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We introduce an integrable spin ladder model and study its exact solution, correlation functions,
and entanglement properties. The model supports two particle types (corresponding to the even and
odd sub-lattices), such that the scattering phases are constants: particles of the same type scatter as
free fermions, whereas the inter-particle phase shift is a constant tuned by an interaction parameter.
Therefore, the spin ladder bears similarities with anyonic models. We present exact results for the
spectrum and correlation functions, and we study the sub-lattice entanglement by numerical means.

INTRODUCTION

Classical simulations of quantum many body systems
are limited by the growth of entanglement, both in equi-
librium and out-of-equilibrium situations. This motivates
the study of models where exact solutions can be found,
at least for certain physical quantities. Important classes
of solvable many body systems are the free theories, the
one dimensional integrable models [1, 2], and also the
recently discovered dual unitary quantum circuits [3].

Integrable models have been studied extensively over
many decades, and in the last 10 years their non-
equilibrium dynamics also received considerable atten-
tion. Now it is understood that isolated integrable mod-
els equilibrate to the Generalized Gibbs Ensemble [4, 5],
and their transport properties are described by General-
ized Hydrodynamics [6]. However, these results describe
only the large time limit for large system sizes, and gener-
ally they lack a completely rigorous proof. Furthermore,
they don’t provide access to certain exotic features of the
dynamics, such as anomalous current fluctuations [7–11].

This motivates the study of selected integrable models
with even simpler dynamics, where there is some interac-
tion in the system, nevertheless closed form results can
be derived for the real time evolution of certain phys-
ical quantities. Such models include the Rule54 cellular
automaton [12–17], the box-ball systems [10, 18, 19], clas-
sical cellular automata of the XXC type [9, 20–24], non-
trivial strong coupling limits of known models [25–27]
including the folded XXZ model [28–31], or quantum cir-
cuits that are both integrable and dual-unitary [32]. A
common property of these models is that the scattering
of the particles (either classical or quantum) is rather
simple compared to a generic integrable model.

What are the simplest possible interacting S-matrices
for integrable (Hermitian) quantum spin chains? An es-
pecially simple case is when the S-matrix is constant
(momentum-independent). For a single particle species
the only possibilities are phase factors ±1 corresponding

to free bosons/fermions. However, for multiple particle
species we can explore a wider range of options.

In this paper we introduce a new spin ladder model,
which supports two particle types which propagate on the
two legs of the spin ladder. In this model the scattering
phases are constant statistical factors. This bears strong
similarity with anyonic models [33–37], or parafermionic
chains [38–40]. A crucial difference is that in our model
the anyon-like phases arise from a local interaction de-
fined in the standard spin basis. This provides a unique
opportunity to study the entangling effects of constant
scattering phases.

THE MODEL AND ITS INTEGRABILITY

We consider a spin chain made of qubits, using the
notation Xj , Yj and Zj for operators given by the Pauli
matrices, acting on site j = 1 . . . L, where L (even) is the
length of the chain.

Our model can be seen as a spin chain or as a spin lad-
der in a zig-zag geometry, see Fig. 1. We consider a hop-
ping model on the ladder, such that the two legs have a
minimal coupling between them. Particles can propagate
on the two legs separately, but the local hopping phases
on one leg also depend on the local occupation numbers
on the other leg, leading to a model Hamiltonian with
three site interaction:

H(γ) =

L/2∑
j=1

h2j,2j+1,2j+2(γ) + h2j+1,2j+2,2j+3(−γ). (1)

Here ha,b,c(γ) is the Hamiltonian density with a real cou-
pling constant γ ∈ R, given by

h1,2,3(γ) = −
[
σ−1 e

iγZ2σ+
3 + σ+

1 e
−iγZ2σ−3

]
, (2)

where σ±j = (Xj ± iYj)/2 are the standard rais-
ing/lowering operators. The Hamiltonian is invariant
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with respect to a global spin-flip in the Z-basis, and it
is also space reflection invariant for reflections that also
exchange the two sub-lattices.

In the following interpret the up spins as a vacuum and
the down spins as particles. The Hamiltonian generates
hopping on the two sub-lattices, so that the sub-lattice
magnetizations

SA =

L/2∑
j=1

Z2j , SB =

L/2∑
j=1

Z2j+1 (3)

are separately conserved. Here and in the following A and
B stand for the even and odd sub-lattices, respectively.
Furthermore the hopping phase is e±iγ depending on the
position and the occupation of the sites involved.

2j − 1 2j + 1

2j 2j + 2

B

A

Figure 1. The geometry of the spin zigzag ladder. A and B
denote the two sub-lattices on which the particles can hop.

