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Mercer type inequalities for normalised isotonic linear
functionals with applications

By László Horváth

Abstract. In this paper we give new Mercer type inequalities for normalised iso-

tonic linear functionals which contain Niezgoda’s inequality as a very special case. We

deal with some particular forms of the obtained inequalities and study some refinements

of them. The results are applied to means generated by normalised isotonic linear func-

tionals. As another application we extend Mercer’s inequality to an operator inequality

for convex (not operator convex) functions. An unusual feature of this result is to use

closed normal subalgebras instead of a single operator.

1. Introduction

A function f : C → R defined on an interval C ⊂ R is said to be convex if

the inequality

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y)

holds for any x, y ∈ C and for every t ∈ [0, 1].

Let the set I denote either {1, . . . , n} for some n ≥ 1 or N+ := {1, 2, . . .}.
We say that the numbers (pi)i∈I represent a discrete probability distribution if

pi ≥ 0 (i ∈ I) and
∑
i∈I

pi = 1.

Perhaps the most useful inequalities for convex functions are the different

types of Jensen’s inequalities. The functional form of Jensen’s inequality was
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given by Jessen [6]. Jessen’s inequality can be formulated by linear functionals

satisfying the following properties:

(C1) Let E be a nonempty set, and let L be a subspace of the vector space

of real valued functions defined on E. It is also assumed that 1E ∈ L (for every

c ∈ R the constant function cE : E → R is defined by cE (x) = c).

(C2) Let A : L→ R be a linear functional.

(C3) Assume A is nonnegative that is A (ϕ) ≥ 0 for all nonnegative ϕ ∈ L.

(C4) Assume A (1E) = 1.

Linear functionals satisfying (C3) are often called isotonic (or monotonic). It

is said that a linear functional is normalised (or unital) if (C4) holds.

The closure of a subset H of R is denoted by H.

Theorem 1. (Jessen’s inequality, see [5]) Assume (C1-C4) that is a nor-

malised isotonic linear functional A is given. Let f be a convex function on the

interval C ⊂ R, and let ϕ ∈ L such that ϕ (x) ∈ C for all x ∈ E. Then

(a) A (ϕ) ∈ C.

(b) If A (ϕ) ∈ C, f ◦ ϕ ∈ L, and f is continuous at A (ϕ), then

f (A (ϕ)) ≤ A (f ◦ ϕ) .

The previous result is often referred to as Jensen’s inequality for isotonic

linear functionals.

Mercer [9] established an interesting variant of the discrete Jensen inequality,

namely:

Theorem 2. (Jensen-Mercer’s inequality) If C is an interval, f : C → R
is a convex function, p1, . . . , pn represent a discrete probability distribution, and

x1, . . . , xn ∈ [a, b] ⊂ C, then

f

(
a+ b−

n∑
i=1

pixi

)
≤ f (a) + f (b)−

n∑
i=1

pif (xi) .

Niezgoda [13] extended Theorem 2, and the principal tool in his treatment

is majorization. His result is the next:

Theorem 3. (Niezgoda’s inequality) Let f : C → R be a continuous convex

function on interval C ⊂ R. Suppose a = (a1, . . . , am) with aj ∈ C, and X = (xij)

is a real n ×m matrix such that xij ∈ C for all i, j. If a majorizes each row of

X, that is

xi = (xi1, . . . , xim) ≺ (a1, . . . , am) = a for each i = 1, . . . , n,
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then we have the inequality

f

 m∑
j=1

aj −
m−1∑
j=1

n∑
i=1

pixij

 ≤ m∑
j=1

f (aj)−
m−1∑
j=1

n∑
i=1

pif (xij) ,

where p1, . . . , pn represent a discrete probability distribution.

The following functional version of Jensen-Mercer’s inequality is due to Che-

ung, Matković and Pečarić [2].

Theorem 4. Assume (C1-C4) that is a normalised isotonic linear functional

A is given. Let f be a continuous convex function on the interval C ⊂ R. If ϕ ∈ L
such that ϕ (x) ∈ [a, b] ⊂ C for all x ∈ E, f ◦ϕ ∈ L and f ◦ (a+ b− ϕ) ∈ L, then

f (a+ b−A (ϕ)) ≤ A (f (a+ b− ϕ))

≤ b−A (ϕ)

b− a
f (b) +

A (ϕ)− a
b− a

f (a) ≤ f (a) + f (b)−A (f ◦ ϕ) .

