
Advances in Colloid and Interface Science 308 (2022) 102727

Available online 6 July 2022
0001-8686/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Historical Perspective 

Functional blood cell analysis by label-free biosensors and 
single-cell technologies 
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A B S T R A C T   

In this review we aim to summarize the current state of methods for label-free identification and functional 
characterization of leukocytes with biosensors and novel single cell techniques. The growing interest in this field 
is fueled from multiple directions, with the different aspects highlighting benefits of these novel technologies in 
comparison to classical methods. The advantage of label-free characterization is that labeling the cells might 
affect their behavior, and therefore lead to a biased description of the investigated biological phenomena. Label- 
free biosensors can offer the benefit of (i) decreasing processing time and reagent costs, (ii) enable point-of-care 
diagnostics, and (iii) allow downstream application of the investigated cells. Moreover, (iv) label-free detection 
allows the monitoring of real-time kinetic processes, opening up new avenues in contrast to traditional structural 
characterizations. 

The emphasis in the review will be on techniques on the characterizations of single cells with special attention 
to surface sensitive technologies. Recent developments highlighted the importance of small cell populations and 
individual cells both in health and disease. Nonetheless techniques capable of analyzing single cells offer a 
promising tool for therapeutic approaches where characterization of individual cells is necessary to estimate 
their clinical therapeutic potential. Most of the approaches discussed here will cover the cellular activation, 
adhesion as measured on functionalized solid substrates, since this approach offers the most advantages. 
Analyzing various cells on solid substrates not only allows their individual morphological characterization and 
therefore a more precise description of their activation, but as well offers an opportunity to design multiplex 
measurements. With this approach different stimuli can be investigated in parallel and measure cellular avidity 
to targets, an important aspect of gaining more and more attention recently in characterization of T-cells and 
antibody effector functions. 

Finally, novel label-free approaches provide a solution to extracting unlabeled cells for downstream processing 
(e.g., transcriptome analysis, cloning or the aforementioned clinical potential), where ongoing and potential 
further applications are discussed.   

1. Introduction 

Immune monitoring assays provide insight into the state of an in-
dividual’s immune system [1]. This information is essential to determine 
the efficacy of various immune therapies to treat malignancies, auto-
immune diseases and cancer, to understand changes of the immune 
system during infectious diseases, as well as to monitor the effect of 
vaccination. There is a clinical need for standardized test for this pur-
pose [2]. Deciphering immunological parameters is necessary to reach 
personalized medicine [3]. Peripheral blood is the most commonly used 
sample source, where cells, proteins, metabolites, etc. are readily 

available for testing. In order to minimize assay variation, in an ideal 
setting, it is suggested to apply minimal sample preparation and also 
reducing the variety of reagents, labels as much as possible. Label-free 
biosensors with the capability to monitor single cells seem perfectly fit 
for such measurements and offer the chance to characterize immuno-
logical reactions solely based on the intrinsic properties of live cells in 
during their interaction with various stimuli on the sensor surface. In 
this review we provide an overview on recent advances in this field. 

The importance of cellular heterogeneity found in blood is well 
established in hematology and oncology ever since the first blood film 
based diagnostic approaches emerged [4]. Laboratory analysis of blood 

* Corresponding author. 
E-mail address: zoltan.szittner@gmail.com (Z. Szittner).  

Contents lists available at ScienceDirect 

Advances in Colloid and Interface Science 

journal homepage: www.elsevier.com/locate/cis 

https://doi.org/10.1016/j.cis.2022.102727 
Received 15 February 2022; Received in revised form 25 May 2022; Accepted 27 June 2022   

mailto:zoltan.szittner@gmail.com
www.sciencedirect.com/science/journal/00018686
https://www.elsevier.com/locate/cis
https://doi.org/10.1016/j.cis.2022.102727
https://doi.org/10.1016/j.cis.2022.102727
https://doi.org/10.1016/j.cis.2022.102727
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cis.2022.102727&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Advances in Colloid and Interface Science 308 (2022) 102727

2

composition is a centerpiece of clinical routine tests and is mainly per-
formed by automated cell counters and hemoanalyzers [5], based on the 
light scattering properties of single cells. Leukocyte recognition and 
typing is on the verge of full automation, based on image analysis of the 
classical blood smears [6–13]. Recent advances, however, provide 
further advancement in the label-free preparation and analysis of blood- 
smears [14]. Label-free hematological analysis has provided multiple 
approaches for further automation of this process, however, solely based 
on autofluorescence these methods not ready to provide the precision 
for clinical diagnostics [15]. 

When further analysis is necessary flow cytometry based immuno-
phenotyping [16] is the main approach next to the classical blood smear 
based morphological analysis. While the classical methods reveal the 
heterogeneity in white blood cell morphology and identify various ab-
normalities, they lack the capability to study the function of the cells. 
Flow cytometry (hereafter FC), however, offers multiple different 
functional assays [17]. The main limitation of FC is the necessary use of 
labels, which are also an important limiting factor for investigations 
outside of well-equipped laboratories, where recent advances currently 
allow over 30 parallel fluorescent channels in FC to be used. This 
number can be possibly further increased, however, the reagent costs 
and trained personnel requirements may limit its use outside of 
specialized laboratories. Most FC assays are performed in solution, while 
activation of white blood cells mainly occurs on the surface of sub-
strates, where adhesion of the cells plays a crucial role in their activation 
[18]. 

In an ideal study setting, immune monitoring is based on the mea-
surement of all its components’ interactions with various ligands or their 
combination on a positional microarray. Here, all constituents of blood 
could possibly react with each ligand (for example peptide-MHC ((Major 
Histocompatibility Complex) complex as a ligand for T-cells, or anti-
bodies binding to substrate attached antigens as a ligand for various 
antibody dependent effector cells). Since the theoretical number of li-
gands and their combination is limitless, the positional array format 
seems necessary for assays where a large number of ligands are to be 
studied. Optimally such an approach would also need to be label-free in 
order to minimize the chance of interfering with the ligands’ 
functionality. 

Primarily in immunology, antibodies are used to label cell surface 
markers, however, their tendency to bind to certain cell populations is 
well known and therefore it is important to note that these might 
interfere with immunophenotyping, even when compared to matched 
isotype controls in flow cytomettry [19] and immunohistochemistry as 
well [20].However, single-cell-based approaches are already available 
for immunology as well [21]. Through micromanipulation, single cells 
can be isolated in microfluidic systems, for example, where various 
biosensors can be used to detect cells, their activation, or secreted pro-
teins [22–24]. Label-free biosensor approaches provide further advan-
tages since the activation of the cells can be measured in a kinetic 
manner; moreover, these methods also have the potential to study cells 
in a nondestructive way and thus enable downstream analysis and 
further processing of the cells with other techniques of interest. On the 
molecular level, recent developments in mass spectrometry enable label- 
free proteomic and metabolomic studies as well, even from a single cells 
[25,26]. 

With the arrival of the transcriptomic era the importance of single 
cell analysis gained further momentum. Single-cell transcriptomics 
revealed further complexity of leukocyte subpopulations and now one of 
the main challenges is to reduce this complexity through biomarkers to 
explain certain clinical conditions, highlighting the need for biosensor 
based approaches to keep up the pace in order to provide further insight 
by phenotypical characterization of the investigated cells. 

Microfluidics provides an excellent tool for separating sub-
populations of white blood cells, isolate them, and study them on a 
single-cell level. Recent developments in these immunoassays mainly 
focused on miniaturization and point-of-care realization of well- 

established techniques. Most microfluidic assays still utilize labels, 
such as antibodies or fluorescent reporter molecules, and therefore in-
crease complexity and preparation time of the assay and possibly 
interfering with the observed phenomena. Microfluidics has greatly 
contributed to the single-cell studies, including droplet microfluidics in 
scRNAseq and isolation rare cell populations, such as circulating tumor 
cells from liquid biopsies [27]. Moreover, separation techniques based 
on cell size, density and stiffness make microfluidics an important 
component of point-of-care (POC) lab-on-a-chip applications. In many 
cases, the biosensors are already integrated into microfluidic platforms 
[28] or into novel solutions where flow conditions over the adhering 
cells can be easily tuned in a high-throughput manner [29]. For 
example, using microfluidics, Gopalakrishnan et al. fabricated a 
microsystem that allowed them to monitor the migration and chemo-
taxis of immune cells in real time [30], and microfluidic approaches 
provide further technological advances to study immune cells [31]. 

The development of biosensors, transducers, and assay surfaces is 
entering its stage where single-cell studies are possible even in a label- 
free manner, as supported by the various techniques and pre-designed 
assay surfaces [32–34]. We think that at this stage the next important 
step in immunological applications by using these novel live cell assays 
is to gather information on the clinical manifestation of various patient 
groups, find strong correlations when comparing measured parameters 
of immune cell activation with established gold standard methods, and 
thus enable the decentralization of functional cell based diagnostics. 
Cells-based biosensors have recently gained the center of attention and 
offer the benefit of studying single cells, their response to various signals 
and compounds, their secretory activity. Recent reviews discuss key 
results in the field of cell-based sensors [35,36]. 