To our best knowledge this model has not yet appeared
in the literature. Similar models include the so-called ex-
tended XX model [41, 42], a super-symmetric hopping
model treated in [35], or the Bariev model [43]. However,
our model is different, as the exact solution below shows.

The model has two free fermion points, with different
physical interpretation. For γ = 0 the interaction be-
tween the two legs disappears, leading to two uncoupled
XX spin chains. For γ = π/2 the model becomes a special
case of the extended XX models [42], which can be solved
by a single Jordan-Wigner transformation, see below.

The model is integrable for any coupling γ. It has an
infinite set of conserved charges, which are given by a di-
agonal dressing of the known conserved charges of the XX
spin chains [44]. The charges are organized into four in-
finite families, corresponding to the two sub-lattices and
two “chiralities”. The charges can be expressed in terms
of densities as

QA+
α =

L/2∑
j=1

qA+
α (2j), QB+

α =

L/2∑
j=1

qB+
α (2j + 1), (4)

together with QA−α = (QA+
α )† and QB−α = (QB+

α )†. The
index α denotes the range of the given operator density.

The shortest charge densities appear for α = 3 and
they are simply just terms from the Hamiltonian:

qA+
3 (2k) = σ+

2kD
†
2k+1σ

−
2k+2

qB+
3 (2k + 1) = σ+

2k+1D2k+2σ
−
2k+3,

(5)

where we defined

Dj = eiγZj = cos(γ) + i sin(γ)Zj . (6)

Higher charges are constructed by a mixed diagonal
dressing of the hopping terms of the type σ+

k σ
−
k+α−1.

The dressing is such that for each site between k and
k + α − 1 we include a Z operator if the site is from
the same sub-lattice, and a D operator otherwise. For
example, for range α = 5 we get

qA+
5 (2k) = σ+

2kD
†
2k+1Z2k+2D

†
2k+3σ

−
2k+4

qB+
5 (2k + 1) = σ+

2k+1D2k+2Z2k+3D2k+4σ
−
2k+5,

(7)

together with qA−5 (2k) =
(
qA+
5 (2k)

)†
and qB−5 (2k+ 1) =(

qB+
5 (2k + 1)

)†
. Higher charges can be constructed in an

analogous way. The commutativity of all of these charges
is proven as follows. First of all, all charges belonging
to either sub-lattice A or B necessarily commute with
each other, because they are just diagonal dressings of
the charges of an XX model localized on one of the sub-
lattices [44]. The commutativity of the charges corre-
sponding to different sub-lattices is less obvious. How-
ever, in this case the charge densities actually commute,
for example direct computation gives

[qA+
3 (2k), qB+

3 (2l + 1)] = 0 (8)

for all k, l. A more complete proof can be given using a
similarity transformation discussed below.

The existence of an infinite family of commuting
charges implies that the model is integrable and it has
a completely elastic and factorized S-matrix [45, 46]. We
derive this S-matrix below. The charges above can be
embedded into a transfer matrix constructed from local
Lax operators, using the framework of [47], but we do
not treat this approach here.

THE SOLUTION OF THE MODEL

For γ = 0 the model can be solved by two indepen-
dent Jordan-Wigner (JW) transformations performed on
the two sub-lattices. It is then a natural idea to con-
struct a generalized JW transformation also for finite γ.
To this order let us consider the model with free bound-
ary conditions (or alternatively, a half-infinite chain). We
introduce creation and annihilation operators for the two
sub-lattices as

cA(2j) = D1Z2D3Z4 . . . Z2j−2D2j−1σ
+
2j

cB(2j + 1) = Z1D
†
2Z3D

†
4 . . . Z2j−1D

†
2jσ

+
2j+1,

(9)

together with their adjoints.
Direct computation shows that

{cA(2j), cA(2k)} = 0, {cA(2j), cA†(2k)} = δjk (10)

and similarly for the B sub-lattice. However, for the
cross-commutation terms we get for example

cA(2j)cB(2k+ 1) = e2iγcB(2k+ 1)cA(2j), j < k. (11)
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This means that the model is partially anyonic. The
Hamiltonian can be rewritten for all γ as

H(γ) = −
L/2−1∑
j=1

[
(cA2j+2)†cA2j +(cB2j+3)†cB2j+1

]
+c.c. (12)

This means that all the interaction is included now in
the definition of the creation/annihilation operators. This
is similar to parafermionic models [38–40], but in our
case the non-trivial commutation relations arise from the
local interaction in the model and not from pre-defined
operator algebras.

We recover the usual JW transformation in two special
cases. If γ = 0 then we get two independent JW transfor-
mations on the two sub-lattices. In contrast, for γ = π/2
we get a single JW transformation on the whole chain.
Thus the model interpolates between two uncoupled XX
chains and a single XX chain, although in the latter case
the Hamiltonian is actually a higher charge of the usual
XX model [42].