The main goal of this paper to give a generalization of Theorem 4 which con-

tains Niezgoda’s inequality as a very special case. We deal with some particular

forms of the obtained inequalities and study some refinements of them. We first

apply the results to means generated by normalised isotonic linear functionals.

As another application we extend Mercer’s inequality to an operator inequality

for convex (not operator convex) functions. An unusual feature of this result is

to use closed normal subalgebras instead of a single operator.

2. Preliminary results

We introduce a majorization relation for finite sequences of real numbers (see

Marshall and Olkin [7]).

Definition 5. Let C ⊂ R be an interval. We say that y := (y1, . . . , yn) ∈ Cn
majorizes x := (x1, . . . , xn) ∈ Cn, written y � x, if

k∑
i=1

y[i] ≥
k∑
i=1

x[i], k = 1, . . . , n− 1 and

n∑
i=1

y[i] =

n∑
i=1

x[i],

where x[1] ≥ x[2] ≥ . . . ≥ x[n] and y[1] ≥ y[2] ≥ . . . ≥ y[n] are the entries of x and

y, respectively, in decreasing order.
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The following two classical results are associated to majorization theory.

Theorem 6. (weighted Hardy-Littlewod-Pólya inequality, see [12]) Let C ⊂
R be an interval, and let f : C → R be a convex function. If (x1, . . . , xn) ∈ Cn,

(y1, . . . , yn) ∈ Cn and q1, . . . , qn are nonnegative numbers such that

(a) x1 ≥ . . . ≥ xn,

(b)
r∑

k=1

qkxk ≤
r∑

k=1

qkyk (r = 1, . . . , n− 1),

(c)
n∑
k=1

qkxk =
n∑
k=1

qkyk,

then
n∑
i=1

qif (xi) ≤
n∑
i=1

qif (yi) .

We stress that the nonnegativity of the numbers q1, . . . , qn cannot be omitted

in Theorem 6. The so-called majorisation inequality is the special case of the

previous result where y � x and q1 = . . . = qr = 1.

Theorem 7. (Fuchs’ inequality, see [3]) Let C ⊂ R be an interval, and let

f : C → R be a convex function. If (x1, . . . , xn) ∈ Cn, (y1, . . . , yn) ∈ Cn and

q1, . . . , qn are real numbers such that

(a) x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn,

(b)
r∑

k=1

qkxk ≤
r∑

k=1

qkyk (r = 1, . . . , n− 1),

(c)
n∑
k=1

qkxk =
n∑
k=1

qkyk,

then
n∑
i=1

qif (xi) ≤
n∑
i=1

qif (yi) .

A refinement of the Jessen’s inequality will be used from the paper Horváth

[5]. To formulate this we need the following hypotheses:

(H1) Assume a normalised isotonic linear functional A : L→ R is given, that

is (C1-C4) are satisfied. Further, it is assumed that for all ϕ ∈ L the function |ϕ|
also belongs to L (in this case L is a Stone vector lattice).

(H2) Let the index set I denote either {1, . . . , n} for some n ≥ 1 or N+. Let

the index set J denote either {1, . . . , k} for some k ≥ 1 or N+.

(H3) Let (λj)j∈J represent a positive probability distribution which means

that λj > 0 (j ∈ J) , and
∑
j∈J

λj = 1. For each j ∈ J let πj be a permutation of

the set I (a permutation π of I refers to a bijection from I onto itself).
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(H4) Suppose we are given a sequence AI = (Ai)i∈I of isotonic linear func-

tionals Ai : L→ R with Ai (1E) > 0 for all i ∈ I and
∑
i∈I

Ai = A.

The following result, in a more general form, is Theorem 4.1 in [5]. The

phrase closed interval means an interval in R which is a closed (not necessarily

compact) set.

