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1. INTRODUCTION AND PRELIMINARIES

By following the paper of I.A. Rus [15], we give some variants of Maia’s fixed
point theorem and an application of these variants, concerning the existence and
uniqueness of fixed points for some integral equations. Our results improve some
fixed point results given in [6], [7] and [12].

First, let us recall gradually some notions, notations and results which will be used
in the sequel of this paper. We will start with the notion of L-space, the most simple
structure that allows us to present the Picard and weakly Picard operators. Notice
that we do not need the context of metric space to do this, but we will use this context
to recall the following notion and results: the G-contraction, the Fiber Contraction
Principle and the Maia’s fixed point theorem.

1.1. L-space

The notion of L-space was introduced in 1906 by M. Fréchet in [3]. It is an abstract
space in which works one of the basic tools in the theory of operatorial equations, es-
pecially in the fixed point theory: the sequence of successive approximations method.
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Let X be a nonempty set. Let s(X) :=
{
{xn}n∈N | xn ∈ X , n ∈ N

}
. Let c(X)

be a subset of s(X) and Lim : c(X) → X be an operator. By definition the triple
(X ,c(X),Lim) is called an L-space (denoted by (X ,→)) if the following conditions
are satisfied:

(i) if xn = x, for all n ∈ N, then {xn}n∈N ∈ c(X) and Lim{xn}n∈N = x.
(ii) if {xn}n∈N ∈ c(X) and Lim{xn}n∈N = x, then for all subsequences {xni}i∈N of

{xn}n∈N, we have that {xni}i∈N ∈ c(X) and Lim{xni}i∈N = x.

A simple example of an L-space is the pair (X ,
d→), where X is a nonempty set and

d→ is the convergence structure induced by a metric d on X .
In general, an L-space is any nonempty set endowed with a structure implying

a notion of convergence for sequences. Other examples of L-spaces are: Haus-
dorff topological spaces, generalized metric spaces (d(x,y) ∈ Rm

+ or d(x,y) ∈ R+ ∪
{+∞}), K-metric spaces (d(x,y)∈ K, where K is a cone in an ordered Banach space),
gauge spaces, 2-metric spaces, D-R-spaces, probabilistic metric spaces, syntopogen-
ous spaces.

1.2. Picard operators and weakly Picard operators

Let (X ,→) be an L-space. An operator f : X → X is called weakly Picard operator
(WPO) if the sequence of successive approximations, { f n(x)}n∈N, converges for all
x ∈ X and its limit (which generally depend on x) is a fixed point of f .

If an operator f is WPO and the fixed point set of f is a singleton, Ff = {x∗}, then
by definition, f is called Picard operator (PO).

For a WPO, f : X → X , we define the operator f ∞ : X → X , by f ∞(x) := lim
n→∞

f n(x).

Notice that, f ∞(X) = Ff , i.e., f ∞ is a set retraction of X on Ff .
If X is a nonempty set, then the triple (X ,→,≤) is an ordered L-space if (X ,→) is

an L-space and ≤ is a partial order relation on X which is closed with respect to the
convergence structure of the L-space.

In the setting of ordered L-spaces, we have some properties concerning WPOs and
POs.

Lemma 1 (Abstract Gronwall Lemma.). Let (X ,→,≤) be an ordered L-space and
f : X → X be an increasing WPO. Then:

(i) ∀ x ∈ X, x ≤ f (x)⇒ x ≤ f ∞(x);
(ii) ∀ x ∈ X, x ≥ f (x)⇒ x ≥ f ∞(x).

Lemma 2 (Abstract Comparison Lemma.). Let (X ,→,≤) be an ordered L-space
and f ,g,h : X → X be such that:

(1) f ≤ g ≤ h;
(2) the operators f ,g,h are WPOs;
(3) the operator g is increasing.

