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Abstract. The aim of this paper is to investigate eventual periodicity of the following max-type
system of difference equations of higher order with four variables

un = max
{

A, sn−k
vn−1

}
,

vn = max
{

B, tn−k
un−1

}
,

sn = max
{

C, un−k
tn−1

}
,

tn = max
{

D, vn−k
sn−1

}
,

n ∈ {0,1,2, · · ·},

where k is a positive integer, A,B,C,D ∈ (0,+∞) with A ≤ B and C ≤ D, and the initial values
u−i,v−i,s−i, t−i ∈ (0,+∞) for i ∈ {1,2, · · · ,k}. We show that:

(1) If AC < 1 or A = B =C = D = 1, then there exists a solution {(un,vn,sn, tn)}+∞

n=−k of this
system which is not eventually periodic.

(2) If BD = AC = 1 with A ̸=C or BD > AC = 1 or AC > 1, then every solution of this system
is eventually periodic.
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1. INTRODUCTION

The aim of this paper is to investigate eventual periodicity of the following max-
type system of difference equations of higher order with four variables

un = max
{

A, sn−k
vn−1

}
,

vn = max
{

B, tn−k
un−1

}
,

sn = max
{

C, un−k
tn−1

}
,

tn = max
{

D, vn−k
sn−1

}
,

n ∈ N0 ≡ {0,1,2, · · ·}, (1.1)
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where k ∈ N≡ {1,2 · · ·}, A,B,C,D ∈ R+ ≡ (0,+∞) satisfying

A ≤ B and C ≤ D, (1.2)

and the initial values u−i,v−i,s−i, t−i ∈ (0,+∞) (i ∈ Z(1,k)), where Z(a,b) ≡
{a,a+1, · · · ,b} for any integer a < b.

If xn = un = vn and yn = sn = tn and A = B and C = D, then (1.1) reduces to the
following max-type system xn = max

{
A, yn−k

xn−1

}
,

yn = max
{

C, xn−k
yn−1

}
,

n ∈ N0. (1.3)

In [24], Su et al. investigated the periodicity of (1.3) and showed that if AC > 1 or
AC = 1 and A ̸=C, then every positive solution of (1.3) is eventually periodic.

Recently, the study of the properties of the max-type difference equations and
systems, such as global behavior, eventual periodicity and boundedness, has aroused
a great deal of interest (see [1–5, 7–17, 19–21, 23, 26, 28, 30]). For example, Fotiades
and Papaschinopoulos [6] investigated the following max-type system of difference
equations  xn = max

{
A, yn−1

xn−2

}
,

yn = max
{

B, xn−1
yn−2

}
,

n ∈ N0, (1.4)

and showed that every positive solution of (1.4) is eventually periodic.
In [25], Su et al., inspired by above results of (1.4), investigated the periodicity of

positive solutions of the following max-type systems of difference equations xn = max
{

An,
yn−1
xn−2

}
,

yn = max
{

Bn,
xn−1
yn−2

}
,

n ∈ N0, (1.5)

where An,Bn ∈R+ are periodic with period 2 and showed that every positive solution
of (1.5) is eventually periodic.

In 2015, Yazlik et al. [31] investigated the periodicity of positive solutions of the
following system xn = max

{
1

xn−1
,min

{
1, A

yn−1

}}
,

yn = max
{

1
yn−1

,min
{

1, A
xn−1

}} n ∈ N0 (1.6)

and the general solution of (1.6) is obtained in an elegant manner.
The above results of (1.6) motivated Sun and Xi [27] in 2016 to investigate the

following more general system xn = max
{

1
xn−m

,min
{

1, A
yn−r

}}
,

yn = max
{

1
yn−m

,min
{

1, B
xn−t

}}
,

n ∈ N0, (1.7)
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where A,B ∈ R+, m,r, t ∈ N and the initial values x−i,y−i ∈ R+ (i ∈ Z(1,d)) with
d = max{m,r, t} and it is shown that every positive solution of (1.7) is eventually
periodic with period 2m.

