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A second-order Magnus-type integrator for evolution

equations with delay
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Abstract

We rewrite abstract delay equations as nonautonomous abstract Cauchy problems al-
lowing us to introduce a Magnus-type integrator for the former. We prove the second-order
convergence of the obtained Magnus-type integrator. We also show that if the differential
operators involved admit a common invariant set for their generated semigroups, then the
Magnus-type integrator will respect this invariant set as well, allowing for much weaker
assumptions to obtain the desired convergence. As an illustrative example we consider a
space-dependent epidemic model with latent period and diffusion.

Magnus integrator; quasilinear delay equation; convergence analysis; invariant sets;
delayed epidemic model with space-dependence and diffusion.

1 Introduction

The aim of this paper is to adapt the Magnus integrator for nonautonomous homogeneous
problems to a wide class of nonautonomous delay problems. We are interested in problems of
the form

{
d
dt
u(t) = Q(F (tu))u(t), t ∈ [0,∞),

u(s) = ϕ(s) ∈ X, s ∈ [−δ, 0],
(QDEϕ)

where X is a Banach space, tu : [−δ, 0] → X denotes the δ-history tu(s) := u(t + s) of the
solution at time t (i.e., the initial condition could also be written as 0u = ϕ with some initial

history function ϕ : [−δ, 0] → X), Q(w) = Q0 + Q̃(w) where Q0 is an unbounded operator on

X and Q̃(w) is bounded for all w ∈ X , and F ∈ C([−δ, 0], X) actually only depends on the
restriction to [−δ,−ǫ] for some fixed ǫ ∈ (0, δ]. The role of ǫ and of the assumption that F
only depends on the restriction to [−δ,−ε] is to ensure that equation (QDEϕ) never becomes
implicit in the sense that the operator Q(F (tu)) is determined already by time t − ǫ for all
t ≥ 0. The exact assumptions on the operators and functions involved will be detailed later.
Note that the case Q0 = 0 corresponds to a quasilinear delay equation with bounded operators,
while Q0 6= 0 leads to the unbounded case.
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In Magnus [15], Magnus set out to solve the nonautonomous homogeneous problem d
dt
Y (t) =

A(t)Y (t) (t ≥ 0), Y (0) = Y0, where Y (t) and A(t) are linear operators on appropriate spaces.
In the case when all of the operators A(t) commute, the solution takes the simple form Y (t) =

exp
(∫ t

0
A(s)ds

)
Y0. In the general, noncommutative case, however, one has to correct the

exponent, and the exact solution is given by the Magnus series expansion, involving integrals of
commutators. The first term of this expansion corresponds to the commutative solution, and
is a good approximant leading to a second-order numerical method using the midpoint rule to
approximate the integral in the exponent:

Ŷ
(τ)
n+1 = eτA((n+1/2)τ)Ŷ (τ)

n , n ∈ N (1)

where τ > 0 is an arbitrary timestep and Ŷ
(τ)
n denotes the numerical approximation to Y (nτ)

with initial value Y
(τ)
0 := Y0.

Convergence of the classical Magnus integrators, such as (1), has been widely studied in the
literature for nonautonomous problems without delay. For finite dimensional spaces, the Mag-
nus expansion, being the basis of the Magnus integrators, were analysed in Blanes et al. [3]
and Blanes et al. [4]. The authors gave a condition on the Magnus expansion’s convergence in
Moan & Niesen [16]. The expansion in case of nonlinear equations was investigated in Casas
& Iserles [5]. In Csomós [6], a Magnus-type integrator (see (3) below) was derived for delay
equations, moreover, its second-order convergence and positivity preserving property were also
shown.
For infinite dimensional undelayed problems with inhomogeneity, in González et al. [9] a nu-
merical method was derived by using the Magnus expansion, and its second-order convergence
was shown for sufficiently smooth solutions, in addition to (lower order) error bounds measured
in the domain. The authors proved the first-order (operator) norm convergence of the same
method under very mild conditions for homogeneous problems in Bátkai & Sikolya [2].

Delay equations describe processes where the time evolution of the unknown function not only
depends on the actual state of the system but also on its past values. Delay differential equations
find more and more frequent application in the modelling of scientific, financial, or even social
phenomena, since there a delay term often naturally appears among the processes. One may
here think of the role of the latent period when modelling the spread of epidemic diseases, the
pregnancy period in population models, or the reaction time in any social or financial model.
In our problem (QDEϕ), the time parameters δ, ǫ > 0 delimit the time window into the past
that is influencing the present dynamics in the problem.

Since the exact solution of problem (QDEϕ) is difficult or even impossible to compute analyt-
ically, one needs to find a way to approximate it. To this end, we first reformulate the delay
problem as a nonautonomous problem, and then present a novel Magnus-type integrator based
on Magnus integrators introduced for nonautonomous problems.

For the reformulation as a nonautonomous problem, we first define the function ũ : [−δ,∞) → X
as

ũ(t) :=

{
ϕ(t), t ∈ [−δ, 0],

u(t), t ∈ [0,∞),

and the operators

A(t) := Q(F (tũ)) for all t ≥ 0.
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Then the function ũ satisfies the problem

{
d
dt
ũ(t) = A(t)ũ(t), t ∈ [0,∞),

ũ(0) = ϕ(0).
(2)

Although the operators A(t) depend on the unknown function ũ via tũ, the minimum delay ǫ
within the Q term (stemming from F ) allows problem (2) to be treated as a nonautonomous
Cauchy problem a posteriori. Indeed, for t ∈ [0, ǫ], A(t) is actually determined as it only
depends on the known restriction tũ|[−δ,−ǫ] = ϕ|[t−δ,t−ǫ]. Hence solving the problem iteratively
on the sub-intervals [jǫ, (j+1)ǫ], j = 0, 1, . . ., yields an explicit nonautonomous Cauchy problem
for each time-segment considered, provided well-posedness is maintained along the way. Hence,
we will consider problem (2) essentially as a formally nonautonomous problem on the whole
time interval. The solution ũ can then be approximated by the method derived by Magnus in
Magnus [15] for such problems. This method however uses the values F (tu), which have to be
themselves approximated, involving an appropriate second-order approximation of F based off
of a grid that is compatible with the one used for u.

To this end, one defines an arbitrary N ∈ N, takes the time step τ := δ/N > 0, and denotes

the approximate value of u(nτ) by u
(τ)
n for all n ∈ N. The Magnus-type integrator, which we

will derive in detail in Section 3, takes then the form

u
(τ)
n+1/2 :=





ϕ((n + 1/2)τ − δ) for n = 0, 1, . . . , N − 1,

e
τ
2
Q

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
n−2N+ℓ

)

)

u
(τ)
n−N for n ≥ N,

u
(τ)
n+1 := e

τQ

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
n+ℓ+1/2

)

)

u(τ)
n

(3)

for n ≥ 0, where possible negative indices refer to the corresponding values of the history
function, i.e., u

(τ)
n = ϕ(nτ) for n ≤ 0, the half-indexed terms u

(τ)
n+1/2 are auxiliary values

(essentially approximating u((n+ 1/2)τ − δ) for an application of the midpoint rule), and the
expressions κℓ,τFℓ,τ stem from the approximation of F .

Under appropriate smoothness and uniform exponential bounds on the generatorsQ(·) involved,
we will prove the second-order convergence of the Magnus-type integrator (3) when applied to
the abstract delay equation (QDEϕ) on Banach spaces. Moreover, we show that the method
inherits the invariance properties of the generators Q(·) (e.g. positivity).
The paper is organised as follows. In Section 2 we introduce the abstract setting of evolution
equations like (2). In Section 3 we recall the original Magnus integrators, summarise the main
results from the literature regarding its application to nonautonomous Cauchy problems (2),
and then describe how we adapt this method to our case where we have no a priori knowledge
of the operators A(t) on the time interval (ǫ,∞).
Section 4 contains our main result, Theorem 23 on the Magnus-type integrator’s second-order
convergence when applied to the quasilinear delay equation (QDEϕ). Some of the assumptions
needed for this convergence (or even the existence of the solution to the delay equation) –
especially a uniform exponential bound for the semigroups generated by the operators Q(w) –
are typically not naturally achievable for all w ∈ X . However, many problems admit invariants
and have qualitative preservation features (e.g., positivity of the solutions), and we shall show
that our Magnus-type integrator naturally exploits such invariants, allowing us to restrict our
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assumptions to some smaller, invariant closed subset W of X that we assume our initial history
ϕ runs within. This will allow us to prove in parallel that the Magnus-type integrator and
the exact solution both exist for a positive amount of time (namely, ǫ), with the former never
leaving the invariant set. That in term will imply the second-order convergence on this time
interval, implying that the solution itself stays in the invariant set as well. Iterating these
arguments, we obtain our results for any compact time interval.
In Section 5 we use a space-dependent epidemic model to illustrate the power of invariants (in
this case both total population size and positivity) in ensuring second-order convergence.

2 Autonomous and nonautonomous evolution equations

In this section we introduce the notions necessary to understand the Magnus integrator and
our approach to the error bounds. Throughout we shall assume that X is a Banach space. Our
main references are Engel & Nagel [8] and Nickel [17].

Definition 1. A family (etA)t≥0 ⊂ L (X) of bounded linear operators on X is said to be a
strongly continuous semigroup generated by the linear, closed, and densely defined operator
(A,D(A)) if the following holds:

(i) e0A = Id, the identity operator in X ,

(ii) e(t+s)A = etAesA for all t, s ≥ 0,

(iii) the function [0,∞) ∋ t 7→ etAv is continuous for all v ∈ X ,

(iv) there exists lim
t→0+

1
t
(etAv − v) = Av for all v ∈ D(A).

This strongly continuous semigroup describes the solution to the Abstract Cauchy Problem

{
d
dt
û(t) = Aû(t), t ∈ [0,∞),

û(0) = x ∈ X
(ACP)x

in the sense that û(t) = etAx. It is known [see, e.g., 8, Prop. I.5.5] that such semigroups are
exponentially bounded, i.e., there exist M ≥ 1 and ω ∈ R such that ‖etA‖ ≤ Meωt for all t ≥ 0.
We speak about a contraction semigroup if M = 1 and ω = 0 can be chosen. A linear operator
(A,D(A)) is called dissipative if ‖(λ−A)x‖ ≥ λ‖x‖ holds for all λ > 0 and x ∈ D(A).

In many processes, however, one cannot assume the generator (A,D(A)) in (ACP) to be con-
stant in time, leading to so-called nonautonomous Cauchy problems, or (NCP) for short. Let
(A(t), D) be a linear operator on X for every t ∈ R. Furthermore, let x ∈ X and s ∈ R be
given. Then we consider the following nonautonomous problem for the differentiable unknown
function û : R → X :

{
d
dt
û(t) = A(t)û(t), t ≥ s,

û(s) = x.
(NCP)s,x

The following definitions are based on Engel & Nagel [8, Section VI.9].

Definition 2. A continuous function û : [s,∞) → X is called a (classical) solution of (NCP)s,x
if û ∈ C1(R, X), û(t) ∈ D for all t ≥ s, û(s) = x, and d

dt
û(t) = A(t)û(t) for all t ≥ s.
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Definition 3. For a family (A(t), D)t∈R of linear operators on the Banach space X , the nonau-
tonomous Cauchy problem (NCP) is called well-posed with regularity subspaces (Ys)s∈R if the
following holds.

(i) Existence: For all s ∈ R the subspace

Ys :=
{
y ∈ X : there exists a solution ûs(·, y) for (NCP)s,y

}
⊂ D

is dense in X .

(ii) Uniqueness : For every y ∈ Ys the solution ûs(·, y) is unique.
(iii) Continuous dependence: The solution depends continuously on s and x, i. e., if sn →

s ∈ R, ûn → y ∈ Ys with ûn ∈ Ysn then we have ‖usn(t, un)− us(t, y)‖ → 0 uniformly for
t in compact subsets of R, where

ur(t; y) =

{
ût(t, y) if r ≤ t,
y if r > t.