Then ∀ x,y,z ∈ X, x ≤ y ≤ z ⇒ f ∞(x)≤ g∞(y)≤ h∞(z).
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Regarding the theory of WPOs and POs see [9], [10], [13], [14], [17], [8], [16]
and [1].

1.3. G-contractions

Let (X ,d) be a metric space and G ⊂ X ×X be a nonempty subset. An operator
f : X → X is a G-contraction if there exists l ∈]0,1[ such that,

d( f (x), f (y))≤ ld(x,y),∀ (x,y) ∈ G.

Notice that if G = X ×X then the notion of G-contraction is identical with the no-
tion of contraction (or l-contraction, if we want explicitly to mention the contraction
constant l), i.e., there exists l ∈]0,1[ such that, d( f (x), f (y))≤ ld(x,y), ∀ x,y ∈ X .

Example 1. Let a,b,c ∈ R, a < c < b. We consider the set of all continuous real-
valued functions defined on the interval [a,b], X :=C[a,b], endowed with the metric

ρ(x,y) :=
(∫ b

a
|x(s)− y(s)|2ds

) 1
2

.

For K,H ∈C([a,b]× [a,b]×R,R), let f : C[a,b]→C[a,b] be defined by

f (x)(t) :=
∫ c

a
K(t,s,x(s))ds+

∫ t

a
H(t,s,x(s))ds, t ∈ [a,b].

We suppose that there exists LH ∈C([a,b]× [a,b]) such that

|H(t,s,u)−H(t,s,v)| ≤ LH(t,s)|u− v|, ∀ t,s ∈ [a,b], ∀ u,v ∈ R.

If G := {(x,y)∈C[a,b]×C[a,b] | x
∣∣
[a,c] = y

∣∣
[a,c]} and

∫ b

c

∫ b

c
|LH(t,s)|2dtds < 1, then

f is a G-contraction with respect to ρ.

Indeed, let (x,y) ∈ G. Then, ρ( f (x), f (y)) =
(∫ b

c
| f (x)(t)− f (y)(t)|2dt

) 1
2

and

| f (x)(t)− f (y)(t)| ≤
∫ t

c

∣∣H(t,s,x(s))−H(t,s,y(s))
∣∣ds

≤
∫ b

c
LH(t,s)|x(s)− y(s)|ds

Hölder’s
inequality

≤
(∫ b

c
|LH(t,s)|2ds

) 1
2
(∫ b

c
|x(s)− y(s)|2ds

) 1
2

.

Hence,

ρ( f (x), f (y))≤
(∫ b

c

(∫ b

c
|LH(t,s)|2ds

)
ρ(x,y)2dt

) 1
2

=

(∫ b

c

∫ b

c
|LH(t,s)|2dtds

) 1
2

ρ(x,y), for all (x,y) ∈ G.
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For other examples of G-contractions see [15], [11] and [16], pp. 282-284.

1.4. Fiber Contraction Principle

Another important result (see [13], [17]) concerning WPOs and POs, is the fol-
lowing one.

Lemma 3 (Fiber Contraction Theorem.). Let (X ,→) be an L-space, (Y,ρ) be
a metric space, g : X → X, h : X ×Y → Y and f : X ×Y → X ×Y , f (x,y) :=
(g(x),h(x,y)). We suppose that:

(1) (Y,ρ) is a complete metric space;
(2) g is WPO;
(3) h(x, ·) : Y → Y is a contraction, ∀ x ∈ X;
(4) h : X ×Y → Y is continuous.

Then, f is WPO. Moreover, if g is a PO, then f is a PO.

Comment 1 (Generalized Fiber Contraction Theorem.). Let (X ,→) be an L-space,
(Xi,di), i = 1,m, m ≥ 1 be metric spaces. Let, fi : X0 × . . .×Xi → Xi, i = 0,m, be
some operators. We suppose that:

(1) (Xi,di), i = 1,m, are complete metric spaces;
(2) f0 is a WPO;
(3) fi(x0, . . . ,xi−1, ·) : Xi → Xi, i = 1,m, are li-contractions;
(4) fi, i = 1,m, are continuous.

