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Abstract. In this paper, a numerical approach for solving space-time fractional diffusion equation
with variable coefficients is proposed. The fractional derivatives are described in the conformable
sense. The numerical approach is based on shifted Chebyshev polynomials of the second kind.
The space-time fractional diffusion equation with variable coefficients is reduced to a system
of ordinary differential equations by using the properties of Chebyshev polynomials. The finite
difference method is applied to solve this system of equations. Numerical results are provided to
verify the accuracy and efficiency of the proposed approach.
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1. INTRODUCTION

Fractional differential equations have been the focus of many studies due to their
applications in various fields of science and engineering (see, for example, [2, 10,
15–17]). The main physical purpose of investigating fractional diffusion equations
is to describe phenomena of anomalous diffusion in transport processes. Fractional
diffusion equations have been also used in modeling turbulent flow [4], groundwater
contaminant transport [3] and chaotic dynamics of classical conservative systems
[25].

Recently, some different numerical methods have been proposed for solving the
fractional diffusion equation. The space fractional diffusion equation which is de-
scribed in Caputo sense with variable coefficients has been investigated in [1, 7, 8,
18, 22]. In [22], space fractional diffusion equation has been solved by using shifted
Chebyshev polynomials of the second kind with finite difference method, respect-
ively. In [1, 8], it has been solved by using shifted Chebyshev polynomials of first
kind with finite difference method. In [18], a numerical scheme based on the shifted
Legendre tau method to solve the space fractional diffusion equation has been stud-
ied. In [7], a numerical approximation for the space fractional diffusion equation via
splines has been suggested.
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976 H. Ç. YASLAN

The space fractional diffusion equations which are described in Riemann-Liouville
sense have been studied in [5, 12, 13]. In [12], the authors have been used the fi-
nite difference method based on a modified Grünwald approximation. In [5], com-
pact finite difference scheme has been used to the space fractional diffusion equation
with constant coefficient. In [13], the finite difference approximation obtained from
the Grünwald-Letnikov formulation has been applied to the space fractional diffu-
sion equation with variable coefficients. In [21], the Crank-Nicolson finite difference
method has been applied to the time fractional diffusion equations with constant coef-
ficients. Generally, fractional diffusion equations have been studied for derivatives in
Caputo sense or Riemann-Liouville sense in the literature.

Nowadays, solutions of conformable partial differential equations have been in-
vestigated. Conformable time fractional and space-time fractional partial differen-
tial equations have been studied by using extended reduced conformable differen-
tial transform method and fractional differential transform method in [20]-[23], re-
spectively. Residual power series method has been applied to high-order linear con-
formable partial differential equations in [6]. Numerical solution of the conformable
space-time fractional wave equation has been obtained by using Shifted Chebyshev
polynomials and finite difference method in [24]. Furthermore, there are also studies
on traveling wave solutions of the conformable partial differential equations (see, for
example, [14,19]). But, the methods used to find the traveling wave solutions can not
be applied to the conformable partial differential equations with variable coefficients.

In this paper, we consider conformable space-time fractional diffusion equation
with variable coefficient. Fundamental goal of this work is to obtain an analytical
approximate solution in terms of the shifted Chebyshev polynomials of the second
kind of the space-time fractional diffusion equation with the initial and boundary
conditions. Consider the one-dimensional space-time fractional diffusion equation
of the form:

T µ
t u(x, t) = f (x, t)T α

x u(x, t)+g(x, t), 0 < x < L, 0 < t ≤ T,
0 < µ ≤ 1,1 < α ≤ 2, (1.1)

with initial condition

u(x,0) = f1(x), 0 < x < L, (1.2)

and the boundary conditions:

u(0, t) = h1(t), 0 < t ≤ T, (1.3)

u(1, t) = h2(t), 0 < t ≤ T (1.4)

where x is a space variable, t is a time variable; the parameters µ and α refer to the
order of conformable fractional derivative with respect to time variable and space
variable, respectively. The functions f (x, t), g(x, t), f1(x), h1(t) and h2(t) are given
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functions. In case of µ = 1, α = 2, Eq. (1.1) is the classical diffusion equation:

∂u(x, t)
∂t

= f (x, t)
∂2u(x, t)

∂t2 +g(x, t).