If, in addition, there exist constants M ≥ 1 and ω ∈ R such that

‖ûs(t, y)‖ ≤ Meω(t−s)‖y‖

for all y ∈ Ys and t ≥ s, then (NCP) is called well-posed with exponentially bounded
solutions.

Definition 4. A family (U(t, s))t≥s of linear, bounded operators on a Banach space X is called
an (exponentially bounded) evolution family if

(i) U(t, r)U(r, s) = U(t, s) and U(t, t) = Id for all t ≥ r ≥ s ∈ R,

(ii) the map (t, s) 7→ U(t, s) is strongly continuous,

(iii) ‖U(t, s)‖ ≤ Meω(t−s) for some M ≥ 1, ω ∈ R and all t ≥ s ∈ R.

An evolution family is said to be contractive if we can choose ω = 0 and M = 1, and quasi-
contractive if we can choose M = 1 for some ω ∈ R.

Definition 5. An evolution family (U(t, s))t≥s is called an evolution family solving (NCP), if
for every s ∈ R the regularity subspace

Ys :=
{
y ∈ X : [s,∞) ∋ t 7→ U(t, s)y solves (NCP)s,y

}

is dense in X .

We have the following result connecting the well-posedness of (NCP) to the existence of a
unique evolution family solving it.

Theorem 6 (Nickel [17, Prop. 2.5]). Let X be a Banach space, (A(t), D(A(t)))t∈R a family of
linear operators on X. Then the nonautonomous Cauchy problem (NCP) is well-posed if and
only if there exists a unique evolution family (U(t, s))t≥s solving (NCP).

As mentioned in the Introduction, our goal is to rephrase (QDEϕ) as a nonautonomous Cauchy
problem on the time interval [0,∞). Of great help in establishing well-posedness is the following
consequence of a result by Kato [12, Thm. 4].
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Theorem 7. Let J ⊂ R be a closed interval, and (A(t), D)t∈J a family of generators of contrac-
tion semigroups on the Banach space X with common domain satisfying A(·)x ∈ C1(J,X) for
all x ∈ D. Then the nonautonomous Cauchy problem d

dt
u(t) = A(t)u(t) is well-posed with reg-

ularity subspaces Ys = D (s ∈ J) and admits a contractive evolution family (U(t, s))t≥s;t,s∈J . In
particular, for any x ∈ D and s ∈ J the initial condition u(s) = x leads to a unique (classical)
solution (u(t))s≤t∈J with u(t) ∈ D for all s ≤ t ∈ J .

Remark 8. The contractivity of the evolution family is actually part of the earlier Theorem 2
in the same paper.
Also, note that Kato’s result talks of evolution families and well-posedness on a possibly
bounded closed interval J instead of R, and it is not immediately clear how the two can be
connected. Let J = [a, b] with a, b ∈ R. Since each A(t) (t ∈ J) is a generator, it makes sense
to extend A(·) to R by setting A(s) = A(a) when s ≤ a and A(s) = A(b) when b ≤ s. Then
the evolution family corresponding to the extended interval can obviously be restricted to J
with all the properties preserved. But also the evolution family (U(t, s))s≤t;t,s∈J corresponding
to the restricted problem has a natural extension to R as follows.
Denote by (Ta(τ))τ≥0 the contraction semigroup generated by A(a), and by (Tb(τ))τ≥0 the con-
traction semigroup generated by A(b). If s ≤ a, then let U(t, s) := U(t, a)Ta(a−s) and if b ≤ t,
then let U(t, s) := Tb(t − b)U(b, s). This defines the evolution family for all s ≤ t in a way
compatible with Definition 4 (ω may have to be replaced with max{ω, 0}).

An easy rescaling argument yields that the same holds if instead of generators of contraction
semigroups we consider a family (A(t))t∈J such that the generated semigroups are uniformly
quasi-contractive.

Corollary 9. Let J ⊂ R be a closed interval, and (A(t), D)t∈J a family of generators of
uniformly quasi-contractive semigroups on the Banach space X with common domain satisfying
A(·)x ∈ C1(J,X) for all x ∈ D. Then the nonautonomous Cauchy problem d

dt
u(t) = A(t)u(t)

is well-posed with regularity subspaces Ys = D (s ∈ J) and admits a quasi-contractive evolution
family (U(t, s))s≤t;t,s∈J . In particular, for any x ∈ D and s ∈ J the initial condition u(s) = x
leads to a unique (classical) solution (u(t))s≤t∈J with u(t) ∈ D for all s ≤ t ∈ J .

Hence, the unique solution to (NCP)s,x has the form

û(t) = U(t, s)x (4)

for all t ≥ s. Our aim is to approximate the solution u to problem (QDEϕ), rewritten as the
nonautonomous problem (2), at certain time levels. To do this we introduce the Magnus-type
integrator in the next section.

3 Magnus-type integrator

We saw in the Introduction that the delay equation (QDEϕ) could formally be written as the
nonautonomous abstract Cauchy problem (NCP)0,ϕ(0) with the solution-dependent operator
A(t) = Q(F (tu)). Whilst well-posed autonomous abstract Cauchy problems have their solutions
given through of a one-parameter strongly continuous semigroup, problem (NCP)0,ϕ(0) – if well-
posed and ϕ(0) is in the regularity subspace Y0 – has its solution given through a unique two-
parameter evolution family (U(t, s))t≥s (cf. Theorem 6). Since the exact form of the evolution
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family U is usually unknown, we need to approximate the solution in (4). To this end we define
an arbitrary N ∈ N and take the time step τ := δ/N > 0. Then the approximate value of û(tn)

at time levels tn := nτ , n ∈ N, is denoted by û
(τ)
n .

In case of a finite dimensional space X , the evolution family U is the exponential of a bounded
operator Ω(t, s) for t ≥ s ≥ 0. Magnus showed in Magnus [15] that the bounded operator
Ω(t, s) could be expressed by the integral of an infinite series, called Magnus series. Casas
and Iserles showed in Casas & Iserles [5] that the appropriate truncations of the series led
to convergent approximations. The further approximation of the integral terms yields the
Magnus-type integrators. More precisely, by the property of the evolution family we have

û((n + 1)τ) = U((n + 1)τ, s)x = U((n + 1)τ, nτ)U(nτ, s)x = U((n+ 1)τ, nτ)û(nτ)

for all n ∈ N. By approximating U((n+1)τ, nτ) by exp
(∫ τ

0
A(nτ + ζ)dζ

)
as in Casas & Iserles

[5], and then by eτA((n+1/2)τ) with the midpoint quadrature rule, we arrive at the formula of the
simplest Magnus integrator

û
(τ)
n+1 = eτA((n+1/2)τ)û(τ)

n (5)

for all n ∈ N with û
(τ)
0 = x.

In case of an infinite dimensional Banach space X , we consider formally the same formula (5)
where the exponential refers to the strongly continuous semigroup generated by the correspond-
ing operator (cf. Definition 1).

Since the Magnus integrator (5) gives only an approximation to the exact solution at time
tn = nτ for all n ∈ N, it is necessary to show that the approximate value converges to the exact
value as the time step τ = δ/N tends to zero, or equivalently, N ∈ N tends to infinity. As is
usual, we will want to show that our numerical scheme yields a good approximation on any
compact time interval [0, T ].

Definition 10. Let u denote the exact solution to problem (QDEϕ). Its approximation u
(τ)
n

(or, equivalently, the corresponding numerical method) is called convergent of order p > 0, if

there exists C > 0 such that ‖u(nτ)− u
(τ)
n ‖ ≤ Cτ p holds for all n ∈ N and τ = δ/N > 0 with

nτ ∈ [0, T ], where the constant C is independent of n and τ but may depend on nτ .

We note that we defined the convergence for the sequence τ = δ/N of the time steps in order to
simplify our proofs, which could be done for all sequences τk > 0 and nk ∈ N with nkτk ∈ [0, T ]
by introducing a more complicated formalism. Since one has an initial history function (or a
set of data) on the time interval [−δ, 0], it is natural to choose a time step that is compatible
with it.

In what follows we present two results from the literature about the Magnus integrator (5) for
nonautonomous problems, since we will use them in our analysis.

Theorem 11 (González et al. [9, Thm. 2]). Let (X, ‖ · ‖X) and (D, ‖ · ‖D) be Banach spaces
with D densely embedded in X. We suppose that the closed linear operator A(t) : D → X is
uniformly sectorial for t ∈ [0, T ]. Moreover, we assume that the graph norm of A(t) and the
norm in D are equivalent. We also assume that A ∈ C1([0, T ],L (D,X)), and in particular
there then exists a constant LA > 0 such that

‖A(t)− A(s)‖L (D,X) ≤ LA(t− s)

7



holds for all 0 ≤ t ≤ s ≤ T . Moreover, we introduce the notations

gn(t) =
(
A(t)− A((n+ 1/2)τ)

)
u(t), t ∈ [nτ, (n + 1)τ ],

‖gn‖X,∞ = max{‖gn(t)‖X : t ∈ [nτ, (n + 1)τ ]},
‖g‖X,∞ = max{‖gn‖X,∞ : n ∈ N, (n+ 1)τ ∈ [0, T ]},

(6)

and corresponding notations will also be used with D instead of X. Then the Magnus integrator
(5) applied to problem (NCP)0,ϕ(0) is convergent of second order, that is, there exists a constant
C > 0, being independent of n and τ , such that the following estimate holds for the global error:

‖û(nτ)− û(τ)
n ‖ ≤ Cτ 2(‖g′‖D,∞ + ‖g′′‖X,∞) (7)

for all nτ ∈ [0, T ], provided that the quantities on the right-hand side are well-defined.

The following theorem is essentially the quasi-contractive, continuously differentiable special
case of the consistency result from the proof of Bátkai & Sikolya [2, Thm. 3.2], more specifically
inequality (5) therein. It hinges on the fact that Corollary 9 implies that the well-posedness,
stability and local Hölder continuity conditions of that theorem are automatically satisfied.

Theorem 12 (Bátkai & Sikolya [2, Eq. (5) in proof of Thm. 3.2]). We consider the problem
(NCP) on the Banach space X and suppose the following.

(a) There exists a c ∈ R such that ‖ehA(r)‖ ≤ ech for all r ∈ R and h > 0. Further, A(t) =
A+V (t), where A is the generator of a strongly continuous semigroup, and V (t) ∈ L (X)
for all t ∈ R.

(b) The map t 7→ V (t) is continuously differentiable as a map from [a, b] to L (X) for some
a, b ∈ R.

Then for all s, h ∈ R with a ≤ s < s+ h ≤ b we have the following estimate:

‖U(s+ h, s)− eτA(s+h/2)‖ ≤ La,be
chh2, (8)

where La,b is the Lipschitz constant of t 7→ V (t) on [a, b].

To illustrate the process of obtaining our Magnus-type integrator, we shall first present a special
case that already exhibits some of the new ideas involved, and then we indicate what further
changes are needed to accommodate for the general case.

Example 13. In this example we shall focus on the special case F (tu) := u(t− δ), i.e., when
the delay is concentrated on a specific point of the history function. Our equation (QDEϕ)
then takes the form

{
d
dt
u(t) = Q(u(t− δ))u(t), t ∈ [0,∞),

u(s) = ϕ(s), s ∈ [−δ, 0].
(QDE’ϕ)

In this particular case, we have A(t) = Q(u(t − δ)) in (2). Recall that u(t− δ) = ϕ(t− δ) for
t ∈ [0, δ], however, its value is unknown for t > δ. Thus, we need to approximate A((n+1/2)τ) =
Q(u((n+1/2)τ−δ)) in the Magnus integrator (5) to obtain a working method. Now the natural

idea would be to use the appropriate û
(τ)
∗ , however (n+1/2)τ−δ falls exactly between two points

of our time grid, and has to be obtained via further approximation. We therefore introduce
the corresponding term as an auxiliary value, obtained via another Magnus step with half time
step. In full detail, we have the following.
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Definition. Let N ∈ N be an arbitrary integer and τ := δ/N . Then the Magnus-type

integrator for point-delay, which yields an approximation u
(τ)
n to the solution u(nτ) of the

point-delay equation (QDE’ϕ) at time levels nτ is given as follows. We introduce the notation

u
(τ)
n := ϕ(nτ) for n = −N, . . . , 0. Then for n ≥ 0, we have the recursion

u
(τ)
n+1/2 :=

{
ϕ((n+ 1/2)τ − δ) for n = 0, 1, . . . , N − 1,

e
τ
2
Q(u

(τ)
n−2N )u

(τ)
n−N for n ≥ N,

u
(τ)
n+1 := e

τQ(u
(τ)
n+1/2

)
u(τ)
n .

