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Abstract

It is shown that if p > 2 and C is a subset of Fp with |C| ≥ p−C1
p

log p

then there are A ∈ Fp, B ∈ Fp with C = A + B, |A| ≥ 2, |B| ≥ 2.

On the other hand, for every prime p there is a subset C ⊂ Fp with

|C| > p−C2
log log p

(log p)1/2 p such that there are no A,B with these properties.

1 Introduction

Ostmann [6] introduced the following definitions:
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Definition 1 If C is a finite or infinite set of non-negative integers, then it

is said to be reducible if there are sets A,B of non-negative integers with

A + B = C, |A| ≥ 2, |B| ≥ 2. (1.1)

If there are no sets A, B with these properties, then C is said to be primitive.

Definition 2 An infinite set C of non-negative integers is said to be total-

primitive if every set C′ which is equal to C apart from a finite number of

exceptions (i.e., there is a number K such that C′ ∩ [K,∞) = C ∩ [K,∞)) is

primitive.

He formulated the following conjecture:

Conjecture 1 (Ostmann, [6]) The set of the prime numbers is totalprim-

itive.

This conjecture is still wide open, although there are remarkable partial

results (see [5] and the papers listed in it).

There are some further papers written on reducibility and totalprimitivity

of infinite sequences of non-negative integers, in particular, Sárközy [7], [8]

proved the following results:

Theorem A If C is a small enough positive number then every sequence

C = {a1, a2, . . .} of non-negative integers satisfying

n + 1 − C(n) < C

(

n(log log n)2

(log n)4

)

for all n ≥ 3

(where C(n) denotes the counting function of C: C(n) = |C ∩ {0, 1, . . . , n}|)

is reducible.
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Theorem B If C = {a1, a2, . . . } is any infinite sequence of non-negative

integers then one can achieve by changing at most O
(

n log log n
log n

)

elements of

C up to n that the modified sequence should be totalprimitive.

Some further papers written on reducibility and totalprimitivity of infinite

sequences are listed in [9].

In [9] Sárközy proposed to study finite analogues of problems of this

type. He remarked that the definitions of reducibility and primitivity can

be extended to any additive group, thus the reducibility and primitivity of

subsets of Fp can be defined in the same way as in Definition 1. (While clearly

the definition of totalprimitivity cannot be adapted to finite sets thus we will

not use it.) We will identify Fp with the set of modulo p residue classes

and, as it is customary, we will not distinguish between residue classes and

the integers representing them. Using this convention, Sárközy proposed to

study the reducibility, resp. primitivity of sets of residues modulo p. First

in [9] he studied the set of the quadratic residues modulo p, and then in [4]

Dartyge and Sárközy studied the set of the primitive roots modulo p.

In this paper our goal is to study the finite analogues of Theorems A and

B: we will show that every large subset of Fp is reducible. More precisely, let

f(p) denote the cardinality of the largest primitive subset of Fp; our goal is

to estimate this function f(p). The methods used in the infinite case in [7]

and [8] cannot be used in this finite case.

Gowers and Green [3] and Alon [1] studied a closely related problem: they

studied representations of large subsets C of Fp in form

A + A = C. (1.2)
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Let g(p) denote the cardinality of the largest subset C of Fp which cannot be

represented in the form (1.2). Clearly we have

f(p) ≤ g(p). (1.3)

Improving on results of Gowers and Green [3], Alon [1] proved that

p − C1
p2/3

(log p)1/3
< g(p) < p − C2

p1/2

log p
.

By (1.3), it follows from the upper bound here that

f(p) < p − C2
p1/2

log p
. (1.4)

In this paper first we will prove that if |C| is “very large”, i.e., p − |C|

is very small then C can be represented in the form (1.1) with the further

restriction |B| = 2:

Theorem 1 If p is a prime number with p > 3, C ⊂ Fp and

|C| ≥ p − p1/2, (1.5)

then C can be represented in the form

A + B = C with |A| ≥ 2, |B| = 2. (1.6)

Note that Alon, Granville and Ubis in [2] (see Theorem 3 in [2]) gave an

estimate for the number of the sets C ⊂ Fp having a representation of form

(1.6).

It follows trivially from Theorem 1 that

Corollary 1 For p > 3 we have

f(p) < p − p1/2.
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This improves slightly on (1.4). However, if we replace the strong |B| = 2

restriction in (1.6) by |B| ≥ 2, then we get a much better upper bound for

f(p):

Theorem 2 There is a positive absolute constant C3 such that if p is a prime

number large enough then we have

f(p) < p − C3
p

log p
. (1.7)

From the opposite side we will prove

Theorem 3 There is an absolute constant p0 such that if p is a prime num-

ber with p > p0 then we have

f(p) > p − 1.3
log log p

(log p)1/2
p.

2 Proof of Theorem 1.

We have to show that if p > 3, C ⊂ Fp and (1.5) holds then there are A,B

satisfying (1.6). Let C = Fp \ C. We claim that for any h ∈ {1, 2, . . . , p − 1}

there are ch, c
′
h with

ch − c′h = 2h, ch ∈ C, c′h ∈ C. (2.1)

Indeed, take h ∈ {1, 2, . . . , p − 1} and

A = {x ∈ Fp : x ∈ C, x + h ∈ C}, B = {0, h}.

Clearly, A + B ⊂ C. If A + B = C with |A| ≥ 2 then we are done. Suppose

that A + B 6= C. Then there is x ∈ C \ (A + B). We have ch := x + h ∈ C
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since otherwise x ∈ A and x = x + 0 ∈ A + B contrary to our supposition.

Similarly, c′h = x−h ∈ C since otherwise x−h ∈ A and x = (x−h)+h ∈ A+B

contrary to our supposition. Thus, the elements ch and c′h satisfy (2.1).

The number of the values of h is p−1, to each of them there is an ordered

pair (ch, c
′
h) ∈ C2

assigned by (2.1), and to different h values different ordered

pairs are assigned. Thus the number 2
(|C|

2

)

of the ordered pairs (ch, c
′
h) ∈ C2

with ch 6= c′h must be at least as large as the number of the h values:

2

(

∣

∣C
∣

∣

2

)

≥ p − 1

whence
∣

∣C
∣

∣

(
∣

∣C
∣

∣− 1
)

≥ p − 1. (2.2)

The left hand side is an increasing function of
∣

∣C
∣

∣ for
∣

∣C
∣

∣ ≥ 1, and by (1.5)

we have
∣

∣C
∣

∣ = p − |C| ≤ p1/2.