In 2013, Stević [18] investigated the boundedness character and global attractivity
of the following symmetric system xn = max

{
B, yp

n−1
xp

n−2

}
,

yn = max
{

B, xp
n−1

yp
n−2

}
,

n ∈ N0, (1.8)

where B, p ∈ R+ and the initial values x−i,y−i ∈ R+(i ∈ Z(1,2)).
Also above results of (1.8) motivated Stević [22] to continue studying the behavior

of the following system
xn = max

{
B, yp

n−1
zp

n−2

}
,

yn = max
{

B, zp
n−1

xp
n−2

}
,

zn = max
{

B, xp
n−1

yp
n−2

}
.

n ∈ N0, (1.9)

where B, p ∈ R+ and the initial values x−i,y−i,z−i ∈ R+(i ∈ Z(1,2)), and showed
that system (1.9) is permanent when p ∈ (0,4).

In this paper, we investigate eventual periodicity of (1.1) and obtain the following
theorem.

Theorem 1.

(1) If AC < 1, then there exists a solution (un,vn,sn, tn)+∞

n=−k of (1.1) such that
un = A and sn =C for any n ≥−k and limn−→∞ vn = limn−→∞ tn = ∞

(2) If A = B = C = D = 1, then there exists a solution {(un,vn,sn, tn)}∞
n=−k of

(1.1) such that un = vn = sn = tn and 1 < un+1 < un for any n ≥ −k and
limn−→∞ un = 1.

(3) If BD = AC = 1 and A ̸=C, then every solution of (1.1) is eventually periodic
with period 2k.

(4) If BD > AC = 1 and {(un,vn,sn, tn)}+∞

n=−k is a solution of (1.1), then un and
sn are eventually periodic with period 2 and vn and tn are eventually periodic
with period 2k.

(5) If AC > 1, then every solution of (1.1) is eventually periodic with period 1.

2. PROOF OF THEOREM 1

In this section, we study eventual periodicity of positive solutions of system (1.1).
Let un = Axn,vn = Byn,sn =Cpn, tn = Dqn for any n ≥−k. Then (1.1) reduces to the
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following system 

xn = max
{

1, Cpn−k
AByn−1

}
,

yn = max
{

1, Dqn−k
ABxn−1

}
,

pn = max
{

1, Axn−k
CDqn−1

}
,

qn = max
{

1, Byn−k
CDpn−1

}
,

n ∈ N0, (2.1)

where the initial values x−i,y−i, p−i,q−i ∈R+ (i ∈Z(1,k)). Let {(xn,yn, pn,qn)}+∞

n=−k
be a positive solution of (2.1). To show Theorem 1, we need the following lemmas
and propositions.

Lemma 1.
(1) For any n ∈ N0,

xn ≥ 1, yn ≥ 1, pn ≥ 1, qn ≥ 1. (2.2)

(2) If AC ≥ 1, then for any r ∈ N and n ≥ 2rk,

xn = max
{

1, C
AByn−1

,
(

1
BD

)r xn−2rk
yn−1qn−k−1yn−2k−1qn−3k−1···yn−2(r−1)k−1qn−(2r−1)k−1

}
,

yn = max
{

1, D
ABxn−1

,
(

1
AC

)r yn−2rk
xn−1 pn−k−1xn−2k−1 pn−3k−1···xn−2(r−1)k−1 pn−(2r−1)k−1

}
,

pn = max
{

1, A
CDqn−1

,
(

1
BD

)r pn−2rk
qn−1yn−k−1qn−2k−1yn−3k−1···qn−2(r−1)k−1yn−(2r−1)k−1

}
,

qn = max
{

1, B
CDpn−1

,
(

1
AC

)r qn−2rk
pn−1xn−k−1 pn−2k−1 pxn−3k−1···pn−2(r−1)k−1xn−(2r−1)k−1

}
.

