}\right) = \frac{\bigcap N}{D(I)} = \frac{rad(I)}{D(I)}$.

Theorem 10. Let I be an ideal of a BL-algebra L. If $D(L) \subseteq I$, then $\frac{L}{I}$ is an MV-algebra.

Proof. Suppose $D(L) \subseteq I$ and $\frac{L}{I}$ is not an *MV*-algebra. Then there exists $x \in L$ such that $\left(\frac{x}{I}\right)^{**} \neq \frac{x}{I}$. We have $\frac{x}{I} \leq \left(\frac{x}{I}\right)^{**}$ and $\left(\frac{x}{I}\right)^{**} \neq \frac{x}{I}$. Thus $\left(\frac{x}{I}\right)^{**} \rightarrow \frac{x}{I} \neq 1$, i.e., $x^{**} \rightarrow x \notin I$ and $x^{**} \rightarrow x \notin D(I)$. Therefore $(x^{**} \rightarrow x)^* \neq 1$, i.e., $x^{**} \rightarrow x \neq 0$ which is a contradiction.

Theorem 11. Let *L* be a linear *BL*-algebra and *I* be a proper ideal of *BL*-algebra *L*. If *x* is a unity element of *L*, then $x^* < x$.

Proof. Let x be a unity element in L and $x < x^*$, then $(x^n)^* = 0$, for all $n \in \mathbb{N}$. We have $x \le x^*$, i.e., $x^2 = x \odot x = 0$. Therefore, $(x^2)^* = 1$, which is a contradiction with $(x^n)^* = 0$. Since L is a linear *BL*-algebra and $x \le x^*$, thus $x^* < x$.

Lemma 4. Let X and Y be two BL-algebras and $f : X \longrightarrow Y$ be a BL-homomorphism. Then f(d(x,y)) = d(f(x), f(y)), for all $x, y \in X$.

Proof. By Definitions 6 and 7, we have:

$$f(d(x,y)) = f((x \to y) \land (y \to x))$$
$$= f(x \to y) \land f(y \to x)$$

$$= (f(x) \to f(y)) \land (f(y) \to f(x))$$
$$= d(f(x), f(y)).$$

Theorem 12. Let X and Y be two BL-algebras, and $f : X \longrightarrow Y$ be a BL-homomorphism. If K and J are two ideals of Y such that $K \subseteq J$, then the following assertions hold:

(*i*) $rad(f^{-1}(\frac{J}{K})) = f^{-1}(rad(\frac{J}{K}));$ (*ii*) $rad(ker(f)) = f^{-1}(rad\{1\}).$

Proof. (*i*) Let $\frac{x}{K} \in rad(f^{-1}(\frac{J}{K}))$, then by Theorem 3, $(\frac{x}{K} \to ((\frac{x}{K})^*)^n)^* \in f^{-1}(\frac{J}{K})$, for all $n \in \mathbb{N}$. So $f(\frac{x}{K} \to ((\frac{x}{K})^*)^n)^* \in \frac{J}{K}$ and by Definition 6, $f((\frac{x}{K}) \to ((\frac{x}{K})^*)^n)^* = (\frac{f(x)}{K} \to (\frac{f(x^*)}{K})^n)^* \in \frac{J}{K}$. Therefore $f(\frac{x}{K}) \in rad(\frac{J}{K})$ and hence $\frac{x}{K} \in f^{-1}(rad(\frac{J}{K}))$. Conversely, it is clear by the similar way.

(*ii*) Let $x \in rad(\ker(f))$, then by Theorem 3, $(x \to (x^*)^n)^* \in \ker(f)$, for all $n \in \mathbb{N}$. So by Definition 6, $(f(x) \to f(x^*))^n = 0$, for all $n \in \mathbb{N}$, i.e., $(f(x) \to f(x^*))^n = 1$, for all $n \in \mathbb{N}$. This means that $f(x) \in rad\{1\}$ and $x \in f^{-1}(rad\{1\})$. Conversely, it is clear by the same way.