Biomarkers are of emerging importance. While by their nature ge-
netic, biochemical, cellular, histopathological, clinical or imaging-based 
biomarkers, based on their utility, can be diagnostic, prognostic, pre-
dictive, and pharmacodynamic [37]. It is important to point out that the 
majority of the currently applied biomarkers are of molecular nature; 
however, cellular phenotypic biomarkers are based on intrinsic bio-
physical properties of the cell and are therefore suitable for label-free 
immune monitoring. 

It is important to make a distinction between the two main directions 
of biosensor studies. Miniaturization and simplification of various 
immunological assays paves the way for POC applications, and thus, by 
increasing availability, these techniques have the potential to expand 
our current understanding of various biomarkers in larger sample 
groups, and further enlighten the heterogeneity in immune status within 
individuals and populations. These approaches focus on the detection of 
antigen specific antibodies and cytokines, as discussed in detail below. 
By potentially expanding the scope of these miniaturization efforts, 
these techniques offer great benefit by increasing the availability of 
measurements already performed in the laboratories. However, these 
techniques lack the potential of further characterizing immune status 
beyond the limitations of current techniques. On the other hand, bio-
sensors have the potential to help us identifying novel biomarkers of 
cellular phenotypic nature. This is especially important in the multi- 
omics era of immunology; however, biosensors are not yet considered 
as a mainstream application in this field and are mostly confined to 
research laboratories [38]. Another direction in the field is the immune 
organ-on-a-chip approach, however, due to complexity of generating the 
cellular architecture, these approaches, at least for now, are extremely 
difficult to adopt outside of laboratory [39]. We also believe that 
phenotypical characterization of single cells, their responsivity and 
activation on different substrates could be established in low-resource 
settings in the form of POC setups [40]. Similarly to recent de-
velopments in the selection of medical treatment as seen in pharmaco-
genetics, decision support tools could expand their scope and offer 
additional support and enable evidence-based medicine in further areas 
[41]. 

In this review we overview the most important optical, electrical and 
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mechanical label-free technologies having the greatest potentials in 
immune cell studies and application developments. We give special 
attention to surface sensitive methods, as well as the functionalization of 
transducer surfaces for a specific biological or biotechnological appli-
cation. Novel solutions capable of selecting and isolating individual cells 
from a larger cell population are also discussed, by mainly focusing on 
techniques which are minimally invasive, thus allowing further pro-
cessing of the targeted cells. We also review recent data from label-free 
solutions to characterize and/or identify leukocyte subpopulations and 
their activation response to stimuli by various ligands. 

2. Technological overview of label-free biosensors 

Traditionally biosensors consist of three main subunits: (i) the bio-
logically active ligands (receptor, enzyme, aptamer, etc.), that enable 
binding of the analytes, such as proteins, metabolites, DNA, bacteria or 
even whole mammalian cells in a specific manner. (ii) The detector or 
transducer element that transforms the biological response into a 
measurable output signal, and (iii) a suitable signal processing unit that 
produces the final biosensor data [42]. Biosensors can be also catego-
rized based on the analyte, biological ligand, type of transducer, and 
field of application. Briefly, based on the type of transducer, electrical, 
optical and mechanical biosensors were developed with each type 
consisting multiple slightly different approaches [32,42–44]. Schematic 
illustrations of label-free optical biosensor technologies are shown in 
Fig. 1, electrical methods are in Fig. 2 and the mechanical ones are in 
Fig. 3. 

Biosensor spatial resolution is an important parameter because it 
determines whether population, single cell, or subcellular characteris-
tics and responses can be studied. Although microscopy techniques are 
classically not considered to be biosensors, these approaches allow us to 
decipher the cellular heterogeneity and identify cells also in biosensor- 

based measurements. Flexibility and availability make these tech-
niques highly important and can be easily combined with biosensors and 
used to confirm the results [45]. When considering blood as a complex 
mixture of analytes or purified white blood cells (WBCs) identification is 
a great challenge. Multiple different strategies based on label-free im-
aging techniques have recently showed that these methods are essential 
and capable of correctly identifying leukocyte subsets. Most impor-
tantly, molecular imaging with deep-ultraviolet microscopy was pre-
sented as readily available for complete hematology analysis, which 
could also pave the way for POC applications and a new era of hema-
tology analyzers [14]. Other autofluorescence-based imaging methods, 
such as fluorescence lifetime imaging microscopy (FLIM) [46], have the 
advantage of subcellular resolution, allowing the monitoring of differ-
entiation, redox state and metabolism of the investigated cell thus 
providing an excellent platform to characterize leukocytes [47]. Digital 
holographic microscopy through quantitative phase contrast imaging is 
another promising technique that has the ability to monitor multiple 
morphologic parameters and motility of the investigated cells [48] (see 
Fig. 1A). This technology is now available in a highly miniaturized 
format, suitable for in situ live cell measurements inside a humidified 
incubator [49–51]. Cellular parameters like motility, migration, prolif-
eration rate, and morphological parameters such as optical thickness, 
volume and cell area can be measured in a straightforward manner, and 
these parameters for large cell populations can be investigated. The 
technology was already demonstrated in small molecular studies [49], 
label-free toxicology [51] and in cell invasion studies [50]. Most label- 
free optical biosensors are based on refractive index and allow the ki-
netic measurement of molecular and cellular interactions [52]. These 
biosensors are considered among the most successful biosensors for 
studying molecular interactions, and surface plasmon resonance (SPR) 
and waveguide-based biosensors (Optical Waveguide Lightmode Spec-
troscopy (OWLS), Resonant Waveguide Grating (RWG)) are applied to 

Fig. 1. Label-free optical biosensor technologies for cellular studies. Schemes show working principle of A. digital holographic microscopy, B. surface plasmon 
resonance (SPR), C. optical waveguide lightmode spectroscopy (OWLS), D. resonant wavelength grating (RWG), E. molography, F, surface enhanced Raman spec-
troscopy (SERS) and G. optical tweezers. Figures adapted from [32,44]. 
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studying whole cells as well [32,53–58]. Among these SPR and RWG 
based optical sensors are in the most developed stage with multiple 
different approach being very close to clinical application, mainly in the 
detection of antigen specific antibodies [59]. An important new devel-
opment is molography (see Fig. 1E), allowing molecular kinetic analysis 
even inside the cells. In molography, receptor molecules are arranged in 
a special nanopattern and using a suitable optical readout the binding 
signal from this pattern is read out, significantly reducing the signal of 
nonspecific binding events [60–63]. 

RWG technique employs an evanescent electromagnetic field to 
sense changes in the local refractive index within the sensing volume 
(~150 nm) close to the sensor surface [64]. The integrated response 
profiles of whole cells can be followed kinetically in a high-throughput 
format using biosensor microplates. This technique has already become 
widespread and has been applied for the discovery of cell-to-surface 

adhesion kinetics [65], cell adhesion and detachment at different flow 
velocities [29], finding out the role of cancer cell glycocalyx during the 
adhesion process [66], and quantification of integrin–ligand binding 
affinity in intact living cells [67,68]. It can also be easily applied to 
monitor cytotoxicity [51,69], tracking small molecule binding [70], and 
real-time kinetics and dynamics of nanoparticle interaction with cells 
[71]. Schröder et al. presented how this technique can be applied to 
monitor dynamic mass redistribution of adherent cells in response to 
various known agonists of the G protein–coupled receptor (GPCR) and 
thus allows dissecting complex GPCR signals [72]. 

In addition to the detection of adherent cell signaling of different cell 
lines [64,73] and primary endothelial cells [74], this technique was 
successfully applied to follow signaling events in non-adherent cells as 
well. Receptor-triggered integrated cellular responses were studied in 
different B cell lines [75,76], primary human neutrophils [77] and 

Fig. 2. Label-free electrical methods for cell analysis. Schemes show working principle of A, dielectrophoresis, B electric cell-substrate impedance sensing (ECIS) and 
C. impedance flow cytometry (IFC). Figures adapted from [85–87]. 

Fig. 3. Label-free mechanical technologies for cellular studies and single-cell targeting and isolation. Schemes show working principle of A. atomic force microscopy 
(AFM), B. fluidic force microscopy (FluidFM), C. quartz crystal microbalance (QCM), D. acustophoresis, E. computer controlled micropipette (CCMP), F. piezo 
micropipette, G. traction force microscopy (TFM), and H. micropillar cantilever. Figures adapted from [32,44]. 
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human primary B cells [78]. 
This technique has also shown promise at the single-cell level 

detecting spheroidal cancer cell invasion [79]. Recently, the RWG 
biosensor was combined with robotic fluidic force microscopy (FluidFM, 
the instrument is also called FluidFM OMNIUM) for surface adhesion 
force calibration in single cells [33]. This development allowed for the 
measurement of cell adhesion force kinetics of large cell populations for 
the first time. Importantly, surface plasmon based technologies 
including Surface Enhanced Raman Spectroscopy (SERS) also have the 
potential of POC applications [80]. However, in most cases the clinical 
accreditation is still missing, therefore validation criteria is to be tightly 
followed when considering marketing such applications [81]. Optical 
tweezers are considered as one of the most sensitive methods for 
measuring forces in a liquid environment, by exploiting the optical 
forces on dielectric materials inside the focal spot of a laser beam. Force 
measurement in the pN range is perfectly suitable using this technique, 
even allowing the characterization of the forces of individual biomole-
cular events [82,83]. Using special microtools and multiple laser spots, 
novel arrangements were also demonstrated to measure cell adhesion 
forces and cell mechanical parameters [84]. 