Theorem 8. Assume (H1-H4). Let C ⊂ R be a closed interval, and f :

C → R be a continuous convex function. Let ϕ ∈ L taking values in C such that

f ◦ ϕ ∈ L. Then

f (A (ϕ)) ≤ Cfunct = Cfunct (ϕ,f, λ, π,AI)

:=
∑
i∈I

∑
j∈J

λjAπj(i) (1E)

 f


∑
j∈J

λjAπj(i) (ϕ)∑
j∈J

λjAπj(i) (1E)

 ≤ A (f ◦ ϕ) .

3. Main results

We first establish an extension of Theorem 4. The result is also a generaliza-

tion of Theorem 3 to normalised isotonic linear functionals.

Theorem 9. Assume (C1-C4) that is a normalised isotonic linear functional

A is given. Let C ⊂ R be an interval, and let f : C → R be a convex function.

Assume further that m ≥ 2 is an integer,

ϕk, ψk ∈ L, k = 1, . . . ,m

such that ϕk (x), ψk (x) ∈ C for all x ∈ E (k = 1, . . . ,m), A (ϕm) ∈ C, f is

continuous at A (ϕm),

f ◦ ϕk ∈ L, f ◦ ψk ∈ L, k = 1, . . . ,m, (1)

and

either

(a1) ϕ1 ≥ ϕ2 ≥ . . . ≥ ϕm and ψ1 ≥ ψ2 ≥ . . . ≥ ψm,

(b1) qk ∈ R (k = 1, . . . ,m− 1), qm > 0,

(c1)
r∑

k=1

qkϕk ≤
r∑

k=1

qkψk (r = 1, . . . ,m− 1),

(d1)
m∑
k=1

qkϕk =
m∑
k=1

qkψk,
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or

(a2) ϕ1 ≥ ϕ2 ≥ . . . ≥ ϕm,

(b2) qk ≥ 0 (k = 1, . . . ,m− 1), qm > 0,

(c2)
r∑

k=1

qkϕk ≤
r∑

k=1

qkψk (r = 1, . . . ,m− 1),

(d2)
m∑
k=1

qkϕk =
m∑
k=1

qkψk,

or

(a3) qk = 1 (k = 1, . . . ,m),

(b3) (ϕ1 (x) , . . . , ϕm (x)) ≺ (ψ1 (x) , . . . , ψm (x)) (x ∈ E).

Then

f

(
1

qm

(
m∑
k=1

qkA (ψk)−
m−1∑
k=1

qkA (ϕk)

))

≤ A

(
f ◦

(
1

qm

(
m∑
k=1

qkψk −
m−1∑
k=1

qkϕk

)))
(2)

≤ 1

qm

(
m∑
k=1

qkA (f ◦ ψk)−
m−1∑
k=1

qkA (f ◦ ϕk)

)
. (3)

Proof. Suppose conditions (a1-d1) are satisfied.

By (d1),

1

qm

(
m∑
k=1

qkψk −
m−1∑
k=1

qkϕk

)
= ϕm, (4)

and hence the linearity of A implies that

1

qm

(
m∑
k=1

qkA (ψk)−
m−1∑
k=1

qkA (ϕk)

)

=
1

qm
A

(
m∑
k=1

qkψk −
m−1∑
k=1

qkϕk

)
= A (ϕm) .

Since A is a normalised isotonic linear functional, ϕm ∈ L such that ϕm (x) ∈
C for all x ∈ E, A (ϕm) ∈ C, f ◦ϕm ∈ L, and f is continuous at A (ϕm), inequality

(2) is an immediate consequence of Jessen’s inequality.

To prove (3), first we use (a1-d1), together with ψk (x), ϕk (x) ∈ C for all

x ∈ E (k = 1, . . . ,m) and the convexity of f , to apply Fuchs’ inequality: it gives

that
m∑
k=1

qkf (ϕk (x)) ≤
m∑
k=1

qkf (ψk (x)) , x ∈ E.
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By (4), it follows from this that

m−1∑
k=1

qkf ◦ ϕk + qmf ◦

(
1

qm

(
m∑
k=1

qkψk −
m−1∑
k=1

qkϕk

))
≤

m∑
k=1

qkf ◦ ψk. (5)

Since (1) is satisfied and A is an isotonic linear functional, we have from (5)

that

qmA

(
f ◦

(
1

qm

(
m∑
k=1

qkψk −
m−1∑
k=1

qkϕk

)))

≤
m∑
k=1

qkA (f ◦ ψk)−
m−1∑
k=1

qkA (f ◦ ϕk) ,

and therefore inequality (3) follows by using qm > 0.