The organization of this paper is as follows: In Section 2, definition and properties
of the conformable fractional derivative are presented. In the Section 3, properties of
Chebyshev polynomials of the second kind are given. In Section 4, the conformable
fractional derivative is written by using shifted Chebyshev polynomials of the second
kind. In Section 5, numerical scheme is given to obtain an analytical approximate
solution in terms of the shifted Chebyshev polynomials of the second kind of the
problem (1.1)-(1.4). In Section 6, numerical results are given to clarify the method.
Conclusion is presented in Section 7. Note that numerical results have been computed
by using the Matlab programming.

2. DESCRIPTION OF CONFORMAL FRACTIONAL DERIVATIVE AND ITS
PROPERTIES

For a function f : (0,∞) → R, the conformal fractional derivative of f of order
0 < α < 1 in variable t is defined as (see, for example, [9])

T α
t f (t) = lim

ε→0

f (t + εt1−α)− f (t)
ε

.

Some important properties of the the conformal fractional derivative are as follows:

Theorem 1. (see, for example, [9]) Let α ∈ (0,1] and f ,g be α differentiable at a
point t > 0. Then

T α
t (a f +bg)(t) = aT α

t f (t)+bT α
t g(t), ∀a,b ∈ R, (2.1)

T α
t ( f g)(t) = f (t)T α

t g(t)+g(t)T α
t f (t), (2.2)

T α
t (t p) = pt p−α, ∀p ∈ R. (2.3)

If, in addition, f is differentiable, then

T α
t ( f (t)) = t1−α f

′
(t). (2.4)

The fractional derivative starting from b of a function f : [b,∞)→ R, of order α,
where f (n)(t) exists, is defined by

T α
t ( f (t)) = T β

t ( f (n)(t)), n < α ≤ n+1, β = α−n. (2.5)
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3. SOME PROPERTIES OF CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

The Chebyshev polynomials Un(x) of the second kind are orthogonal polynomials
of degree n in x defined on the [−1,1] (see, for example,[11])

Un(x) =
sin(n+1)θ

sinθ
,

where x = cosθ and θ ∈ [0,π]. Also, these polynomials Un(x) are orthogonal on
[−1,1] with respect to the inner product

<Un(x),Um(x)>=

1∫
−1

√
1− x2Un(x)Um(x)dx =

{
0, n ̸= m,
π

2 , n = m.

}
,

where
√

1− x2 is weight function corresponding to Un(x). The polynomials Un(x)
may be generated by using the recurrence relations

Un(x) = 2xUn−1(x)−Un−2(x), n = 2,3, ...,

with U0(x) = 1, U1(x) = 2x.
Shifted Chebyshev polynomials of the second kind U∗

n (x) of degree n in x on [0,1]
is given by U∗

n (x) = Un(2x− 1). These polynomials are orthogonal on the support
interval [0,1] as the following inner product:

<U∗
n (x),U

∗
m(x)>=

1∫
0

√
x− x2U∗

n (x)U
∗
m(x)dx =

{
0, n ̸= m,
π

8 , n = m.

}
,

where
√

x− x2 is weight function corresponding to U∗
n (x). The polynomials U∗

n (x)
may be generated by using the recurrence relations

U∗
n (x) = 2(2x−1)U∗

n−1(x)−U∗
n−2(x), n = 2,3, ...,

with U∗
0 (x) = 1, U∗

1 (x) = 4x−2.
The analytical form of the shifted Chebyshev polynomials of the second kind

U∗
n (x) of degree n is given by

U∗
n (x) =

N

∑
k=0

(−1)k22n−2k Γ(2n− k+2)xn−k

2n−2k+2
. (3.1)

The function y(x) which belongs to the space of square integrable in [0,1] may be
expressed in terms of shifted Chebyshev polynomials of the second kind as

y(x) =
∞

∑
i=0

biU∗
i (x),
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where the coefficients bi are given by

bi =
8
π

1∫
0

y(x)
√

x− x2U∗
i (x)dx. (3.2)

