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Abstract. We study rotational hypersurfaces with constant 2-mean curvature in Rn+1. We derive
the ODE for the generating curves of such hypersurfaces, and find an integral expression for the
inverse function of the solution.

2010 Mathematics Subject Classification: 53A07; 34A05

Keywords: higher order mean curvature, rotational hypersurface, non-linear differential equa-
tions

1. INTRODUCTION

In the field of submanifold geometry, principal curvatures tell us how the submani-
fold bends in each direction. Given a hypersurface, i.e. a submanifold of codimension
one, the arithmetic mean of all principal curvatures is the mean curvature, while the
product of principal curvatures is the Gauss-Kronecker curvature. It has been an act-
ive field of research to study various constraints on these notions of curvature. For
example, the constant mean curvature (CMC) hypersurfaces in various ambient man-
ifolds have been extensively studied. To explain our motivation, we mention a few
results here. For rotational CMC surfaces in R3, Delaunay has proposed a beautiful
classification theorem which indicates that the generating curves of these surfaces are
formed geometrically by rolling a conic along a straight line without slippage [2]. In
the 1980s, Wu-Yi Hsiang and Wenci Yu generalized Delaunay’s theorem to rotational
hypersurfaces in Rn [3, 4].

Other than the mean curvature and Gauss-Kronecker curvature, symmetric func-
tions of principal curvatures are also interesting. Fixing an integer r between one
and the dimension of the hypersurface, the r-th symmetric function of the principal
curvatures is called (unnormalized) “r-mean curvature”. In this paper, we consider
rotational hypersurfaces in Euclidean space with constant 2-mean curvature. It can
be seen as a variant of Hsiang and Yu’s work mentioned above. Our main result is
the following theorem:
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Theorem 1. Let M ⊂ Rn+1 be a rotational hypersurface with constant 2−mean
curvature K such that its generating curve γ is a graph over the axis of rotation.
Let γ(s) = (ϕ(s),ψ(s)) be a parametrization of the generating curve, where ϕ(s) is
the radius of the meridian (n− 1)-sphere, ψ(s) is the height function and s is the
arclength parameter. Moreover set u(s) = ϕ(s)n/2. Then we have the following local
expression for the inverse function of u(s):

s =
∫

± du√
n

n−1

(
n(n−1)

4 u2−4/n − K
2 u2 +C

) . (1.1)

Here the sign of the integrand agrees with the sign of ϕ′, and C is a real constant.

We note that compact embedded hypersurfaces with constant r-mean curvature
have been characterized in [5], while complete ones have been studied in [1,6]. How-
ever, our examples are in general incomplete and thus are not covered by their results.

2. ROTATIONAL HYPERSURFACES AND ITS CURVATURES

We set up notations and state the formulae for principal curvatures and 2-mean
curvature of a rotational hypersurface in Rn+1. Throughout the paper, we take n ≥ 3
to avoid the trivial cases. The definitions of principal curvatures and higher order
mean curvatures will be provided in the Appendix. Let x1,x2, . . . ,xn+1 denote the
standard coordinates of Rn+1 and we assume that xn+1 is the axis of rotation. Let
f : R→ (0,+∞) be a smooth function.

Definition 1. A hypersurface M is called a Rotational Hypersurface if it is pro-
duced by rotating the generating curve x1 = f (xn+1) in the x1xn+1-plane around the
xn+1 axis. It is characterized by the following equation

f (xn+1)
2 =

n

∑
i=1

x2
i .

Note that f (xn+1) is the radius of the horizontal subsphere at height xn+1. Through-
out this paper, M will always denote a rotational hypersurface in Rn+1 unless other-
wise stated.

We choose an appropriate parametrization of the generating curve to facilitate the
calculation. Let ϕ(s) denote the radius of the n− 1 dimensional hypersphere and
ψ(s) denote the corresponding height. We choose the parameter s to be the arclength
parameter, that is, ϕ′2 +ψ′2 = 1. Under the above parametrization, the generating
curve x1 = f (xn+1) is parametrized as (x1,xn+1) = (ϕ(s),ψ(s)). Note that ϕ(s) ≥ 0
since it is the radius, and we require ψ′(s)≥ 0 so that the generating curve is a graph
over the xn+1 axis.