(9)

Note that since they are essentially auxiliary values, the way we indexed the terms u
(τ)
n+1/2 is

not indicative of the time layer they correspond to (which would actually be n + 1/2 − N).
Rather, the indices reflect the natural order in which one would execute the algorithm, i.e.,

. . . , u(τ)
n ; u

(τ)
n+1/2, u

(τ)
n+1 ; u

(τ)
n+3/2, u

(τ)
n+2 ; u

(τ)
n+5/2 . . . ,

despite being able to compute u
(τ)
n+1/2 already at earlier stages.

In the general case of the quasilinear delay evolution equation (QDEϕ), we have A(t) =
Q(F (tu)) in (2). If we want to apply the Magnus integrator (5), we need to be able to ap-
proximate F (tu). Even for tu, all we have available is an approximation to some of its values,
corresponding to the time levels in our grid. Thus we first need a discretisation of F itself using
only discrete values of tu, and then use the approximation of those values in the final form of
our method. The simplest approach is to make the discretisation of F compatible with the
original time grid, and use the same auxiliary Magnus step as in the previous Example 13.

To this end we introduce the approximation of F in the following form

F (ξ) ≈
⌊ δ−ǫ

τ
⌋∑

ℓ=0

κℓ,τFℓ,τ(ξ(−δ + ℓτ)) (10)

for appropriate elements ξ ∈ C([−δ, 0], X), weights κℓ,τ ∈ R, and functions Fℓ,τ : X → X having
properties to be detailed in Section 4. We rewrite now (QDEϕ) as a nonautonomous problem
(2) with A(t) = Q(F (tu)), apply the Magnus integrator (5), and approximate F as in (10) to
obtain for all n ∈ N:

u((n+ 1)τ) ≈ eτA((n+1/2)τ)u(nτ) = eτQ(F((n+1/2)τ
u))u(nτ)

≈ e
τQ

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ((n+1/2)τ
u(−δ+ℓτ))

)

u(nτ) = e
τQ

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ (u((n+1/2)τ−δ+ℓτ))

)

u(nτ),

(11)

where we used the definition of the history function in the last step. We approximate next the
intermediate values using another Magnus step with time step τ/2 but now by taking the left-

rectangle rule when approximating the integral
∫ τ/2

0
A(n′τ + ζ)dζ ≈ τ

2
A(n′τ) in the exponent,

cf. Casas & Iserles [5]:

u((n+ ℓ)τ − δ + τ/2) ≈ e
τ
2
A((n+ℓ)τ−δ)u((n+ ℓ)τ − δ) = e

τ
2
Q(F((n+ℓ)τ−δ

u))u((n+ ℓ)τ − δ)

≈ e
τ
2
Q

(

∑⌊ δ−ǫ
τ ⌋

k=0 κk,τFk,τ (u((n+ℓ)τ−δ−δ+kτ))

)

u((n+ ℓ)τ − δ)

(12)
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for all ℓ = 0, . . . , ⌊ δ−ǫ
τ
⌋ with n + ℓ ≥ N . Observe that formula (12) can be reindexed by

using n ∈ N instead of n + ℓ. However, since A(·) is not defined for negative times, whenever
n + ℓ < N , the values at the corresponding intermediate time levels should be obtained from
the initial history function ϕ instead. By combining (11) and (12), we thus obtain the following
definition.

Definition 14. Let N ∈ N be an arbitrary integer and τ := δ/N . Then the Magnus-type

integrator, which yields an approximation u
(τ)
n to the solution u(nτ) of the delay equation

(QDEϕ) at time levels nτ is given as follows. As before, we use the notation u
(τ)
n := ϕ(nτ) for

n = −N, . . . , 0. Then for n ≥ 0, we have the recursion

u
(τ)
n+1/2 :=





ϕ((n + 1/2)τ − δ) for n = 0, 1, . . . , N − 1,

e
τ
2
Q

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
n−2N+ℓ

)

)

u
(τ)
n−N for n ≥ N,

u
(τ)
n+1 := e

τQ

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
n+ℓ+1/2

)

)

u(τ)
n ,

(13)

where the exact properties of the weights κℓ,τ and of the functions Fℓ,τ will be presented in
Section 4.

For finite dimensional spaces X , it was shown in Csomós [6] that the Magnus-type integrator
(9) was convergent of second order. Our present aim is to generalise this result to any Banach
space X and to general F for the Magnus-type integrator (13).

Remark 15. To fit Example 13 in this general formulation, set κ0,τ = 1 and κℓ,τ = 0 for ℓ ≥ 1,
with Fℓ,τ the identity for all ℓ ≥ 0 .

Example 16. Let us consider a delay term where a fixed delay time interval uniformly governs
the dynamics. More specifically, we shall take a closer look at the delay when

F (ξ) =
2

δ

∫ −δ/2

−δ

ξ(s)ds,

i.e, we have

Q

(
2

δ

∫ −δ/2

−δ

u(t+ s)ds

)
with δ > 0

in (QDEϕ).
The first thing to note is that whenever δ/τ = N is divisible by 2, the endpoint −δ/2 of the
integral also falls on the discretisation grid, significantly simplifying things, and the odd N ’s
have to be treated slightly differently to fit the general framework. Alternatively, we could
simply adapt the general scheme to this special situation by only considering even values for
N , but we shall detail the odd N case nevertheless.
In contrast to the point-interaction delay in Example 13 where we could directly substitute the

computed values u
(τ)
∗ into the delay term, we here have an integral

∫ −δ/2

−δ
u(t+s)ds that itself has

to be numerically approximated using some appropriate quadrature. Taking into consideration
the order of the error that we need to achieve for the recursive inequalities to result in a
second-order Magnus-type integrator, the error of quadrature has to be of the magnitude of τ 2.
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So for even N , we use the composite trapezoidal rule with nodes −δ+ ℓτ for ℓ = 0, . . . , N/2 as

2

δ

∫ −δ/2

−δ

u(t+ s)ds ≈ 1

N


u(t− δ) + 2

N/2−1∑

ℓ=1

u(t− δ + ℓτ) + u(t− δ/2)


 .

The Magnus-type integrator thus has the form for n ≥ 0:

u
(τ)
n+1/2 :=





ϕ((n + 1/2)τ − δ), n = 0, . . . , N − 1,

e
τ
2
Q

(

1
N

(

u
(τ)
n−2N+u

(τ)
n−2N+N/2

+2
N/2−1
∑

ℓ=1
u
(τ)
n−2N+ℓ

))

u
(τ)
n−N , n ≥ N,

u
(τ)
n+1 := e

τQ

(

1
N

(

u
(τ)
n+1/2

+u
(τ)
n+N/2+1/2

+2
N/2−1
∑

ℓ=1
u
(τ)
n+ℓ+1/2

))

u(τ)
n .

It has the form (13) with weights κ0,τ = κN/2,τ = 1/N and κℓ,τ = 2/N for ℓ = 1, . . . , N/2 − 1
where each Fℓ,τ is the identity. We remark that the weights κℓ,τ sum up to 1 (cf. (14) later on).
For odd values of N , the point δ/2 is not part of the grid, so we have to use the truncated
approximation

2

δ

∫ −δ/2−τ/2

−δ

u(t+ s)ds ≈ 1

N


u(t− δ) + 2

(N−1)/2∑

ℓ=1

u(t− δ + ℓτ)




instead, again with error of order τ 2, i.e., κ0,τ = 1/N and κℓ,τ = 2/N for ℓ = 1, . . . , (N − 1)/2.

It is reasonable to wonder what happens if the delays above are not given in the convenient
form where we are looking at a convex combination/normalised integral, for instance, if we

were dealing with a delay of the form Q
(∫ −δ/2

−δ
u(t+ s)ds

)
. Actually, this is not really an

issue, as we may then define Q(x) := Q(xδ/2) and thereby revert to the convex combination
case detailed above. It is rather a matter of convenience, allowing our Assumptions detailed
below to be formulated in a less cumbersome way.

4 Convergence

This section contains our main result regarding the second-order convergence of Magnus-type
integrator (13) applied to the quasilinear delay equation (QDEϕ). We have already seen how
problem (QDEϕ) can formally be written as the nonautonomous problem (NCP)0,ϕ(0). Hence,
Definition 10 of the convergent approximation remains valid also for the Magnus-type integrator
(13) applied to the delay problem (QDEϕ). From now on we use the notations ḣ−(0) and ḣ+(0)
for the left and right derivatives of a function h at zero, respectively.
We will need the following list of assumptions, with their motivation following right after.

Assumptions. LetX be a Banach space, W ⊂ X a closed subset andD ⊂ X a dense subspace.

(i) We have Q(x) = Q0 + Q̃(x) = Q0 + Q̂(x) + c Id for all x ∈ X , where c ≥ 0, (Q0, D)

generates a contraction semigroup on X ,
(
x 7→ Q̂(x)

)
∈ C(X,L (X)), and the operators

Q̂(w) ∈ L (X) (w ∈ W ) are all dissipative. We shall also assume 0 ∈ ̺(Q0), which is no
real added restriction as we may simply replace Q0 by Q0 − ε Id and c by c+ ε for some
ε > 0.
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(ii)0 The function Q̃ : X → L (X) is continuously differentiable on the set W .

(ii) The function Q̃ : X → L (X) is twice continuously differentiable on the set W .

(iii) For any w ∈ W ∩D the operator Q̂(w) leaves D invariant, and is bounded and dissipative

on (D, ‖·‖D), where ‖x‖D := ‖Q0x‖X+‖x‖X . In addition, Q̃ : D → L (D) is continuously
differentiable on W ∩D.

(iv) The operator (Q0, D) is a sectorial operator generating an (analytic) contraction semi-

group with sector Σα for some α > 0, and the operators Q̂(w) ∈ L (X) (w ∈ W ) are all

such that for any |φ| < α the operator eiφQ̂(w) is dissipative.

(v)0 F ∈ C1 (C([−δ, 0], X), X) with F (u1) = F (u2) whenever (u1 − u2)|[−δ,−ǫ] = 0.

(v) F ∈ C2 (C([−δ, 0], X), X) ∩ C1 (C([−δ, 0], D), D) with F (u1) = F (u2) whenever (u1 −
u2)|[−δ,−ǫ] = 0.

(vi) The functions Fℓ,τ : X → X and weights κℓ,τ ∈ R (0 ≤ ℓ ≤ (δ− ǫ)/τ) are such that there
exists a constant L > 0 independent of τ such that

⌊ δ−ǫ
τ

⌋∑

ℓ=0

|κℓ,τ | ≤ L (14)

and the function

Fτ (ξ) :=

⌊ δ−ǫ
τ

⌋∑

ℓ=0

κℓ,τFℓ,τ (ξ(−δ + ℓτ)) (15)

satisfies

‖F (ξ)− Fτ (ξ)‖X ≤ C ‖ξ‖C2([−δ,0],X)τ
2 (16)

for some constant C ≥ 0 independent of τ . In addition, there exists a constant LF > 0
such that F and Fℓ,τ are Lipschitz with constant LF for all τ and ℓ.

(vii) The set W satisfies

[v ∈ (C([−δ, 0], X)) and v([−δ,−ǫ]) ⊂ W ] ⇒ F (v) ∈ W

and

⌊ δ−ǫ
τ

⌋∑

ℓ=0

κℓ,τFℓ,τ (W ) ⊂ W (17)

for all τ .