Consider only the first (N + 1)− terms of shifted Chebyshev polynomials of the
second kind, so we can write

yN(x) =
N

∑
i=0

biU∗
i (x). (3.3)

4. EVALUATION OF THE CONFORMABLE FRACTIONAL DERIVATIVE USING
SHIFTED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

In this section, we derive an approximate formula of the conformable fractional
derivative of yN(x). By using the linearity of the conformable fractional differenti-
ation given in Eq. (2.1) and by using definition of approximated function yN(x) as in
Eq. (3.3) we have:

T α
x yN(x) =

N

∑
i=0

biT α
x U∗

i (x), α > 0. (4.1)

Moreover, from the properties of linearity of the conformable derivative in addition
to Eqs. (2.3) and (2.5) we get:

T α
x U∗

i (x) = 0, i = 0,1, ...,n, n < α ≤ n+1. (4.2)

Also we have for n < α ≤ n+1

T α
x U∗

i (x) =
i−(n+1)

∑
k=0

(−1)k22i−2k Γ(2i− k+2)Γ(i− k+1)
Γ(k+1)Γ(2i−2k+2)Γ(i− k−n)

xi−k−α. (4.3)

By combinations Eqs. (4.1), (4.2) and (4.3) we obtain for n < α ≤ n+1

T α
x yN(x) =

N

∑
i=n+1

i−(n+1)

∑
k=0

bi(−1)k22i−2k Γ(2i− k+2)Γ(i− k+1)
Γ(k+1)Γ(2i−2k+2)Γ(i− k−n)

xi−k−α,

which can be rewritten as the form:

T α
x yN(x) =

N

∑
i=n+1

i−(n+1)

∑
k=0

biAα

i,kxi−k−α, n < α ≤ n+1, (4.4)

where

Aα

i,k = (−1)k22i−2k Γ(2i− k+2)Γ(i− k+1)
Γ(k+1)Γ(2i−2k+2)Γ(i− k−n)

. (4.5)

Test example: Consider y(x) = x2 with N = 3 and α = 1.5. Using Eqs. (1) and
(2.5) we obtain:

T 1.5
x x2 = T 0.5

x 2x = 2x0.5.
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Then, using the proposed method we obtain:

T 1.5
x x2 =

3

∑
i=2

i−2

∑
k=0

biA1.5
i,k xi−k−1.5, (4.6)

where

A1.5
2,0 = 32, A1.5

3,0 = 384, A1.5
3,1 =− 192

Γ(2).

Substituting the constants b2 =
1
16 and b3 = 0 from Eq. (3.2) into Eq. (4.6) we get:

T 1.5
x x2 = 2x0.5.

5. NUMERICAL SCHEME

In this section, we apply Chebyshev collocation method to problem (1.1)-(1.4).
Assume that the solution of the problem (1.1)-(1.4) can be written as

uN(x, t) =
N

∑
i=0

ai(t)U∗
i (x). (5.1)

From (1.1), (1), (4.4) and (4.5) we obtain
N

∑
i=0

t1−µ dai(t)
dt

U∗
i (x) = f (x, t)

N

∑
i=0

ai(t)T α
x U∗

i (x)+g(x, t).

N

∑
i=0

t1−µ dai(t)
dt

U∗
i (x) = f (x, t)

N

∑
i=n+1

i−(n+1)

∑
k=0

ai(t)Aα

i,kxi−k−α +g(x, t). (5.2)

Now, we collocate Eq. (5.2) at N −n points xp as follows:

N

∑
i=0

t1−µ dai(t)
dt

U∗
i (xp) = f (xp, t)

N

∑
i=n+1

i−(n+1)

∑
k=0

ai(t)Aα

i,kxi−k−α
p +g(xp, t). (5.3)

We use the roots of shifted Chebyshev polynomials of the second kinds U∗
N−n(x) to

suitable the collocation points.
The boundary conditions (1.3) and (1.4) can be written as

N

∑
i=0

(−1)i(i+1)ai(t) = h1(t),
N

∑
i=0

(i+1)ai(t) = h2(t). (5.4)