We use the hypersphere coordinate (ϕ,θ1, . . . ,θn−1) to parametrize the rotational
hypersurface. The position vector field of rotational hypersurface M can be written
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as
r⃗(ϕ,θ1, . . . ,θn−1) = (ϕcosθ1 · · ·cosθn−1,ϕcosθ1 · · ·cosθn−2 sinθn−1,

. . . ,ϕcosθ1 sinθ2,ϕsinθ1,ψ)
(2.1)

where θ1 ∈ [−π/2,π/2] and θi ∈ [0,2π] for i = 2,3, . . . ,n− 1. Note that ψ can be
expressed in terms of ϕ since ϕ′2 +ψ′2 = 1.

Under the above parametrization, the principal curvatures and the 2-mean curva-
ture of M are:

Theorem 2. The principal curvatures k1, . . . ,kn of M are given below:

(1) k1 =−ϕ′′

ψ′ ;

(2) ki =
ψ′

ϕ
for i = 2,3, . . . ,n.

Theorem 3. The 2-mean curvature K of M is given below:

K = ∑
1≤i< j≤n

kik j =−(n−1)
ϕ′′

ϕ
+

(
n−1

2

)
1−ϕ′2

ϕ2 . (2.2)

Detailed calculations can be found in the Appendix.

3. CONSTANT 2-MEAN CURVATURE

In the previous section, if we require the 2-mean curvature to be a constant K, then
we obtain the following ODE:

(n−1)ϕ′′
ϕ+

(
n−1

2

)
ϕ
′2 +Kϕ

2 =

(
n−1

2

)
. (3.1)

Set m =
(n−1

2

)
/(n−1)+1 = n/2, then

(ϕm)′′

ϕm−2 =
m

n−1

(
(n−1)ϕ′′

ϕ+

(
n−1

2

)
ϕ
′2
)
. (3.2)

Thus combining (3.1) and (3.2) we have

n−1
m

(ϕm)′′+Kϕ
m =

(
n−1

2

)
ϕ

m−2.

Set u = ϕm, then:
n−1

m
u′′+Ku−

(
n−1

2

)
u(m−2)/m = 0.

Multiply both sides by u′ and then integrate:

n−1
2m

u′2 =
(

n−1
2

)
m

2m−2
u2−2/m − K

2
u2 +C.

Finally solving this equation by separation of variables gives immediately (1.1) of
Theorem 1.
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4. APPENDIX

In the Appendix we provide essential definitions and notations about the curvatures
of hypersurfaces in Rn+1 and carry out the calculation. All notations are defined in
the Euclidean Space Rn+1.

A hypersurface M is a codimension one submanifold of Rn+1. Let U be a domain
in Rn and

r⃗ : U → M ⊂ Rn+1, r⃗ = r⃗(x1,x2, . . . ,xn)

be a local coordinate chart of M. We call r⃗ the position vector field of M in Rn+1.
The tangent vectors of M are

∂⃗r
∂x1

,
∂⃗r
∂x2

, . . . ,
∂⃗r
∂xn

.

The vector n⃗ of length one that is perpendicular to all tangent vectors of M is the
unit normal vector of M.

Definition 2 (First Fundamental Form). Denote the first order derivatives by
r⃗i =

∂⃗r
∂xi

. The first fundamental form of M is given below:

I =


r⃗1 · r⃗1 r⃗1 · r⃗2 · · · r⃗1 · r⃗n
r⃗2 · r⃗1 r⃗2 · r⃗2 · · · r⃗2 · r⃗n

...
...

. . .
...

r⃗n · r⃗1 r⃗n · r⃗2 · · · r⃗n · r⃗n


Definition 3 (Second Fundamental Form). Denote the second order derivatives by

r⃗i, j =
∂2⃗r

∂xi∂x j
. The second fundamental form of M is given below:

II =


r⃗1,1 · n⃗ r⃗1,2 · n⃗ · · · r⃗1,n · n⃗
r⃗2,1 · n⃗ r⃗2,2 · n⃗ · · · r⃗2,n · n⃗

...
...

. . .
...

r⃗n,1 · n⃗ r⃗n,2 · n⃗ · · · r⃗n,n · n⃗

 .
Definition 4 (Principal Curvature). Let matrix A = −II · I−1 where I−1 denotes

the inverse matrix of I. The n eigenvalues of matrix A are the principal curvatures of
M, denoted as k1, ...,kn.

Definition 5 (r-mean Curvature). For an integer r with 1 ≤ r ≤ n, the (unnormal-
ized) r-mean Curvature Hr of M is the r-th symmetric function of the n principal
curvatures. That is, Hr = ∑1≤i1<i2<...<ir≤n ∏

r
j=1 ki j .