Then, the operator f : X0 × . . .×Xm → X0 × . . .×Xm, defined by, f (x0, . . . ,xm) :=
( f0(x0), f1(x0,x1), . . . , fm(x0, . . . ,xm)) is a WPO.

If f0 is a PO, then f is a PO.

1.5. Maia’s fixed point theorem

The following result was introduced by M.G. Maia in [4].

Theorem 1. Let X be a nonempty set, d and ρ be two metrics on X and V : X → X
be an operator. We suppose that:

(1) there exists c > 0 such that, d(x,y)≤ cρ(x,y), ∀ x,y ∈ X;
(2) (X ,d) is a complete metric space;
(3) V : (X ,d)→ (X ,d) is continuous;
(4) V : (X ,ρ)→ (X ,ρ) is a contraction.

Then:
(i) FV = {x∗};

(ii) V : (X ,d)→ (X ,d) is PO.

Maia’s Theorem 1 remains true if we replace the condition (1) with the following
one:

(1′) there exists c > 0 such that, d(V (x),V (y))≤ cρ(x,y), ∀ x,y ∈ X .
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Hence, we obtain the so called Rus’ variant of Maia’s fixed point theorem. More
considerations can be found in [8], [6], [7], [12], [5] and [2].

2. FIXED POINT THEOREMS FOR OPERATORS WITH VOLTERRA PROPERTY WITH
RESPECT TO A SUBINTERVAL

By following [15], we present first some notions and notations.
Let a,b,c ∈ R, with a < c < b.
Let C[a,b] := { f : [a,b]→ R | f is continuous on [a,b]}.
On C[a,b] and C[a,c] we consider norms of uniform convergence such as the max-

norms, ∥·∥, or the Bielecki norm, ∥·∥τ.
In C[a,b]×C[a,b] we consider the subset

G := {(x,y) ∈C[a,b]×C[a,b] | x
∣∣
[a,c] = y

∣∣
[a,c]}

and for each x ∈C[a,b] we consider the subset

Xx := {y ∈C[a,b] | y
∣∣
[a,c] = x}.

Definition 1. An operator, V : C[a,b]→ C[a,b], has the Volterra property on the
subinterval, [a,c], if the following implication holds,

x,y ∈C[a,b], x
∣∣
[a,c] = y

∣∣
[a,c] ⇒V (x)

∣∣
[a,c] =V (y)

∣∣
[a,c].

Definition 2. An operator, V : C[a,b]→C[a,b], has the Volterra property if it has
the Volterra property on each subinterval, [a, t], for a < t < b.

For example, in the terms of the above considerations, let K,H ∈C([a,b]× [a,b]×
R,R) and V : C[a,b]→C[a,b] be defined by,

V (x)(t) :=
∫ c

a
K(t,s,x(s))ds+

∫ t

a
H(t,s,x(s))ds, t ∈ [a,b].

This operator V has the Volterra property on the subinterval [a,c], but V has not the
Volterra property.

Remark 1. If V : C[a,b] → C[a,b] is an operator with Volterra property on [a,c],
then the operator V induces an operator, V1, on C[a,c], defined by

V1(x) :=V (x̃)
∣∣
[a,c], where x̃ ∈C[a,b] with, x̃

∣∣
[a,c] = x.

Remark 2. If V : C[a,b] → C[a,b] has the Volterra property on [a,c] and V is a
G-contraction, then the operator

V
∣∣
Xx

: Xx → XV1(x),

is a contraction on Xx, for all x ∈C[a,c].
If x∗ ∈ FV1 , then V (Xx∗)⊂ Xx∗ .