Impedance-based technologies allow label-free characterization of 
adherent cells in electric cell-substrate impedance sensing (ECIS) and as 
well cells in solution in impedance flow cytometry (IFC), based on their 
electrical properties [88]. This versatile technique has been shown to be 
valuable in combination with microfluidics to separate certain sub-
populations of leukocytes and enrich circulating tumor cells (CTC) [88]. 
Furthermore, cellular activation and differentiation can be monitored, 
also with cells in solution [89]. For adherent cells ECIS can be used to 
monitor viability [90,91], changes in adhesion [92], morphology, pro-
liferation, migration, spreading of the cells [93,94], their response to 
pharmaceutical compounds [95] and to viral infection [96]. 

Similarly, dielectrophoresis (DEP), both insulator- and electrode- 
based, has been developed to separate cells based on their dielectric 
activity. Due to the lower field strength, insulator-based DEP offers a 
higher viability and, therefore, offers significantly longer analysis time 
while preserving integrity of the cells [97]. Importantly, DEP based 
technologies are also applicable on a single-cell level, offering another 
approach to prepare cell suspensions for single-cell analysis [98]. Zhang 
et al. demonstrated that DEP allows for a detailed characterization of 
single cells through determining biophysical parameters such as cell 
radius, specific membrane capacitance, and cytoplasm conductivity 
[99]. For further details on DEP we recommend the recent review of 
Henslee [100]. 

Biosensors based on mechanical principles allow sensitive moni-
toring of cellular and molecular interactions. Here the readout is based 
on mechanical deformation sensed through changes in electrical re-
sistivity in the semiconductor or displacement of the light in the sensor 
[101]. After calibration, such techniques provide a straightforward 
answer to the cellular response to a ligand of interest. Multiple different 
platforms were developed to study the cell-substrate interaction on a 
single cell level [102]. Notably, traction force microscopy was the first 
technique that exploited elastic properties of various hydrogels, such as 
polyacrylamide gels, to monitor the forces exerted by cells on extra-
cellular matrix components for example [103]. Here, fluorescent 
markers can be used to determine the forces exerted by cells on the 
substrate [104]. Micropillar based methods followed, where bending of 
the functionalized micropillars is readily measurable. Importantly this 
allows monitoring in a completely noninvasive manner [103]. 

Single cell (and molecule) adhesion force can be studied using 
functionalized microcantilevers, typically using atomic force micro-
scopy (AFM) [105] in single-cell force spectoscopy [106]. However, the 
throughput of these methods is relatively low. Incorporation of a 
microfluidic channel can greatly improve the speed of data acquisition 
[33]. As avidity sums up the binding force in between receptors of the 
cells and their ligands, these techniques provide an important tool for 
studying these interactions. Further techniques to study single cell 

adhesion force are discussed in detail in the recent review by Ungai- 
Salánki et al. [44] Shinde et al. [107] and Saffioti et al. [18]. 

Piezoelectric crystal based sensors enable sensitive monitoring of 
ligand receptor interactions. Mass accumulation on the sensor surface 
results in a decrease in the frequency of the applied acoustic wave res-
onators. Quartz crystal microbalance (QCM) was one of the first bio-
sensors developed on this principle [108,109]. This technique was 
extensively applied to determine cell-extracellular matrix interactions, 
typically adhesion through the integrins of the cells [110,111]. Recent 
developments allow monitoring of motility, proliferation, signaling, and 
morphology as well [112]. 

Recent results demonstrated an additional application of acoustic 
waves to characterize and separate cells. Urbansky et al. showed that 
acustophoresis allows multiplex separation of leukocytes into the three 
main subpopulations, in a high-throughput, label-free manner [113]. 
This approach was less efficient in regard of purity of the monocyte 
fraction, however, Hu et al. showed that combining optical with acoustic 
biosensors the purity of these fractions can be raised to over 95% [114]. 
By applying acoustic forces on single T cells, Kamsma et al. reported that 
T cell avidity and adhesion kinetics [115] can be determined by acoustic 
force spectroscopy [116]. (This principle is also applied by Lumicks to 
determine avidity of T cells and NK cells). Advances in acoustic micro-
manipulation was reviewed recently by Akkoyoun et al. and the tech-
nology shows promising results separating, sorting and patterning 
particles and cells as well [117]. 

The mechanical properties of the cells are of increasing interest. Next 
to morphology, biophysical properties of the cells, such as deform-
ability, mass and stiffness, can as well be applied to characterize the 
activation state of certain leukocyte subpopulations [118–121]. In 
agreement with others [120], we believe that development of platforms 
allowing content-rich multiparametric biophysical cytometry in a 
nondestructive manner shows tremendous potential in biomarker dis-
covery. In our view, these parameters are particularly important targets 
for investigation. The mechanical properties of the environment sur-
rounding the cells are as well of great importance. Mechano-
transduction, through sensing for example substrate stiffness, was 
shown to influence the activation state of the cells and therefore should 
be considered as an important experimental parameter when studying 
cellular activation [122]. This notion fuels the emerging field of 
mechanoimmunology as well [123]. 

Typical measurement results by employing novel label-free tech-
niques (RWG, digital holographic microscopy, computer controlled 
micropipette and FliuidFM) are shown in Fig. 4. 

3. Surface functionalization 

These properties can be modified during sensor design and applica-
tion of various substrates. Substrates may vary in the degree to which 
they resemble the in vivo environment. Also, their stiffness may be 
different, just as their ligand binding capacity, for example, in the case of 
hydrogels [126]. Song et al. in their recent paper discuss biosensor 
interface design and substrate options in detail [127]. However, for each 
sensing principle a different approach should be considered 
[126,128,129], ranging from biomimetic membranes to hydrogels. 

Functionalization of the sensor with the ligands of interest is highly 
dependent on the nature of the ligand and the applied solid support 
[130]. Ranging from simple adsorption to covalently attached ligands 
and affinity-based oriented ligand deposition, many different strategies 
are available for ligand immobilization [131]. Examples for antibody 
immobilization onto the sensor surface are shown in Fig. 5. It is 
important to keep in mind that the different immobilization strategies 
may abolish the biological activity of the ligand. For details on this topic, 
we recommend the review by Asal et al. to the reader [132]. The ad-
vancements in the implementation of dynamic surfaces offer a highly 
useful tool by enabling the modification of the substrate and the ligands 
applied in the biosensor. These surfaces allow changing hydrophobicity 
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Fig. 4. Typical measurement results by employing 
novel label-free techniques. A, Real-time cell adhe-
sion kinetic curves received by RWG biosensor. The 
effect of a certain compound on cell adhesion is 
measurable very easily; the kinetic curves show the 
inhibitory effect in a concentration dependent 
manner [67]. B, The adsorption of a compound and 
the cell adhesion on this treated surface can be 
monitored online and in a label-free way by RWG 
biosensor [70]. C, Kinetic curves of nanoparticle 
penetration into cells monitored by RWG biosensor 
[71]. D, Kinetic curves of exosome (small extracel-
lular vesicles) adsorption [124]. E, Signalization ki-
netic curves of BJAB cell line with different 
concentrations of BCR-specific antibodies [76]. F, 3D 
image of a cell by holographic transmission micro-
scopy [49]. G, The measured population distributions 
of single-cell adhesivity and the corresponding 
lognormal fits (red lines) for the control population 
(left) and for the employed chondroitinase ABC 
(ChrABC) enzyme concentration (right) by single-cell 
RWG biosensor. The ChrABC enzyme digest the 
chains of the glycocalyx of the cells [125]. H, Sub-
population analysis of HeLa cells on different RGD 
densities by computer controlled micropipette (left), 
dependence of the fraction of weakly, moderately, 
and strongly adhered cells on the RGD density. His-
tograms of cell detachment calculated from the 
detachment curves received by computer controlled 
micropipette (right). The inset shows the poly(L- 
lysine)-graft-poly(ethylene glycol-RGD to) poly(L- 
lysine)-graft-poly(ethylene glycol) percentage ratio 
(Q) of the surfaces on which the cells were seeded 
[58]. I, Single-cell level high-throughput adhesion 
force and energy results of large cell population ob-
tained by the calibrated biosensor. Adhesion spec-
trogram: the representation gives insight to the real- 
time single-cell level statistics of a typical measure-
ment. The color bar indicates the relative frequency 
on a logarithmic scale of a given bin value of force, 
energy or integrated wavelength shift (interpolation 
degree k = 0). The inset on the right shows a typical 
force-distance curve of a measured cell and its eval-
uation by FluidFM [33].   
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and stiffness for example and as well the release of captured cells for 
example [133]. 

The phenomenon of non-specific binding (NSB) is of outmost 
importance in biosensor measurements. During and after functionali-
zation, biomolecules, especially from complex samples, can bind and 
absorb onto the non-blocked sensor surface, furthermore secondary 
antibodies used in many assays may bind in a non-specific manner. We 
recommend the review of Frutiger et al. discussing the theory of NSB 
[134] and also the review from Lichtenberg et al. discussing the problem 
from a more practical point of view [135]. Similarly cells may as well 
bind to the sensor surface in a nonspecific manner, both through van der 
Waals forces and in the case when applying organic solid supports some 
cell types may bind readily to the support without regard on the 
attached ligand [136]. The functionalization of the biosensor surface is 
typically based on covalent modification of the sensing surfaces. 
Traditional sensing surfaces are made of either metals or dielectric (e.g. 
metal-oxide, glass) materials. Nowadays the choice of material is shift-
ing towards plastic materials, which are cheaper and versatile. It holds 
especially true for cell-based biosensors taking polystyrene from con-
ventional cell/tissue culturing. The surface of tissue culture polystyrene 
(TCPS) is modified with carboxyl, hydroxyl, ketone, or formyl groups to 
permit cell attachment and proliferation. 