While for the free cases the model can be solved by
Fourier transform, this does not work for generic γ due
to the mixed anyon-like interactions. In these cases we
can use the fact that the phase factors do not depend on
the momenta of the particles, only on the relative position
of the particles on the two sub-lattices. This leads to a
simple explicit construction of the wave functions.

Let us consider a state with NA and NB particles on
the two sub-lattices. Lattice momenta of the particles
will be denoted as pAj and pBk . For writing down the wave
function we will use coordinates a = {aj}j=1,...,NA

and
b = {bk}j=1,...,NB

which run over the even and odd num-
bers, respectively. First we consider periodic boundary
conditions. The wave function is then given by

Ψ(a,b) = det(A) det(B)
∏
a<b

e−iγ
∏
b<a

eiγ . (13)

Here A and B are matrices of sizes NA × NA and
NB×NB , respectively. They describe free fermionic wave
functions localized on the two sub-lattices, with compo-
nents given by

Ajk = ei(p
A
j −γ)ak/2, Bjk = ei(p

B
j +γ)bk/2. (14)

The interpretation of this wave function is the following:
The model supports two particle species moving on the
two sub-lattices, with momenta pAj and pBj . The scatter-
ing in the model is factorized and diagonal, with momen-
tum independent phase shifts given by

SAA = SBB = −1, SAB = (SBA)
−1

= e2iγ . (15)

The phase shifts reflect the commutation relations (10)-
(11).

Periodicity implies that the momenta have to satisfy
the Bethe equations

eip
A
j L/2 = (−1)NA−1eiγ(L/2−2NB)

eip
B
j L/2 = (−1)NB−1e−iγ(L/2−2NA).

(16)

These equations are almost free: the only coupling be-
tween the two sets of momenta is simply just a twist,
which depends on the overall particle numbers. The en-
ergy eigenvalues are then

E =

NA∑
j=1

e(pAj ) +

NB∑
j=1

e(pBj ), (17)

with e(p) = −2 cos(p).
Now we consider the model with free boundary condi-

tions, and show that in this case the wave functions are
found simply using a global similarity transformation.
The diagonal operator

D =
∏

2j<2k+1

eiγZ2jZ2k+1/4
∏

2j>2k+1

e−iγZ2k+1Z2j/4 (18)

completely decouples the two legs of the ladder:

DH(γ)D−1 = H(0). (19)

This implies that the spectrum of the open chain is the
same as that of two uncoupled XX chains for all α. In
this sense the model is free, and it belongs to the class of
models investigated in [48, 49]. Nevertheless, the operator
D is highly non-local, and it makes the two legs of the
ladder highly entangled, both in equilibrium and out-of-
equilibrium situations.

We also study the thermodynamic limit (TDL). We in-
troduce root densities ρA(p) and ρB(p), and the limiting
value of the ground state energy density becomes

lim
TDL

E

L
=

∫ π

−π

dp

4π
e(p)(ρA(p) + ρB(p)). (20)

The ground state is given by the half filled state

ρA,B(p) =

{
1 for |p| < π/2

0 for |p| > π/2.
(21)

The ground state energy density is −2/π, which is iden-
tical to that of the XX model.

CORRELATION FUNCTIONS

The coupling between the two sub-lattices makes them
strongly entangled. We demonstrate this by computing
a selected short range correlation function. Due to the
similarity transformation (19) the correlation functions
of Z operators will be the same as in two uncoupled XX
chains. Therefore, non-trivial information is seen in cor-
relation functions with hopping terms. We choose the
following connected correlation function:

CΨ ≡ 〈Ψ|σ−0 Z1σ
+
2 |Ψ〉 − 〈Ψ|σ−0 σ+

2 |Ψ〉〈Ψ|Z1|Ψ〉. (22)

Here |Ψ〉 is an arbitrary eigenstate with NA and NB
particles on the two sub-lattices. A non-zero value of



4

CΨ demonstrates the entanglement between the two sub-
lattices.

We introduce the magnetization on the odd sub-lattice:

mB = 〈Ψ|Z1|Ψ〉 =
L− 4NB

L
. (23)

A certain combination of the operators above is simply
the density of a conserved charge (one term in the Hamil-
tonian), therefore we get

〈Ψ| cos(γ)σ−0 σ
+
2 + i sin(γ)σ−0 Z1σ

+
2 |Ψ〉 = 2W, (24)

with

W =
1

L

NA∑
j=1

eip
A
j . (25)

Now we apply the Hellmann-Feynman theorem for the
corresponding charge, from which we can obtain the
mean values of the γ-derivative of the operators on the
l.h.s. above. Combining this with the mean value above
and with the Bethe equations (16) we get the result

CΨ = 2i sin(γ)W (m2
B − 1). (26)

In the thermodynamic limit we get

W →
∫ π

−π

dp

4π
ρA(p)eip. (27)

This retains a finite value unless the root distribution is
constant, therefore we obtain a finite correlation between
the sub-lattices for almost all states.