Since 1 < α ≤ 2 in the problem (1.1), we can take n = 1. Let us take 0 < tk ≤ T ,
∆t = T

M , tk = k∆t, k = 0,1, ...,M, ai(tk) = ak
i , g(xp, tk) = gk

p, h1(tk) = hk
1 and h2(tk) =

hk
2. Applying the finite difference method to the system (5.3) and considering (5.4)

we have the following system

(A−B)V j =CV j−1 +D, j = 1, ...,M, (5.5)
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where

D =
(

∆tg j
1,∆tg j

2, ...,∆tg j
N−1,h

j
1,h

j
2

)∗

(N+1)×1
, V j =

(
a j

0,a
j
1, ...,a

j
N

)∗

(N+1)×1
,

A =


t1−µ

j U∗
0 (x1) t1−µ

j U∗
1 (x1) ... t1−µ

j U∗
N(x1)

. . ... .

t1−µ
j U∗

0 (xN−1) t1−µ
j U∗

1 (xN−1) ... t1−µ
j U∗

N(xN−1)

1 −2 ... (−1)N(N +1)
1 2 ... (N +1)


(N+1)×(N+1)

,

B =


0 0 F j

2 (x1) ... F j
N(x1)

. . . ... .

0 0 F j
2 (xN−1) ... F j

N(xN−1)
0 0 0 ... 0
0 0 0 ... 0


(N+1)×(N+1)

,

F j
i (xp) = ∆t f (xp, t j)

i−2

∑
k=0

Aα

i,kxi−k−α
p , i = 2, ...,N, p = 1, ...,N −1,

C = t1−µ
j


U∗

0 (x1) U∗
1 (x1) ... U∗

N(x1)
. . ... .

U∗
0 (xN−1) U∗

1 (xN−1) ... U∗
N(xN−1)

0 0 ... 0
0 0 ... 0


(N+1)×(N+1)

and ∗ denotes transposition of the matrix. To compute V j, j = 1,2, ...M, in the system
(5.5), we need to obtain initial case V 0. Substituting Eqs. (3.2) and (5.1) into initial
condition (1.2) we can compute the constants ai(t0) = a0

i in the initial case at j = 1.

6. APPLICATIONS

Example 1. Let us consider the following space-time fractional diffusion equation
with initial and boundary conditions

T 0.4
t u(x, t) =

x1.7t0.6

2
T 1.7

x u(x, t)+2x3t0.6 exp(t), 0 < x < 1, t > 0, (6.1)

u(x,0) = x2 − x3, 0 < x < 1, (6.2)

u(0, t) = 0, u(1, t) = 0, 0 < t ≤ T. (6.3)

Note that the exact solution to this problem is ue(x, t) = (x2 − x3)exp(t). We apply
the suggested method for N = 3 and approximate to the solution u(x, t) as follows:

u3(x, t) =
3

∑
i=0

ai(t)U∗
i (x). (6.4)
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By using the obtained matrix equation (5.5) for N = 3 with the initial data V 0 =
(3/32,1/32,−1/32,−1/64)∗, we obtain the unknown coefficients ai(t), i = 0,1,2,3,
for t = 0.25; 0.5; 0.75; 1; 5 which are given in Table 1. In Table 2, the absolute
errors between the exact solution ue(x, t) and the approximate solution u3(x, t), at
t = 0.25;0.5;0.75;1;5. It is clear from Table 2 that the obtained numerical solution
by using our approach is in very good agreement with the exact solution even for
small value N = 3. Furthermore, the computation is completed in a very short time
since a few terms of the series solution (i.e. N = 3) are used. Fig.1 shows 3D plot of
the obtained solution (6.4) for 0 < x < 1 and 0 < t < 1.