The first step of covalent modification of sensing surfaces (inorganic 
or organic) is a promoter molecular layer, typically a silane layer. The 
silane molecule is characterized by head groups (e.g. alkoxysilane) for 
the covalent binding to the surface and end groups (amino, mercapto, 
carboxyl, epoxy, etc.) representing a moiety to the environment for 
further cross-linking. The silane modification of surfaces has been 
extensively studied and discussed in monographs [137]. It provides a 
stable cross-linking with various chemical moieties. A typical example of 

silane-based immobilization is the successful application of IgG proteins 
in biosensors, immunosensors, and microarrays [138,139]. Although 
silanization is a possible route for TCPS surfaces, these surfaces are 
usually plasma treated (etching and oxidation) converting the poly-
styrene into a highly carboxylated form. Other plasma processes yield a 
hydroxylic surface where the above described silane chemistry can be 
used to crosslink a ligand or a biopolymer of choice. 

In cell-related biosensor studies, it was obvious to use the surface 
coating techniques of those explored already in cell cultures. These 
coatings have been developed with the aim of improving culture prac-
tice using extracellular matrix analogs, such as collagen. Other biolog-
ical polymers, such as agar, poly-L-lysine, or cellulose, were also put in 
practice. A relatively well-understood step of cellular adhesion is related 
to a specific recognition of the tripeptide motif RGD by the integrins, as 
discussed earlier, leading to focal adhesion. Many of the biopolymers 
(natural or synthetic) utilize this RGD motif to create a natural envi-
ronment for the cells that resembles the most to the extracellular matrix. 
As different adhesion molecules were discovered, the related moieties 
were identified [140]. These are the so-called cues that can significantly 
enhance the cell adhesion and thus utilized in surface coating. 

Parallel investigations were run in order to understand how the 
surface polarity (hydrophobicity) and stiffness affect cell viability and 
proliferation. These surface properties were categorized to chemical and 
physical (mechanical); however, it turns out eventually that these are 
interrelated. Regarding the surface polarity, the water contact angle is 
used to characterize the surface quality. It was used frequently to 
monitor the preparation steps in simple biosensor experiments to assess 
the efficiency of a coating step. It was thought that water contact angle 
would directly determine the adsorption of proteins and consequently 
the cell behavior on surfaces, however, recent studies demonstrate a less 

Fig. 5. Various strategies to immobilize specific an-
tibodies on solid surfaces was performed by Farkas 
et al. Optical Waveguide Lightmode Spectroscopy 
(OWLS) was proved to be an excellent tool to char-
acterize both the in-situ layer build-up and the 
orientation of the deposited antibodies. The latter was 
performed through optical anisotropy analysis of the 
fabricated thin films. Oriented layers show optical 
anisotropy, which is missing for a randomly oriented 
antibody layer. A. PLL-g-PEG-biotin avidin B. 
Mix&Go (also called AnteoBind) and C. protein A 
based coupling [147].   
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decisive role [141]. Nevertheless, it is generally accepted that a 
moderately hydrophilic environment is advantageous for cell adhesion. 
For example, mesenchymal stem cells have been shown to differentiate 
via adipogenic or osteogenic pathways on t-butyl and phosphate 
–functionalized surfaces, respectively [142]. Other findings also show 
that cell phenotype is related to the properties of the matrix surface. 
Mechanical properties [143,144], density [145] of bioactive molecules 
could induce macrophages polarization, and promote tissue 
regeneration. 

The advancements in the implementation of dynamic surfaces offer a 
highly useful tool by enabling the modification of the substrate and the 
ligands applied in the biosensor. These surfaces allow changing hydro-
phobicity and stiffness for example and as well the release of captured 
cells for example [146]. 

4. Label-free blood cell characterization with biosensors 

Cellular elements of the blood, including leukocytes, erythrocytes 
and thrombocytes all rise from the pluripotent hematopoietic stem cells 
in the bone marrow. Through multiple steps these cells differentiate into 
myeloid and lymphoid precursor cells. These precursors have limited 
differentiation potential. The myeloid lineage consists of monocytes 
(and their progeny the macrophages and some of the dendritic cells), 
dendritic cells and granulocytes. It should be noted that the dendritic 
cell may arise from multiple origins. The lymphoid lineage contains T 
and B cells and natural killer cells [148]. 

The cellular composition of blood determines the availability of the 
various cell types. Since the proportion of leukocyte subtypes is already 
informative the composition of blood the cells of interest measured in 
the assays are to be identified. Reference intervals of main leukocytes 
subpopulations are defined [149] and provide highly important insight 
when designing biosensor based measurements with the goal to study a 
specific subset. As discussed, briefly, the label-free techniques just 
reached the point of leukocyte subtype identification, and therefore the 
integration of these in biosensor platform is highly desirable. Until these 
are widely available classical stains and post measurement label-based 
identification is to be considered/ recommended. 

The cells of the innate and adaptive parts of the immune system 
orchestrate the defense against foreign antigens. To mount a sufficient 
immune response, immune cells are known for their ability to produce, 
recognize, and respond to cytokines. This small protein, polypeptide 
agents are the primary means for communication between immune cells 
throughout the body. These immunomodulatory agents may provide 
signals in an autocrine or paracrine fashion, and orchestrate the humoral 
and cell based immune response. Importantly the effect of cytokines is 
pleiotropic; therefore, their measurement requires multiplex approach 
to determine the direction of the immune response. In a simplified view 
pro- and anti-inflammatory cytokines are distinguished; however, their 
role in controlling differentiation, signaling, activation, and prolifera-
tion for example is more and more understood. 

The heterogeneity observed in leukocyte responsiveness to various 
stimuli even in genetically identical cells, due to the stochasticity of the 
biochemical reactions controlling their phenotype, the net effect of 
cytokine induced response in each cell type is hardly deductible from the 
cytokine profiles in various patients. An important aspect, when 
studying immune cell response, is that multiple cell subsets may play a 
role in a given immune status; therefore, it is recommended to study 
their responses from a systems point of view to various stimuli [150]. 
For immune monitoring purposes the current guidelines recommend 
avoiding preprocessing of blood to minimize preanalytical error [151]. 
This could possibly help us minimize intra-center variability and as well 
provide the foundations of POC applications. In order to handle the 
heterogeneity, the application of systems approach is beneficial just as in 
case it was demonstrated with gene expression profiling in the case of 
investigating Toll like receptor TLR ligands for example [152]. 

Single-cell parameters may not alleviate the burden of clinical 

studies aiming to identify cellular behavior and activation in healthy 
and patients group. However, biosensor-based cell characterization may 
lower reagent costs and may allow simplified diagnostic approaches. 
Defining normal in a diverse population is a highly difficult task and it is 
a prerequisite of applying biosensor-based cell characterization in 
healthcare. Therefore, establishment of the baseline reference intervals 
is to be done for each parameter. Despite defining underlying mecha-
nisms in various states of the human immune system, the question “How 
is my immune system?” is still waiting to be answered, no simple 
readout ready yet to give an overall response [153]. When studying the 
state of the immune system and its reaction to perturbations, such as 
vaccination, both genetic and phenotypic variation is to be taken into 
consideration to provide the means of precision medicine, in order to 
predict immune response quality based on biomarkers [154]. Similarly 
identification of baseline level of biomarkers is an important factor in 
predicting therapy response in tumor immunology [155] and organ 
transplantation [156]. Multiple layers of heterogeneity can be identified 
within immune cells. First the subpopulations of the leukocytes, that can 
be more distinct, such as in the case of T or B cells, or more continuous as 
in the case of macrophage polarization for example. The second layer of 
heterogeneity is the responsiveness and hence the activation of the cells. 
This important aspect is understood to be multifactorial, age, sex and 
genetics all play a role on a transcriptional level [157]. Furthermore, 
non-heritable factors, such as previous infections, as in the case of 
cytomegalovirus, may explain a large portion of the observed variation 
[158]. 

In the following part we will discuss the most important achieve-
ments regarding monitoring leukocyte activation with biosensors. Fig. 6 
shows examples of leukocyte functions detectable by label-free methods. 

4.1. Neutrophil granulocytes 

The name granulocyte refers to the densely granulated cytoplasm of 
these cells. Subgroups of the granulocytes are differentiated on the 
staining properties of these granules: neutrophil, eosinophil, and baso-
phil granulocytes. Each of these granules contains various effector 
molecules, characteristic to the cell type. Due to their oddly-shaped 
nucleus, they are also often referred to as polymorphonuclear cells 
(PMNs). These cells are short lived, and their numbers may rise in the 
circulation due to infection for example. Under normal circumstances 
only fully matured granulocytes leave the bone marrow, however, 
during infection precursors also appear in blood samples. 