The correlation function vanishes if either lattice is
fully polarized, having magnetization equal to ±1. If the
odd sub-lattice is polarized, then the vanishing is guar-
anteed by the factor (m2

B − 1), whereas if the even sub-
lattice is completely polarized, then W = 0 (because for
a fully polarized state ρ is constant).

Analogous results can be obtained for combinations
similar to (22).

SUB-LATTICE ENTANGLEMENT

We also study the entanglement properties of the
model, in both equilibrium and out-of-equilibrium sit-
uations. In the literature the most often studied entan-
glement is that of connected sub-systems [50–55]. How-
ever, it is expected that in this model the usual bipar-
tite entanglement behaves very similar to that of the XX
model. Therefore we focus on the sub-lattice entangle-
ment, which is a highly non-trivial quantity that can be
tuned by the coupling constant γ. Sub-lattice entangle-
ment was studied earlier in a number of situations [56–
61].

As before, let A and B denote the sites of the even
and odd sub-lattices, and we define the sub-lattice (von
Neumann) entanglement entropy as

S = −Tr
(
ρA log ρA

)
, (28)

where ρA = TrBρ, with ρ being the density matrix of the
system, either in equilibrium or in an out-of-equilibrium
process. The entanglement entropy is expected to be ex-
tensive, and we introduce the entropy density

s =
S

L
. (29)

It is expected that s should not depend on L apart from
minor finite size effects.

We numerically study s in the ground state for different
values of γ and L, results are plotted in Fig. 2. We find
that finite size effects are indeed small, and the entropy
density obtains its maximum value at the free fermion
point γ = π/2.

We also consider non-equilibrium time evolution
started from a selected initial state, namely the ferro-
magnetic state with polarization in the x-direction:

|X〉 =

L⊗
j=1

1√
2

(
|↑〉+ |↓〉

)
. (30)

We study the real time evolution of s, results are plot-
ted in Fig 2. It can be seen that the entanglement is
indeed extensive, but now there are bigger finite size ef-
fects. For the largest system size L = 24 we see that en-
tanglement reaches a plateau relatively soon for all values
of γ, with the height of the plateau behaving in a sim-
ilar way as before: the maximum entanglement is seen
for γ = π/2. Qualitatively similar behaviour can also be
found for other initial states.

DISCUSSION

We introduced a new exactly solvable spin ladder,
which is one of the simplest quantum integrable mod-
els with a tunable coupling between particles. The model
interpolates between two free fermion points, in which
the two sub-lattices are either uncoupled or maximally
coupled. The entanglement between the sub-lattices was
demonstrated analytically by an exact result for a corre-
lation function, and numerically by the sub-lattice entan-
glement (28) defined in the real space basis, which was
examined both in and out of equilibrium.

In the special case γ = π/2 the entanglement can also
be studied in terms of the fermionic degrees of freedom.
It was pointed out in [62] that for free fermionic chains
these two definitions of entanglement give generally dif-
ferent results. They only agree for connected sub-systems,
because for disconnected sub-systems the Jordan-Wigner
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Figure 2. Numerical results for the sub-lattice entanglement density s = S/L. Left: Ground state values as a function of the
coupling γ for different values of L. Middle: Time evolution of the entanglement in a quench problem (see main text), for
different volumes and γ = π/2. Right: Time evolution in a quench problem for L = 24 and different values of γ.

transformation causes differences between the two types
of entanglement. Our model can be regarded as an ex-
treme example for this phenomenon: for γ = π/2 the two
sub-lattices are completely decoupled if one considers the
fermions, see eq. (12). Therefore, the sub-lattice entangle-
ment in terms of the fermions is exactly zero. In contrast,
we find that the real space entanglement is non-zero, and
in fact it is maximal for the free fermion point γ = π/2!

Finally we note that the model is partially anyonic for
a generic γ, and it seems to be one of the simplest non-
trivial scattering theories. This could lead to interesting
applications, for example in the realization of interacting
Bethe states in quantum computers [63–67].

Note added: After this work was completed we became
aware of the recent work [68] which treats a closely re-
lated model. Our results about the integrability and exact
solvability of the model (together with the exact result
for a correlation function) appear to be new, whereas the
results for sub-lattice entanglement are partly overlap-
ping.
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