(viii) The initial history function ϕ is in C2([−δ, 0], X) ∩ C1([−δ, 0], D) and satisfies ϕ(t) ∈ W
for all t ∈ [−δ, 0] and the boundary conditions

ϕ̇−(0) = Q(F (ϕ))ϕ(0), (18)

ϕ̈−(0) =
(
Q̃′(F (ϕ))F ′(ϕ)ϕ̇

)
ϕ(0) +Q(F (ϕ))2ϕ(0). (19)
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For non-autonomous equations, well-posedness is very much not easily guaranteed, and we chose
to rely on the Corollary 9 of Kato’s result detailed earlier. This motivates the common domain
prescribed by Assumption (i), the special form of the operators as bounded perturbations of
the same (unbounded) Q0, and the contractivity of the corresponding unperturbed semigroup.
In addition, we need the smoothness of various terms of the equation provided by Assumptions
(ii)0 and (v)0.
The stronger versions (ii) and (part of) (v) are the usual smoothness requirements on the
various terms of the equation matching the desired order of the method.
In order to guarantee the preservation of second-order smoothness of the solution, we need to
be able to work on the common domain D as well, leading to Assumption (iii) and the part of
Assumption (v) pertaining to D.
Assumption (iv) mirrors the one in González et al. [9] needed there to guarantee the second-
order convergence of the Magnus method for autonomous equations.
Assumption (vi) is needed so the discretisation of F does not ruin the order of the proposed
method, Assumption (viii) on the initial history function guarantees the smooth transition of
the solution at t = 0, and the invariance conditions of Assumption (vii) make it possible to
iterate the arguments beyond the initial [0, ǫ] solution window.

Remark 17. The condition (17) is automatically satisfied when W is convex,
∑⌊ δ−ǫ

τ
⌋

ℓ=0 κℓ,τ = 1
and κℓ,τ ≥ 0 and Fℓ,τ (W ) ⊂ W for all τ and ℓ.

The following results will show that under appropriate smoothness assumptions on Q(·) and
the initial history function ϕ, the solution itself will exhibit similar smoothness properties on
X and D. Also, we shall show that Theorem 11 is applicable to our setting.
The next two results show that our Assumptions imply that the semigroups generated by the
operators Q(w) (w ∈ W ) are uniformly quasi-contractive, and uniformly sectorial as well.

Lemma 18. Under Assumption (i) each operator Q(w)− c Id (w ∈ W ) with domain D is the
generator of a contraction semigroup on X. In particular, the semigroups generated by Q(w)
are uniformly quasi-contractive, that is, ‖eτQ(w)‖L (X) ≤ eτc for all τ > 0 and w ∈ W .

Proof. The operators Q̂(w) are by assumption dissipative, and with Q0-bound 0 (as they are
bounded operators). Thus the claims follow directly from Engel & Nagel [8, Thm. III.2.7] and
the usual rescaling argument.

Lemma 19. Under Assumptions (i) and (iv) each operator Q(w)− c Id (w ∈ W ) with domain
D is the generator of an analytic contraction semigroup on Σα. In particular, the uniform
sectoriality required in Theorem 11 is satisfied by the family (Q(w))w∈W .

Proof. The assumptions imply that for any |φ| < α the operator eiφQ0 generates a contraction

semigroup and eiφQ̂(w) is dissipative with Q0-bound 0, hence each eiφ(Q(w) − c Id) generates
a contraction semigroup as well by Engel & Nagel [8, Thm. III.2.7]. To see that the semigroup
(Sw(τ))τ∈Σα generated by Q(w)−c Id is analytic on Σα, we use the semigroup property and the

fact that Engel & Nagel [8, Thm. III.2.14] implies that (Q0 − ε Id) + (Q̃(w) + ε Id) generates
an analytic semigroup on some sector Σα′ with α′ > 0.

Lemma 20. Suppose Assumptions (i), (ii)0 and (v)0 hold, and let ϕ : [−δ, 0] → X be contin-
uously differentiable. Further assume ϕ satisfies the boundary condition (18) and ϕ([−δ, 0]) ⊂
W . Then there exists a unique solution v := vϕ : [−δ, ǫ] → X to (QDEϕ), and we have
v ∈ C1([−δ, ǫ], X) and v(t) ∈ D for all t ∈ [0, ǫ].
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Proof. Extend ϕ in a continuously differentiable way to [−δ, ǫ] by, say, ϕ(σ) := ϕ(0) + σϕ̇−(0)
for σ ≥ 0.
Let J := [0, ǫ] and A(t) := Q(F (tϕ)). Note that A(t) is then actually independent of the
extension ϕ|[0,ǫ] by Assumption (v)0. By Assumption (i), D(A(t)) = D for all t ∈ J , and

A(t) = Q0 + Q̃(F (tϕ)). By our choice of extension for ϕ, tϕ is continuously differentiable as
a map t 7→ tϕ from [0, ǫ] to C([−δ, 0], X) (with derivative tϕ̇). By Assumptions (ii)0, (v)0, we
then have that A(·)x ∈ C1([0, ǫ], X) for all x ∈ D. Since also ϕ(0) ∈ D, this allows us to apply
Corollary 9 to obtain that there exists a unique v : J → X with v(0) = ϕ(0) that solves the
corresponding problem (2), Further, v is continuously differentiable on J , and v(t) ∈ D for all
t ∈ J . By (2) and (18), we also have v′+(0) = ϕ′

−(0), so extending v to [−δ, 0] as v = ϕ we
preserve continuous differentiability.

These results will allow us to apply Theorem 11 in our setting. However, to obtain second-
order convergence of the Magnus-type integrator, we need stronger smoothness properties than
what we have shown above, as, among other things, the bounds on the RHS of (7) are not
automatically finite.

Lemma 21. Under the conditions of Lemma 20, whenever the solution v := vϕ to (QDEϕ) is
twice differentiable on [0, ǫ], we have v(t) ∈ D(Q2

0) =: D1 for all t ∈ [0, ǫ], Q0v(t) is differentiable
on [0, ǫ] with derivative Q0v̇(t), and the function v̈(t) is continuous on [0, ǫ] if and only if
(Q(v(t− δ)))2v(t) (or, equivalently, Q0v̇(t)) is continuous.
On the other hand, whenever Assumptions (i), (ii)0, (iii), (v) and (viii) hold, we have v ∈
C2([−δ, ǫ], X) ∩ C1([−δ, ǫ], D).

Proof. By Lemma 20 the solution v is continuously differentiable on [−δ, ǫ], v(t) ∈ D for all
t ∈ [0, ǫ], and (QDEϕ) is satisfied. Now for t ∈ [0, ǫ], we have for small enough h (for t = 0 and
t = ǫ only with h > 0 and h < 0, respectively) that

v̇(t + h)− v̇(t)

h
=
Q(F (t+hv))v(t+ h)−Q(F (tv))v(t)

h

=(Q(F (t+hv))−Q(F (tv)))
v(t+ h)− v(t)

h

+Q0
v(t+ h)− v(t)

h

+ Q̃(F (tv))
v(t+ h)− v(t)

h

+
Q(F (t+hv))−Q(F (tv))

h
v(t). (20)

In the first term of the last expression, Q(F (t+hv))−Q(F (tv)) = Q̃(F (t+hv))−Q̃(F (tv)) ∈ L (X)

tends to zero in operator norm, and v being a classical solution implies that v(t+h)−v(t)
h

converges
as well, so the first term tends to 0 as h → 0. Similarly, the fourth term converges to

(
d
ds
Q̃(F (sv))|s=t

)
v(t) =

(
Q̃′(F (tv))F

′(tv) tv̇
)
v(t),

and the third term to Q̃(F (tv))v̇(t). Note that these are all continuous in t. Finally, since the

left-hand side has a limit as h → 0, by closedness of Q0 one has limh→0Q0
v(t+h)−v(t)

h
= Q0v̇(t).

Also (Q(F (tv)))
2v(t) = Q0v̇(t) + Q̃(F (tv))v̇(t), where Q̃(F (tv))v̇(t) is continuous, so continuity

of v̈(t) and (Q(F (tv)))
2v(t) on [0, ǫ] are both equivalent to continuity on [0, ǫ] of Q0v̇(t).
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For the last claim, in light of Engel & Nagel [8, Prop. II.5.2], Assumptions (iii) and (v)
imply that Lemmas 18 and 20 actually apply also when replacing the space X by D, and each
generator by its restriction. In addition, D being a subspace of X with a stronger norm implies
that whenever ϕ̇(t) (t ∈ [−δ, 0]) or v̇(t) (t ≥ 0) exists in both X and D, the derivatives actually
coincide. Hence v ∈ C1([−δ, ǫ], D), which implies that Q0v ∈ C1([−δ, ǫ], X), meaning that all
four terms in equation (20) above have ‖ · ‖X-continuous limits, i.e., v̈(t) ∈ C([0, ǫ], X). Finally,
the condition (19) on ϕ̈−(0) serves to match the left and right second derivatives of the solution
v : [−δ, ǫ] → X at 0, so v ∈ C2([−δ, ǫ], X).

As a consequence of the above, applied to the appropriate initial history functions, we will be
able to guarantee finiteness of the RHS in (7). More specifically, we have the following result.

Proposition 22. Suppose Assumptions (i), (ii), (iii), (v) and (viii) hold, and ϕ ∈ C2([−δ, 0], X)∩
C1([−δ, 0], D) satisfies the boundary conditions (18) and (19). Let v denote the unique solution
to (QDEϕ) guaranteed by Lemma 20. Then for any τ > 0 and s ∈ [0, ǫ − τ ], the functions
γs(t) := γϕ,s : [s, s+ τ ] → X defined as

γs(t) :=
(
Q(F (sv))−Q(F (s+τ/2v))

)
v(t)

satisfy γs(t) ∈ D for all t ∈ [s, s+ τ ], and γs ∈ C2([s, s+ τ ], X) ∩ C1([s, s+ τ ], D).

Proof. We have

(
Q(F (sv))−Q(F (s+τ/2v))

)
v(t) =

(
Q̃(F (sv))− Q̃(F (s+τ/2v))

)
v(t)

=
(
Q̃(F (sv))

)
v(t)−

(
Q̃(F (s+τ/2v))

)
v(t).

By Lemma 21 we have v ∈ C2([−δ, ǫ], X) ∩ C1([−δ, ǫ], D), and together with Assumptions (ii),
(iii) and (v), we are done.

We note here that if W = X , all of the above results would automatically extend to the interval
[−δ,∞) by iteration, as the solution obviously stays in X . However, in many applications some
of the assumptions may only be known for certain special subsets W of X . A typical hurdle
would be that no choice of c will render all of the operators Q̂(w) := Q(w) − c Id generators
of contraction semigroups. What may happen instead is that X is some function space, and
the Assumptions are only valid for the positive cone W := X+, or more generally, for sets of
functions W that are uniformly bounded below, and this is exactly the case in our example
from Section 5.

In such cases, the hope is that the set W is in some way “closed” or “invariant” under both
(QDEϕ) and the numerical method so the argument can be iterated with the Assumptions still
satisfied. This double invariance is not unheard of, as in the case of PDE’s, positivity of the
solution semigroup and positivity-preserving numerical methods are a well-studied area.
For the invariance of W under (QDEϕ), we shall actually make use of the convergence of
the Magnus-type integrator and its W -preserving property, in a way somewhat reminiscent of
how positivity of operator semigroups is shown via the Post–Widder Inversion Formula [cf. 8,
Corollary III.5.5].
In what follows we will use the following notations for any T > 0 for which the solution u = uϕ

is known to exist as a (twice) differentiable function [−δ, T ] → X :

(a) Mu,T := ‖u‖C([−δ,T ],X),
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(b) Lu,T and LQ denote the Lipschitz constants of the functions u and Q̃|u([−δ,T ]), respectively,

that is, ‖u(t) − u(s)‖ ≤ Lu,T |t − s| for all T ≥ t, s ≥ −δ, and ‖Q̃(w1) − Q̃(w2)‖ ≤
LQ‖w1 − w2‖ for all w1, w2 ∈ u([−δ, T ]).

We state now our main result.