After entering the circulation, neutrophils migrate to inflamed or 
infected tissues where they play an important role as the first line of the 
cellular immune response. Classical neutrophil functions include the 
release of antimicrobial granule content, phagocytosis, and killing of 
microbes through the production of reactive oxygen species and ejecting 
their nuclear material to trap microbes in a process called NETosis 
[159]. However, recent research showed that neutrophils are tran-
scriptionally active, produce various factors, such as cytokines and other 
immune mediators, and are thus important in shaping the immune 
response as well. Moreover, recent research showed that neutrophils 
themselves are a heterogeneous population. Their maturation is 
completed in the circulation, during which their receptor expression 
profile may change for example due to the presence of various foreign 
molecules. Importantly their functional capacity also seems to be 
affected by the circadian rhythm. Lymphocyte- neutrophil ratio was also 
found to be a useful predictive marker of tumor progression. Neutrophils 
express various pattern recognition receptors, Fc and complement re-
ceptors as well [160]. During sepsis, a life-threatening condition, many 
neutrophil functions, such as tissue migration, egress from the bone 
marrow, and NETosis capacity, were found to be impaired. It is also 
suggested that restoring neutrophil functions during sepsis facilitates the 
clearance of bacteria and restoring homeostasis [161]. The constant 
presence of microbes activating the immune system leads to hyper-
inflammation, leading to a cytokine storm. Importantly biomarkers 
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available for early detection of sepsis in the clinics are limited and 
affected by the heterogeneity of the patient population and the time 
sensitive nature of biomarker elevation [162,163]. Despite being a 
major cause of death for patients in intensive care units, there is no gold 
standard assay to monitor sepsis and new diagnostic and prognostic 
biomarkers are needed to characterize sepsis [164]. Due to the complex 
nature of sepsis, a personalized approach is recommended. Although in 
sepsis the impaired chemotaxis of neutrophils contribute to insufficient 
elimination of microbes, in other inflammatory diseases increased 
chemotaxis is suspected to contribute to the development of the disease, 
such as in the case of atherosclerosis. Chemotaxis is performed classi-
cally in a Boyden chamber, where a porous membrane allows the cell to 
migrate only actively to the bottom chamber containing attractants. 
Using impedance-based adhesion assays after coating the bottom of the 
membrane with fibrinogen and poly-L-lysine of a cell invasion and 
migration plate Cano et al. designed an Real-Time Cell Analysis (RTCA) 
assay that allows label-free monitoring of neutrophil chemotaxis driven 
by leukotriene B4 and IL-8 [165]. However, when studying neutrophil 
migration further parameters are to be studies as well such as velocity 
and directedness [166]. In their recent work, Jeon et al. showed that 
solely based on their intrinsic electrical properties, leukocytes from 
healthy donors and patients with sepsis can be distinguished with high 
precision [167]. On the basis of their isoelectric position, activated and 
nonactivated cells were identified. After treatment with phorbol 12-myr-
istate 13-acetate (PMA), activated cells showed a lower isodielectric 
point this application offers a great step towards the biosensor-based 
sepsis identification, however, the sample size is to be increased, and 
differential disease cohorts are to be included to further assess the po-
tential of the method. Ellett et al. identified various aspects of neutrophil 
motility in a polydimethylsiloxane (PDMS) microfluidic system to be 
strong indicators of sepsis [168]. CD64 expression on neutrophils is a 
pro-inflammatory biomarker. Hassan et al. designed a microfluidic 
system with a capture chamber and counted the entering and exiting 
cells. They found that when combined with classical methods to di-
agnose sepsis, this measurement can increase the area under the curve of 
the receiver operating characteristic curve in a clinical setting, and 
therefore shows potential as a POC device for sepsis patient stratification 
[169]. Similarly, neutrophil rolling in E-selectin coated PDMS showed 
characteristic alterations in the blood samples from patients with dia-
betes mellitus compared to the control group, importantly, neutrophil 
rolling speed was reported as a functional neutrophil biomarker, indi-
cating low-grade inflammation, next to lower neutrophil counts [170]. 
For a similar purpose, Petchakup et al. developed a PDMS based 
microfluidic impedance cytometer that provides an integrated solution 
for prepurification and functional characterization via detecting 

dielectric properties, opacity and cell size, and thus determination of 
neutrophil extracellular trap formation [171]. These methods could 
prove to be a label-free alternative to current methods applied and 
developed for NET quantification [172]. In their microwell-based 
localized surface plasmon resonance based setup Ali et al. demon-
strated the label-free analysis of single neutrophil granulocytes 
following PMA treatment [173]. Deep-learning based image analysis 
based on bright-field microscopic images Hhaung et al. were able to 
classify activated and inactivated neutrophils, with further improve-
ment these efforts could prove to be useful later in image based WBC 
classification as well [174]. Christensen et al. showed that refracto-
metric resonant wavelength guide-based measurements can be used to 
detect Formyl peptide receptor agonists based on neutrophil activation 
by measuring dynamic mass redistribution of cells sedimentated on the 
sensor surface [77]. Similarly, Bunnfors et al. studied [175] nanoparticle 
based activation of neutrophils with a label-free capacitive sensor, 
however these sensors are not yet able to monitor single cell responses. 
Arend et al. were able to differentiate between bacterial and fungal 
sources of infection with the application of Raman spectroscopy. How-
ever, this method applies fixed samples [176]. To study the interaction 
of live bacteria with neutrophils microwell-based chambers were 
designed, however, to our understanding such platforms were not yet 
combined with biosensors [177]. Finally, Ekpenyong et al. determined 
further mechanical and morphological parameters of neutrophil acti-
vation, such as increased deformability, aspect ratio, and circularity 
[178]. 

4.2. Eosinophil, basophils granulocytes and mast cells 

Due to their shared role in allergic, asthmatic and inflammatory re-
actions eosinophil and basophil granulocytes are often discussed 
together [179]. The number of these cells in the circulation is normally 
very low, below 3% for eosinophils and below 1% for basophils, while 
mast cells are only found in tissues. These cells also share the common 
appearance of Fc epsilon receptors [180]. The high affinity receptors for 
IgE, when cross-linked mediate the instant activation and degranulation 
of the cells, which mirrors and explains the symptoms of allergic re-
actions. Interestingly, FcεRI expression is induced by high levels of 
serum IgE, most likely due to IgE stabilizing the FcεRI in the membrane 
[181]. These cells are also transcriptionally active and their contribution 
to shaping the immune response is also highly important. Although the 
number of basophils and eosinophils is low in the circulation, it can rise 
quickly at sites of tissue injuries, parasitic infection and allergic 
reactions. 

Allergic diseases are caused by a hypersensitive immune response to, 

Fig. 6. Examples of leukocyte functions detectable by label-free biosensors A. proliferation B. chemotaxis C cell polarization and activation D. antigen presentation E. 
degranulation and secretion F. cytotoxicity G. phagocytosis and H. adhesion. 
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in most cases, otherwise harmless environmental antigens, also known 
as allergens. Allergic reactions may affect both the respiratory and the 
digestive systems. Most allergic reactions are triggered by the presence 
of allergen specific IgE molecules. The high-affinity IgE receptor (FcεRI) 
can bind monomer IgE, so these molecules are readily present on the 
surface of cells expressing FcεRI. This process is also called cell sensiti-
zation. Therefore when allergens get in contact and bind to the FcεRI 
bound IgE molecules, they can directly crosslink these receptors, 
resulting in their oligomerization and thus trigger immediate cell acti-
vation [182]. Basophils and Mast cells are the main effectors of allergic 
reactions. Despite their functional similarity and shared ontogeny, their 
transcriptional regulation, function, receptor expression, involvement in 
inflammatory diseases [183], and their set of inflammatory mediators 
differs as well [184,185]. 

Current methods of testing allergens focus on the detection of 
allergen specific serum IgE or apply skin prick tests to verify the aller-
gens. The results of these tests are not predictive enough, moreover, in 
some cases the provocation may be potentially dangerous (triggering 
anaphylaxis). Therefore, a new line of diagnostic assays has been 
developed aiming to monitor basophil activation itself through the 
detection of cell associated biomarkers using flow cytometry [186]. 
These in vitro basophil activation test approaches alleviate the burden of 
potentially life-threatening allergen challenges and may be less limited 
by allergen availability [187]. Such approaches based on cell surface 
marker expression were successfully implemented to monitor oral 
immunotherapy efficacy in food allergy [188]. Importantly from the 
point of the view of the development of label-free approaches, degran-
ulation of Basophils also triggers morphological changes [189].These 
cells highly express FcεRI, and when cross-linked through IgE and al-
lergens, their activation results in the release and de novo synthesis of 
inflammatory mediators, such as histamine, lipid mediators, cytokines 
and other inflammatory mediators. However, to a lower extent, IgE- 
independent activation of basophils and mast cells is known as well, 
for example by PAMPs and cytokines. Through the cytokine secretion, 
they also contribute to the shaping of immune response, for example, 
through the polarizing T-cell differentiation and recruitment of eosino-
phils to the site of activation [190,191]. 