Thus we have

∣

∣C
∣

∣

(∣

∣C
∣

∣− 1
)

≤ p1/2
(

p1/2 − 1
)

= p − p1/2

which contradicts (2.2), and this proves

A + B = C with |B| = 2. (2.3)

It remains to show that for p > 3 (2.3) also implies |A| ≥ 2. By a trivial

counting argument it follows from (2.3) that

|A| |B| ≥ |C|
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whence, by (1.5), (2.3) and p > 3 (and thus p ≥ 5),

|A| ≥ |C|
|B| ≥

p − p1/2

2
= p1/2 p1/2 − 1

2
> 2 · 1

2
= 1.

Since |A| is an integer this proves |A| ≥ 2 which completes the proof of the

theorem. (Note that if p is 2 or 3 then the only reducible subset of Fp is Fp

itself thus the condition p > 3 is necessary.)

3 Proof of Theorem 2.

We have to show that if C3 is small enough and p0 is large enough, then

for p > p0, C ⊂ Fp and

|A| ≥ p − C3
p

log p
(3.1)

the set C is reducible, i.e., it can be represented in the form

A = B + C with B, C ⊂ Fp, |B| , |C| ≥ 2. (3.2)

Write A = Fp \ A and n =
∣

∣A
∣

∣. Let r denote a positive integer with

r > 2, r = o(p) which will be fixed later. We consider all the r-dimensional

vectors x = (x1, x2, . . . , xr) ∈ F
r
p. We say that the vector x is non-degenerate

if it contains at least two distinct components thus

|{x1, . . . , xr}| ≥ 2. (3.3)

For every x ∈ F
r
p we define the set Y = Y(x) by

Y = {y ∈ Fp : xi + y ∈ A for i = 1, 2, . . . , r}.

Clearly, we have

{x1, x2, . . . , xr} + Y ⊂ A. (3.4)
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We will show that (choosing r in the appropriate way) there is a non-

degenerate x such that

{x1, x2, . . . , xr} + Y = A. (3.5)

Indeed, then (3.2) holds with B = {x1, x2, . . . , xr}, C = Y by (3.3), (3.5) and

r = o(p) so that this will complete the proof of the theorem.

Assume that for some non-degenerate x (3.5) does not hold. Then by

(3.4) there is an a ∈ A such that

a 6∈ {x1, . . . , xr} + Y . (3.6)

It follows from (3.6) that for every i ∈ {1, 2, . . . , r} there is an

f(i) ∈ {1, 2, . . . , r} (3.7)

such that

a − (xi − xf(i)) ∈ A. (3.8)

Namely, if some i there was no f(i) satisfying (3.7) and (3.8) then for this i

and all j ∈ {1, 2, . . . , r} we had

a − (xi − xj) = (a − xi) + xj ∈ A (for all j ∈ {1, 2, . . . , r}).

By the definition of Y = Y(x) this implies that a− xi ∈ Y whence, by (3.4),

a = xi + (a − xi) ∈ {x1, x2, . . . , xr} + Y

which contradicts (3.6). Thus, indeed, for every i ∈ {1, 2, . . . , r} there is an

f(i) satisfying (3.7) and (3.8). Note that it follows from (3.8) that f(i) 6= i.
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Let F denote the set of the mappings

f : {1, 2, . . . , r} → {1, 2, . . . , r} with f(i) 6= i for i = 1, 2, . . . , r. (3.9)

For a fixed f ∈ F let Xf denote the set of the non-degenerate vectors

x = (x1, x2, . . . , xr) ∈ F
r
p (3.10)

such that (3.8) holds for some a ∈ A, and write Mf = |Xf |. Now we will

estimate Mf .

To any f ∈ F we assign the directed graph Gf with vertices 1, 2, . . . , r

and edges joining i with f(i) and directed from i to f(i). In order to study

these graphs Gf we will use the following terminology:

We will consider finite directed graphs, i.e., finite graphs such that every

edge has a starting point P and an endpoint Q, and then the edge is consid-

ered to be directed from P to Q. We denote this edge by P → Q, and two

vertices P, Q can be joined with at most two edges: P → Q and Q → P . The

number of vertices of G is denoted by |G|. Path is a sequence V1, V2, . . . , Vn

of vertices of the graph such that each of the pairs Vi, Vi+1 (i = 1, 2, . . . , n−1)

is joined. If for every i ∈ {1, 2, . . . , n − 1} the edge joining Vi and Vi+1 is

directed as Vi → Vi+1, then the path is called a directed path and we denote

this directed path by V1 → V2 → · · · → Vn. If V1 → V2 → · · · → Vn is a

directed path such that the vertices V1, V2, . . . , Vn are pairwise distinct then

the directed path is called simple. If V1 → V2 → · · · → Vn → Vn+1 is a di-

rected path such that V1, V2, . . . , Vn are pairwise distinct and Vn+1 = V1 then

we say that it is a directed cycle of size n and this directed cycle is denoted

by (V1 → V2 → · · · → Vn). (Note that this definition also includes the n = 2

9



special case (V1 → V2) when V1, V2 are joined with both edges V1 → V2 and

V2 → V1.) The number of edges starting out from the vertex V is called the

outdegree of V and it will be denoted by d(V ). We will also introduce

Definition 3 A directed graph is called an admissible graph if it is the union

of a directed cycle and several directed rooted trees such that the root of each

of them is a vertex belonging to this directed cycle, the directed cycle and

the trees have no other common vertex than the root of the tree, the trees

are pairwise disjoint, and every edge of any tree is directed towards the root.

(See Figure 1 for an admissible graph.)

Figure 1.

An admissible graph
We will need

Lemma 1 If the outdegree of every vertex V of a directed graph G is 1:

d(V ) = 1 for every vertex V of G, (3.11)

then the graph is the disjoint union of admissible graphs.
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(The graph G is the disjoint union of certain graphs G1, G2, . . . , Gk if for

every i 6= j the vertex sets of Gi and Gj are disjoint and no vertex of Gi is

joined with a vertex of Gj.)