Theorem 23. Let X be a Banach space, m ≥ 0 an arbitrary integer, δ > 0 and ǫ ∈ (0, δ].
Suppose further that Assumptions (i)–(viii) are satisfied. Then all of the following hold:

(a) the unique solution u = uϕ to (QDEϕ) exists for all t ∈ [−δ,mǫ] and u ∈ C2([−δ,mǫ], X)∩
C1([−δ,mǫ], D),

(b) u(t) ∈ W for all t ∈ [−δ,mǫ],

(c) the Magnus-type integrator (13) applied to (QDEϕ) never leaves the set W on [−δ,mǫ],

i.e., for (n+ 1)τ ≤ mǫ, we have u
(τ)
n+1 ∈ W ,

(d) the Magnus-type integrator is convergent of second order on [−δ,mǫ], i.e., there exists a
constant αm ≥ 0 independent of n and τ such that

‖u((n+ 1)τ)− u
(τ)
n+1‖ ≤ αmτ

2 (21)

holds for all n ∈ N with (n+ 1)τ ∈ [0, mǫ].

Proof. We shall proceed by induction on m. Indeed, let us assume that assertions (a)–(d) are
valid for some integer m ≥ 0 and all τ > 0 with δ/τ ∈ N. This is trivially true for m = 0.
Now, when t ≤ (m + 1)ǫ, the generator A(t) := Q(F (tu)) only depends on the C1 function
u|[−δ,mǫ], and by the inductive assumption this runs in W .
On the one hand, this means that the Magnus-type integrator (13) will indeed stay in W at
least until time (m+ 1)ǫ, covering the inductive step for (c).
On the other hand, letting φ := mǫu, this also means that φ ∈ C2([−δ, 0], X) ∩ C1([−δ, 0], D)
and φ satisfies the boundary conditions (18) and (19). Hence Lemma 21 can be applied to the
equation (QDEφ), implying that the solution u can be uniquely extended to [mǫ, (m + 1)ǫ] as
u|[mǫ,(m+1)ǫ] := vφ, and then u ∈ C2([−δ, (m + 1)ǫ], X) ∩ C1([−δ, (m + 1)ǫ], D), completing the
inductive step for (a).
We now claim that the conditions of Theorem 11 are satisfied for T := (m + 1)ǫ and A(t) :=
Q(F (tu)), and the bound on the RHS of (7) is finite. Indeed, the norm on D is defined as the
graph norm of Q0, and bounded perturbations always lead to an equivalent graph norm, hence
the graph norms of A(t) are all equivalent to ‖ · ‖D. The uniform sectoriality property follows

from Lemma 19. Next note that A(t) = Q0 + Q̃(F (tv)), and by (a) and Assumptions (ii) and

(v) we have Q̃(F (·u)) ∈ C1([−δ, (m + 1)ǫ],L (X)). Since the norm on L (X) dominates the

norm on L (D,X), we a fortiori have Q̃(F (·v)) ∈ C1([−δ, ǫ],L (D,X)). Concerning gn in (6),
note that for any n such that (n + 1)τ ∈ (ǫ, (m + 1)ǫ], we have gn = γ

(n+1)τ−ǫ
u,ǫ−τ , which by

Proposition 22 is in C2([(n+1)τ − ǫ, (n+ 1)+ τ ], X)∩C1([(n+1)τ − ǫ, (n+ 1)+ τ ], D), hence
the RHS in (7) is indeed finite.
Knowing this we are ready to show that the Magnus-type integrator maintains its second-order
convergence up to (m+ 1)ǫ.

Let us denote the global error of the method by

εn =

{
0 for n = −2N, . . . , 0,

‖u(nτ)− u
(τ)
n ‖ for n = 1, 2, . . . .
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Hence, we need to estimate the term εn+1 for n ∈ N with (n+1)τ ∈ [0, (m+1)ǫ]. The triangle
inequality implies

εn+1 = ‖u((n+ 1)τ)− u
(τ)
n+1‖ ≤ ‖u((n+ 1)τ)− û

(τ)
n+1‖︸ ︷︷ ︸

(T1)

+ ‖û(τ)
n+1 − u

(τ)
n+1‖︸ ︷︷ ︸

(T2)

, (22)

where û
(τ)
n+1 is defined in (5) with A(t) = Q(F (tu)), i.e., with the exact solution u, as

û
(τ)
n+1 = eτQ(F (

(n+1/2)τ
u))û(τ)

n .

The first term in (22) is the global error of method (5) being of second order by Theorem 11:

(T1) = ‖u((n+ 1)τ)− û
(τ)
n+1‖ ≤ C0τ

2 (23)

with the finite constant C0,m := C
(∥∥g′|[−δ,mǫ]

∥∥
D,∞ +

∥∥g′′|[−δ,mǫ]

∥∥
X,∞

)
.

For bounding (T2), we write the difference as a telescopic sum of differences where only one
term of the product changes at a time. By Assumption (vii) and (a) we may apply Lemma 18,
and using nτ < (m+ 1)ǫ write

(T2) =‖û(τ)
n+1 − u

(τ)
n+1‖ =

∥∥∥
n∏

k=0

e
τQ(F (

(k+1/2)τ
u))

ϕ(0)−
n∏

k=0

e
τQ

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
k+ℓ+1/2

)

)

ϕ(0)
∥∥∥

≤
∥∥∥∥∥

n∑

j=0

( n∏

k=j+1

eτQ(F (
(k+1/2)τ

u))
)
·
(
eτQ(F (

(j+1/2)τ
u)) − e

τQ

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
j+ℓ+1/2

)

)
)

·
(

j−1∏

k=0

e
τQ

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
k+ℓ+1/2

)

)
)
ϕ(0)

∥∥∥∥∥

≤
n∑

j=0

( n∏

k=j+1

∥∥eτQ(F (
(k+1/2)τ

u))
∥∥
)
·
∥∥∥∥∥e

τQ(F (
(j+1/2)τ

u)) − e
τQ

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
j+ℓ+1/2

)

)
∥∥∥∥∥

·
(

j−1∏

k=0

∥∥∥∥∥e
τQ

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
k+ℓ+1/2

)

)
∥∥∥∥∥ ‖ϕ(0)‖

)

≤ec(m+1)ǫ

n∑

j=0

∥∥∥∥∥e
τQ(F (

(j+1/2)τ
u)) − e

τQ

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
j+ℓ+1/2

)

)

∥∥∥∥∥
︸ ︷︷ ︸

(T3j)

‖ϕ(0)‖. (24)

Now we use the variation of constants formula and Lipschitz continuity of Q̃ to obtain (recall
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τ ≤ (m+ 1)ǫ)

(T3j) =

∥∥∥∥∥

∫ τ

0

e
(τ−s)Q

(

∑⌊ δ−ǫ
τ ⌋

ℓ=0 κℓ,τFℓ,τ

(

u
(τ)
j+ℓ+1/2

)

)

·


Q(F ((j+1/2)τu))−Q




⌊ δ−ǫ
τ

⌋∑

ℓ=0

κℓ,τFℓ,τ

(
u
(τ)
j+ℓ+1/2

)



 e

(τ−s)Q(F (
(j+1/2)τ

u))
ds

∥∥∥∥∥∥

≤τe2c(m+1)ǫLQ

∥∥∥∥∥∥
F ((j+1/2)τu)−

⌊ δ−ǫ
τ

⌋∑

ℓ=0

κℓ,τFℓ,τ

(
u
(τ)
j+ℓ+1/2

)
∥∥∥∥∥∥

︸ ︷︷ ︸
(T4j)

. (25)

Here we will have to insert an approximating term involving Fτ defined in (15) and use As-
sumption (vi). We have

(T4j) ≤
∥∥F ((j+1/2)τu)− Fτ ((j+1/2)τu)

∥∥
︸ ︷︷ ︸

(T4aj)

+

∥∥∥∥∥∥
Fτ ((j+1/2)τu)−

⌊ δ−ǫ
τ

⌋∑

ℓ=0

κℓ,τFℓ,τ

(
u
(τ)
j+ℓ+1/2

)
∥∥∥∥∥∥

︸ ︷︷ ︸
(T4bj)

, (26)

and by Assumption (vi) and inequality (16), we have

(T4aj) ≤ C τ 2‖u‖C2([−δ,mǫ],X). (27)

Now we turn our attention to the second term, and obtain by the triangle inequality and the
uniform Lipschitz continuity of the F∗,τ ’s that

(T4bj) ≤
⌊ δ−ǫ

τ
⌋∑

ℓ=0

|κℓ,τ |LF

∥∥∥u((j + ℓ+ 1/2)τ − δ)− u
(τ)
j+ℓ+1/2

∥∥∥

=

j+⌊ δ−ǫ
τ

⌋∑

ℓ=j

|κℓ−j,τ |LF

∥∥∥u((ℓ+ 1/2)τ − δ)− u
(τ)
ℓ+1/2

∥∥∥
︸ ︷︷ ︸

(T5ℓ)

. (28)

Since (n+ 1)τ ≤ (m+ 1)ǫ, we have up to now shown

(T2) ≤ τC1,m


C τ(m+ 1)ǫ‖u‖C2([−δ,mǫ],X) +

n∑

j=0

j+⌊ δ−ǫ
τ

⌋∑

ℓ=j

|κℓ−j,τ |LF (T5ℓ)


 , (29)

where C1,m := e3c(m+1)ǫLQ‖ϕ(0)‖. So now we have to bound the norm (T5ℓ). Since both terms
in the difference take the same value ϕ((ℓ + 1/2)τ − δ), the norm (T5ℓ) is equal to zero for
ℓ = 0, . . . , N − 1, hence, we only need to consider the indices ℓ ≥ N .
By the inductive hypothesis there exists an αm independent of τ such that for any index
q ≥ −2N with qτ ≤ mǫ we have εq ≤ αmτ

2. Recall that by the definitions of the evolution
family U(·, ·) and of our Magnus-type integrator

u((ℓ+ 1/2)τ − δ) = U((ℓ+ 1/2)τ − δ, ℓτ − δ)u(ℓτ − δ) and

u
(τ)
ℓ+1/2 = e

τ
2
Q

(

∑⌊ δ−ǫ
τ ⌋

k=0 κk,τFk,τ

(

u
(τ)
ℓ−2N+k

)

)

u
(τ)
ℓ−N
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for all ℓ ≥ N , hence inserting the term e
τ
2
Q

(

∑⌊ δ−ǫ
τ ⌋

k=0 κk,τFk,τ

(

u
(τ)
ℓ−2N+k

)

)

u(ℓτ − δ) and applying the
triangle inequality leads to

(T5ℓ) ≤
∥∥∥∥∥U((ℓ+ 1/2)τ − δ, ℓτ − δ)− e

τ
2
Q

(

∑⌊ δ−ǫ
τ ⌋

k=0 κk,τFk,τ

(

u
(τ)
ℓ−2N+k

)

)

∥∥∥∥∥
︸ ︷︷ ︸

(T6ℓ)

‖u(ℓτ − δ)‖︸ ︷︷ ︸
≤Mu,mǫ

+

∥∥∥∥∥e
τ
2
Q

(

∑⌊ δ−ǫ
τ ⌋

k=0 κk,τFk,τ

(

u
(τ)
ℓ−2N+k

)

)

∥∥∥∥∥
︸ ︷︷ ︸

≤ec(m+1)ǫ/2

‖u(ℓτ − δ)− u
(τ)
ℓ−N‖︸ ︷︷ ︸

=εℓ−N

≤ Mu,mǫ(T6ℓ) + C2,mτ
2

where C2,m := αme
c(m+1)ǫ/2.

Approximating the evolution family using the midpoint rule we have

(T6ℓ) ≤
∥∥∥U((ℓ+ 1/2)τ − δ, ℓτ − δ)− e

τ
2
Q(F((ℓ+1/4)τ−δ

u))
∥∥∥

︸ ︷︷ ︸
(T6aℓ)

+

∥∥∥∥∥e
τ
2
Q(F((ℓ+1/4)τ−δ

u)) − e
τ
2
Q

(

∑⌊ δ−ǫ
τ ⌋

k=0 κk,τFk,τ

(

u
(τ)
ℓ−2N+k

)

)
∥∥∥∥∥

︸ ︷︷ ︸
(T6bℓ)

.