We use again the hypersphere coordinate (2.1) to parametrize a rotational hyper-
surface M. Under this parametrization, we can compute the tangent vectors, unit nor-
mal vector, first fundamental form, second fundamental form, principal curvatures,
and 2-mean curvature of M as below.
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Lemma 1. Let r⃗ϕ = ∂⃗r
∂ϕ

and r⃗i =
∂⃗r
∂θi

. The tangent vectors of M are given below:

r⃗ϕ = (cosθ1 cosθ2 · · ·cosθn−1, . . . ,cosθ1 sinθ2,sinθ1,
ψ′

ϕ′ ),

r⃗1 = (−ϕsinθ1 cosθ2 · · ·cosθn−1, . . . ,−ϕsinθ1 sinθ2,ϕcosθ1,0),

r⃗2 = (−ϕcosθ1 sinθ2 cosθ3 · · ·cosθn−1, . . . ,−ϕcosθ1 cosθ2,0,0),
...

r⃗n−1 = (−ϕcosθ1 · · ·cosθn−2 sinθn−1,ϕcosθ1 · · ·cosθn−2 cosθn−1,0, . . . ,0).

Proof. Notice that ∂ψ

∂ϕ
=

∂ψ

∂s
∂ϕ

∂s

= ψ′

ϕ′ , we can derive the tangent vectors by computing

the first partial derivatives of the position vector field r⃗(ϕ,θ1, . . . ,θn−1) with respect
to θ1,θ2, . . . ,θn−1 respectively. □

Lemma 2. The Unit Normal Vector of M is given below:

n⃗ = ψ
′(cosθ1 cosθ2 · · ·cosθn−1,cosθ1 · · ·cosθn−2 sinθn−1,

. . . ,cosθ1 sinθ2,sinθ1,−
ϕ′

ψ′ ).

Proof. We only need to show that n⃗ · r⃗ϕ = 0 and n⃗ · r⃗i = 0 for i = 1, . . . ,n−1. Let
xa,b denote the value of the bth coordinate of r⃗a. First consider the value of n⃗ · r⃗ϕ:

n⃗ · r⃗ϕ =ψ
′

(
n

∑
i=1

(xϕ,i)
2 +

ψ′

ϕ′ · (−
ϕ′

ψ′ )

)
=ψ

′[(cosθ1 cosθ2 · · ·cosθn−1)
2 + · · ·+(cosθ1 sinθ2)

2 + sinθ
2
1 −1]

=ψ
′[(cosθ1 · · ·cosθn−2)

2 + · · ·+(cosθ1 sinθ2)
2 + sinθ

2
1 −1]

=ψ
′[sinθ

2
1 + cosθ

2
1 −1]

=0.

From the above equation, we get

k

∑
i=1

(xϕ,i)
2 = (cosθ1 cosθ2 · · ·cosθn−k)

2.

Notice that:

(1) xi, j =−ϕxψ, j tanθi for j = 1,2, . . . ,n− i;
(2) xi, j = ϕxψ, j cotθi for j = n− i+1;
(3) xi, j = 0 for j > n− i+1;
(4) The first n coordinates of n⃗ and r⃗ϕ are identical.
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We get

n⃗ · r⃗i = ψ
′

(
n−i

∑
j=1

xi, jxϕ, j + xi,n−i+1xϕ,n−i

)

= ψ
′

(
−ϕ tanθi

n−i

∑
j=1

(xψ, j)
2 +ϕcotθi(cosθ1 · · ·cosθi−1 sinθi)

2

)
= ψ

′ (−ϕ tanθi(cosθ1 · · ·cosθi)
2 +ϕcotθi(cosθ1 · · ·cosθi−1 sinθi)

2)= 0.

Moreover, it is clear that

|⃗n|= ψ
′

√
1+(−ϕ′

ψ′ )
2 =

√
ϕ′2 +ψ′2 = 1.

Therefore, n⃗ is indeed the Unit Normal Vector of M. □

Lemma 3. The First Fundamental Form of M is a diagonal matrix in the form
below:

I =


|⃗rϕ|2 · · · 0 0

... |⃗r1|2 · · · 0

0
...

. . .
...

0 0 · · · |⃗rn−1|2

 .
Proof. From Lemma 2, we know that

r⃗ϕ · r⃗i = ψ
′−1 · n⃗ · r⃗i = 0.