Proof of Lemma 1. We will prove by induction on |G|. It follows from

(3.11) that the smallest possible value of |G| is 2. Then G has 2 edges which

form a directed cycle of size 2, and this is an admissible graph.

Now assume that k ∈ N, k > 2 and the statement of the lemma is true for

graphs of 2, 3, . . . , k− 1 vertices, and consider a graph G with |G| = k which

satisfies assumption (3.11). Let V1 be an arbitrary vertex of G. By (3.11) and

the finiteness of G there is a unique simple directed path V1 → V2 → · · · → Vi

starting from V1 such that the endpoint of the single edge starting from Vi

is one of V1, V2, . . . , Vi−1, say Vj (with 1 ≤ j < i). Then the directed cycle

(Vj → Vj+1 → · · · → Vi) is a directed cycle contained in G; denote it by

C. Now consider any vertex Vℓ of this directed cycle. By (3.11) there is a

single edge starting from Vℓ, and its endpoint must be the next vertex of

the directed cycle; there is no other edge starting from Vℓ. On the other

hand, there may exist several edges whose endpoint is Vℓ, and consider the

starting points of all these edges. By (3.11) the single edge starting from

them ends in Vℓ; on the other hand, each of them can be the endpoint of

several edges. Consider the starting points of all these edges, and repeat the

previous argument with each of these vertices. Continuing this algorithm,

we end up with a directed rooted tree whose root is Vℓ and every edge is

directed towards the root, and whose vertices different from the root are not

joined with any vertex not belonging to the tree. If we consider the directed
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cycle C and all the trees rooted at the vertices of C and generated in the

way described above, then clearly we get an admissible graph G0. Drop the

vertices and edges of this graph from G. Then we get a graph G′ which

also satisfies the assumptions in the lemma, and for which |G′| < |G| = k;

thus by our assumption the statement of the lemma holds with G′ in place

of G, i.e., G′ is the disjoint union of admissible graphs. Adding G0 to these

admissible graphs we get that G is the disjoint union of admissible graphs

which completes the proof of the lemma.

Now we return to the estimate of Mf (for fixed f satisfying (3.9)). By

(3.9) the graph G satisfies (3.11) with Gf in place of G thus Gf can be written

as the disjoint union of admissible graphs. Let v = v(f) denote the number of

these admissible graphs Gf (1), Gf(2), . . . , Gf(v) and let C(1), C(2), . . . , C(v)

denote the directed cycles in these graphs. For every j ∈ {1, 2, . . . , v} we fix

an arbitrary vertex ij ∈ C(j). Let I = {i1, i2, . . . , iv} and I ′ = {1, 2, . . . , r}\I.

Define the linear mapping Λf : F
r
p → F

r−v
p by setting

Λf (x) = Λf((x1, x2, . . . , xr)) = y = (yi)i∈I′ (3.12)

where

yi = xi − xf(i). (3.13)

We claim that Λf is a mapping from F
r
p onto F

r−v
p , more precisely, for every

y ∈ F
r−v
p there are exactly pv vectors x ∈ F

r
p satisfying (3.12) and (3.13).

Indeed, by removing the edges ij → f(ij) for j = 1, 2, . . . , v from Gf we

get a graph G′
f . Then G′

f is a disjoint union of the graphs G′
f(j) that we get

from the admissible graph Gf(j) by removing the edge ij → f(ij). Suppose

that each vertex i of G′
f (1 ≤ i ≤ r) has a value xi ∈ Fp, and then we assign
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a value to each edge of G′
f , namely we assign the value xi − xf(i) to the edge

i → f(i) (where i ∈ I ′). Clearly, our claim holds, i.e., for every y ∈ F
r−v
p

there are exactly pv vectors x ∈ F
r
p satisfying (3.12) and (3.13) if for fixed

y = (yi)i∈I′ ∈ F
r−v
p there are exactly pv tuples {x1, x2, . . . , xr} such that if

the vertex i of G′
f has the value xi for 1 ≤ i ≤ r then the edge i → f(i)

has the value yi(= xi − xf(i)) for i ∈ I ′. It follows from the structure of

admissible graphs that if h is any vertex of G′
f (j) then there is a unique path

P in G′
f(j) (where edges are directed but it need not be a directed path in

the sense that the endpoint of an edge need not be the starting point of the

next one) leading from ij to h (indeed, we removed the edge ij → f(ij) from

the cycle C(j) to achieve this). Starting out from the vertex ij and moving

along this path P towards h, and using (3.13) for the subscripts i which

are vertices belonging to the path P , we can determine the xi’s with these

subscripts successively, and it turns out that all these x′
is assume a uniquely

defined value. This is so for every vertex h of G′
f (j). So far the starting xi

value, xij has been fixed. If we let xij run over the elements of Fp, then we

obtain that the xi values belonging to the vertices i of G′
f(j) may assume p

values. Since the graphs Gf(1), Gf(2), . . . , Gf(v) are disjoint, thus we finally

obtain that for fixed y in (3.12) the vector x in (3.12) and (3.13) can be

chosen in pv ways which proves our claim above.

We are ready to estimate Mf , i.e., the number of vectors x satisfying

(3.10) and (3.8) for some a. This a can be chosen in at most |A| ≤ p ways.

Now we fix a. For every i ∈ I ′ we have a− yi ∈ A. Thus we can choose each

yi with i ∈ I ′ in n ways. (Recall that n =
∣

∣A
∣

∣.) Finally by our claim above,
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for any y = (yi)i∈I′ we have pv vectors x with Λf(x) = y. It follows that

Mf ≤ p · n|I′| · pv = pv+1nr−v = pr+1

(

n

p

)r−v

. (3.14)

Now we will estimate the number N(v, u) of functions f such that v(f) =

v and the total size of directed cycles in Gf is u:

u =

v
∑

j=1

|Cj| .