Since we for all t, s ∈ [0, mǫ] have

‖Q(F (tu))−Q(F (su))‖ ≤ LQLF‖ tu− su‖∞ ≤ LQLFLu,mǫ|t− s|,

where LF is the Lipschitz constant of the continuous function F ∈ C2 (C([−δ, 0], X), X), The-
orem 12 and (8) imply

(T6aℓ) ≤ LQLFLu,mǫe
c(m+1)ǫ/2

(τ
2

)2
.

Furthermore the variation of constants formula and the uniform quasi-contractivity of the
semigroups involved guaranteed by (a) and Assumption (vii) yield

(T6bℓ) ≤ τ

2
ec(m+1)ǫ

∥∥∥∥∥∥
Q
(
F
(
(ℓ+1/4)τ−δu

))
−Q




⌊ δ−ǫ
τ

⌋∑

k=0

κk,τFk,τ

(
u
(τ)
ℓ−2N+k

)


∥∥∥∥∥∥

︸ ︷︷ ︸
(T7ℓ)

.
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Finally, we have using the bound (16)

(T7ℓ) ≤LQ

∥∥∥∥∥∥
F
(
(ℓ+1/4)τ−δu

)
−

⌊ δ−ǫ
τ

⌋∑

k=0

κk,τFk,τ

(
u
(τ)
ℓ−2N+k

)
∥∥∥∥∥∥

≤LQ


∥∥F

(
(ℓ+1/4)τ−δu

)
− F

(
ℓτ−δu

)∥∥+

∥∥∥∥∥∥
F
(
ℓτ−δu

)
−

⌊ δ−ǫ
τ

⌋∑

k=0

κk,τFk,τ

(
u
(τ)
ℓ−2N+k

)
∥∥∥∥∥∥




≤LQLFLu,mǫ
τ

4

+ LQ


∥∥F

(
ℓτ−δu

)
− Fτ

(
ℓτ−δu

)∥∥+

∥∥∥∥∥∥
Fτ

(
ℓτ−δu

)
−

⌊ δ−ǫ
τ

⌋∑

k=0

κk,τFk,τ

(
u
(τ)
ℓ−2N+k

)
∥∥∥∥∥∥




≤LQLFLu,mǫ
τ

4
+ LQC ‖u‖C2([−δ,mǫ])τ

2 + LQ

⌊ δ−ǫ
τ

⌋∑

k=0

|κk,τ | ‖u(ℓτ − δ + kτ)− u
(τ)
ℓ−2N+k‖︸ ︷︷ ︸

εℓ+k−2N

.

Now note that ⌊ δ−ǫ
τ
⌋ − N ≤ − ǫ

τ
< 0, so all indices for the ǫ’s appearing above are between

−2N and n− ⌊ǫ/τ⌋. Also, τ ≤ δ. Thus, using (14), we obtain

(T7ℓ) ≤ LQ

(
LfLu,mǫ/4 + C ‖u‖C2([−δ,mǫ])δ + Lαmδ

)
τ,

and so

(T6ℓ) ≤ C3,mτ
2

where C3,m := ec(m+1)ǫ/2LQLFLu,mǫ/4 + ec(m+1)ǫLQ

(
LfLu,mǫ/4 + C ‖u‖C2([−δ,mǫ])δ + Lαmδ

)
/2.

Hence

(T5ℓ) ≤ Mu,mǫ(T6ℓ) + C2,mτ
2 ≤ C4,mτ

2 (30)

for all ℓ ≥ N where C4,m := Mu,mǫC3,m + C2,m, and so also for all ℓ ≥ 0. By assumption
(n+ 1)τ ≤ (m+ 1)ǫ, hence

(T2) ≤ τC1,m


C τ(m+ 1)ǫ‖u‖C2([−δ,mǫ],X) +

n∑

j=0

j+⌊ δ−ǫ
τ

⌋∑

ℓ=j

|κℓ−j,τ |LF (T5ℓ)


 ≤ C5,mτ

2

with C5,m := C1,m(m+ 1)ǫ
(
C ‖u‖C2([−δ,mǫ],X) + LLFC4,m

)
.

Thus, combining this with inequality (23) and substituting into inequality (22), we obtain

εn+1 ≤ (C0,m + C5,m)τ
2,

and setting

αm+1 := C0,m + C5,m

concludes the inductive step for (d).
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Finally, to see that claim (b) is also true, we choose Nℓ := 2ℓ, hence, τℓ = δ/2ℓ. Then by (d)
for any q/2z ∈ [0, (m+ 1)ǫ/δ] (q, z ∈ N) we have that

lim
ℓ→∞

u
(τℓ)

q2ℓ−z = u( q
2z
δ)

with the left-hand side consisting of points in W only. Since W is closed, u( q
2z
δ) ∈ W for any

δq/2z ∈ [0, (m + 1)ǫ] (q, z ∈ N), but by continuity of the solution this then implies u(t) ∈ W
for all t ∈ [0, (m+ 1)ǫ].

Remark 24. If ϕ is only given at the grid points, and hence the values ϕ((ℓ+1/2)τ−δ) are not
known (or for any reason the use of off-grid exact values in the method is undesirable), we may
amend the method and approximate these values by the average (ϕ(ℓτ −δ)+ϕ((ℓ+1)τ −δ))/2
for indices ℓ = 0, . . . , N − 1. The error of this approximation can be bounded above by C6τ

2

with C6 := ‖ϕ′′‖∞/4. This would lead to an upper bound on (T5ℓ) of unchanged order of
magnitude O(τ 2), with the new constant C4,m := max {Mu,mǫC3,m + C2,m, C6} in (30).

At this point it is natural to ask whether higher order convergence may be achieved by applying
a higher order truncation of the Magnus expansion. However, to our knowledge not even the
building blocks Theorems 11 and 12 have higher order variants available yet, so these are all
open questions to be further investigated.

5 Application to an epidemic model

As an illustrative example we treat an epidemic model which is based on the classical SIR model
introduced in Kermack & McKendrick [14] but takes into account the effect of the vaccination,
the space-dependency of infection [cf. 13], and the random movement of individuals as well.
And most importantly we include the latent period which leads to a delay equation (see, e.g.,
in He & Tsai [10], Huang & Takeuchi [11], Xu [19]).

Let Ω ⊂ R2 be the space domain, δ > 0 the latent period, and for all time values t ≥ −δ let
S(t), I(t), R(t) : Ω → R denote the spatial distribution of susceptible, infected, and recovered
individuals within the total population, respectively. We assume that each of these functions
lies in Y := L2(Ω), and our state space will be the Hilbert space X := Y 3 with the norm

‖(x1, x2, x3)‖2X := ‖x1‖22 + ‖x2‖22 + ‖x3‖22.

We will also use the norm

‖(x1, x2, x3)‖1 := ‖x1‖1 + ‖x2‖1 + ‖x3‖1.

Note that for any h ∈ L2(Ω) we have ‖h‖1 ≤ ‖h‖2 · λ(Ω)1/2, hence for any x ∈ X , we have
‖x‖1 ≤ ‖x‖X

√
3λ(Ω), where λ(Ω) denotes the Lebesgue measure of Ω.

The temporal change of S, I, R depends on various phenomena, from which we first consider
the infection-related ones. The number of susceptible individuals decreases because they are in
contact with infected people and get infected. More precisely, the actual change in the number
of susceptibles depends on itself and on the number of encounters between these susceptibles and
those who were infected one latent period ago. The number of infected individuals naturally
increases by the same amount, and decreases with the number of people who recover. To

21



consider an even more realistic model, we take into account the effect of vaccination as well,
when the vaccinated individuals become recovered (immune) ones.

Moreover, one can consider the nonhomogeneous spatial distribution of the various populations
as well. To do so we suppose that the infected individuals have a space-dependent influence on
the susceptible ones. For instance, the healthy individuals get infected more likely closer to the
infected ones.

We further consider a certain dynamics of the population, namely, the random movement
(diffusion) of the individuals which leads to the faster transfer of the infection (see, e.g., He &
Tsai [10], Xu [19]). This process will be described by the Laplacian operator ∆ := ∂2

x + ∂2
y on

Ω with the homogeneous Neumann boundary condition.

Based on the considerations above, a compartment-type model can be formulated. Let β > 0
denote the infection rate, γ > 0 the recovery rate, and ν > 0 the vaccination rate. We
also introduce a term I : [0,∞) → Y that will incorporate both the space-dependence of the
infection process, and the time-delay involved. More specifically, for all t ∈ [0,∞), we here let

I(t) = G
(
S(t− δ), I(t− δ), R(t− δ)

)
(31)

for some appropriate function G : X → Y . Typically, G will depend only on the second
coordinate, and for instance take the form of a convolution.
Then we consider the following system of (delayed) integro-differential equations:





d
dt
S(t) = ∆S(t)− βS(t)I(t)− νS(t),

d
dt
I(t) = ∆I(t) + βS(t)I(t)− γI(t),

d
dt
R(t) = ∆R(t) + νS(t) + γI(t)

(32)

for all t ≥ 0. Due to the delay term I(t) we also need history functions ϕS, ϕI , ϕR : [−δ, 0] → Y
such that

S(s) = ϕS(s), I(s) = ϕI(s), R(s) = ϕR(s)

for all s ∈ [−δ, 0]. We assume that ϕS(s), ϕI(s), ϕR(s) ≥ 0 holds for all s ∈ [−δ, 0], and
S(s) + I(s) +R(s) is constant on [−δ, 0].

Since the analytic solution to problem (32) is unknown, our aim is to approximate it using the
Magnus-type integrator (13). To do so we introduce the function u : [−δ,∞) → X as

u(t) =
(
S(t), I(t), R(t)

)

for all t ∈ [−δ,∞), and the operator family

Q(w) =




∆+M−βG(w) − ν 0 0
MβG(w) ∆− γ 0
ν γ ∆




for w ∈ X , where Mg ∈ L (Y ) denotes the multiplication operator h 7→ h · g (this is a
bounded operator whenever g ∈ L∞(Ω)) and ∆ is the Laplacian operator with the homogeneous
Neumann boundary condition. Then the epidemic model (32) can be written as a quasilinear
delay equation (QDEϕ) with F being the evaluation at −δ. The latter means that this example
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is actually a special case of the point-delay presented in Example 13 (with the choices of κℓ,τ

and Fℓ,τ detailed in Remark 15), the Assumptions (v)-(vii) are automatically satisfied. We
further assume that ϕ := (ϕS, ϕI , ϕR) satisfies Assumption (viii).

Our aim is to show that the Magnus-type integrator (13) applied to the epidemic model (32) is
convergent of second order. So by Theorem 23 we would need to check that Assumptions (i)–(iv)
also hold, with Q defined above.The issue is that we do not have uniform quasi-contractivity
for Q(w) if w is allowed to run through all of X . Fortunately, there actually exists a natural
invariant set W ⊂ X that allows us to apply Theorem 23 and that prevents the blow-up of the
solution. This invariant set will in addition ensure that the Magnus-type integrator preserves
both positivity and the total population (i.e., the value S + I + R) when applied to problem
(32).
The next proposition covers Assumption (i) under very mild conditions on the map G (we
assume neither continuity, nor linearity here).

Proposition 25. Let Ω ⊂ R2 be a bounded open set with boundary ∂Ω being a smooth Jordan
curve, and X := (L2(Ω))3 the Banach lattice with norm ‖(x1, x2, x3)‖2X := ‖x1‖22+‖x2‖22+‖x3‖22.
Further, let I > 0 be a constant, and

W :=
{
w = (w1, w2, w3) ∈ X+

∣∣∣
∫

Ω

w1 + w2 + w3 = I
}
.