(2.3)

Proof.
(1) It follows from (2.1).
(2) Note BD ≥ AC ≥ 1. From this, (2.1) and (2.2) it follows that for any r ∈ N

and n ≥ 2rk,

xn = max
{

1,
Cpn−k

AByn−1

}
= max

{
1,

C
AByn−1

max
{

1,
Axn−2k

CDqn−k−1

}}
= max

{
1,

C
AByn−1

,
xn−2k

BDyn−1qn−k−1

}
= max

{
1,

C
AByn−1

,
1

BDyn−1qn−k−1
max

{
1,

C
AByn−2k−1

,
xn−4k

BDyn−2k−1qn−3k−1

}}
= max

{
1,

C
AByn−1

,
( 1

BD

)2 xn−4k

yn−1qn−k−1yn−2k−1qn−3k−1

}
· · ·

= max
{

1,
C

AByn−1
,
( 1

BD

)r xn−2rk

yn−1qn−k−1yn−2k−1qn−3k−1 · · ·yn−(2r−2)k−1qn−(2r−1)r−1

}
.
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In a similar way, also we can obtain the other three formulas. The proof is complete.
□

Proposition 1. If AC < 1, then there exists a solution {(xn,yn, pn,qn)}+∞

n=−k of (2.1)
such that xn = pn = 1 for any n ≥−k and limn−→∞ yn = limn−→∞ qn = ∞.

Proof. Let x−i = p−i = 1 and y−i = q−i = max{AB
D , A

CD ,
C
AB ,

CD
B }+ 1 for any i ∈

Z(1,k). Then by a simple calculation it follows from (1.2) and (2.1) that

x0 = max
{

1, Cp−k
ABy−1

}
= 1,

y0 = max
{

1, Dq−k
ABx−1

}
= Dq−k

AB > 1,

p0 = max
{

1, Ax−k
CDq−1

}
= 1,

q0 = max
{

1, By−k
CDp−1

}
= By−k

CD > 1.

x1 = max
{

1, Cp1−k
ABy0

}
= 1,

y1 = max
{

1, Dq1−k
ABx0

}
= Dq1−k

AB > 1,

p1 = max
{

1, Ax1−k
CDq0

}
= 1,

q1 = max
{

1, By1−k
CDp0

}
= By1−k

CD > 1.

· · · · · ·

xk−1 = max
{

1, Cp−1
AByk−2

}
= 1,

yk−1 = max
{

1, Dq−1
ABxk−2

}
= Dq−1

AB > 1,

pk−1 = max
{

1, Ax−1
CDqk−2

}
= 1,

qk−1 = max
{

1, By−1
CDpk−2

}
= By−1

CD > 1.

xk = max
{

1, Cp0
AByk−1

}
= 1,

yk = max
{

1, Dq0
ABxk−1

}
= y−k

AC > 1,

pk = max
{

1, Ax0
CDqk−1

}
= 1,

qk = max
{

1, By0
CDpk−1

}
= q−k

AC > 1.

xk+1 = max
{

1, Cp1
AByk

}
= 1,

yk+1 = max
{

1, Dq1
ABxk

}
= By1−k

CD > 1,

pk+1 = max
{

1, Ax1
CDqk

}
= 1,

qk+1 = max
{

1, By1
CDpk

}
= q1−k

AC > 1.

· · · · · ·
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x2k−1 = max
{

1, Cpk−1
ABy2k−2

}
= 1,

y2k−1 = max
{

1, Dqk−1
ABx2k−2

}
= y−1

AC > 1,

p2k−1 = max
{

1, Axk−1
CDq2k−2

}
= 1,

q2k−1 = max
{

1, Byk−1
CDp2k−2

}
= q−1

AC > 1.

By mathematical induction, we can obtain that for any λ∈N0 and any r ∈Z(0,k−1),

x2λk+r = max
{

1, Cp2λk−k+r
ABy2λk+r−1

}
= 1,

y2λk+r = max
{

1, Dq2λk−k+r
ABx2λk+r−1

}
= D

AB(
1

AC )
λqr−k > 1,

p2λk+r = max
{

1, Ax2λk−k+r
CDq2λk+r−1

}
= 1,

q2λk+r = max
{

1, By2λk−k+r
CDp2λk+r−1

}
= B

CD(
1

AC )
λyr−k > 1

and 

x(2λ+1)k+r = max
{

1, Cp2λk+r
ABy(2λ+1)k+r−1

}
= 1,

y(2λ+1)k+r = max
{

1, Dq2λk+r
ABx(2λ+1)k+r−1

}
= ( 1

AC )
λ+1yr−k > 1,

p(2λ+1)k+r = max
{

1, Ax2λk+r
CDq(2λ+1)k+r−1

}
= 1,

q(2λ+1)k+r = max
{

1, By2λk+r
CDq(2λ+1)k+r−1

}
= ( 1

AC )
λ+1qr−k > 1.