Clearly, if N(v, u) 6= 0 then we must have

0 < 2v ≤ u ≤ r. (3.15)

There are
(

r
u

)

< 2r ways to choose the union J of the vertices of all directed

cycles with |J | = u. The vertices in J have u! < ru orderings; for any

splitting of J into v directed cycles we can concatenate all the directed

cycles to get one of these orderings in at least v! ways. For a fixed ordering

we have
(

u−1
v−1

)

< 2u−1 < 2r ways to split the elements of J into v directed

cycles according to the chosen order (the order of the vertices of the directed

cycle also defines the direction of the edges). Moreover, we can define the

function f on {1, 2, . . . , r} \ J in at most rr−u ways. Thus we get

N(v, u) < 2rru(v!)−12rrr−u = 4rrr/v!. (3.16)

Now let N(v) denote the number of functions f of type (3.9) such that

v(f) = v. Then by (3.15) and (3.16) we have

N(v) =
∑

0<u≤r

N(v, u) <
∑

0<u≤r

4rrr

v!
=

4rrr+1

v!
= 4rr

rr

v!
< 6r rr

v!
(3.17)
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since 4rr < 6r for r > 2 which can be proved easily by induction. It follows

from (3.14), (3.15) and (3.17) that the number N of the non-degenerate

vectors x such that (3.5) fails is at most

N ≤
∑

f

Mf ≤
∑

v≤r/2

∑

v(f)=v

pr+1

(

n

p

)r−v

=
∑

v≤r/2

pr+1

(

n

p

)r−v
∑

v(f)=v

1

= pr+1

(

n

p

)r−v
∑

v≤r/2

N(v) < pr+1

(

n

p

)r−v
∑

v≤r/2

6r r
r

v!

= pr+1
∑

v≤r/2

(6r)r

(

n

p

)r−v

· 1

v!
. (3.18)

For v ∈ N we have
(e

v

)v

>
1

v!

thus
(

n

p

)r−v

· 1

v!
<

(

n

p

)r
( ep

nv

)v

for v ∈ N. (3.19)

Now we assume that

r

2
<

p

n
. (3.20)

The function
(

ep
nx

)x
is increasing for 0 < x < p

n
, thus by (3.20) for v ≤ r/2

we have
( ep

nv

)v

≤
(

2ep

nr

)r/2

(for v ≤ r/2). (3.21)

It follows from (3.18), (3.19) and (3.21) that

N < pr+1
∑

v≤r/2

(6r)r

(

n

p

)r (
2ep

nr

)r/2

≤ pr+1 r

2

(

6rn

p

)r (
2ep

nr

)r/2

(3.22)

= pr+1 r

2

(

72enr

p

)r/2

. (3.23)

Now we fix r: we take

r = (1 + o(1))2 log p (3.24)
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then (3.20) holds if C3 < 1 for every large p by (3.1), more precisely, we may

take r as r = [2 log p]. Finally, we take C3 = 1
1100

in (1.7) and (3.1) so that

n =
∣

∣A
∣

∣ ≤ 1

1100

p

log p
. (3.25)

Then it follows from (3.23), (3.24) and (3.25) with a little computation that

for p large enough we have

N <
1

2
pr.

Thus there are more than (1 + o(1))pr

2
non-degenerate vectors x for which

(3.5) holds and this completes the proof of Theorem 2.

4 Proof of Theorem 3.

Throughout the proof we will assume that p is a prime number large

enough.

We introduce the following notations:

t
def
=

[

log log p − 2 log log log p + 1

log 4

]

, (4.1)

B
def
= [0.71 log p] , (4.2)

T
def
=

[

1.01p

(

1 − 1

2t

)B
]

, (4.3)

H
def
= 3T. (4.4)

Let u1, u2, . . . , ut be t arbitrary different quadratic non-residues modulo

p. (The number of ui’s is the number t defined by (4.1).) Moreover, we define
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two sets by

C0
def
=

{

x ∈ Fp : ∃1 ≤ i ≤ t, such that

(

x2 − ui

p

)

= −1

}

,

D0
def
=

{

x ∈ Fp : ∀1 ≤ i ≤ t we have

(

x2 − ui

p

)

= 1

}

.

Then

C0 ∩ D0 = ∅, C0 ∪ D0 = Fp. (4.5)

Moreover, let

W = {C : C ⊂ C0 and |C| = |C0| − H} .

It suffices to prove:

Lemma 2 For all C ∈ W we have

|C| >

(

1 − 1.3 · log log p

(log p)1/2

)

p.

Lemma 3 There exists a set C ∈ W which is primitive.

Indeed, Theorem 3 follows trivially from Lemma 2 and Lemma 3. In Sections

4.1 and 4.2 we will prove Lemma 2 and Lemma 3, respectively. In both

Sections 4.1 and 4.2 we will use the following estimates for the constants

t, B, T and H :
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Lemma 4

t < 0.01
log log p

(log p)1/2
p (4.6)

2tp1/2 < 0.01
log log p

(log p)1/2
p (4.7)

2tp1/2 < 0.005p < 0.01

(

1 − 1

2t

)

p (4.8)

t24t < 1.45 log p (4.9)

1 − 1

2t
> 1 − 1.24

log log p

(log p)1/2
(4.10)

−3.61

t
> −0.002

log p

t2t
(4.11)

H < 0.01
log log p

(log p)1/2
p (4.12)

H < 0.005p < 0.01

(

1 − 1

2t

)

p (4.13)

T < p/11 < p/2 (4.14)

H > 0.25p0.51 (4.15)

T > 0.08p0.51. (4.16)

Proof of Lemma 4. By (4.1)

log log p − 2 log log log p + 1

log 4
− 1 ≤ t ≤ log log p − 2 log log log p + 1

log 4
, (4.17)

from which (4.6), (4.7) and (4.8) follows immediately.

By (4.17) we get

e

4
· log p

(log log p)2
≤ 4t ≤ e · log p

(log log p)2

0.67 · log p

(log log p)2
< 4t < 2.72 · log p

(log log p)2
(4.18)

By (4.17) and (4.18)

t24t <

(

log log p

log 4

)2

· 2.72 · log p

(log log p)2
< 1.45 log p,

18



which proves (4.9).

By (4.18)

0.81 · (log p)1/2

log log p
< 2t < 1.65 · (log p)1/2

log log p
. (4.19)

(4.10) and (4.11) follow from (4.19) immediately.

By 1 + x ≤ ex, (4.2) and (4.19) we have

(

1 − 1

2t

)B

≤ e−B/2t

< e
−0.7 log p/

„

1.65
(log p)1/2

log log p

«

< e−0.42(log p)1/2 log log p,

from which (4.12), (4.13) and (4.14) follow.