The first abstract main result of our paper is the following.
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Theorem 2. Let a,b,c ∈R, with a < c < b. On C[a,b] we consider the max-norm,
∥·∥ (or the Bielecki norm, ∥·∥τ). On C[a,c] we consider the max-norm, ∥·∥ and a
metric ρ : C[a,c]×C[a,c]→ R+.

Let V : C[a,b]→C[a,b] be an operator. We suppose that:
(1) V has the Volterra property on [a,c];
(2) V1 is a contraction with respect to ∥·∥;
(3) ∃ M > 0 such that ∥x− y∥ ≤ Mρ(x,y), ∀ x,y ∈C[a,c];
(4) V is a G-contraction with respect to ρ.

Then
(i) FV = {x∗};

(ii) V1 is PO with respect to the uniform convergence and x∗
∣∣
[a,c] = V ∞

1 (x), ∀ x ∈
C[a,c];

(iii) x∗ =V ∞(x), ∀ x ∈ X
x∗
∣∣
[a,c]

.

Proof. Let x0 ∈ C[a,c]. By (1) and (4), V1 is a contraction with respect to ρ on
C[a,c]. By following the proof of Maia’s Theorem 1, it can be shown that the se-
quence of successive approximations {V n

1 (x0)}n∈N is a Cauchy sequence in (C[a,c],ρ).
By (3), we get that {V n

1 (x0)}n∈N is a Cauchy sequence in (C[a,c],∥·∥), so it con-
verges uniformly in the Banach space (C[a,c],∥·∥), to an element x∗1 ∈ C[a,c], i.e.,
V ∞

1 (x0) = x∗1. By (2), x∗1 ∈ FV1 and by (4) we get FV1 = {x∗1}. Hence, V1 is PO with
respect to the uniform convergence on (C[a,c],∥·∥).

By (1), (4) and the Remark 2, the operator W :=V
∣∣
Xx∗1

: Xx∗1 → Xx∗1 , is a contraction

with respect to ρ, where Xx∗1 = {y ∈C[a,b] | y
∣∣
[a,c] = x∗1}.

Let y0 ∈ Xx∗1 . Since W is a contraction with respect to ρ, it can be shown that
{W n(y0)}n∈N is a Cauchy sequence in (Xx∗1 ,ρ), and by (3), we get that {W n(y0)}n∈N
is a Cauchy sequence in the Banach space (Xx∗1 ,∥·∥), i.e., it converges uniformly to
an element x∗ ∈ Xx∗1 . Since W is a contraction, W is also continuous, so FW = {x∗}.
Hence, x∗

∣∣
[a,c] = x∗1.

From these we have (i), (ii) and (iii). □

From the above theorem, the following conjecture arises.

Conjecture 1. In the conditions of Theorem 2, the operator V is PO with respect
to the uniform convergence on (C[a,b],∥·∥), i.e., x∗ =V ∞(x), ∀ x ∈C[a,b].

Also, we have the Rus’ variant for Theorem 2.

Theorem 3. Let a,b,c ∈R, with a < c < b. On C[a,b] we consider the max-norm,
∥·∥ (or the Bielecki norm, ∥·∥τ). On C[a,c] we consider the max-norm, ∥·∥ and a
metric ρ : C[a,c]×C[a,c]→ R+.

Let V : C[a,b]→C[a,b] be an operator. We suppose that:
(1) V has the Volterra property on [a,c];
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(2) V1 is a contraction with respect to ∥·∥;
(3) ∃ M > 0 such that ∥V1(x)−V1(y)∥ ≤ Mρ(x,y), ∀ x,y ∈C[a,c];
(4) V is a G-contraction with respect to ρ.

Then
(i) FV = {x∗};

(ii) V1 is PO with respect to the uniform convergence and x∗
∣∣
[a,c] = V ∞

1 (x), ∀ x ∈
C[a,c];

(iii) x∗ =V ∞(x), ∀ x ∈ X
x∗
∣∣
[a,c]

.