From the above we have xn = pn = 1 for any n ≥−k and limn−→∞ yn = limn−→∞ qn =
∞. The proof is complete. □

In Example 3.1 of [29], we showed that the following equation

xn =
xn−k

xn−1
(2.4)

has a positive solution zn (n≥−k) with 1< zn+1 < zn for any n≥−k and limn−→∞ zn =
1. From Example 3.1 of [29], we obtain the following proposition.

Proposition 2. If A=B=C =D= 1 and zn (n≥−k) is a positive solution of (2.4)
with 1 < zn+1 < zn for any n ≥ −k and limn−→∞ zn = 1, then there exists a solution
{(xn,yn, pn,qn)}∞

n=−k of (2.1) such that xn = yn = pn = qn = zn and 1 < xn+1 < xn for
any n ≥−k and limn−→∞ xn = 1.

Now we assume A = B > AC = 1 > C = D. From Lemma 1, we see that for any
i ∈ Z(0,2k−1) and n ∈ N,

x2nk+i = max
{

1, x2(n−1)k+i
y2nk+i−1q2nk+i−k−1

}
,

y2nk+i = max
{

1, y2(n−1)k+i
x2nk+i−1 p2nk+i−k−1

}
,

p2nk+i = max
{

1, A
C2q2nk+i−1

,
p2(n−1)k+i

q2nk+i−1y2nk+i−k−1

}
,

q2nk+i = max
{

1, A
C2 p2nk+i−1

,
q2(n−1)k+i

p2nk+i−1x2nk+i−k−1

} (2.5)
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since C
A2y2nk+i−1

< 1 and C
A2x2nk+i−1

< 1. From (2.5) and (2.2) it follows that for any
i ∈ Z(0,2k−1) and n ∈ N, 1 ≤ x2nk+i ≤ max

{
1,x2(n−1)k+i

}
≤ x2(n−1)k+i,

1 ≤ y2nk+i ≤ max
{

1,y2(n−1)k+i

}
≤ y2(n−1)k+i.

Write {
limn−→∞ x2nk+i = Ai ≥ 1,
limn−→∞ y2nk+i = Bi ≥ 1.

Lemma 2. Let A = B > AC = 1 >C = D.
(1) If Ai > 1 (resp. Bi > 1 ) for some i∈Z(0,2k−1), then x2nk+i+2r and p2nk−k+i+2r

(resp. y2nk+i+2r and q2nk−k+i+2r) are constant sequences eventually for any
r ∈N, and q2nk−k+i+2r+1 = y2nk+i+2r+1 = 1 (resp. p2nk−k+i+2r+1 = x2nk+i+2r+1 =
1) eventually for any r ∈ N0.

(2) If Ai = 1 (resp. Bi = 1 ) for some i ∈ Z(0,2k− 1), then x2nk+i+2r = 1 (resp.
y2nk+i+2r = 1) eventually for any r ∈ N0.

Proof.
(1) If Ai > 1 for some i ∈ Z(0,2k−1), then by (2.5) one has

x2nk+i =
x2(n−1)k+i

y2nk+i−1q2nk+i−k−1
(2.6)

eventually and

y2nk+i+1 = max
{

1,
y2(n−1)k+i+1

x2nk+i p2nk+i−k

}
= 1 (2.7)

eventually since p2nk+i−k ≥ 1 and
y2(n−1)k+i+1

x2nk+i p2nk+i−k
≤

y2(n−1)k+i+1

x2nk+i
−→ Bi+1

Ai
< Bi+1= lim

n−→∞
y2nk+i+1.