Under the other two groups of conditions we can prove similarly by us-

ing either Hardy-Littlewod-Pólya inequality or majorization inequality instead

of Fuchs’ inequality.

The proof is complete. �

The following simple result shows that Theorem 9 extends inequalities

f (a+ b−A (ϕ)) ≤ A (f (a+ b− ϕ)) ≤ f (a) + f (b)−A (f ◦ ϕ)

in Theorem 4.

Corollary 10. Assume (C1-C4) that is a normalised isotonic linear func-

tional A is given. Let C ⊂ R be an interval, and let ψ1, ψ2, ϕ ∈ L such that

ψ1 (x), ψ2 (x) ∈ C for all x ∈ E, ψ1 ≤ ϕ ≤ ψ2 and A (ψ1 + ψ2 − ϕ) ∈ C. If

f : C → R is a convex function for which f is continuous at A (ψ1 + ψ2 − ϕ) and

f ◦ ψ1, f ◦ ψ2, f ◦ ϕ and f ◦ (ψ1 + ψ2 − ϕ) belong to L, then

f (A (ψ1) +A (ψ2)−A (ϕ)) ≤ A (f ◦ (ψ1 + ψ2 − ϕ))

≤ A (f ◦ ψ1) +A (f ◦ ψ2)−A (f ◦ ϕ) . (6)

Proof. The condition ψ1 ≤ ϕ ≤ ψ2 implies

(ϕ (x) , (ψ1 + ψ2 − ϕ) (x)) ≺ (ψ1 (x) , ψ2 (x)) , x ∈ E,

and therefore we can apply Theorem 9 by choosing ϕ1 := ϕ and ϕ2 := ψ1+ψ2−ϕ
(conditions (a3-b3) are satisfied).

The proof is complete. �
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Remark 11. Niezgoda’s inequality is contained in Theorem 9 as a very

special case: Really, let f : C → R be a continuous convex function on interval

C ⊂ R. Suppose n ≥ 1 and m ≥ 2 are integers, a = (a1, . . . , am) with ak ∈ C,

and X = (xik) is a real n×m matrix such that xik ∈ C for all i, k. Let p1, . . . , pn
represent a discrete probability distribution. Define the vector space L by

L := {(yi)ni=1 | yi ∈ R, i = 1, . . . , n} ,

the functions ϕk, ψk ∈ L (k = 1, . . . ,m) by

ψk (i) := ak, i = 1, . . . , n, k = 1, . . . ,m

and

ϕk (i) := xik, i = 1, . . . , n, k = 1, . . . ,m,

and the normalised isotonic linear functional A : L→ R by

A ((yi)
n
i=1) :=

n∑
i=1

piyi.

If a majorizes each row of X, then Theorem 9 gives Niezgoda’s inequality.

It is worth mentioning the form of Corollary 10 when the normalised isotonic

linear functional A is defined by integral. In this case weaker conditions are

sufficient. An integral version of Theorem 9 can be found in Horváth [4].

Theorem 12. Let (E,A, µ) be a probability space, C ⊂ R be an interval,

ψ1, ψ2 : E → C be µ-integrable functions, and let ϕ : E → R be a measurable

function such that ψ1 ≤ ϕ ≤ ψ2. If f : C → R is a convex function for which

f ◦ ψ1 and f ◦ ψ2 are µ-integrable, then

f

∫
E

(ψ1 + ψ2 − ϕ) dµ

 ≤ ∫
E

f ◦ (ψ1 + ψ2 − ϕ) dµ (7)

≤
∫
E

f ◦ ψ1dµ+

∫
E

f ◦ ψ2dµ−
∫
E

f ◦ ϕdµ. (8)

Proof. If L means the vector space of real integrable functions on E and

the linear functional A is defined on L by

A (χ) :=

∫
E

χdµ,
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then A is obviously isotonic and normalised.

It is obvious that ϕ (x) ∈ C for all x ∈ E and ϕ is also µ-integrable.