So it remains to be shown that

r⃗i · r⃗ j = 0 (i ̸= j).

Assume that i > j. From Lemma 1 we get

r⃗i · r⃗ j =
n−i

∑
k=1

xi,kx j,k + xi,n−ix j,n−i+1

= ϕ
2 tanθi tanθ j

n−i

∑
k=1

(xψ,i)
2 −ϕ

2 cotθi tanθ j(cosθ1 · · ·cosθi−1 sinθi)
2

= ϕ
2 tanθ j[tanθi(cosθ1 · · ·cosθi)

2 − cotθi(cosθ1 · · ·cosθi−1 sinθi)
2]

= 0.

The above equation indicates that I is a diagonal matrix as stated in the theorem. □
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Lemma 4. Let r⃗x,y denotes ∂2⃗r
∂x∂y where θi is replaced by i. The Second Fundamental

Form of M is another diagonal matrix in the form below:

II =


r⃗ϕ,ϕ · n⃗ · · · 0 0

... r⃗1,1 · n⃗ · · · 0

0
...

. . .
...

0 0 · · · r⃗n−1,n−1 · n⃗

 .
Proof. From Lemma 1 and the labels in Lemma 2, we can further derive the second

derivatives as below:
(1) r⃗ϕ,ϕ = (0,0, . . . ,0,− ϕ′′

ϕ′3ψ′ );
(2) r⃗i,i = (−ϕxϕ,1, −ϕxϕ,2, . . . , −ϕxϕ,n−i+1, 0, . . . ,0);
(3)

r⃗ϕ,i = r⃗i,ϕ = (−xϕ,1 tanθi, −xϕ,2 tanθi, . . . , −xϕ,n−i tanθi,

xϕ,n−i+1 cotθi, 0, . . . ,0);

(4)

r⃗i, j = r⃗ j,i = (ϕxϕ,1 tanθi tanθ j, . . . , ϕxϕ,n−i tanθi tanθ j,

−ϕcotθi tanθ j,0, . . . ,0) for i > j.

So, we only need to prove the inner product of n⃗ and the derivatives in Items (3) and
(4) is 0. From Lemma 2, we get

r⃗ϕ,i · n⃗ = ψ
′[− tanθi

n−i

∑
k=1

x2
ϕ,k + cotθix2

ϕ,n−i+1]

= ψ
′[− tanθi(cosθ1 · · ·cosθi)

2 + cotθi(cosθ1 · · ·cosθi−1 sinθi)
2]

= 0,

and

r⃗i, j · n⃗ = ψ
′[ϕ tanθi tanθ j

n−i

∑
k=1

x2
ϕ,k + cotθi tanθ jx2

ϕ,n−i+1]

= ψ
′
ϕ tanθ j[tanθi(cosθ1 · · ·cosθi)

2 − cotθi(cosθ1 · · ·cosθi−1 sinθi)
2]

= 0.

The above computation indicates that II is a diagonal matrix in the proposed form.
□

Now we can prove Theorem 2.

Proof. From Lemma 1, we can compute the entries in I as below:

(1) |⃗rϕ|2 = 1+ ψ′

ϕ′ =
1

ϕ′2

(2) |⃗ri|2 = ϕ2
∏

i−1
a=1 cosθ2

a (Assume that cosθ0 = 1)
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Similarly, we can compute the elements in II as below:

(1) r⃗ϕ,ϕ · n⃗ = ϕ′′

ϕ′2ψ′

(2) r⃗i,i · n⃗ =−ϕψ′
∏

i−1
a=1 cosθ2

a (Assume that cosθ0 = 1)

Then,

A =−II · I−1

=


− ϕ′′

ϕ′2ψ′ · · · 0 0
... ϕ · · · 0

0
...

. . .
...

0 0 · · · ϕ∏
n−1
a=1 cosθ2

a

 ·


ϕ′2 · · · 0 0
... 1

ϕ2 · · · 0

0
...

. . .
...

0 0 · · · 1
ϕ2 ∏

n−1
a=1 cosθ2

a



=


−ϕ′′

ψ′ · · · 0 0
... ψ′

ϕ
· · · 0

0
...

. . .
...

0 0 · · · ψ′

ϕ


Clearly, the principal curvatures are diagonal entries. □

Using the formula for principal curvatures, we have derived expression (2.2) in
Theorem 3 of the 2-mean curvature of M under the ϕ and ψ parametrization.
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