It follows from (2.6) that

lim
n−→∞

y2nk+i−1 = lim
n−→∞

q2nk+i−k−1 = 1. (2.8)

On the other hand, by (2.1) we see

x2nk+i =
Cp2nk+i−k

A2y2nk+i−1
(2.9)

eventually. Furthermore by (1.2) and (2.1) and (2.8) we have

y2nk+i−1 = max
{

1,
Cq2nk+i−k−1

A2x2nk+i−1

}
= 1 (2.10)

eventually since Cq2nk+i−k−1
A2x2nk+i−1

−→ C
A2Ai−1

< 1, which with (2.9) implies

x2nk+i =
Cp2nk+i−k

A2 . (2.11)
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It follows from (2.1) and (2.7) and (2.11) that

q2nk+i−k+1 = max
{

1,
Ay2nk+i−2k+1

C2 p2nk+i−k

}
= 1 (2.12)

eventually since

lim
n−→∞

Ay2nk+i−2k+1

C2 p2nk+i−k
=

1
Ai

< 1.

Thus by (2.2) and (2.5) and (2.7) and (2.12) we have

x2nk+i+2 = max
{

1,
x2(n−1)k+i+2

y2nk+i+1q2nk+i−k+1

}
= x2(n−1)k+i+2

eventually.
We claim that x2nk+i+2 > 1 eventually. Indeed, if x2nk+i+2 = 1 eventually, then by

(2.1) and (2.2) and (2.7) and (2.11) one has

q2nk+k+i+1 = max
{

1,
Ay2nk+i+1

C2 p2nk+k+i

}
= max

{
1,

1
x2(n+1)k+i

}
= 1

eventually and

p2nk+k+i+2 = max
{

1,
A

C2q2nk+k+i+1

}
=

A
C2

eventually and

q2nk+k+i+3 = max
{

1,
Ay2nk+i+3

C2 p2nk+k+i+2

}
= y2nk+i+3

eventually and

y2nk+2k+i+3 = max
{

1,
Aq2nk+k+i+3

C2x2nk+2k+i+2

}
= max

{
1,

Ay2nk+i+3

C2

}
=

Ay2nk+i+3

C2

eventually since Ay2nk+i+3
C2 ≥ ABi+3

C2 > 1, which leads to a contradiction that Bi+3 =
ABi+3

C2 > Bi+3.
By x2nk+i+2 > 1 eventually, in a similar way as the above also we have

y2nk+2k+i+3 = q2nk−k+i+3 = 1, x2nk+i+4 = x2nk−2k+i+4, p2nk−k+i+2 =
A2

C
x2nk+i+2

eventually.
Continuing in a similar way, we can obtain that x2nk+i+2r and p2nk+i+2r are con-

stant sequences eventually for any r ∈ N, and q2nk−k+i+2r+1 = y2nk+i+2r+1 = 1 even-
tually for any r ∈ N. The other case is treated similarly, so we omit the detail.

(2) Indeed, if Ai = 1 and x2nk+i > 1 for some i ∈ Z(0,2k−1) and any k ∈ N, then
by (2.1) we have

x2nk+i = max
{

1,
Cp2nk−k+i

A2y2nk+i−1

}
=

Cp2nk−k+i

A2y2nk+i−1
> 1
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eventually and by (2.5) we have

y2nk+i+1 = max
{

1,
Cy2nk−2k+i+1

A2x2nk+i p2nk+i−k

}
= 1 (2.13)

eventually since x2nk+i p2nk+i−k = x2
2nk+iy2nk+i−1

A2

C ≥ A2

C and

Cy2nk−2k+i+1

A2x2nk+i p2nk+i−k
≤ C2y2nk−2k+i+1

A4 −→ C2Bi+1

A4 < Bi+1= lim
n−→∞

y2nk+i+1.