If f is either increasing or decreasing, then either

f ◦ ψ1 ≤ f ◦ ϕ ≤ f ◦ ψ2

or

f ◦ ψ1 ≥ f ◦ ϕ ≥ f ◦ ψ2.

Since f ◦ ϕ is measurable and f ◦ ψ1 and f ◦ ψ2 are µ-integrable, it follows from

the previous inequalities that f ◦ ϕ is µ-integrable.

If f is not monotonic, then there exists an inner point c ∈ C such that f is

decreasing on ]−∞, c] ∩ C and increasing on [c,∞[ ∩ C. In this case

f (c) ≤ f ◦ ϕ ≤ max (f ◦ ψ1, f ◦ ψ2) ,

and therefore f ◦ ϕ is µ-integrable too.

Since

ψ1 ≤ ψ1 + ψ2 − ϕ ≤ ψ2,

the roles of ϕ and ψ1 +ψ2−ϕ can be interchanged in the previous argument and

hence f ◦ (ψ1 + ψ2 − ϕ) is also µ-integrable.

Inequality (7) now follows immediately from the integral Jensen’s inequality.

Inequality (8) can be obtained from (6).

The proof is complete. �

An interesting special case of Theorem 12 is the following. We emphasize

that the index set I can also be a countably infinite set.

Corollary 13. Let the index set I denote either {1, . . . , n} for some n ≥ 1

or N+, and let (pi)i∈I represent a discrete probability distribution. Let C ⊂ R
be an interval, and let (ai)i∈I , (bi)i∈I , (xi)i∈I be sequences from C such that

ai ≤ xi ≤ bi for all i ∈ I and the series
∑
i∈I

piai and
∑
i∈I

pibi are absolutely

convergent. If f : C → R is a convex function for which the series
∑
i∈I

pif (ai) and∑
i∈I

pif (bi) are absolutely convergent, then

f

(∑
i∈I

pi (ai + bi − xi)

)
≤
∑
i∈I

pif (ai + bi − xi)

≤
∑
i∈I

pif (ai) +
∑
i∈I

pif (bi)−
∑
i∈I

pif (xi) .
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Proof. Let E := I, A be the set of all subsets of E, and let µ :=
∑
i∈I

piεi

where εi : A → R is the unit mass at i (i ∈ I). Define the functions ψ1, ψ2,

ϕ : E → C by

ψ1 (i) := ai, ψ2 (i) := bi, ϕ (i) := xi.

Now the result is an immediate consequence of Theorem 12 by applying it

to the probability space (E,A, µ) and to the functions ψ1, ψ2, and ϕ.

The proof is complete. �

Jensen-Mercer’s inequality has a lot of different refinements, see e.g. the

recent papers Horváth [4] and Moradi and Furuichi [11]. Now, we give some

refinements of Theorem 9. There are two ways to achieve this: one is to refine

inequality 2, while the other is to refine inequality 3. The proof of inequality

2 shows that in the first case any refinement of the Jessen’s inequality can be

applied, but in the second case, specific methods are needed. For a more detailed

analysis of the problem, see the paper Horváth [4]. Both cases are illustrated

below.

Theorem 14. Assume (H1-H4). Let C ⊂ R be a closed interval, and f :

C → R be a continuous convex function. Assume further that m ≥ 2 is an integer,

ϕk, ψk ∈ L, k = 1, . . . ,m

such that ψk (x), ϕk (x) ∈ C for all x ∈ E (k = 1, . . . ,m),

f ◦ ϕk ∈ L, f ◦ ψk ∈ L, k = 1, . . . ,m,

and either (a1-d1) or (a2-d2) or (a3-b3) is satisfied. Then

f

(
1

qm

(
m∑
k=1

qkA (ψk)−
m−1∑
k=1

qkA (ϕk)

))
≤
∑
i∈I

∑
j∈J

λjAπj(i) (1E)



·f


1
qm

∑
j∈J

λjAπj(i)

(
m∑
k=1

qkA (ψk)−
m−1∑
k=1

qkA (ϕk)

)
∑
j∈J

λjAπj(i) (1E)


≤ A

(
f ◦

(
1

qm

(
m∑
k=1

qkψk −
m−1∑
k=1

qkϕk

)))

≤ 1

qm

(
m∑
k=1

qkA (f ◦ ψk)−
m−1∑
k=1

qkA (f ◦ ϕk)

)
.
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Proof. In the proof of Theorem 9, we have seen that inequality (2) can be

obtained by applying the Jessen’s inequality, so the result is a simple consequence

of the Theorem 8.