Eosinophil granules contain mediators of the parasite-specific im-
mune response. These granules contain peroxidase, ribonuclease, lipase, 
plasminogen and major basic protein, and are released in a process 
called degranulation [192]. Granules can be released through multiple 
mechanisms, classical degranulation, cytolysis, and piecemeal degran-
ulation [193], a process that allows the selective release of inflammatory 
mediators and cytokines, for example, IL-4 [194]. Through cytolysis 
intact granules are released from the eosinophils which can be found in 
tissues with eosinophilic activation, and express cytokine receptors and 
are able to release their cargo upon activation [195]. These mediators 
are toxic to both host and parasite tissues. Eosinophils are also capable of 
the formation of extracellular traps which consists mitochondrial DNA 
and secretory granules [196,197]. Although their contribution to fungal, 
viral, bacterial and, most importantly, parasitic infections have been 
shown, their role remains highly enigmatic. Their role in the patho-
genesis of asthmatic diseases is the most studied [192]. Hyper-
eosinophilic syndrome is characterized by highly elevated numbers of 
eosinophils, with evidence of tissue infiltration of eosinophils and 
extracellular deposition of eosinophil-derived proteins in the affected 
tissues. The current treatment approach for these patients is to minimize 
tissue injury in an eosinophil-specific manner. This selective inhibition 
of the eosinophil may also contribute to the improved understanding of 
its role in homeostatic processes [198]. In a novel approach, eosinophils 
were targeted with a monoclonal antibody specific to the alpha chain of 
the IL-5 receptor. Surprisingly this treatment lead to almost complete 
depletion of eosinophil granulocytes, without any side effect in the short 
term [199], however, long-term complications cannot be excluded as of 
now [200]. This clearly show that eosinophils are evolutionary 
conserved, likely due to their role in fighting parasitic, such as helminth 

infections. However, their role in healthy in normal immune response 
seems redundant [201]. Unlike basophils and mast cells, eosinophils 
only express a small amount of FcεRI and eosinophils are neither acti-
vated IgE-mediated receptor crosslinking nor could bound monomer IgE 
[202]. However, this seems inducible since eosinophils of patients with 
hypereosinophilic syndrome shows clear contribution of FcεRI in hel-
minth specific response [203]. The contribution of eosinophils is widely 
studied in respiratory diseases such as eosinophilic asthma [204], 
chronic lung disease – where eosinophil content of the sputum is sug-
gested to be a predictive factor for responsiveness to corticosteroid 
treatment [205], and eosinophilic esophagitis for example [206]. 
However, the classification and diagnosis of eosinophilic disorders 
require further improvement [207]. 

Eosinophils from patients with eosinophilic asthma, rhinitis and 
atopic dermatitis showed that the granule content and morphology of 
their circulating eosinophils based on transmission electron microscopy 
is comparable to those from healthy individuals [208]. Importantly, 
these eosinophils were fixed directly after venous blood sampling. In a 
similar study in which healthy and acute asthma donors’ eosinophils 
were allowed to spread on glass at 37 ◦C (where eosinophils likely 
activate by adhesion) a marked difference was observed in their 
spreading and morphology when measured by AFM [209]. Although this 
conclusion was based on very few samples, this approach highlights the 
need to study cells in a functional setting. However, based on optical 
diffraction tomography, Kim et al. showed that the density of the 
eosinophil granules is higher in asthma patients. This technology also 
allows for the monitoring of changes in the refractive index of individual 
organelles in a three dimensional distribution [210]. Image analysis 
based on imaging cytometry also allows for the label-free detection of 
activation state of individual eosinophils. Using the transmission and 
light scattering information Piasecka et al. showed that the activation 
state of eosinophils can be characterized, offering a diagnostic alterna-
tive to biopsy based evaluation [211]. 

Various methods have been introduced to test mast cell degranula-
tion, as a model for IgE- and allergen-mediated cell activation. 
RBL–2H3, a basophilic rat cell line, is widely used in these experiments 
to study inflammatory processes resulting in histamine release. Imaging 
SPR-based studies by Hide et al. established not only the mast cell based 
studies, but showed that the technique is applicable to detect cellular 
response next to molecular interactions. In their first paper they showed 
that the addition of allergen to sensitized mast cells triggers a dose 
dependent response of the cells that is not affected by the exocytosis of 
the granules. The activation was inhibited in the presence of various 
inhibitors as expected [212]. Subsequently, the application of this sys-
tem was expanded to other cell types, primary basophils [213] and 
serum testing using a modified RBL-2H3 clone expressing human IgE 
receptor (FcεRI) [214], optical fiber SPR based detection [215], later 
adapted to impedance-based assays [216], and most importantly to 
single cells [217]. Most recently with a combined impedance and SPR 
based measurement, they showed that results of the combined mea-
surements show similar outcomes and activation of the cells [218]. 
Abassi et al. showed that crosslinking IgE sensitized FcεRI with specific 
antigens resulted in characteristic response measurable in impedance 
electrode based assays and the activation and resulting cell index 
showed response to well-known inhibitors [219]. Following this line of 
experimentation, an impedance-based assay was applied to study the 
effect of various inhibitors of degranulation signaling by evaluating the 
time - dependent cell response profiles resulting from these experiments. 
The response curve and the generated cell indexes allowed clustering of 
the 145 inhibitors test using the ECIS RTCA system, and clearly show 
that the response is dependent on the activation of the various signaling 
molecules’ phosphorylation. Furthermore, the setup was also able to 
detect apoptosis of the cells [220]. Examples of label-free character-
ization of granulocytes are shown in Fig. 7. 
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4.3. Monocytes, macrophages and dendritic cells 

Cells of the mononuclear phagocyte system (MPS) found in blood 
include monocytes, macrophages, and dendritic cells. These cells 
develop from the macrophage and DC progenitors (MDP). Monocytes 
may differentiate into macrophages upon migrating into tissues, and 
monocyte derived DCs as well. However, MDPs give rise common pro-
genitor of human DCs (CDP) that will eventually differentiate into 
conventional dendritic cells (cDCs) [221,222] on the other hand, plas-
macytoid DCs are mainly of lymphoid origin [223,224]. The precursors 
of all dendritic cell subsets can be found in the circulation as well 
[225–227]. This complicated ontogeny also calls for a novel nomen-
clature that includes cellular development to categorize these cells as 
recently suggested [228]. The common characteristic of these cells is 
their phagocytic potential. Through pattern recognition [229,230], Fc 
[231] or complement receptors [232] they contribute to the clearance of 
both apoptotic cell debris and killing of invading microbes. MPS cells are 
highly diverse, as illustrated by their ever-evolving classification [233]. 
Monocytes were initially classified according to their expression of CD14 
and CD16 cell surface receptors [234]. Classical monocytes give rise to 
intermediate and non-classical monocytes in the circulation. However, 
the function of these subgroups was found to overlap in many cases. 
Subsequently, this classification was refined further and novel sub-
groups of monocytes were identified by flow cytometry [226], and with 

the transcriptomics based on gene expression profiling, additional sub-
populations were found [235–237]. Similarly, DCs are highly hetero-
geneous, with now 5 subsets of cDCs suggested, however, some of the 
suggested subpopulations might as well be precursors of other sub-
groups [224]. Tissue resident macrophages seem to be a distinct self- 
maintaining populations with minimal contribution of blood mono-
cytes [238–240]. During inflammation after extravasation monocytes 
and their progeny contribute to the pro-inflammatory response later on 
monocyte derived macrophages may contribute to tissue remodeling 
and wound healing that when not tightly controlled can play a role in 
pathologic conditions as well [241]. This is especially important in for 
example healing after various implants, how various parameters of the 
implant such as stiffness, topography, geometry, etc. shape macrophage 
polarization and facilitate regulators (M2) macrophages over the in-
flammatory macrophages(M1) [242]. The polarization of macrophages 
is controlled by the nature of the pathogen, the available cytokines, and 
tissue environment, resulting in a great diversity among cells of the MPS, 
especially within macrophages [233]. The role and tissue distribution of 
pDCs, cDCs and monocyte-derived dendritic cells differ as well 
[224,225].Just as importantly after phagocytosis these cells bridge 
innate and adaptive immunity through antigen presentation, and 
thereby in the selection and priming of T lymphocytes, also by pro-
ducing cytokines and chemokines to control the direction of the immune 
response. Therefore these cells are of outmost importance in 

Fig. 7. Examples of label-free characterization of granulocytes. A, isoelectric position distribution in healthy and sepsis patient donors’ neutrophil granulocytes 
[167]. B, dose dependent kinetic effect of IL-8 on neutrophil chemotaxis [165]. C, neutrophil activation results reduced deformability [178]. D, Dose dependent 
activation of basophilic cell line RBL-2H3 in SPR [212]. E, Dose dependent apoptosis of basophilic cell line RBL-2H3 based on impedance measurements [220]. F, 
Optical diffraction tomographic pictures of healthy and asthma patient individuals. Granules in asthma patients show elevated refractive index [210]. 
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autoimmune diseases [243], tumor immunology [244–246], and infec-
tious diseases [247–249], among others. 