Definition 11. Let *L* be a *BL*-algebra and *I* be an ideal of *L*. By $U_{x_0,r}^*$, we define the open *I*-ball of radius $r \in I$, with center x_0 (around x_0), by

$$U_{x_0,r}^* = \{x \in L | (r \oslash d(x,x_0))^* \in I\}.$$

Proposition 5. Let *L* be a *BL*-algebra and *I* be an ideal of *L*. Then the following assertions hold, for all $x, y \in L$ and $r, s \in I$:

(i) $U_{1,0}^* = \{x \in L | x^* \in I\};$ (ii) If $y \in U_{x,r}^*$ then $y^* \in U_{x^*,r}^*$; (iii) If $s \le r$ then $U_{x,s}^* \subseteq U_{x,r}^*$.

Proof. (*i*) By Definition 11,

$$U_{1,0}^* = \{ x \in L | (0 \oslash d(x,1))^* \in I \} = \{ x \in L | (0^* \to d(x,1))^* \in I \}$$

= $\{ x \in L | (1 \to x)^* \in I \} = \{ x \in L | x^* \in I \}.$

(*ii*) Suppose $y \in U_{x,r}^*$, then $(r \oslash d(x,y))^* \in I$. By Proposition 3, since $d(x,y) \le d(x^*,y^*)$, so $r \oslash d(x,y) \le r \oslash d(x^*,y^*)$. Therefore $(r \oslash d(x^*,y^*))^* \le (r \oslash d(x,y))^*$. *I* is an ideal, thus $(r \oslash d(x^*,y^*))^* \in I$. Therefore $y^* \in U_{x^*,r}^*$.

(*iii*) Suppose $y \in U_{x,s}^*$, then $(s \oslash d(x,y))^* \in I$. By assumption $s \le r$, then $s \oslash d(x,y) \le r \oslash d(x,y)$. Thus $(r \oslash d(x,y))^* \le (s \oslash d(x,y))^*$. Since *I* is an ideal, so $(r \oslash d(x,y))^* \in I$. Therefore $y \in U_{x,r}^*$.

From [12], we recall that if X is a set, a basis for a topology on X is a collection \mathcal{B} of subsets of X (called basis element) such that the following hold:

645

 \square

- (i) For each $x \in X$, there is at least one basis element *B* containing *x*.
- (ii) If x belongs to the intersection of two basis element B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subseteq B_1 \cap B_2$.

Proposition 6. Let *L* be a *BL*-algebra and *I* be an ideal of *L*. Then the open *I*-balls constitute a basis for a topology on *L* (we call this topology, ideal topology).

Proof. Let $x \in L$ and $r \in I$. By Propositions 1 and 3, $0 = 1^* = (r^* \to 1)^* = (r^* \to d(x,x))^* = (r \oslash d(x,x))^*$. Since *I* is an ideal and $0 \in I$, so $(r \oslash d(x,x))^* \in I$, i.e., $x \in U_{x,r}^*$. Thus there exists an element of the *I*-balls of topology, which is contains *x*, for all $x \in L$. Now, let $t \in U_{x,r}^* \cap U_{y,s}^*$, then $(r \oslash d(x,t))^* \in I$ and $(s \oslash d(t,y))^* \in I$. This means that there exist $c^*, d^* \in I$, such that $c = r \oslash d(x,t), d = s \oslash d(t,y)$. We put $e = c^* \lor d^*$ and claim that $U_{t,e}^* \subseteq U_{x,r}^* \cap U_{y,s}^*$. Let $z \in U_{t,e}^*$, then $(e \oslash d(z,t))^* = k^* \in I$, for some $k^* \in I$. By Proposition 3, since $d(z,t) \odot d(t,x) \le d(z,x)$, so $r \oslash (d(z,t) \odot d(t,x)) \le r \oslash d(z,x)$. Also, by Lemma 2, $(r \oslash d(x,t))^* \oslash d(z,t) \le r \oslash d(z,t)$, hence $e \oslash d(z,t) \le r \oslash d(z,t)$. Therefore $(r \oslash d(z,t))^* \le (e \oslash d(z,t))^*$. Since *I* is an ideal, so $(r \oslash d(z,x))^* \in I$ and it follows that $z \in U_{x,r}^*$. By the similar way, we conclude that, if $z \in U_{t,e}^*$, then $z \in U_{y,s}^*$. Therefore, $t \in U_{x,r}^* \cap U_{y,s}^*$.