The proof is complete. �

Theorem 15. Assume (C1-C4) that is a normalised isotonic linear functional

A is given. Assume further that L is a Stone vector lattice. Let C ⊂ R be an

interval, and let ψ1, ψ2, ϕ ∈ L such that ψ1 (x), ψ2 (x) ∈ C for all x ∈ E,

ψ1 ≤ ϕ ≤ ψ2 and A (ψ1 + ψ2 − ϕ) ∈ C. Define the functions χ, ω : E → R by

χ (x) := min (ϕ (x) , ψ1 (x) + ψ2 (x)− ϕ (x)) , x ∈ E

ω (x) := max (ϕ (x) , ψ1 (x) + ψ2 (x)− ϕ (x)) , x ∈ E.

If f : C → R is a convex function for which f is continuous at A (ψ1 + ψ2 − ϕ)

and f ◦ (tψ1 + (1− t)χ), f ◦ (tψ2 + (1− t)ω), f ◦ϕ and f ◦ (ψ1 + ψ2 − ϕ) belong

to L for all t ∈ [0, 1], then

f (A (ψ1) +A (ψ2)−A (ϕ)) ≤ A (f ◦ (ψ1 + ψ2 − ϕ))

≤ A (f ◦ (tψ1 + (1− t)χ)) +A (f ◦ (tψ2 + (1− t)ω))−A (f ◦ ϕ)

≤ A (f ◦ ψ1) +A (f ◦ ψ2)−A (f ◦ ϕ) , t ∈ [0, 1] .

Proof. Since L is a Stone vector lattice, χ, ω ∈ L.

It is easy to check that

(ϕ (x) , ψ1 (x) + ψ2 (x)− ϕ (x)) ≺ (tψ1 + (1− t)χ, tψ2 + (1− t)ω)

≺ (ψ1 (x) , ψ2 (x)) , x ∈ E, t ∈ [0, 1] ,

and hence the majorization inequality implies the second and the third inequali-

ties.

The first inequality comes from Corollary 10.

The proof is complete. �

4. Application

In this section we first study means generated by normalised isotonic linear

functionals.

The range of a function f is denoted by Rf .
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Let C ⊂ R be an interval, and let q : C → R be a continuous and strictly

monotone function. If (X,A, µ) is a probability space, and ϕ : X → C is a

function such that q ◦ ϕ is µ-integrable on X, then

Mq (ϕ, µ) := q−1

∫
X

q ◦ ϕdµ


is called the quasi-arithmetic mean (integral q-mean) of ϕ.

Based on the previous notion of quasi-arithmetic mean, a new mean gen-

erated by a normalised isotonic linear functional is introduced in Beesack and

Pečarić [1] and a more generalized form in Horváth [5].

Definition 16. (see [5]) Assume (C1-C4) that is a normalised isotonic linear

functional A : L → R is given. Let C ⊂ R be an interval, q : C → R be a

continuous and strictly monotone function, and let ϕ : E → R taking values in C

such that q (]inf ϕ, supϕ[) ⊂ Rq and q ◦ ϕ ∈ L. Define

Mq (ϕ,A) := q−1 (A (q ◦ ϕ)) .

To simplify the next statement, we assume that the interval C is closed. The

result contains Theorem 3.3 in the paper Cheung, Matković and Pečarić [2] as a

special case.

Theorem 17. Assume (C1-C4) that is a normalised isotonic linear functional

A is given. Let C ⊂ R be a closed interval, and let q, r : C → R be continuous

and strictly monotone functions. Assume further that ψ1, ψ2, ϕ : E → R such

that ψ1 (x), ψ2 (x) ∈ C for all x ∈ E, ψ1 ≤ ϕ ≤ ψ2, and

q ◦ ϕ,∈ L q ◦ ψk ∈ L, r ◦ ϕ ∈ L, r ◦ ψk ∈ L, k = 1, 2.