By (2.1) and (2.13) we have

q2nk+k+i+1 = max
{

1,
Ay2nk+i+1

C2 p2nk+i+k

}
= max

{
1,

AC
C2A2x2nk+2k+iy2nk+2k+i−1

}
= 1

eventually and

p2nk+k+i+2 = max
{

1,
Ax2nk+i+2

C2q2nk+i+k+1

}
=

Ax2nk+i+2

C2 (2.14)

eventually. Thus it follows from (2.13) and (2.14) that

x2nk+2k+i+2 = max
{

1,
Cp2nk+k+i+2

A2y2nk+i+2k+1

}
= x2nk+2k+i+2

eventually.
Using arguments similar to ones developed in (1), also we can show that

x2(n+1)k+i+2r is constant sequence eventually for any r ∈ N. Thus one has

x2(n+1)k+i+2k = x2(n+2)k+i = 1

eventually, which leads to a contradiction. The other case is treated similarly, so we
omit the detail. The proof is complete. □

Proposition 3. If BD=AC = 1 and A ̸=C, then {(xn,yn, pn,qn)}+∞

n=−k is eventually
periodic with period 2k.

Proof. Without loss of generality we assume A >C. There are the following three
cases to consider.

Case 1. A2i > 1 for some i ∈ Z(0,k− 1) and A2 j+1 > 1 for some j ∈ Z(0,k− 1)
or B2i > 1 for some i ∈ Z(0,k−1) and B2 j+1 > 1 for some j ∈ Z(0,k−1) or A2i > 1
for some i ∈ Z(0,k−1) and B2 j > 1 for some j ∈ Z(0,k−1) or A2i+1 > 1 for some
i ∈ Z(0,k− 1) and B2 j+1 > 1 for some j ∈ Z(0,k− 1). By Lemma 2 we see easily
that {(xn,yn, pn,qn)}+∞

n=−k is eventually periodic with period 2k.
Case 2. A2i > 1 for some i ∈ Z(0,k − 1) and A2 j+1 = B2 j = B2 j+1 = 1 for any

j ∈ Z(0,k−1) or B2i > 1 for some i ∈ Z(0,k−1) and A2 j+1 = A2 j = B2 j+1 = 1 for
any j ∈ Z(0,k−1) or A2i+1 > 1 for some i ∈ Z(0,k−1) and A2 j = B2 j = B2 j+1 = 1
for any j ∈Z(0,k−1) or B2i+1 > 1 for some i∈Z(0,k−1) and A2 j =B2 j =A2 j+1 = 1
for any j ∈ Z(0,k−1).

Without loss of generality we assume A2i > 1 for some i ∈Z(0,k−1) and A2 j+1 =
B2 j = B2 j+1 = 1 for any j ∈ Z(0,k − 1). Then by Lemma 2 we see that x2nk+2r
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and p2nk−k+2r are eventually constant sequences for any r ∈ N, and q2nk−k+2r+1 =
x2nk+2r+1 = y2nk+r = 1 eventually for any r ∈ N0. Thus it follows from (2.1) that p2nk+k+2r+1 = max

{
1, Ax2nk+2r+1

C2q2nk+k+2r

}
= max

{
1, A

C2q2nk+k+2r

}
,

q2nk+k+2r+2 = max
{

1, Ay2nk+2r+2
C2 p2nk+k+2r+1

}
= max

{
1, A

C2 p2nk+k+2r+1

} (2.15)

eventually, from which it follows that{
p2nk+k+2r+1q2nk+k+2r ≥ A

C2 ,

q2nk+k+2r+2 p2nk+k+2r+1 ≥ A
C2

(2.16)

eventually. By (2.15) and (2.16) one has

1 ≤ p2nk+k+2r+1 = max
{

1, Ap2nk+k+2r−1
C2q2nk+k+2r p2nk+k+2r−1

}
≤ max

{
1, p2nk+k+2r−1

}
= p2nk+k+2r−1,

1 ≤ q2nk+k+2r+2 = max
{

1, Aq2nk+k+2r
C2 p2nk+k+2r+1q2nk+k+2r

}
≤ max

{
1,q2nk+k+2r

}
= q2nk+k+2r

(2.17)

eventually. On the other hand, it follows from (2.15) and (2.17) that p2nk+k+2r+1 = max
{

1, A
C2q2nk+k+2r

}
≥ max

{
1, A

C2q2nk+k+2r−2

}
= p2nk+k+2r−1,

q2nk+k+2r+2 = max
{

1, A
C2 p2nk+k+2r+1

}
≥ max

{
1, A

C2 p2nk+k+2r−1

}
= q2nk+k+2r

(2.18)
eventually. p2nk−k+2r is eventually constant sequence for any r ∈N and q2nk−k+2r+1 =
1 eventually for any r ∈ N0 and (2.17) and (2.18) imply that pn and qn are eventually
periodic with period 2k.