Proof. Let x0 ∈C[a,c]. By (4), {V n
1 (x0)}n∈N is a Cauchy sequence with respect to

ρ. On the other hand, for n, p ∈ N, we have:

ρ(V n+p
1 (x0),V n

1 (x0))≤

≤ ρ(V n+p
1 (x0),V

n+p−1
1 (x0))+ . . .+ρ(V n+1

1 (x0),V n
1 (x0))

≤ ln+p−1
ρ(V1(x0),x0)+ . . .+ ln

ρ(V1(x0),x0)

≤ ln

1− l
ρ(V1(x0),x0)→ 0 as n, p → ∞.

By (3), it follows that ∥V n+1
1 (x0),V

n+p+1
1 (x0)∥→ 0 as n, p→∞. Hence, {V n

1 (x0)}n∈N
is a Cauchy sequence with respect to ∥·∥. We follow the proof of Theorem 2. □

3. APPLICATIONS

In this section, we present an application for Theorem 2, Fiber Contraction The-
orem and Abstract Gronwall Lemma.

Let a,b,c ∈ R, with a < c < b.
For K,H ∈ C([a,b]× [a,b]×R,R), we consider the following functional integral

equation,

x(t) =
∫ c

a
K(t,s,x(s))ds+

∫ t

a
H(t,s,x(s))ds, t ∈ [a,b]. (3.1)

We are looking for solutions for this equation in C[a,b].
We suppose that there exists LK ∈C([a,b]× [a,b]) such that

|K(t,s,u)−K(t,s,v)| ≤ LK(t,s)|u− v|, ∀ t ∈ [a,b], ∀ s ∈ [a,c], ∀ u,v ∈ R
and there exists LH ∈C([a,b]× [a,b]) such that

|H(t,s,u)−H(t,s,v)| ≤ LH(t,s)|u− v|, ∀ t,s ∈ [a,b], ∀ u,v ∈ R.

In addition, we suppose that
∫ b

c

∫ b

c
|LH(t,s)|2dtds < 1.

Let V : C[a,b]→C[a,b] be the operator defined by,

V (x)(t) :=
∫ c

a
K(t,s,x(s))ds+

∫ t

a
H(t,s,x(s))ds, ∀ t ∈ [a,b].
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The operator V1, induced by V on the interval [a,c] is

V1(x)(t) :=
∫ c

a
K(t,s,x(s))ds+

∫ t

a
H(t,s,x(s))ds, ∀ t ∈ [a,c].

On C[a,b] we consider the max-norm, ∥x− y∥ := max
t∈[a,b]

|x(t)− y(t)| and the metric

ρ(x,y) :=
(∫ b

a
|x(t)− y(t)|2ds

) 1
2 .

It is clear that V has the Volterra property on [a,c] and V1 is continuous with respect
to ∥·∥.

Let x,y ∈C[a,c]. We have

|V1(x)(t)−V1(y)(t)| ≤

≤
∫ c

a
|K(t,s,x(s))−K(t,s,y(s))|ds+

∫ t

a
|H(t,s,x(s))−H(t,s,y(s))|ds

≤
∫ c

a
LK(t,s)|x(s)− y(s)|ds +

∫ t

a
LH(t,s)|x(s)− y(s)|ds

Hölder’s
inequality

≤
(∫ c

a
|LK(t,s)|2ds

) 1
2
(∫ c

a
|x(s)− y(s)|2ds

) 1
2

+

+

(∫ t

a
|LH(t,s)|2ds

) 1
2
(∫ t

a
|x(s)− y(s)|2ds

) 1
2

≤

((∫ c

a
|LK(t,s)|2ds

) 1
2

+

(∫ t

a
|LH(t,s)|2ds

) 1
2
)

ρ(x,y).