If either q◦r−1 is convex and q is strictly increasing, or q◦r−1 is concave and

q is strictly decreasing, then

r−1 (r (Mr (ψ1, A)) + r (Mr (ψ2, A))− r (Mr (ϕ,A)))

≤Mq

(
r−1 ◦ (r ◦ ψ1 + r ◦ ψ2 − r ◦ ϕ) , A

)
≤ q−1 (q (Mq (ψ1, A)) + q (Mq (ψ2, A))− q (Mq (ϕ,A))) ,

while if either r◦q−1 is convex and r is strictly decreasing, or r◦q−1 is concave

and r is strictly increasing, then

q−1 (q (Mq (ψ1, A)) + q (Mq (ψ2, A))− q (Mq (ϕ,A)))

≤Mr

(
q−1 ◦ (q ◦ ψ1 + q ◦ ψ2 − q ◦ ϕ) , A

)
≤ r−1 (r (Mr (ψ1, A)) + r (Mr (ψ2, A))− r (Mr (ϕ,A))) .
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Proof. Assume q◦r−1 is convex and q is strictly increasing.

The function r is strictly monotone, and therefore either r◦ψ1 ≤ r◦ϕ ≤ r◦ψ2

or r ◦ψ2 ≤ r ◦ϕ ≤ r ◦ψ1. In both cases we can apply Corollary 10 which implies

q ◦ r−1 (A (r ◦ ψ1) +A (r ◦ ψ2)−A (r ◦ ϕ))

≤ A
(
q ◦ r−1 ◦ (r ◦ ψ1 + r ◦ ψ2 − r ◦ ϕ)

)
≤ A

(
q ◦ r−1 ◦ r ◦ ψ1

)
+A

(
q ◦ r−1 ◦ r ◦ ψ2

)
−A

(
q ◦ r−1 ◦ r ◦ ϕ

)
= A (q ◦ ψ1) +A (q ◦ ψ2)−A (q ◦ ϕ) .

Since q is strictly increasing, we have that

r−1 (A (r ◦ ψ1) +A (r ◦ ψ2)−A (r ◦ ϕ))

≤ q−1A
(
q ◦ r−1 ◦ (r ◦ ψ1 + r ◦ ψ2 − r ◦ ϕ)

)
≤ q−1 (A (q ◦ ψ1) +A (q ◦ ψ2)−A (q ◦ ϕ)) ,

and the result follows from this.

The other cases can be investigated in a similar way.

The proof is complete. �

In the second part of this section (H, 〈·, ·〉) always denotes a complex Hilbert

space. The Banach algebra of all bounded linear operators on H is denoted by

B (H). The operator I means the identity operator on H. The spectrum of an

operator T is denoted by σ(T ). If T ∈ B (H) is self-adjoint and λ ∈ σ(T ), then

λ ∈ R. For an interval C ⊂ R, S(C) means the class of all self-adjoint operators

from B (H) whose spectra are contained in C.

Now, following Rudin [14] mainly, we briefly summarize the spectral theory

and the symbolic calculus for normal operators in B (H).

A subset N of B (H) is called normal if N commutes and T ∗ ∈ N whenever

T ∈ N .

Theorem 18. (Spectral theorem for closed normal subalgebras of B (H), see

[14]) Assume N is a closed normal subalgebra of B (H) which contains I, and let

4 be the maximal ideal space of N . Then

(a) There exists a unique resolution E of the identity on the Borel subsets of

4 which satisfies

T =

∫
4

T̂ dE
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for every T ∈ N , where T̂ is the Gelfand transform of T .

(b) The inverse of the Gelfand transform extends to an isometric ∗-isomor-

phism Φ of the algebra L∞ (E) onto a closed subalgebra M of B (H), N ⊂ M ,

given by

Φ (f) =

∫
4

fdE, f ∈ L∞ (E) . (9)

Explicitly, Φ is linear and multiplicative and satisfies

Φ
(
f
)

= Φ (f)
∗
, ‖Φ (f)‖ = ‖f‖∞ .

The integral (9) is the abbreviation for

〈Φ (f)x, y〉 =

∫
4

fdEx,y, x, y ∈ H,

where Ex,y denotes the complex measure

Ex,y (ω) := 〈E (ω)x, y〉

on the Borel subsets of 4. If x ∈ H and ‖x‖ = 1, then Ex,x is a probability

measure.