Case 3. A2i = A2i+1 = B2i = B2i+1 = 1 for any i ∈ Z(0,k−1). Then by Lemma 2
we see that xn = yn = 1 eventually. Thus it follows from (2.1) that pn = max

{
1, A

C2qn−1

}
,

qn = max
{

1, A
C2 pn−1

} (2.19)

and pnqn−1 ≥ A
C2 and qn pn−1 ≥ A

C2 eventually, from which we have 1 ≤ pn = max
{

1, Apn−2
C2qn−1 pn−2

}
≤ max

{
1, pn−2

}
= pn−2,

1 ≤ qn = max
{

1, Aqn−2
C2 pn−1qn−2

}
≤ max

{
1,qn−2

}
= qn−2

(2.20)

eventually. On the other hand, it follows from (2.19) and (2.20) that pn = max
{

1, A
C2qn−1

}
≥ max

{
1, A

C2qn−3

}
= pn−2,

qn = max
{

1, A
C2 pn−1

}
≥ max

{
1, A

C2 pn−3

}
= qn−2

(2.21)



EVENTUAL PERIODICITY OF A MAX-TYPE SYSTEM OF DIFFERENCE EQUATIONS... 923

eventually. By (2.20) and (2.21) we see that pn and qn are eventually periodic with
period 2. The proof is complete. □

Proposition 4. If BD > AC = 1 and {(xn,yn, pn,qn)}+∞

n=−k is a solution of (2.1),
then xn and pn are eventually periodic with period 2 and yn and qn are eventually
periodic with period 2k.

Proof. If BD > AC = 1, then from Lemma (2.3) we see that there exists N ∈ N
such that for any n ≥ N +2, we have

xn = max
{

1, C
AByn−1

}
,

yn = max
{

1, D
ABxn−1

, yn−2rk
xn−1 pn−k−1xn−2k−1 pn−3k−1···xn−2(r−1)k−1 pn−(2r−1)k−1

}
,

pn = max
{

1, A
CDqn−1

}
,

qn = max
{

1, B
CDpn−1

, qn−2rk
pn−1xn−k−1 pn−2k−1 pxn−3k−1···pn−2(r−1)k−1xn−(2r−1)k−1

}
.

(2.22)

Now we show that pn and xn are eventually periodic with period 2.
If pM = 1 for some M ≥ N +2, then from (2.22) it follows that

qM+1 ≥
B

CD
.

and

1 ≤ pM+2 = max
{

1,
A

CDqM+1

}
≤ max

{
1,

A
B

}
= 1.

By mathematical induction, we can obtain sM+2r = 1 for any r ≥ 0,
If pM+2r =

A
CDqM+2r−1

> 1 for some M ≥ N +2 and any r ≥ 0, then from (2.1) and
(2.22) and Lemma 1 we see

max
{ B

CD
,q1,q2, · · · ,qk

}
≥ qM+2r+1 = max

{
1,

ByM+1+2r−k

CDpM+2r

}
= max

{
1,

ByM+1+2r−k

A
qM+2r−1

}
=

B
A

yM+1+2r−kqM+2r−1

≥ B
A

qM+2r−1,

which implies A = B (since B > A leads to limr−→∞ qM+2r+1 = ∞) and

qM+2r+1 ≥ qM+2r−1. (2.23)