The spreading of monocytes was demonstrated with OWLS on glassy 
silica–titania sensor surfaces. Here, adhesion and spreading was inhab-
itable by increasing serum concentration. This can work the other way 
as well, for example serum inhibition can be used to block aspecific 
binding of proteins [250].As a follow up various other label-free tech-
niques were applied to study adhesive properties of monocytes, mono-
cyte derived macrophages (MDM) and dendritic cells on fibrinogen and 
PLL-g-PEG–RGD coated surfaces. All cell types investigated here showed 
the strongest binding to fibrinogen followed by the RGD containing 
surfaces, and no binding on the PLL-g-PEG control surfaces when 
measured with optical label-free biosensors. The adhesion of DCs 
resulted in the highest wavelength shift closely followed by the MDMs, 
with monocyte binding showing a weaker adhesion. The authors found 
that these results were in agreement with computer controlled micro-
pipette based results, indicating that an increased wavelength shift also 
means a stronger binding to the surface. These results were found to be 
in agreement with other classical end-point based methods [251]. These 
important results show that interactions of cells with components of the 
extracellular matrix (and potentially any molecule of interest) can be 
monitored in a label-free manner. 

The adhesion of monocytes mediated by Fc receptors to IgG sub-
classes and immune complexes was investigated by SPR imaging. Im-
mune complexes were generated on the surface of the SPR sensor by 
amine coupling of citrullinated RA diagnostic peptide dendrimers and 
immunoglobulins, and BSA as a negative control. After blocking, serum 
samples were incubated and immune complexes generated on the chip 
were detected using U937 cell line [252] -most likely this adhesion is 
mediated by Fc receptors. Although the experiment was not performed 
on cells of the MPS the role of Fc receptors on whole cell adhesion was 
presented by Temming et al. Using imaging SPR the glycan sensitivity of 
FcγR-IgG interaction was investigated. HEK cells, transfected with 
various Fc receptors, were injected into the SPR flow chamber and after 
sedimentation their retention rate was measured after washing with 
increasing flow speed [53]. Similarly, Yan et al. showed binding of 
bovine macrophages to rabbit IgG in QCM measurements and suggested 
that the presented method was capable of semiquantitatively deter-
mining Fc receptor numbers per macrophage [253].The phagocytic ac-
tivity of DH82 macrophages was investigated in a QCM setup. Using 
zymosan as a model for particulate antigen and single walled carbon 
nanotubes, they investigated the phagocytic response and toxicity to-
wards these compounds. Toxicity was determined based on cell loss as 
measured through the decreasing signal in QCM. The authors suggest 
that based on these results, QCM is a sensitive method to study cell 
toxicity and phagocytosis [254]. In line with these results, Dewilde et al. 
showed that sodium-azide-triggered apoptosis can be monitored. They 
also found that the QCM based signal allows earlier detection of the 
cellular response, even before morphological changes become apparent 
[255]. Not only cell-substrate but cell-cell interactions can be studied 
using label-free methods. After activating endothelial cells by LPS their 
interaction with the substrate was monitored in real time using 
impedance-based real-time cell electronic sensor system. In the presence 
of U937 cells endothelial cells showed reduced adhesiveness to the gold 
electrodes, indicating that human umbilical vein endothelial cells, due 
to the presence of monocytes, change their phenotype to enable 
increased leukocyte infiltration [92]. 

Dendritic cells can as well be applied to detect bacteria. E. coli strain 
K12 and its LPS mutants were tested to determine how the different LPS 
forms affect NO production in DCs and macrophages. Although the 
detection here was not biosensor-based, the results clearly show that the 
DC activating properties of various compounds can be exploited in 
biosensor-based measurements, just as the authors suggest [256]. 
Similarly, amperometric detection allowed selective detection of H2O2 
in response to TLR ligands, allowing the kinetic detection of the trig-
gered cell response [257]. PMA activation of macrophages lead to a 

similar result when investigated in a PDMS based microfluidic system in 
combination with a HRP/PEG hydrogel/ Au electrode based electro-
chemical sensing system [258]. LPS macrophage interactions were as 
well studied using the Ana-1 cell line in electrochemical impedance 
assays. The dose dependent cytotoxic effect of LPS was demonstrated as 
a method to reliably detect the morphological changes. In an innovative 
step cell attachment to the sensor surface was carried out by internali-
zation of magnetic particles by macrophages on the magnetic glass 
carbon electrode [259]. Using Fourier transform infrared spectroscopy, 
Veiseh et al. demonstrated that LPS induced macrophage activation 
results in a shift in the detected infrared spectrum and therefore 
potentially enables identification of infected macrophages and other 
activating compounds as well [260]. Cao et al. showed that macrophage 
activation triggered by cytokines is also detectable using impedance- 
based detection using real time cell analyzer. The working scheme ap-
plies gold electrodes incorporated into microtiter plates. LPS and IFN-γ 
showed a dose and cell number dependent effect on the cell index and 
this response was dampened in the presence of various inhibitors [261]. 
Quantitative phase imaging combined with Raman spectroscopy pro-
duces complementary datasets allowing the determination of macro-
phage activation status in response to LPS and the effect of the inhibitor 
applied. Since individual cells can be characterized with this approach, 
cellular heterogeneity can be determined [262]. Bertani et al. success-
fully applied hyperspectral reflectance confocal microscopy to analyze 
macrophage polarization on glass coverslips. The principal component 
analysis resulted in an accuracy over 98% in the classification [263]. In 
their monocytes with internalized pathogens (MIP) assay platform, Liao 
et al. successfully sorted infected monocytes based on their increased 
stiffness and size. This platform allows fast detection and separation of 
monocytes infected with blood-borne pathogens [264]. Examples of 
label-free characterization of mononuclear phagocytes are shown in 
Fig. 8. 

4.4. Lymphocytes 

T and B cells belong to the adaptive arm of immunity and, therefore, 
have the ability to recognize foreign compounds whose recognition is 
not encoded in the germline. These cells are capable of mediating ac-
quired immune response by recognizing novel antigens. The diversity of 
antigen recognizing elements T and B cell receptors (TCR and BCR) is the 
result of the VDJ recombination, a process of somatic recombination 
only known in the T and B lymphocytes. For B cells, this process takes 
place in the bone marrow and results in the naive B cell repertoire [265]. 

Naive T cells arise from the differentiation of CLPs in the bone 
marrow. The naive repertoire is shaped through multiple steps of 
negative and positive selection, which ensures that the naive T cells bind 
strongly enough to MHC I or MHC II molecules and have a functional 
CD4 or CD8 coreceptor, and, on the other hand, they do not react to 
MHC complexes with self-peptides. The selection process results the two 
main T-cell subsets: CD4+ T helper (Th) and CD8+ cytotoxic T cells (Tc). 
Th cells recognize peptide-MHCII complexes on B cells and macrophages 
and other professional APCs, and this interaction leads to cytokine 
production by the Th cells, fine tuning, and polarizing the immune 
response. Cytotoxic T-cells recognizing any foreign/altered self-peptide 
MHC I complex triggers its cytotoxic activity and by releasing most 
importantly perforin and granzymes will eventually trigger the 
apoptosis of the target cell [266]. MHC multimers became a valuable 
tool and are widely used to monitor the presence of antigen-specific T 
cell clones [267]. 

While T cells are responsible for cellular immunity B cells’ primary 
role is to provide humoral immunity. This is due to the fact that, acti-
vated B cells produce antibodies. Upon activation, they differentiate into 
plasmablasts or antibody-secreting plasma cells. 

For further important steps from changing isotypes to affinity 
maturation memory formation and b cell subpopulations we redirect the 
reader to other reviews [268,269]. B cells develop in the bone marrow 
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from CLPs. In addition to interaction with other cells, BCR, the inhibi-
tory Fcγ receptor(CD32B [270]), complement receptors [271] and 
pattern recognition receptors [272] play an especially important role in 
B-cell activation. Activation through BCR also results morphological 
changes of their B cells through cytoskeleton reorganization, and this 

feature can be exploited to detect their activation [273]. An important 
feature of adaptive immunity is memory formation. Both T and B cell 
activation results proliferation, and some of these cells will form mem-
ory cells. In the case of B cells, this activation also results the rise of long- 
lived antibody secreting plasma cells [274,275]. Regarding the T and B 

Fig. 8. Examples of label-free characterization of mononuclear phagocytes. A serum addition blocks monocyte adhesion to OWLS sensor [250]. B QCM based 
detection of macrophage adhesion [253]. C PHI and Raman based determination of macrophage activation [262]. D Dose dependent cytotoxic effect of LPS on u937 
monocytes based on impedance assays [259]. E Dose dependent cytotoxic effect of single wall carbon nanotubes on macrophages detected by QCM [254]. F LPS 
induced increased permeability of endothelial cells in the presence of U937 monocytes as measured in impedance assay [92]. G U937 cell binding to control IgGs and 
immune complexes generated on SPR sensor surface [252]. 
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cell content of blood cells from all stages of differentiation can be found 
in the blood: immature naive memory and plasma blasts as well [276]. 
Natural killer (NK) cells constitute the third lineage of lymphocytes. 
Unlike other lymphocytes they recognize and kill cells lacking MHCI or 
expressing FAS ligand, moreover they are important mediators of anti-
body dependent cellular cytotoxicity as well. These cells are important 
in the process of eliminating virus infected and tumor cells [277,278]. 