By taking the max
t∈[a,c]

in the above inequalities, there exists

M := max
t∈[a,c]

((∫ c

a
|LK(t,s)|2ds

) 1
2

+

(∫ t

a
|LH(t,s)|2ds

) 1
2
)

> 0

such that ∥V1(x)−V1(y)∥ ≤ Mρ(x,y), for all x,y ∈C[a,c].
On the other hand, by Example 1, the operator V is a G-contraction with respect

to ρ, where G := {(x,y) ∈C[a,b]×C[a,b] | x
∣∣
[a,c] = y

∣∣
[a,c]}.

By applying Theorem 3, it follows that the equation (3.1) has a unique solution
x∗ in C[a,b]. Moreover, for t ∈ [a,c], x∗(t) = lim

n→∞
xn(t), for each x0 ∈ C[a,c], where

{xn}n∈N is defined by,

xn+1(t) =
∫ c

a
K(t,s,xn(s))ds+

∫ t

a
H(t,s,xn(s))ds,

and for t ∈ [a,b], x∗(t) = lim
n→∞

yn(t), where {yn}n∈N, is defined by
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y0 ∈C[a,b], with y0
∣∣
[a,c] = x∗

∣∣
[a,c], and

yn+1(t) =
∫ c

a
K(t,s,x∗(s))ds+

∫ t

a
H(t,s, yn(s))ds.

Remark 3. In the case of the operator V , considered above, Conjecture 1 is a
theorem. Indeed, let X :=C[a,c], Y :=C[c,b] and C[a,b] be endowed with max-norm.
We take, g : C[a,c]→C[a,c], defined by g :=V1 and h : C[a,c]×C[c,b]→C[c,b] be
defined by

h(x,y)(t) :=
∫ c

a
K(t,s,x(s))ds+

∫ c

a
H(t,s,x(s))ds+

∫ t

c
H(t,s,y(s))ds.

We remark that g is PO when

max
t∈[a,c]

(∫ c

a
LK(t,s)ds+

∫ t

a
LH(t,s)ds

)
< 1 (3.2)

and the operator h(x, ·) : C[c,b]→C[c,b] is a contraction, when

l := max
t∈[c,b]

∫ t

c
LH(t,s)ds < 1 (3.3)

By the Fiber Contraction Theorem, in the conditions (3.2) and (3.3), the oper-
ator f : C[a,c]×C[c,b]→C[a,c]×C[c,b], defined by f (x,y) = (g(x),h(x,y)), for all
(x,y) ∈C[a,c]×C[c,b] is PO.

Now, let
x0 ∈C[a,c], xn+1 = g(xn), n ∈ N,

and
y0 ∈C[c,b], yn+1 = h(xn,yn), n ∈ N.

Then, xn → x∗
∣∣
[a,c] as n → ∞ and yn → x∗

∣∣
[c,b] as n → ∞.

We denote,

un(t) =

{
xn(t), t ∈ [a,c],
yn(t), t ∈ [c,b].

Then, un ∈C[a,b], for n ∈ N∗, and, un+1 =V (un) with un → x∗ as n → ∞, i.e., V is a
PO.

This result is very important because we can apply for V , the Abstract Gronwall
Lemma. So we have:

Theorem 4. Let us consider the equation (3.1) in the following conditions: (3.2),
(3.3) and K(t,s, ·), H(t,s, ·) : R→ R be increasing functions, for all t,s ∈ [a,b]. Let
us denote by x∗ the unique solution of (3.1). Then the following implications hold:

(i) x ∈C[a,b], x(t)≤
∫ c

a
K(t,s,x(s))ds+

∫ t

a
H(t,s,x(s))ds, t ∈ [a,b], ⇒ x ≤ x∗;

(ii) x ∈C[a,b], x(t)≥
∫ c

a
K(t,s,x(s))ds+

∫ t

a
H(t,s,x(s))ds, t ∈ [a,b], ⇒ x ≥ x∗.
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Also, from the Abstract Comparison Lemma it can be established a comparison
result for equation (3.1).
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