Let further G : X → C(Ω) be a positive map such that there exists a constant C ≥ 0 with

‖G(w)‖∞ ≤ C‖w‖1 for all w ∈ W . Define the operators P̃ (w) ∈ L (X) for w ∈ W as

P̃ (w) =




M−βG(w) − ν 0 0
MβG(w) −γ 0
ν γ 0


 , (33)

where β, γ, ν > 0 and for any g ∈ C(Ω), Mg ∈ L (Y ) denotes the multiplication operator
h 7→ h · g. Let

H :=

{
h ∈ Y

∣∣∣h ∈ H2(Ω) and
∂h

∂n
= 0 on Ω

}
,

and finally let (P0, D) be the diagonal Laplacian operator with the homogeneous Neumann bound-
ary condition, i.e.,

P0 =




∆ 0 0
0 ∆ 0
0 0 ∆




with domain

D =
{
x ∈ X

∣∣∣xj ∈ H for all j = 1, 2, 3
}
.

Then there exists α > 0 such that P̃ (w)−α Id is dispersive (and in particular dissipative) for all

w ∈ W , and the operators (Q(w))w∈W given by Q(w) := P0 + P̃ (w) are generators of positive,
uniformly quasi-contractive semigroups (Sw(t))t≥0 that leave W invariant.
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Proof. First let us show that for each w ∈ W and x ∈ X the (total population) function

t 7→
∫

Ω

(Sw(t)x)1 + (Sw(t)x)2 + (Sw(t)x)3

is constant. This, with positivity of the semigroups (to be shown after), would imply the
invariance of W . Let us therefore consider some x = (x1, x2, x3) ∈ D, and note that by
differentiability of the orbit t 7→ Sw(t)x we have

d

dt

∫

Ω

(Sw(t)x)1 + (Sw(t)x)2 + (Sw(t)x)3 =

∫

Ω

(Q(w)x)1 + (Q(w)x)2 + (Q(w)x)3

=

∫

Ω

(∆x1 − βG(w)x1 − νx1) + (∆x2 + βG(w)x1 − γx2) + (∆x3 + νx1 + γx2)

=

∫

Ω

∆x1 +∆x2 +∆x3 =

∫

∂Ω

∇ x1 +∇ x2 +∇ x3 = 0,

where we used the divergence theorem and the boundary condition, so the integral remains
constant whenever x ∈ D. Now D is dense in X , so by standard arguments this holds for all
x ∈ X .

Next, let us look at positivity. By classical PDE theory it is known that the Laplacian with
Neumann boundary condition generates a strongly continuous contraction semigroup on L2(Ω),
and so (P0, D) also generates a strongly continuous contraction semigroup on X . We shall view

each operator P0 + P̃ (w) as a bounded perturbation of P0.
By Bátkai et al. [1, Thm. 13.3] we have that if A is the generator of a positive strongly
continuous contraction semigroup, and B is a dispersive and A-bounded operator with A-
bound a0 < 1, then A + B is also the generator of a positive strongly continuous contraction
semigroup. In this case we only aim for uniform quasi-contractivity, so it is enough to set
A = P0 and show that there exists some α > 0 such that each P̃ (w) − α Id is dispersive (any
bounded operator is P0-bounded with bound 0). To show dispersivity, we resort to Bátkai et
al. [1, Prop. 11.12]. Let us fix w ∈ W , f ∈ X , and a corresponding f ∗ ∈ J +(f), i.e. an
f ∗ ∈ (X∗)+ = X+ such that 〈f, f ∗〉X = ‖f+‖X and ‖f ∗‖X ∈ {0, 1}. In this case f ∗ is of the
form (f+

1 /‖f+
1 ‖Y , f+

2 /‖f+
2 ‖Y , f+

3 /‖f+
3 ‖Y ) with the convention 0/0 = 0.

We then have

〈(P̃ (w)− α)f, f ∗〉X
=〈(−βG(w)f1 − νf1, βG(w)f1 − γf2, νf1 + γf2), (f

+
1 /‖f+

1 ‖Y , f+
2 /‖f+

2 ‖Y , f+
3 /‖f+

3 ‖Y )〉X
− α〈f, f ∗〉

=ν
(
〈f1, f+

3 /‖f+
3 ‖Y 〉 − 〈f1, f+

1 /‖f+
1 ‖Y 〉

)
+ γ
(
〈f2, f+

3 /‖f+
3 ‖Y 〉 − 〈f2, f+

2 /‖f+
2 ‖Y 〉

)

− β〈G(w)f1, f
+
1 /‖f+

1 ‖Y 〉+ β〈G(w)f1, f
+
2 /‖f+

2 ‖Y 〉
− α〈f1, f+

1 /‖f+
1 ‖Y 〉 − α〈f2, f+

2 /‖f+
2 ‖Y 〉 − α〈f3, f+

3 /‖f+
3 ‖Y 〉.

Since 〈fj, f+
j /‖f+

j ‖Y 〉 = ‖f+
j ‖Y and 〈fj, f+

k /‖f+
k ‖Y 〉 ≤ 〈f+

j , f
+
k /‖f+

k ‖Y 〉 ≤ ‖f+
j ‖Y for all j, k =

1, 2, 3, and due to the non-negativity of G(w), we have

〈(P̃ (w)− α)f, f ∗〉X
≤ β〈G(w)f+

1 , f
+
2 /‖f+

2 ‖Y 〉 − β〈G(w)f+
1 , f

+
1 /‖f+

1 ‖Y 〉 − α‖f+
1 ‖Y − α‖f+

2 ‖Y − α‖f+
3 ‖Y

≤ (β‖G(w)‖∞ − α)‖f+
1 ‖Y ≤ (βC‖w‖1 − α)‖f+

1 ‖Y = (βCI − α)‖f+
1 ‖Y .
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Thus we may choose any α ≥ βCI to obtain dispersive perturbations as required. Finally,
note that a bounded dispersive operator is always dissipative.

To be able to guarantee that Assumptions (ii)–(iv) are also satisfied, we need to impose stronger
conditions on G.

Definition 26. The linear function G : X → C(Ω) is called well-adapted if there exists a
constant C > 0 such that the following estimates hold for all w ∈ D:

‖Gw‖∞ ≤ C‖w‖1, (34)

‖∂j(Gw)‖∞ ≤ C‖w‖1, for j = 1, 2, 3, (35)

‖∆(Gw)‖∞ ≤ C‖w‖1. (36)

Note that the Laplacian P0 has 0 as an eigenvalue (with the constant functions in each co-
ordinate as eigenvectors), so in order to define a norm on D, we have to shift the operator
P0.

Definition 27. Fix an ε > 0, set Q0 := P0 − εId, and let D be equipped with the norm

‖x‖D := ‖x‖X + ‖x‖Q0 = ‖x‖X + ‖Q0x‖X .

It is well known that changing the value of ε > 0 leads to an equivalent norm. Similarly, let H
be equipped with the norm

‖f‖H := ‖f‖Y + ‖f‖∆−ε = ‖f‖Y + ‖(∆− εId)f‖Y .

Lemma 28. Let G : X → C(Ω) be well-adapted. Then the function P̃ : D → L (D), defined in
(33), is continuously differentiable.

Proof. It suffices to show that P̃ is an affine map, that is, it is the sum of a bounded linear
map from D to L (D) and a constant. For w ∈ D we have

P̃ (w) =




M−β(Gw) − ν 0 0
Mβ(Gw) −γ 0

ν γ 0


 =




M−β(Gw) 0 0
Mβ(Gw) 0 0

0 0 0


+




−ν 0 0
0 −γ 0
ν γ 0


 ,

where M stands for the corresponding multiplication operator. Hence, we should show that
the map D ∋ w 7→ Mβ(Gw) ∈ L (H) is bounded, i.e., that ‖(Gw)f‖H ≤ c0‖w‖D · ‖f‖H for
some appropriate constant c0 > 0.

To this end, for any f ∈ Y , we first rewrite the left-hand side by using the notation g := Gw as

‖gf‖H = ‖gf‖Y + ‖∆(gf)− εgf)‖Y
= ‖gf‖Y + ‖(∆g)f + 〈∇g,∇f〉+ g(∆f)− εgf‖Y
≤ ‖gf‖Y + ‖(∆f − εf)g‖Y + ‖(∆g)f‖Y + 2‖〈∇g,∇f〉‖Y
≤ ‖g‖∞ · ‖f‖Y + ‖g‖∞ · ‖f‖∆−ε + ‖(∆g)f‖Y + 2‖〈∇g,∇f〉‖Y
≤ ‖g‖∞ · ‖f‖H + ‖∆g‖∞ · ‖f‖Y + 2‖〈∇g,∇f〉‖Y .

(37)

The norm of the scalar product can be estimated as follows

‖〈∇g,∇f〉‖2Y =

∫

Ω

∣∣〈∇g,∇f〉
∣∣2 ≤

∫

Ω

|∇g|2 · |∇f |2 ≤ 3C2‖w‖21 ·
∫

Ω

|∇f |2,

25



where we used inequality (35) from Lemma 32. By using Green’s identity and the homogeneous
Neumann boundary condition in H , we rewrite the integral term as

∫

Ω

|∇f |2 =
∫

Ω

(∇f)(∇f) =

∫

∂Ω

f(∇f)n−
∫

Ω

f(∆f) = −
∫

Ω

f(∆f)

= −
∫

Ω

f(∆f − εf)−
∫

Ω

εf 2 ≤ −
∫

Ω

f(∆f − εf) ≤ ‖f‖Y · ‖(∆− ε)f‖Y

≤ 1
4

(
‖f‖Y + ‖(∆− ε)f‖Y

)2
,

where we used the inequality of arithmetic and geometric means in the last step. Altogether
we have the inequality

‖〈∇g,∇f〉‖Y ≤
√
3C2‖w‖21 · 1

4

(
‖f‖Y + ‖(∆− ε)f‖Y

)2
=

√
3C
2
‖w‖1 ·

∣∣‖f‖Y + ‖(∆− ε)f‖Y
∣∣

=
√
3C
2
‖w‖1 · ‖f‖H .

Since also ‖g‖∞ ≤ C‖w‖1 by inequality (34) in Lemma 32, and ‖∆g‖∞ ≤ C‖w‖1 by (36), the
inequality (37) leads to

‖(Gw)f‖H ≤ ‖g‖∞ · ‖f‖H + ‖∆g‖∞ · ‖f‖Y + 2‖〈∇g,∇f〉‖Y ≤ (2 +
√
3)C‖w‖1 · ‖f‖H ,

hence

∥∥Mβ(Gw)

∥∥
L (H)

= sup
‖f‖H≤1

‖β(Gw)f‖H ≤ sup
‖f‖H≤1

(2 +
√
3)Cβ‖w‖1 · ‖f‖H

=(2 +
√
3)Cβ‖w‖1 ≤ c0β‖w‖X ≤ c0β‖w‖D

for some appropriate constant c0 > 0. Thus, the linear map D ∋ w 7→ Mβ(Gw) ∈ L (H)
is bounded, and its bound depends on the infection rate β and the constant C from Lemma
32.

Remark 29. In the above proof we actually showed
∥∥MGw

∥∥
L (H)

≤ (2+
√
3)C‖w‖1, which for

w ∈ W ∩D means
∥∥MGw

∥∥
L (H)

≤ (2 +
√
3)CI .

Lemma 30. Let G : X → C(Ω) be a well-adapted function. Then there exists an η > 0 such

that the operator P̃ (w)− η Id is dissipative on D for every w ∈ W ∩D.