By 1 + x ≤ ex, (4.2) and (4.19) we have

(

1 − 1

2t

)B

=
1

(

1 + 1
2t−1

)B
≥ 1

eB/(2t−1)
= e−B/(2t−1)

≥ e
−0.71 log p/

„

0.81 (log p)1/2

log log p
−1

«

> e
−0.71 log p/

„

0.8 (log p)1/2

log log p

«

> e−0.89(log p)1/2 log log p,

from which (4.15) and (4.16) follow.

4.1 Proof of Lemma 2.

We will derive Lemma 2 from the following:

Lemma 5 Let f1(x), f2(x), . . . , fr(x) be different monic irreducible polyno-

mials of degree ≥ 2. Let k denote the maximum of the degrees of the polyno-

mials f1(x), f2(x), . . . , fr(x):

k = max
1≤i≤r

deg fi(x).
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Moreover, let ε1, ε2, . . . , εr ∈ {−1, +1}. Then
∣

∣

∣

∣

{

x :

(

fi(x)

p

)

= εi for 1 ≤ i ≤ r

}
∣

∣

∣

∣

=
p

2r
+ δrkp1/2, (4.20)

where −1 < δ < 1.

Proof of Lemma 5. Since fi(x) ∈ Fp[x] is irreducible, for x ∈ Fp we have

fi(x) 6= 0. Thus
(

fi(x)
p

)

= +1 or −1. For εi ∈ {−1, +1} we have

(

fi(x)

p

)

+ εi =











2εi if
(

fi(x)
p

)

= εi,

0 if
(

fi(x)
p

)

= −εi.

Thus

1

2rε1 · · · εr

r
∏

i=1

((

fi(x)

p

)

+ εi

)

=











1 if
(

fi(x)
p

)

= εi for all 1 ≤ i ≤ r

0 otherwise.

It follows that

S
def
=

∣

∣

∣

∣

{

x :

(

fi(x)

p

)

= εi for all 1 ≤ i ≤ r

}
∣

∣

∣

∣

=
1

2rε1 · · · εr

p−1
∑

x=0

r
∏

i=1

((

fi(x)

p

)

+ εi

)

. (4.21)

Since the Legendre symbol is multiplicative it is easy to see that there exist

polynomials g1(x), g2(x), . . . , g2r−1(x) (which are products of different fi(x)’s)

with degree ≤ rk such that

r
∏

i=1

((

fi(x)

p

)

+ εi

)

= ε1 · · · εr +

2r−1
∑

i=1

(

gi(x)

p

)

. (4.22)

By (4.21), (4.22), ε1 · · · εr = ±1 and the triangle inequality we get

S =
p

2r
+

1

2rε1 · · · εr

2r−1
∑

i=1

p−1
∑

x=0

(

gi(x)

p

)

≤ p

2r
+

1

2r

2r−1
∑

i=1

∣

∣

∣

∣

∣

p−1
∑

x=0

(

gi(x)

p

)

∣

∣

∣

∣

∣

.
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Similarly, by the triangle inequality

S =
p

2r
+

1

2rε1 · · · εr

2r−1
∑

i=1

p−1
∑

x=0

(

gi(x)

p

)

≥ p

2r
− 1

2r

2r−1
∑

i=1

∣

∣

∣

∣

∣

p−1
∑

x=0

(

gi(x)

p

)

∣

∣

∣

∣

∣

.

Thus there exists an −1 ≤ δ0 ≤ 1 with

S =
p

2r
+

1

2rε1 · · · εr

2r−1
∑

i=1

∑

x∈Fp

(

gi(x)

p

)

=
p

2r
+ δ0

1

2r

2r−1
∑

i=1

∣

∣

∣

∣

∣

∣

∑

x∈Fp

(

gi(x)

p

)

∣

∣

∣

∣

∣

∣

. (4.23)

Next we use Weil’s theorem [11]:

Lemma 6 Suppose that p is a prime, χ is a non-principal character modulo

p of order d, f ∈ Fp[x] has s distinct roots in Fp, and it is not the constant

multiple of the d-th power of a polynomial over Fp. Then
∣

∣

∣

∣

∣

∣

∑

x∈Fp

χ(f(x))

∣

∣

∣

∣

∣

∣

< sp1/2.

Proof of Lemma 6. See [11] and an elementary proof can be found in [10].

The factorization of gi(x) contains different monic irreducible factors

fj(x), thus gi(x) is not of the form ch(x)2 with c ∈ Fp, h(x) ∈ Fp[x] so

that we may use Lemma 6. For 1 ≤ i ≤ 2r − 1 there exists an 0 ≤ δi < 1

such that
∣

∣

∣

∣

∣

∣

∑

x∈Fp

(

gi(x)

p

)

∣

∣

∣

∣

∣

∣

= δirkp1/2.

Then (4.23) can be rewritten as

S =

∣

∣

∣

∣

{

x :

(

fi(x)

p

)

= εi for all 1 ≤ i ≤ r

}
∣

∣

∣

∣

=
p

2r
+ δrkp1/2,
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where δ = 1
2r δ0 (δ1 + · · ·+ δ2r−1), so −1 < δ < 1 which was to be proved.

Next we return to the proof of Lemma 2. Using Lemma 5 for fi(x) =

x2 − ui (where 1 ≤ i ≤ t) we get

|D0| =
p

2t
+ 2δtp1/2

with −1 < δ < 1. Then by (4.5) we have

|C0| =

(

1 − 1

2t

)

p − 2δtp1/2

>

(

1 − 1

2t

)

p − 2tp1/2.

Thus

|C0| − H >

(

1 − 1

2t

)

p − 2tp1/2 − H. (4.24)

Using this, (4.7), (4.10) and (4.12) we get

|C0| − H >

(

1 − 1.3 · log log p

(log p)1/2

)

p. (4.25)

Since for C ∈ W we have

|C| = |C0| − H,

we get

|C| >

(

1 − 1.3 · log log p

(log p)1/2

)

p,

which was to be proved.