Proposition 7. Every ideal topology on a BL-algebra of L, makes L into a topological BL-algebra.

Proof. By [1,16], it is enough to show that the operations \odot and * are continuous. First, we consider the mapping $\odot : L \times L \longrightarrow L$ by $(x, y) \longmapsto x \odot y$. For $e \in I$, let U be an open I-ball of radius e around $t \odot s$ and V be an open I-ball of radius e around t. Then, $V = \{x \in L \mid (e \oslash d(x,t))^* \in I\}$ and $U = \{x \in L \mid (e \oslash d(x,t \odot s))^* \in I\}$. Take $x \in V$ and we assume that $e \oslash d(x,t) = e_x \in I$. Let W be an open I-ball of radius e_x around s, then $V \times W$ is an open neighborhood around (t,s). So, by Proposition 3 and Lemma 2, we have

$$(e \oslash d(x \odot y, t \odot s))^* \le (e \oslash (d(x, t) \odot d(y, s)))^*$$
$$\le ((e \oslash d(x, t)) \oslash d(y, s))^*$$
$$= (e_x \oslash d(y, s))^* \in I.$$

Since *I* is an ideal of *L*, so $(e \oslash d(x \odot y, t \odot s))^* \in I$ and hence $\odot(V \times W) \subseteq U$.

Now, we prove that the mapping $*: L \to L, x \mapsto x^*$ is continuous. Let $e \in L, t \in I$ and U be an open I-ball of radius e around t^* and V be an open I-ball of radius e around t. By Propositions 2 and 3, since $d(x,t) \leq d(x^*,t^*)$, so $e \oslash d(x,t) \leq e \oslash$ $d(x^*,t^*) \in I$. Then $(e \oslash d(x^*,t^*))^* \leq (e \oslash d(x,t))^* \in I$. Since I is an ideal of L, so $(e \oslash d(x^*,t^*))^* \in I$ and $x^* \in U$. Therefore $V^* \subseteq U$ and hence the mapping * is continuous.

4. SEQUENCES IN *BL*-ALGEBRAS

In this section we derive some new results on sequences in BL-algebras.

Theorem 13. Let I be an ideal of a BL-algebra L and $\binom{x_n}{I}_{n \in \mathbb{N}}$, $\binom{y_n}{I}_{n \in \mathbb{N}}$ be two sequences in $\frac{L}{I}$ such that $\binom{x_n}{I}_{n \in \mathbb{N}} \uparrow 1_I$ and $\binom{y_n}{I}_{n \in \mathbb{N}} \uparrow 1_I$, then $\binom{x_n \odot y_n}{I}_{n \in \mathbb{N}} \uparrow 1_I$.

Proof. Let $(\frac{x_n}{I})_{n \in \mathbb{N}} \uparrow 1_I$, $(\frac{y_n}{I})_{n \in \mathbb{N}} \uparrow 1_I$ and $\frac{t}{I} \in \frac{L}{I}$ such that for each $n \in \mathbb{N}$, $(\frac{x_n \odot y_n}{I}) \leq \frac{t}{I}$. We show that $\frac{t}{I} = 1_I$. Since $(\frac{y_n}{I})_{n \in \mathbb{N}} \uparrow 1_I$, so by Definition 8, there exists $m \in \mathbb{N}$ such that $\bigvee_n (\frac{y_n}{I}) = 1_I$, for all $n \in \mathbb{N}$ with $n \ge m$. By the assumption $\frac{x_n}{I} \odot \frac{y_n}{I} = \frac{x_n \odot y_n}{I} \le \frac{t}{I}$, we have $\frac{y_n}{I} \le \frac{x_n}{I} \to \frac{t}{I}$. So $\frac{y_n}{I} \le \bigvee_{n \ge m} (\frac{x_n}{I} \to \frac{t}{I})$ and $\bigvee_n \frac{y_n}{I} \le \bigvee_{n \ge m} (\frac{x_n}{I} \to \frac{t}{I})$. Therefore $\bigvee_n (\frac{x_n}{I} \to \frac{t}{I}) = 1_I$. By Proposition 1, (13), $\vee (\frac{x_n}{I} \to \frac{t}{I}) \le (\wedge \frac{x_n}{I}) \to \frac{t}{I}$ for $n \ge m$ and $1_I \le (\frac{x_m}{I} \wedge \frac{x_{m+1}}{I} \wedge \ldots) \to \frac{t}{I}$. So $1_I \le \frac{x_m}{I} \to \frac{t}{I}$ and $\frac{x_m}{I} \to \frac{t}{I} = 1_I$, i.e., $\frac{x_m}{I} \le \frac{t}{I}$. This means that $\bigvee_{n \ge m} \frac{x_m}{I} \le \frac{t}{I}$ and $1_I \le \frac{t}{I}$, thus $\frac{t}{I} = 1_I$.