Proof. We need to show that

R

〈


M−β(Gw) − ν − η 0 0
Mβ(Gw) −γ − η 0

ν γ −η






f1
f2
f3


 ,




f ∗
1

f ∗
2

f ∗
3



〉

σ(D,D∗)

≤ 0 (38)

holds for all f = (f1, f2, f3) ∈ H and some elements f ∗
j ∈ J (fj) ⊂ H∗ from the duality sets

(i.e., g∗ ∈ J (g) is an element of the dual space of norm 1 such that 〈g, g∗〉 = ‖g‖H). Recall
that H is equipped with the norm ‖g‖H := ‖g‖Y + ‖g‖∆−ε. Before proceeding, we need to
better understand the dual space H∗ and what we may choose as an element in J (g). Note
that H with the given norm is essentially the diagonal subspace of the elements of the form
(g, g) of the ℓ1-sum of the spaces (Y, ‖ · ‖Y ) and (H, ‖ · ‖∆−ε).
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Now Y is a Hilbert space by definition, whilst (H, ‖ · ‖∆−ε) is a Hilbert space due to the norm
being induced by the inner product 〈h1, h2〉∆−ε := 〈(∆ − ε)h1, (∆ − ε)h2〉Y . Hence the dual
H∗ is a factor space of the ℓ∞ sum of the corresponding dual spaces. A suitable choice for
g∗ ∈ J (g) is then the element (g/‖g‖Y , g/‖g‖∆−ε) ∈ H∗ which acts on (H, ‖ · ‖H) as follows:

〈h, g∗〉σ(H,H∗) := 〈h, g/‖g‖Y 〉Y + 〈h, g/‖g‖∆−ε〉∆−ε

and this is how we choose to define f ∗
j for j = 1, 2, 3.

The weak evaluation in (38) then expands to:

〈−β(Gw)f1, f
∗
1 〉σ(H,H∗) − (ν + η)〈f1, f ∗

1 〉σ(H,H∗) + 〈β(Gw)f1, f
∗
2 〉σ(H,H∗)

− (γ + η)〈f2, f ∗
2 〉σ(H,H∗) + ν〈f1, f ∗

3 〉σ(H,H∗) + γ〈f2, f ∗
3 〉σ(H,H∗) − η〈f3, f ∗

3 〉σ(H,H∗)

=− η
(
‖f1‖H + ‖f2‖H + ‖f3‖H

)
+
〈
− β(Gw)f1,

f1
‖f1‖Y

〉
Y
+
〈
− β(Gw)f1,

f1
‖f1‖∆−ε

〉
∆−ε

− ν‖f1‖H +
〈
β(Gw)f1,

f2
‖f2‖Y

〉
Y
+
〈
β(Gw)f1,

f2
‖f2‖∆−ε

〉
∆−ε

− γ‖f2‖H

+ ν
〈
f1,

f3
‖f3‖Y

〉
Y
+ ν
〈
f1,

f3
‖f3‖∆−ε

〉
∆−ε

+ γ
〈
f2,

f3
‖f3‖Y

〉
Y
+ γ
〈
f2,

f3
‖f3‖∆−ε

〉
∆−ε

=: (∗).

The properties of the dual elements, Remark 29 and the bound (34) in Lemma 32 imply the
following inequalities for j, k = 1, 2, 3:

∣∣∣∣R
〈
β(Gw)fj,

fk
‖fk‖Y

〉
Y

∣∣∣∣ ≤
∣∣∣∣
〈
β(Gw)fj,

fk
‖fk‖Y

〉
Y

∣∣∣∣ ≤ |β(Gw)fj‖Y ·
∥∥∥ fk
‖fk‖Y

∥∥∥
Y

≤ β‖MGw‖L (Y ) · ‖fj‖Y ≤ βC‖w‖1 · ‖fj‖Y = βCI ‖fj‖Y ,

∣∣∣∣R
〈
β(Gw)fj,

fk
‖fk‖∆−ε

〉
∆−ε

∣∣∣∣ ≤
∣∣∣∣
〈
β(Gw)fj,

fk
‖fk‖∆−ε

〉
∆−ε

∣∣∣∣

≤ ‖β(Gw)fj‖∆−ε ·
∥∥∥ fk
‖fk‖∆−ε

∥∥∥
∆−ε

≤ β‖(Gw)fj‖H

≤ β‖MGw‖L (H) · ‖fj‖H ≤ (2 +
√
3)βCI ‖fj‖H ,

R

〈
fj ,

fk
‖fk‖Y

〉
+R

〈
fj,

fk
‖fk‖∆−ε

〉
∆−ε

≤ ‖fj‖Y ·
∥∥∥ fk
‖fk‖Y

∥∥∥
Y
+ ‖fj‖∆−ε ·

∥∥∥ fk
‖fk‖∆−ε

∥∥∥
∆−ε

= ‖fj‖Y + ‖fj‖∆−ε = ‖fj‖H .

Then we obtain

R (∗) ≤− η
(
‖f1‖H + ‖f2‖H + ‖f3‖H

)
+ (6 + 2

√
3)βCI ‖f1‖H − ν‖f1‖H

− γ‖f2‖H + ν‖f1‖H + γ‖f2‖H
=− η

(
‖f1‖H + ‖f2‖H + ‖f3‖H

)
+ (6 + 2

√
3)βCI ‖f1‖H .

That is, one may choose η = (6 + 2
√
3)βCI .

Lemma 31. For any α < π/2 there exists an η > 0 such that the operator eiφ(P̃ (w)− η Id) is
dissipative on X for every w ∈ W and φ ≤ α.
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Proof. By Engel & Nagel [8, Prop. II.3.23], we need to show that

R

〈


eiφ(M−β(Gw) − ν − η) 0 0
eiφMβ(Gw) eiφ(−γ − η) 0

eiφν eiφγ −eiφη






f1
f2
f3


 ,




f ⋆
1

f ⋆
2

f ⋆
3



〉

X

≤ 0 (39)

holds for all f = (f1, f2, f3) ∈ H and f ⋆
j = fj/‖fj‖Y for j = 1, 2, 3 (again, 0/0 = 0). Similarly

as in the proof of Lemma 30, we have the following upper bound on the real part of the scalar
product:

Reiφ
〈
− β(Gw)f1,

f1
‖f1‖Y

〉
Y
−Reiφ(ν + η)‖f1‖Y +Reiφ

〈
− β(Gw)f1,

f2
‖f2‖Y

〉
Y

−Reiφ(γ + η)‖f2‖Y +Reiφν
〈
f1,

f3
‖f3‖Y

〉
Y
+Reiφγ

〈
f1,

f2
‖f3‖Y

〉
Y
−Reiφη‖f3‖Y

≤ ‖f1‖Y
(
2β‖MGw‖L (Y ) + ν −Reiφ(ν + η)

)
+ ‖f2‖Y

(
γ −Reiφ(γ + η)

)
− ‖f3‖YReiφη

≤ ‖f1‖Y
(
2β‖Gw‖∞ + ν −Reiφ(ν + η)

)
+ ‖f2‖Y

(
γ −Reiφ(γ + η)

)
− ‖f3‖YReiφη.

By (34) we have ‖Gw‖∞ ≤ C‖w‖1 = CI , and also 0 < cosα ≤ cos φ. Thus one may choose

η = max

{
2βCI + (1− cosα)ν

cosα
,
(1− cosα)γ

cosα

}

to satisfy inequality (39).

In applications, a widely used class of maps G : X → C(Ω) is that of convolution-type operators
[as in 18], i.e., we have

(Gw)(z) :=

∫

Ω

〈w(x), h(z − x)〉dx (40)

for all w ∈ X and z ∈ Ω, where h ∈
(
C2
(
Ω− Ω

))3
is the convolution kernel and 〈·, ·〉 denotes

the scalar product in R3. Then the terms ±βS(t)I(t) in (32) describe an infection process
where the point-to-point infection rate depends only on the directed vector between the points.
We note that in most cases, G depends only on the distribution I of the infected individuals,
and not on S or R.

Lemma 32. The map G : X → C(Ω) defined in (40) is well-adapted.

Proof. The convolution (40) is linear in w. It remains to show the validity of the norm estimates.
The inequality (34) directly follows from the convolution form (40) as

‖Gw‖∞ = sup
z∈Ω

|(Gw)(z)| = sup
z∈Ω

∣∣∣
∫

Ω

〈w(x), h(z − x)〉dx
∣∣∣ ≤ sup

z∈Ω

∫

Ω

∣∣〈w(x), h(z − x)〉
∣∣dx

= sup
z∈Ω

∫

Ω

|w(x)| · |h(z − x)|dx ≤ ‖h‖∞ ·
∫

Ω

|w(x)|dx = ‖h‖∞ · ‖w‖1.

The inequality (35) can be shown similarly for j = 1, 2, 3:

‖∂j(Gw)‖∞ = sup
z∈Ω

∣∣(∂j(Gw)
)
(z)
∣∣ = sup

z∈Ω

∣∣∣∂j
∫

Ω

〈w(x), h(z − x)〉dx
∣∣∣

≤ sup
z∈Ω

∫

Ω

∣∣∂j〈w(x), h(z − x)〉
∣∣dx = sup

z∈Ω

∫

Ω

∣∣〈w(x), (∂jh)(z − x)〉
∣∣dx

≤ sup
z∈Ω

∫

Ω

|w(x)| · |(∂jh)(z − x)|dx ≤ ‖∂jh‖∞ ·
∫

Ω

|w(x)|dx = ‖∂jh‖∞ · ‖w‖1.
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To prove the last inequality (36), we write

‖∆(Gw)‖∞ = sup
z∈Ω

∣∣(∆(Gw)
)
(z)
∣∣ = sup

z∈Ω

∣∣∣
∫

Ω

〈w(x), h(z − x)〉dx
∣∣∣

≤ sup
z∈Ω

∫

Ω

∣∣∆〈w(x), h(z − x)〉
∣∣dx = sup

z∈Ω

∫

Ω

∣∣〈w(x), (∆h)(z − x)〉
∣∣dx

≤ sup
z∈Ω

∫

Ω

|w(x)| · |(∆h)(z − x)|dx ≤ ‖∆h‖∞ ·
∫

Ω

|w(x)|dx = ‖∆h‖∞ · ‖w‖1

with the notation ∆h = (∆h1,∆h2,∆h3).

Proposition 33. Assume that the conditions of Proposition 25 are satisfied, and G is of the
convolution form given in (40). Then Assumptions (ii)–(iv) also hold for Q0, Q̃ := P̃ + εId,
α ∈ (0, π/2) and an appropriate c > 0.

Proof. First let us show Assumption (ii). Note that the map w 7→ Mβ(Gw) is linear and bounded

as a map X → C(Ω), and so w 7→ Q̃(w) is a bounded affine map X → L (X), hence infinitely
differentiable.
Let c := max

{
2βCI+(1−cosα)ν

cosα
, (1−cosα)γ

cosα
, (6 + 2

√
3)βCI

}
+ ε. Then Assumption (iii) follows

from Lemmas 28 and 30, whilst Assumption (iv) follows from Lemma 31 and the standard fact
that the homogeneous Neumann Laplacian is analytic on L2(Ω) with angle π/2.

Combining Propositions 25 and 33, and recalling that Assumptions (v)–(vii) are automatically
satisfied with the choices detailed in Remark 15, we see that Theorem 23 can be applied to our
example, and we obtain the main result of this section.

Corollary 34. Assume that the conditions of Proposition 25 are satisfied, and G is of the
convolution form given in (40). Further, let the initial history function ϕ satisfy Assumption
(viii). Then we have convergence of second order on any compact time-interval of the Magnus-
type integrator (13) applied to the epidemic model (32). Moreover, the total population remains
constant and the positivity of the solution is preserved.

Remark 35. We may also combine the above setting with Example 16, reflecting a different
transmission/infection dynamic. Instead of formula (31), we then consider

I(t) := 2

δ

∫ −δ/2

−δ

G (u(t+ s)) ds (41)

in the model (32), with the same convolution G as defined before in (40). This would correspond
to an infection process where the latent period is not fixed of time δ, but rather exhibits a
uniform distribution within a timeframe between δ/2 and δ.
Actually, other distributions for the latent period would lead to a further modified version of
formula (41) of the form

I(t) := ESG(u(t− S)), (42)

where S ∈ [ǫ, δ] is the random variable that encodes the latent period (we assume that the
distribution of the latent period remains constant over time). Since the convolution operator
is a continuous linear map, it commutes with the expected value, and so

I(t) := G(ESu(t− S)).
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Now recall that our choice for W was convex, and so invariant under the expectation operator,
so the above arguments apply, and Theorem 23 remains applicable for this wide range of models
as well.
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