4.2 Proof of Lemma 3.

In order to prove Lemma 3 we need several auxiliary lemmas and defini-

tions.
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Definition 4 We will represent the elements of Fp by the integers

0, 1, 2, . . . , p − 1. Then every A ⊆ Fp is of form

A = {a1, a2, . . . , aK}

with 0 ≤ a1 < a2 < · · · < aK ≤ p − 1. For |A| ≥ 2, define ∆(A) by

∆(A) = {a1 − a2, a1 − a3, . . . , a1 − aK} ∪ {a2 − a1} (⊆ Fp).

Clearly

|∆(A)| = |A| or |∆(A)| = |A| − 1.

Lemma 7 Let A,B ⊆ Fp with |A| ≥ 2. Then for every x ∈ A + B there

exists an a ∈ ∆(A) such that x + a ∈ A + B.

Proof of Lemma 7. Let A = {a1, a2, . . . , aK} ⊆ Fp and B =

{b1, b2, . . . , bL} ⊆ Fp where 0 ≤ a1 < a2 < · · · < aK ≤ p − 1 and 0 ≤ b1 <

b2 < · · · < bL ≤ p−1. Then ∆(A) = {a1−a2, a1−a3, . . . , a1−aK}∪{a2−a1}.

We distinguish two cases. First consider the case when x ∈ A + B is of the

form ai + bj with 2 ≤ i ≤ K, 1 ≤ j ≤ L. Then for a = a1 − ai ∈ ∆(A) we

have

x + a = (ai + bj) + (a1 − ai) = a1 + bj ∈ A + B.

Next consider the case when x ∈ A+B is of the form a1 + bj with 1 ≤ j ≤ L.

Then for a = a2 − a1 ∈ ∆(A) we have

x + a = (a1 + bj) + (a2 − a1) = a2 + bj ,

which completes the proof of Lemma 7.
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Definition 5 For A ⊆ Fp, |A| ≥ 2 define U(A) by

U(A) =
{

x ∈ Fp :

(

x2 − u1

p

)

= −1 and for a ∈ ∆(A), 1 ≤ i ≤ t,

we have

(

(x + a)2 − ui

p

)

= 1
}

.

Lemma 8 For A ⊆ Fp, |A| ≥ 2 we have

|U(A)| >
1

2|A|t+1
p − 2(|A| t + 1)p1/2. (4.26)

Proof of Lemma 8. Next we prove (4.26). Let f1(x) = x2 − u1 and

f2(x), f3(x), . . . , f|∆(A)|t+1(x) denote the polynomials in the set

S =
{

(x + a)2 − ui : a ∈ ∆(A), 1 ≤ i ≤ t
}

.

Clearly the polynomials fi(x) (1 ≤ i ≤ |∆(A)| t + 1) are irreducible over Fp,

since ui is a quadratic non-residue modulo p. Moreover, the monic irreducible

polynomials fi(x) (1 ≤ i ≤ |∆(A)| t + 1) are pairwise different: Indeed,

suppose that for two polynomials we have

(x + a)2 − ui = (x + a′)2 − uj

where a, a′ ∈ ∆(A) ∪ {0}, 1 ≤ i, j,≤ t. Then

x2 + 2ax + a2 − ui = x2 + 2a′x + (a′)2 − uj

whence

2a = 2a′

a2 − ui = (a′)2 − uj.
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It follows that a = a′, ui = uj. Since ∆(A) does not contain 0, from this we

get that the monic irreducible polynomials fi(x) (1 ≤ i ≤ |∆(A)| t + 1) are

pairwise different.

Using Lemma 5 for the polynomials fi(x) (1 ≤ i ≤ |∆(A)| t + 1) we get

(4.26).

Lemma 9 Suppose that A + B ⊆ C0 with |A| ≥ 2. Then U(A) ⊆ C0 and

U(A) ∩ (A + B) = ∅.

Proof of Lemma 9. Clearly,

U(A) ⊆
{

x ∈ Fp :

(

x2 − u1

p

)

= −1

}

⊆
{

x ∈ Fp : ∃1 ≤ i ≤ t, such that

(

x2 − ui

p

)

= −1

}

= C0.

Suppose that x ∈ U(A) and x ∈ A + B. Then by Lemma 7 there exists

a ∈ ∆(A) such that x + a ∈ A + B ⊆ C0, so x + a ∈ C0. Thus there exists

1 ≤ j ≤ t such that
(

(x + a)2 − uj

p

)

= −1.

But then x /∈ U(A), which contradicts our assumption.

From Lemma 9 immediately follows:

Lemma 10 If A + B ⊆ C0 with |A| ≥ 2, then

|U(A)| + |A + B| ≤ |C0| .

Next we prove
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Lemma 11 If C ∈ W can be written in the form C = A + B with |A| ≥ 2,

then

|A| >
log(p/(4H))

t log 2
. (4.27)

Proof of Lemma 11. Suppose that

|A| ≤ log(p/(4H))

t log 2
. (4.28)

Since A + B ∈ W we have

|C0| − |A + B| = H.

Since A + B ⊆ C0, by Lemma 10 we have

|U(A)| + |A + B| ≤ |C0|

|U(A)| ≤ |C0| − |A + B| = H.

By this and Lemma 8

1

2|A|t+1
p − 2(|A| t + 1)p1/2 ≤ H. (4.29)

Next we prove that

2(|A| t + 1)p1/2 <
1

2
· 1

2|A|t+1
p. (4.30)

Indeed, since by (4.15)

H > 0.25p0.51,

by (4.28), we have

|A| ≤ log(p/(4H))

t log 2
<

0.49

log 2
· log p

t
.
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Thus if p is large enough then

|A| <
log(p1/2/8) − log log p

t log 2

whence

|A| t + 1 <
log(p1/2/4) − log log p

log 2
.

Thus

2|A|t+1 <
p1/2

4 log p
, (4.31)

and

|A| t + 1 < log p. (4.32)

(4.30) follows from (4.31) and (4.32).

By (4.29) and (4.30) we get

1

2
· 1

2|A|t+1
p < H.

This is equivalent with

|A| >
log(p/(4H))

t log 2
,

which contradicts (4.28). Thus (4.28) does not hold, and this completes the

proof of Lemma 11.