Proposition 8. Let I be an ideal of a BL-algebra L and $(\frac{x_n}{I})_{n \in \mathbb{N}}$ be a sequence in $\frac{L}{I}$. If $\frac{x_n}{I} \to_s \frac{x_1}{I}$ and $\frac{x_n}{I} \to_s \frac{x_2}{I}$, then $\frac{x_1}{I} = \frac{x_2}{I}$.

Proof. By the assumption, since $\frac{x_n}{I} \to \frac{x_1}{I}$, $\frac{x_n}{I} \to \frac{x_2}{I}$, so by Definition 9, $(\frac{s_n}{I})_{n\in\mathbb{N}} \uparrow 1_I$, $(\frac{t_n}{I})_{n\in\mathbb{N}} \uparrow 1_I$ with $d(\frac{x_n}{I}, \frac{x_1}{I}) \ge \frac{s_n}{I}$, $d(\frac{x_n}{I}, \frac{x_2}{I}) \ge \frac{t_n}{I}$. By Proposition 3, $d(\frac{x_1}{I}, \frac{x_2}{I}) \ge d(\frac{x_1}{I}, \frac{x_2}{I}) \odot d(\frac{x_n}{I}, \frac{x_2}{I})$, then $d(\frac{x_1}{I}, \frac{x_2}{I}) \ge \frac{s_n}{I} \odot \frac{t_n}{I}$. By Theorem 13, $(\frac{s_n}{I} \odot \frac{t_n}{I})_{n\in\mathbb{N}} \uparrow 1_I$, therefore $d(\frac{x_1}{I}, \frac{x_2}{I}) = 1_I$ and hence $\frac{x_1}{I} = \frac{x_2}{I}$.

Proposition 9. Let L be a BL-algebra and $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ be two sequences in L such that $x_n \to_s x$, $y_n \to y$. Then $(x_n \leftrightarrow y_n) \to_s (x \leftrightarrow y)$.

Proof. First we show that if $x_n \to x$, $y_n \to y$, then, (i) $x_n \wedge y_n \to x \wedge y$, (ii) $(x_n \to y_n) \to (x \to y)$. Since $x_n \to x$ and $y_n \to y$, by Definition 9, there exist $(s_n)_{n \in \mathbb{N}}$ and $(t_n)_{n \in \mathbb{N}}$ such that $(s_n)_{n \in \mathbb{N}} \uparrow 1$, $(t_n)_{n \in \mathbb{N}} \uparrow 1$ and $d(x_n, x) \ge s_n$, $d(y_n, y) \ge t_n$. By Proposition 3, $d(x_n \wedge y_n, x \wedge y) \ge d(x_n, x) \wedge d(y_n, y) \ge s_n \wedge t_n$. Since $(s_n \wedge t_n)_{n \in \mathbb{N}} \uparrow 1$, so $x_n \wedge y_n \to x \wedge y$.

From Proposition 3, $d(x_n \to y_n, x \to y) \ge d(x_n, x) \odot d(y_n \to y) \ge s_n \odot t_n$. Since $(s_n \odot t_n)_{n \in \mathbb{N}} \uparrow 1$, so $(x_n \to y_n) \to_s (x \to y)$. By Proposition 1, (14), $d(x_n \leftrightarrow y_n, x \leftrightarrow y) = d((x_n \to y_n) \land (y_n \to x_n), (x \to y) \land (y \to x)) \ge d(x_n \to y_n, x \to y) \land d(y_n \to x_n, y \to x) \ge (s_n \odot t_n) \land (t_n \odot s_n) = s_n \odot t_n \uparrow 1$, therefore $(x_n \leftrightarrow y_n) \to_s (x \leftrightarrow y)$. \Box

Theorem 14. Let X and Y be two BL-algebras and $f : X \longrightarrow Y$ be a BL-homomorphism. If $(x_n)_{n \in \mathbb{N}}$ is a sequence in X, then $(f(x_n))_{n \in \mathbb{N}}$ is a sequence in Y such that $f(x_n) \rightarrow_s f(x)$.