By (2.22) we see that for any i ∈ Z(1,k),

qM+2rk+2i+1 = max
{

1,
B

CDpM+2rk+2i
,

qM+2i+1

pM+2rk+2ixM+(2r−1)k+2i pM+(2r−2)k+2i pxM+(2r−3)k+2i · · · pM+2k+2ixM+k+2i

}
= max

{
qM+2rk+2i−1,
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qM+2i+1

pM+2rk+2ixM+(2r−1)k+2i pM+(2r−2)k+2i pxM+(2r−3)k+2i · · · pM+2k+2ixM+k+2i

}
By (2.23) and (2.2) one has that µ(i,r) = qM+2rk+2i−1 is increasing and

λ(i,r) =
qM+2i+1

pM+2rk+2ixM+(2r−1)k+2i pM+(2r−2)k+2i pxM+(2r−3)k+2i · · · pM+2k+2ixM+k+2i

is decreasing for any i ∈ Z(1,k).
If for some i ∈Z(1,k), qM+2rk+2i+1 = λ(i,r)> µ(i,r) for any r ∈N, then by (2.23)

we see that qM+2r+1 is an eventually constant sequence.
If for any i∈Z(1,k), qM+2rk+2i+1 = µ(i,r) = qM+2rk+2i−1 ≥ λ(i,r) eventually, then

we have qM+2rk+2i+1 = qM+2rk+2i−1 eventually for any i ∈ Z(1,k).
From the above we see that pn is eventually periodic with period 2. In a similar

way we can show that xn is eventually periodic with period 2. Let L > N + 1 such
that pn = pn+2 and xn = xn+2 for any n ≥ L. By (2.3) we see that for any i ∈ Z(1,k),

qL+2rk+2i+1 = max
{

1,
B

CDpL+2rk+2i
,

qL+2i+1

pL+2rk+2ixL+(2r−1)k+2i pL+(2r−2)k+2i pxL+(2r−3)k+2i · · · pL+2k+2ixL+k+2i

}
.

If pL+2kxL+k = 1, then for any i ∈ Z(1,k),

qL+2rk+2i+1 = max
{

1,
B

CDpL+2rk+2i
,qL+2i+1

}
.

If pL+2kxL+k > 1, then

lim
r−→∞

qL+2i+1

pL+2rk+2ixL+(2r−1)k+2i pL+(2r−2)k+2i pxL+(2r−3)k+2i · · · pL+2k+2ixL+k+2i
= 0.

Thus qL+2rk+2i+1 = max
{

1, B
CDpL+2rk+2i

}
eventually.

From the above we see that qn is eventually periodic with period 2k. In a similar
way we can show that yn is eventually periodic with period 2k. The proof is complete.

□

Proposition 5. If AC > 1, then {(xn,yn, pn,qn)}+∞

n=−k is eventually periodic with
period 1. Furthermore, the following statements hold:

(1) xn = 1 eventually and yn = max
{

1, D
AB

}
eventually or yn = 1 eventually and

xn = max
{

1, C
AB

}
eventually.

(2) pn = 1 eventually and qn = max
{

1, B
CD

}
eventually or qn = 1 eventually and

pn = max
{

1, A
CD

}
eventually.
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Proof. If AC > 1, then from (2.3) it follows that there exists N ∈ N such that for
any n ≥ N +2, we have 

xn = max
{

1, C
AByn−1

}
,

yn = max
{

1, D
ABxn−1

}
,

pn = max
{

1, A
CDqn−1

}
,

qn = max
{

1, B
CDpn−1

}
.

(2.24)

We claim that xn = 1 for any n ≥ N + 2 or pn = 1 for any n ≥ N + 2. Indeed, if
xn =

C
AByn−1

> 1 for some n ≥ N +2 and pm = A
CDqm−1

> 1 for some m ≥ N +2, then
1

BD = C
AB

A
CD > 1 since yn−1 ≥ 1 and qm−1 ≥ 1, which leads to a contradiction. In

a similar way, also we can obtain that yn = 1 for any n ≥ N + 2 or qn = 1 for any
n ≥ N +2.

If xn = 1 eventually, then yn = max
{

1, D
AB

}
eventually. If yn = 1 eventually, then

xn =max
{

1, C
AB

}
eventually. If pn = 1 eventually, then qn =max

{
1, B

CD

}
eventually.

If qn = 1 eventually, then pn = max
{

1, A
CD

}
eventually. The proof is complete. □

From Proposition 1, Proposition 2, Proposition 3, Proposition 4 and Proposition 5,
we get Theorem 1 immediately.
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