Lemma 12 If C ∈ W can be written of the form C = A + B with |A| ≥ 2,

then

|A| > 0.7t2t.
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Proof of Lemma 12. We will estimate the right hand side of (4.27). By

(4.3), (4.4) and 1 + x ≤ ex, we get that if p is large enough then

p/(4H) =
p

12
[

1.01p
(

1 − 1
2t

)B
] ≥ p

12.12p
(

1 − 1
2t

)B
=

1

12.12
(

1 − 1
2t

)B

≥ 1

12.12e−B/2t =
1

12.12
eB/2t

.

Thus

log(p/(4H)) > −2.5 + B/2t.

So

log(p/(4H))

t log 2
>

−3.61

t
+

B

log 2 · t2t
=

−3.61

t
+

[0.71 log p]

log 2 · t2t

>
−3.61

t
+

0.709 log p

log 2 · t2t
>

−3.61

t
+

1.022 log p

t2t
.

By (4.11)

log(p/(4H))

t log 2
>

1.02 log p

t2t
> 0.7 · 1.45 log p

t2t
.

By this and (4.9)

log(p/(4H))

t log 2
> 0.7

t24t

t2t
= 0.7t2t. (4.33)

Using Lemma 11 and (4.33) we get the conclusion of the lemma.

Lemma 13 Suppose that A + B ⊆ C0 and |A| ≥ k. Then

|B| <

(

1 − 1

2t

)k
(

p + 2k+1tkp1/2
)

.

Proof of Lemma 13. Suppose that x ∈ Fp. Then for an a ∈ A it holds

that x + a is in C0 if there exists an 1 ≤ i ≤ t such that

(

(x + a)2 − ui

p

)

= −1.
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By this we have

1 − 1

2t

t
∏

i=1

((

(x + a)2 − ui

p

)

+ 1

)

=



































1 if there exists 1 ≤ i ≤ t

such that
(

(x+a)2−ui

p

)

= −1

0 if for all 1 ≤ i ≤ t

we have
(

(x+a)2−ui

p

)

= 1.

Let a1, a2, . . . , ak ∈ A be k different elements from A. Then

k
∏

j=1

(

1 − 1

2t

t
∏

i=1

((

(x + aj)
2 − ui

p

)

+ 1

)

)

=



































1 if for all aj ∃1 ≤ i ≤ t

such that
(

(x+aj)2−ui

p

)

= −1

0 otherwise.

(4.34)

If A + B ⊆ C0, then for all x ∈ B and aj ∈ A we have x + aj ∈ C0 and thus

there exists ui such that

(

(x + aj)
2 − ui

p

)

= −1.

By (4.34) we have

k
∏

j=1

(

1 − 1

2t

t
∏

i=1

((

(x + aj)
2 − ui

p

)

+ 1

)

)

= 1 for all x ∈ B.

Clearly, for x ∈ Fp \B the value of
∏k

j=1

(

1 − 1
2t

∏t
i=1

((

(x+aj)2−ui

p

)

+ 1
))

is

0 or 1. By this

|B| ≤
∑

x∈Fp

k
∏

j=1

(

1 − 1

2t

t
∏

i=1

((

(x + aj)
2 − ui

p

)

+ 1

)

)

.

After taking the term-by-term product in the second product, we get that

there exist monic polynomials f1(x), f2(x), . . . , f2t−1(x) (of degree ≤ 2t) such
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that

|B| ≤
∑

x∈Fp

k
∏

j=1

(

1 − 1

2t
− 1

2t

2t−1
∑

s=1

(

fs(x + aj)

p

)

)

. (4.35)

Let

F (ai) = {fs(x + ai) : 1 ≤ s ≤ 2t − 1}.

By taking the term-by-term product in (4.35) and using the triangle inequal-

ity we get

|B| ≤
∑

x∈Fp

(

1 − 1

2t

)k

+
∑

x∈Fp

k
∑

s=1

(

1 − 1

2t

)k−s(

− 1

2t

)s
∑

1≤i1<i2<···<is≤k

∑

g1∈F (ai1
)

∑

g2∈F (ai2
)

· · ·
∑

gs∈F (ais )

(

∏s
j=1 gj(x)

p

)

=

(

1 − 1

2t

)k

p +
k
∑

s=1

(

1 − 1

2t

)k−s(

− 1

2t

)s
∑

1≤i1<i2<···<is≤k

∑

g1∈F (ai1
)

∑

g2∈F (ai2
)

· · ·
∑

gs∈F (ais )

∑

x∈Fp

(

∏s
j=1 gj(x)

p

)

≤
(

1 − 1

2t

)k

p +

k
∑

s=1

(

1 − 1

2t

)k−s(
1

2t

)s
∑

1≤i1<i2<···<is≤k

∑

g1∈F (ai1
)

∑

g2∈F (ai2
)

· · ·
∑

gs∈F (ais )

∣

∣

∣

∣

∣

∣

∑

x∈Fp

(

∏s
j=1 gj(x)

p

)

∣

∣

∣

∣

∣

∣

.

Since each fs(x + aj) is a product of different monic irreducible polynomials

(x + aj)
2 − ui, a product

∏s
j=1 gj(x) for g1 ∈ F (ai1), g2 ∈ F (ai2), . . . , gs ∈

F (ais) (where 1 ≤ i1 < i2 < · · · < is ≤ k) is not of the form cg(x)2 with c ∈

Fp and g(x) ∈ Fp[x]. Moreover, deg
∏s

j=1 gj(x) ≤ k max1≤j≤s deg gj(x) ≤
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k max1≤i≤2t−1 deg fi(x) ≤ 2tk. Thus by using Lemma 6 we get

|B| <

(

1 − 1

2t

)k

p +

k
∑

s=1

(

1 − 1

2t

)k−s(
1

2t

)s
∑

1≤i1<i2<···<is≤k

∑

g1∈F (ai1
)

∑

g2∈F (ai2
)

· · ·
∑

gs∈F (ais )

2tkp1/2

=

(

1 − 1

2t

)k

p + 2tkp1/2
k
∑

s=1

(

1 − 1

2t

)k−s(
1

2t

)s
∑

1≤i1<i2<···<is≤k

∑

g1∈F (ai1
)

∑

g2∈F (ai2
)

· · ·
∑

gs∈F (ais )

1

=

(

1 − 1

2t

)k

p + 2tkp1/2
k
∑

s=1

(

1 − 1

2t

)k−s(
1

2t

)s
∑

1≤i1<i2<···<is≤k

(

2t − 1
)s

=

(

1 − 1

2t

)k

p + 2tkp1/2

k
∑

s=1

(

1 − 1

2t

)k
∑

1≤i1<i2<···<is≤k

1

=

(

1 − 1

2t

)k

p + 2tkp1/2
k
∑

s=1

(

k

s

)(

1 − 1

2t

)k

<

(

1 − 1

2t

)k
(

p + 2k+1tkp1/2
)

,

which was to be proved.