Proof. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. There exists a sequence $(s_n)_{n\in\mathbb{N}}$ of X such that $(s_n)_{n\in\mathbb{N}} \uparrow 1, d(x_n, x) \ge s_n$. Since f(1) = 1, so $(f(s_n)) \uparrow f(1) = 1$. We also have $d(x_n, x) \ge s_n$, then by Definition 6, $d(f(x_n), f(x)) = f(d(x_n), d(x)) \ge f(s_n)$, i.e., $f(x_n) \to_s f(x)$.

Corollary 4. Let X and Y be two BL-algebras, $f: X \to Y$ be a BL-homomorphism and $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}$ be sequences in X, in which $x_n \to_s x, y_n \to_s y$, then $f(x_n \leftrightarrow y_n) \to_s f(x \leftrightarrow y)$.

Proof. By Proposition 9 and Theorem 14, it is clear.

Proposition 10. Let I be a proper ideal of special BL-algebra L^* . Then $\frac{L^*}{T}$ is not an MV-algebra.

Proof. Suppose that there exists a proper ideal I of L^* such that $\frac{L^*}{I}$ is an MV-algebra. Then we have $\frac{x}{I} = \frac{x^{**}}{I}$, for all $x \in L^*$ and $x \to x^{**} \in I$. Since $x \in L^*$, so $x^* = 0$ and $x^{**} = 1$. Thus $x \to 1 \in I$ and $1 \in I$. This means that $I = L^*$, which is a contradiction.

Theorem 15. Let I be an ideal of MV-algebra L. Then $\frac{L}{I}$ is a special BL-algebra if and only if I is a maximal ideal of L.

Proof. We know that $\frac{L}{I}$ is special *BL*-algebra iff $\frac{x^*}{I} = (\frac{x}{I})^* = \frac{0}{I}$, for all $0 \neq x \in L$. It is equal to $x^* \to 0 \in I$, for all $0 \neq x \in L$ iff $x^{**} = x \in L$, for all $0 \neq x \in L$ which in turn equals to $I = L - \{0\}$.

Definition 12. Let *L* be a *BL*-algebra and *I* be an ideal of *L*. Then *I* is a special ideal if, for all $x, y \in I$, $(x \to y)^* = (y \to x)^*$.

Example 1. Let $L = \{0, a, b, 1\}$. Define " \odot " and " \rightarrow " as follows:

\odot	0	а	b	1	\rightarrow	0	а	b	1
0	0	0	0	0	0				
а	0	а	0	а	a	b	1	b	1
b	0	0	b	b	b	0	а	1	1
1	0	а	b	1	1	0	а	b	1

It is easy to see that L is a *BL*-algebra and $I = \{0, a\}$ is a special ideal of L.

Theorem 16. Let I be an ideal of BL-algebra L. Then I is a special ideal of L if and only if $D^*(I) = I$, where $D^*(I) = \{x \in I | x^{**} = 0\}$.

Proof. Since $0 \in D^*(I)$, it is clear that $\emptyset \neq D^*(I) \subseteq I$. Let *I* be a special ideal of *L* and $t \in I$, then for every $x, y \in I$, $(x \to y)^* = (y \to x)^*$. We put x = t and y = 0, then, by Proposition 1, $(t \to 0)^* = (0 \to t)^*$, i.e., $t^{**} = 1^* = 0$. This means that $t \in D^*(I)$ and hence, $I \subseteq D^*(I)$.