TABLE 1. The obtained coefficients ai(i = 0,1,2,3) for different
values t in Example 1.

t a0 a1 a2 a3

0.25 0.120377383756128 0.040125794456509 −0.040125794585376 −0.020062897228255
0.5 0.154567620926466 0.051522539911611 −0.051522540308822 −0.025761269955805

0.75 0.198468754317411 0.066156250704570 −0.066156251439137 −0.033078125352285
1 0.254838925339978 0.084946307306756 −0.084946308446659 −0.042473153653378
5 13.913734969534085 4.637911222166822 −4.637911656511361 −2.318955611083411

TABLE 2. The absolute errors between the exact and approximate
solutions in Example 1.

x t = 0.25 t = 0.5 t = 0.75 t = 1 t = 5

0 10−17 8.10−17 0 2.10−17 3.10−15

0.1 2.10−9 6.10−10 10−9 10−9 6.10−7

0.2 5.10−9 10−9 2.10−9 3.10−9 10−6

0.3 8.10−9 10−9 2.10−9 4.10−9 10−6

0.4 10−9 2.10−9 3.10−9 4.10−9 10−6

0.5 10−9 2.10−9 3.10−9 5.10−9 10−6

0.6 10−9 2.10−9 3.10−9 5.10−9 10−6

0.7 10−9 2.10−9 3.10−9 4.10−9 10−6

0.8 10−9 10−9 2.10−9 3.10−9 10−6

0.9 6.10−10 10−9 10−9 2.10−9 6.10−7

1 10−17 8.10−17 2.10−17 0 0

Example 2. Consider the following space-time fractional diffusion problem

T 0.3
t u(x, t) =

x0.8

2
T 1.8

x u(x, t)− (x2 +1)sin
(

t0.3

0.3

)
− xcos

(
t0.3

0.3

)
(6.5)

0 < x < 1, t > 0,

u(x,0) = x2 +1, 0 < x < 1, (6.6)
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FIGURE 1. The behavior of the approximate solution of the problem
(6.1)-(6.3).

u(0, t) = cos
(

t0.3

0.3

)
, u(1, t) = 2cos

(
t0.3

0.3

)
, 0 < t ≤ T. (6.7)

The exact solution is ue(x, t) = (x2 +1)cos( t0.3

0.3 ). By using the obtained matrix equa-
tion (5.5) for N = 2 with the initial data V 0 = (21/16,1/4,1/16)∗, we obtain the
unknown coefficients ai(t), i = 0,1,2. In Table 3, the absolute errors between the ex-
act solution ue(x, t) and the approximate solution u2(x, t), at t = 0.25;0.5;0.75;1;5.
From the results of Table 3, it is obvious that the presented method gives high accur-
acy even for the small value N. Fig. 2 shows 3D plot of the solution of (6.5)-(6.7) for
0 < x < 1 and 0 < t < 15.

TABLE 3. The absolute errors between the exact and approximate
solutions in Example 2.

x t = 0.25 t = 0.5 t = 0.75 t = 1 t = 5

0 0 0 0 0 0
0.1 10−6 5.10−7 2.10−7 2.10−16 4.10−9

0.2 2.10−6 10−6 5.10−7 10−7 7.10−9

0.3 3.10−6 10−6 6.10−7 3.10−7 9.10−9

0.4 4.10−6 10−6 7.10−7 4.10−7 10−9

0.5 4.10−6 10−6 8.10−7 4.10−7 10−8

0.6 4.10−6 10−6 7.10−7 4.10−7 10−8

0.7 3.10−6 10−6 6.10−7 4.10−7 9.10−9

0.8 2.10−6 10−6 5.10−7 4.10−7 7.10−9

0.9 10−6 5.10−7 2.10−7 3.10−7 4.10−9

1 0 0 0 2.10−16 0
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FIGURE 2. The behavior of the approximate solution of the problem
(6.5)-(6.7).

7. CONCLUSION

In this paper, using the shifted Chebyshev polynomials of the second kind and its
properties together with the Chebyshev collocation method, the space-time fractional
diffusion equation with variable coefficients is reduced to a system of ordinary dif-
ferential equations which is solved by the finite difference method. The fractional
derivatives are considered in the conformable sense. The numerical results obtained
by the proposed technique are compared with the exact solution to illustrate validity
and applicability of the proposed technique. From the numerical results, it is obvious
that the proposed method gives high accuracy and efficiency even for small values N.
Furthermore, accuracy of the method can be increased by adding new terms to the
series (5.1).
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