It follows from the previous theorem that for every normal operator T ∈
B (H) there exists a unique resolution ET of the identity (called the spectral

decomposition of T ) on the Borel subsets of σ (T ) which satisfies

T =

∫
σ(T )

λdET (λ) .

By using ET , for every bounded Borel function f : σ (T )→ C we can define

the operator ∫
σ(T )

fdET

which is denoted by f (T ) as usual.

Assume N is a closed normal subalgebra of B (H) which contains I, and let

E be the corresponding resolution of the identity.

If T ∈ N , then T has the same spectra with respect to N and B (H). It is

easy to check that for every T ∈ N the spectral decomposition ET of T is the

image of E under the mapping T̂ , that is

ET ($) = E
(
T̂−1 ($)

)
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for every Borel subsets$ of σ (T ). It follows that for every bounded Borel function

f : σ (T )→ C

f (T ) =

∫
4

f ◦ T̂ dE.

Let T ∈ N be a positive operator. Since the range of T̂ is σ (T ), T̂ ≥ 0.

It follows that if T1, T2 ∈ N are self-adjoint operators such that T1 ≤ T2, then

T̂1 ≤ T̂2.

Now we give an operator version of Mercer’s inequality for convex functions.

Theorem 19. Let a, b ∈ R with a < b, and let T1, T2, T ∈ B (H) such

that they commute with each other, T1, T2 ∈ S ([a, b]) and T1 ≤ T ≤ T2. If

f : [a, b]→ R is a convex function and x ∈ H with ‖x‖ = 1, then

f (〈T1x, x〉+ 〈T2x, x〉 − 〈Tx, x〉) ≤ 〈f (T1 + T2 − T )x, x〉 (10)

≤ 〈f (T1)x, x〉+ 〈f (T2)x, x〉 − 〈f (T )x, x〉 .

Proof. Since T1, T2 ∈ S ([a, b]) and T1 ≤ T ≤ T2, T ∈ S ([a, b]) too.

Let N be the smallest closed subalgebra of B (H) that contains I, T1, T2, and

T (this is the closure of the set of polynomials in T1, T2, and T ), and let E be

the corresponding resolution of the identity. Since T1, T2, and T are self-adjoint

and they commute with each other, N is a normal subalgebra of B (H).

By Theorem 18,

f (〈T1x, x〉+ 〈T2x, x〉 − 〈Tx, x〉) = f ((T1 + T2 − T )x, x)

= f

∫
4

̂T1 + T2 − TdEx,x

 = f

∫
4

(
T̂1 + T̂2 − T̂

)
dEx,x

 .

Since T̂1 ≤ T̂ ≤ T̂2 and they are continuous functions on the Gelfand topology

of 4, Theorem 12 can be applied and we obtain that

f

∫
4

(
T̂1 + T̂2 − T̂

)
dEx,x

 ≤ ∫
4

f
(
T̂1 + T̂2 − T̂

)
dEx,x

≤
∫
4

f
(
T̂1

)
dEx,x +

∫
4

f
(
T̂2

)
dEx,x −

∫
4

f
(
T̂
)
dEx,x

= 〈f (T1)x, x〉+ 〈f (T2)x, x〉 − 〈f (T )x, x〉 .

The proof is complete. �
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Remark 20. (a) There are generalizations of Mercer’s inequality to operator

inequalities (see e.g. Matković, Pečarić, Perić, [8]), but in all these results T1 := aI

and T2 := bI.

(b) Inequality (10) is an immediate consequence of the classical operator

Jensen’s inequality for convex functions (see Mond, Pečarić [10]). Moreover, the

commutativity of the operators T1, T2 and T is not necessary in this case.

Corollary 21. Let (H, 〈·, ·〉) be a complex Hilbert space, a, b ∈ R with

a < b, and let T ∈ S ([a, b]). If f : [a, b]→ R is a convex function and x ∈ H with

‖x‖ = 1, then

f (a+ b− 〈Tx, x〉) ≤ 〈f (aI + bI − T )x, x〉

≤ f (a) + f (b)− 〈f (T )x, x〉 .

Proof. It is an easy consequence of Theorem 19.

The proof is complete. �
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