Conversely, let $D^*(I) = I$, and $x, y \in I$, then $x^{**} = y^{**} = 0$. By Proposition 1, we have $(x \to y)^* = (x \to y)^{***} = ((x \to y)^{**})^* = (x^{**} \to y^{**})^* = (0 \to 0)^* = (y^{**} \to x^{**})^* = ((y \to x)^{**})^* = (y \to x)^{***} = (y \to x)^*$. Therefore, *I* is a special ideal of *L*.

ACKNOWLEDGEMENTS

The authors thank the executive editor, technical editor and anonymous reviewer for their valuable comments and suggestions.

REFERENCES

- R. A. Borzooei, R. Rezaei, and N. Kouhestani, "On (semi) topological BL-algebras," *Iran. J. Math. Sci. Inform.*, vol. 6, no. 1, pp. 59–77, 2011, doi: 10.7508/ijmsi.2011.01.006.
- [2] C. C. Chang, "Algebraic analysis of many valued logics," *Trans. Amer. Math. Soc.*, vol. 88, pp. 467–490, 1958.
- [3] L. C. Ciungu, "Convergence in perfect BL-algebras," *Mathware and Soft Computing.*, vol. 88, no. 14, pp. 67–80, 2007.
- [4] L. C. Ciungu, A. Dvurečenskig, and M. Hyčko, "State BL-algebras," Soft. Comput., vol. 15, no. 4, pp. 619–634, 2001, doi: 10.1007/s00500-010-0571-5.
- [5] A. Di Nola, G. Georgescu, and A. Loregulescu, "Pseudo BL-algebras: Part I," *Mult. Val. Logic.*, vol. 8, no. 5, pp. 673–714, 2002.
- [6] G. Georgescu and A. Popescu, "Similarity convergence in residuated structures," *Log. J. IGPL.*, vol. 13, no. 4, pp. 389–413, 2005, doi: 10.1093/jigpal/jzi031.
- [7] P. Hajek, Methamathematics of Fuzzy Logic. Dordrecht: Kluwer Academic Publisher, 1998. doi: 10.1007/978-94-011-5300-3.
- [8] U. Höhle, Residuated l-monoids in Non-classical logic and Their Applications to Fuzzy Subset: A Handbook of the Mathematical Foundations of Fuzzy Set Theory. Boston: Kluwer, 1994. doi: 10.1007/978-94-011-0215-5.
- [9] C. Lele and J. B. Nganou, "MV-algebras derived from ideals in BL-algebras," *Fuzzy Sets and Systems.*, vol. 218, pp. 103–113, 2013, doi: 10.1016/j.fss.2012.09.014.
- [10] C. Luan and Y. Yang, "Filter topologies on MV-algebras," *Soft. Comput.*, vol. 21, no. 14, pp. 2531–2535, 2017, doi: 10.1007/s00500-017-2574-y.
- [11] N. Mohtashamnia and A. Borumand Saeid, "A special type of BL-algebras," Annals of the University of Craiova, Mathematics and Computer Science Series., vol. 39, no. 1, pp. 8–20, 2012.
- [12] J. R. Munkres, *Topology; a First Course*. Boston: Pearson College Div, 1974.
- [13] A. Paad, "Integral ideals and maximal ideals in BL-algebras," Annals of the University of Craiova, Mathematics and Computer Science Series., vol. 43, no. 2, pp. 231–242, 2016.
- [14] A. Paad, "Radicals of ideals in BL-algebras," Ann. Fuzzy Math. Inform., vol. 3, pp. 1–15, 2017, doi: 10.30948/afmi.2017.14.3.249.
- [15] E. Turunen, Mathematics Behind Fuzzy Logic. Heidelberg: Physica-Verlag, 1999.
- [16] O. Zahiri and R. A. Borzooei, "Topology on BL-algebras," *Fuzzy Sets and Systems.*, vol. 289, pp. 137–150, 2016, doi: 10.1016/j.fss.2014.11.014.

Authors' addresses

M. H. Nasr Esfahani

Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran *E-mail address:* mohammadnasr135@yahoo.com

F. Khaksar Haghani

(Corresponding author) Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

E-mail address: haghani1351@yahoo.com

M. H. N. ESFAHANI, F. K. HAGHANI, AND SH. HEIDARIAN

Shahram Heidarian

Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran *E-mail address:* Heidarianshm@gmail.com