Lemma 14 Suppose that A + B ⊆ C0 and min{|A| , [0.71 log p]} ≥ k. Then

|B| < 1.01

(

1 − 1

2t

)k

p.

Proof of Lemma 14. Since p is large enough, by the conditions of the

lemma we have

k <
log(p1/2/(300t))

log 2
− log log(p1/2/(300t))

log 2
.
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Then

k2k <
log(p1/2/(300t))

log 2

p1/2/(300t)

log(p1/2/(300t))
< 0.005

p1/2

t

2k+1tkp1/2 < 0.01p.

Using this and Lemma 13 we get

|B| <

(

1 − 1

2t

)k
(

p + 2k+1tkp1/2
)

< 1.01

(

1 − 1

2t

)k

p.

Lemma 15 Suppose that A + B ∈ W where |A| ≥ 2. Then

|A| > [0.71 log p].

Proof of Lemma 15. By A + B ∈ W we have

|C0| − H = |A + B| ≤ |A| |B| .

By (4.24) we have

(

1 − 1

2t

)

p − 2tp1/2 − H < |A| |B| . (4.36)

Let |A| = f . Then by Lemma 12 f > 0.7t2t. Suppose that contrary to

Lemma 15 we have

0.7t2t < f ≤ [0.71 log p].

By using Lemma 14 with k = |A| = f and (4.36) we have

(

1 − 1

2t

)

p − 2tp1/2 − H < 1.01f

(

1 − 1

2t

)f

p.

By (4.8) and (4.13) we get

0.98

(

1 − 1

2t

)

p < 1.01f

(

1 − 1

2t

)f

p.
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So

f

(

1 − 1

2t

)f−1

>
0.98

1.01
> 0.97. (4.37)

Here f
(

1 − 1
2t

)f−1
is monotone decreasing in f for f ∈ [2t,∞), since using

log(1 + x) ≤ x and f ≥ 2t we get for the derivative

df
(

1 − 1
2t

)f−1

df
=

(

1 − 1

2t

)f−1(

1 + f log

(

1 − 1

2t

))

≤
(

1 − 1

2t

)f−1(

1 − f

2t

)

≤ 0.

Since f
(

1 − 1
2t

)f−1
is monotone decreasing in f and f > 0.7t2t, by (4.37)

and 1 + x ≤ ex we have

0.97 < f

(

1 − 1

2t

)f−1

≤ 0.7 · t2t

(

1 − 1

2t

)0.7t2t−1

≤ 1.4 · t2t

(

1 − 1

2t

)0.7t2t

≤ 1.4 · t2te−0.7·t2t/2t

= 1.4t

(

2

e0.7

)t

< 1.4t(0.994)t,

which is impossible, if p (and thus t) is large enough.

Lemma 16 Define B and T by (4.2) and (4.3). Suppose that A + B ∈ W

with |A| , |B| ≥ 2. Then

|A| , |B| ≤
[

1.01

(

1 − 1

2t

)B

p

]

= T.

Proof of Lemma 16. By symmetry reasons, it is enough to prove that

|B| ≤ T. (4.38)

By Lemma 15 we have

|A| > [0.71 log p] = B.
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Thus using Lemma 14 with k = B we get (4.38), which was to be proved.

Now we are ready to prove Lemma 3.

Proof of Lemma 3. Let S denote the number of reducible sets in W. We

will prove that

S < |W| ,

from which the lemma follows. Suppose that C ∈ W is reducible, thus there

exist sets A,B ⊆ Fp such that |A| , |B| ≥ 2 and

C = A + B.

By Lemma 16 we have

|A| , |B| ≤
[

1.01

(

1 − 1

2t

)B

p

]

= T.

Thus if C = A + B with |A| , |B| ≥ 2 then A and B can be chosen from

T
∑

i=2

(

p

i

)

< p max
1≤i≤T

(

p

i

)

≤ p

(

p

T

)

different subsets of Fp (here we also use (4.14)). Thus there are at most

p2

(

p

T

)2

different sums A + B whence

S ≤ p2

(

p

T

)2

< p2 p2T

(T !)2
.

Clearly

|W| =

(|C0|
H

)

.

By (4.25), we have

|C0| − H > 0.99p
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whence

|W| >
(|C0| − H)H

H !
>

(0.99p)H

H !
.

Thus S < |W| follows from

p2 p2T

(T !)2
<

(0.99p)H

H !
. (4.39)

Next we prove (4.39). If p is large enough, then T and H are large enough,

thus by Stirling’s formula

T ! > 0.99
√

2πT

(

T

e

)T

H ! < 1.01
√

2πH

(

H

e

)H

.

Thus (4.39) (and S < |W| also) follows from

p2 p2T

(

0.99
√

2πT
(

T
e

)T
)2 <

(0.99p)H

1.01
√

2πH
(

H
e

)H
. (4.40)

(4.40) is equivalent with

p2

√
H

T

HH

T 2T
e2T−H p2T

(0.99p)H
<

0.992
√

2π

1.01
. (4.41)

In order to complete the proof of Lemma 3 we need to prove (4.41). Indeed,

if p is large enough, then by (4.4), (4.14) and (4.16) we get

p2

√
H

T

HH

T 2T
e2T−H p2T

(0.99p)H
= p2

√
3√
T

(

33

0.993e
· T

p

)T

≤ p2
√

3

(

33

0.993e
· T

p

)T

< p2
√

3

(

33

0.993 · 11 · e

)T

< p2
√

3 (0.94)T

< p2
√

3 (0.94)0.08p0.51

< e−0.004p0.51+2 log p+log
√

3

<
0.992

√
2π

1.01
,

which was to be proved.
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