B-cell activation can be detected using RWG based methods too. Both 
cell lines and primary cell activation can be monitored through the 
acquisition of kinetic data in these systems. The activating or inhibitory 
responses of various compounds can be determined by measuring the 
DMR in these systems [75,76,78]. While these approaches do not allow 
single cell measurements yet, the resolution of similar RWG based 
measurements shows that single-cell analysis is also available for these 
measurements [33]. Saitakis et al. investigated the binding of HLA-A2 
positive B-lymphoblast cells to HLA-A2 specific antibodies immobi-
lized on the sensor surface. They compared acoustic-wave biosensor and 
SPR based measurements, and saw binding only in case of the acoustic 
method. While they speculated that it might to due to experimental 
setup, it has been clearly showed since that such approaches are suitable 
for immunocapture as well [108]. In a similar experiment Shanehbandi 
et al. demonstrated SPR based immunocapture of CD20+ B-cells using 
pure gold SPR sensors functionalized with CD20 specific antibody 
immobilized in the sensor using 11-mercaptoundecanoic acid and 
staphylococcus protein A. This study confirmed that both strategies can 
be successfully applied and even monoclonal antibodies can be screen 
based on cell binding [279]. The binding of CD20 specific antibody to B- 
cells was also demonstrated using QCM, allowing kinetic readout [280]. 
By combining of quantitative phase imaging (QPI) and machine learning 
Ayyappan et al. demonstrated that not only single B-cell acute 
lymphoblastic leukemia cells can be identified but disease progression 
can be monitored as well with this method, paving the way for large 
clinical studies [281]. As a next step Paidi et al. demonstrated that 
Raman spectroscopy based biomolecular data can add further detail to 
the imaging based morphological classification. Although the Raman 
and QPI data were not yet generated from the same cells, the authors are 
working on combined measurements, which could prove to be an 
excellent tool for the characterization of other cell types as well [282]. B- 
cell lymphomas can be detected using idiotypic peptides recognizing the 
BCR of the malignant B-cell clone. However this approach requires the 
prior knowledge regarding BCR specificity, resulting in a complicated 
workflow [283]. Antibody secretion of plasma cells is a highly 
researched area, since automation and simplification of identification 
and production of antigen-specific antibodies is highly desired. Various 
solutions to tackle this highly difficult task are discussed in detail else-
where [284–288]. 

Few examples of how SPR can be applied to detect antigen specific 
antibodies have been presented as well. SPR imaging was also demon-
strated as an existing tool to monitor antigen-specific antibody pro-
duction of B-cell hybridomas. Milgram et al. coupled the antigen hen egg 
lysozyme onto the sensor surface in a multiplex manner also at different 
concentrations and showed that the antibody production can be deter-
mined in this system. Importantly, such flexible systems allow moni-
toring of other immune cells in a multiplex and kinetic manner, they 
note [289]. Stojanovic et al. demonstrated that antibody production of a 
hybridoma cell line can be detected and quantified [290]. In their 
theoretical work, they showed that 99% of the produced antibody can be 
detected on the sensor surface [291]. Abali et al. designed a microwell 
based inlet for the imaging SPR-based setup that allows seeding and 
isolation of single B-cell clones and allows the isolated measurement of 
their antibody production [56]. 

T cell activation has gained great attention in label-free biosensor 
studies. Lymphocyte activation results cytoskeleton reorganization and 
thus decreased nucleus:cytoplasm ratio, morphological and metabolic 
changes and these parameters as demonstrated by the following exam-
ples can be detected with various methods. T-cell activation can be 

detected by the increased metabolism of the cells resulting rapid 
extracellular acidification when activated by peptide-MHC complexes 
(pMHC) or by applying anti-CD3 antibodies. As demonstrated by Stern 
et al. this can be detected by complementary metal-oxide semiconductor 
based methods [292].This method, however, does not allow identifica-
tion of single cells. One of the first examples in this field showed that 
adhesion through activating antibodies results cell spreading on the 
sensor surface, that is readily detectable by reflectometric interference 
spectroscopy in a label-free manner [293]. 

When compared by diffraction tomography allowing three dimen-
sional reconstruction of individual cells Yoon et al. identified multiple 
features, such as sphericity, cell volume, dry mass and cell surface, that 
distinguish lymphocytes from macrophages. Moreover, the fine resolu-
tion provided by this technique has the potential to identify morpho-
logical features to study leukocyte activation in a clinical setting [294]. 
This technique, when combined with machine learning, even allows 
classification of non-activated lymphocyte subsets, a difficult problem 
other label-free techniques not yet capable of [295]. Using the same 
technique combined with deep learning algorithms immunological 
synapse can be studied as well in detail in a dynamic manner allowing 
evaluation of T-cells with chimeric antigen receptor [296]. Fluorescent 
lifetime imaging of FAD and NAD(P)H was applied to determine T-cell 
subsets and their activation state. Cell activation was performed using 
tetrameric antibodies against CD2, CD3, CD28. When compared to 
quiescent non-activated cells, cell size and redox ratio allowed for 
identification with high precision when compared to classical flow 
cytometry based evaluation [297]. Using the same dataset Wang et al. 
showed that image analysis by convolutional neural networks based on 
the NAD(P)H autofluorescence images alone results similar accuracy 
[298]. Using similar stimulation, Guan et al. identified activated T cells 
in impedance-based assays, importantly, they also demonstrate that the 
activation can be controlled using various inhibitors as well [299]. 
Single-cell acoustic force microscopy allows for label-free determination 
of cellular avidity to various compounds. T-lymphocyte adhesion on 
fibrinogen was studied, binding kinetics and force of individual cells was 
determined [115]. This technology paved the way of those capable of 
characterizing and measuring T-cell binding to p-MHC complexes in SPR 
measurements. Importantly based on these measurements cellular 
avidity can be determined to various targets [300]. T-cell activation can 
as well be detected in microfluidic channels by impedance-based assay 
as demonstrated by Rollo et al. [301] and by dielectrophoresis as well 
[302]. The application of live cell interferometry to detect antigen- 
specific cytotoxic T-cells based on quantifying the mass accumulation 
rate during cell activation was demonstrated. Such techniques enable 
the identification of single T cell clones recognizing tumor cells in 
addition to monitoring their cytotoxic effect [303]. Increase in dry cell 
mass as detected with the same technique can as well be detected for the 
same purpose [304]. Similarly, quantitative phase microscopy based 
image acquisition combined with machine learning successfully detec-
ted T-cell mediated cytotoxicity [305]. 

γδ T cells are a unique population of T cells, showing characteristics 
of T cells and NK cells as well. Seidel et al. showed in a label-free 
impedance-based kinetic measurement that these cells have both 
antibody-dependent and independent cytotoxic activity. The method 
demonstrates the advantages of the kinetic biosensor measurements 
over the classical end-point assays [306]. Using the same system, T cell 
mediated cytotoxicity can be monitored as well [307]. NK cell mediated 
cytotoxicity was studied as well in impedance-based assays. Using real- 
time electronic sensing system, Zhu et al. demonstrated that in vitro NK 
cell cytotoxicity can be measured in a kinetic manner using 8 adherent 
cancer cell line [308]. Fasbender and Watzl carried out fine analysis of 
this activation using various activating ligands of NK cells on function-
alized sensor surface and showed that activation through CD16 was the 
most prominent and pre-activating NK cells showed and increased 
response, reaching the peak of CD16 activation using various other li-
gands as well. Also ligand combinations showed synergistic effect [309]. 
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Park et al. compared flow cytometry and ECIS based cytotoxicity assays 
and found slightly discrepant results, however they used different target 
cells [310]. NK cell subpopulations (the mature cytotoxic CD56dim and 
the regulatory CD56bright) can be distinguished in the microfluidic 
system designed by Dannhauser et al. based on their light scattering 
properties with the help of machine learning [311]. Examples of label- 
free characterization of lymphocytes are shown in Fig. 9. 

4.5. Erythrocytes and thrombocytes 

Of note erythrocyte and thrombocyte antigens can as well be char-
acterized in immunocapture based measurements on biosensors. High 
throughput antigen typing is highly desired for transfusion purposes 
[312]. Coupling the blood type antigen specific antibodies in imaging or 
classical SPR allows for the accurate and automated typing of red blood 
cells [313,314]. Although cell sedimentation itself results ambiguous 
readout, washing with increased flow reveals the specific binding in this 

approach [315,316]. The successful adaptation of this oligoplex typing 
approach offers optimism for the future of multiplex, biosensor based 
clinical developments. Blood group and platelet antigen specific anti-
bodies of auto- and alloimmun origin may result serious pathological 
conditions [317–319]. Therefore crossmatching to detect alloantibodies 
especially in those receiving blood transfusion units frequently is a must. 
Nonetheless, ongoing research to elucidate the mechanism of alloim-
munisation and identify those with a higher risk of severe outcome also 
helped us to better understand antibody effector functions. Ig subclasses, 
allotypes, glycoforms all differ in their ability to bind Fcγ receptors, as 
demonstrated by the binding of opsonized red blood cells to sensor 
bound Fc receptors, and thus may contribute to the pathological process 
[320,321]. Platelets targeted by allo and autoantibodies increase the 
risk of thrombocytopenia. In order to identify the contribution of C- 
reactive protein (CRP) and C1q Kapur et al. immobilized these molecules 
on the SPR sensor surface and showed that IgG opsonized platelets bind 
to CRP [322]. To study the affinity of human platelet antigen specific 

Fig. 9. Examples of label-free characterization of lymphocytes. A, Live cell interferometry based detection of T cell mediated cytotoxicity [303]. B, γδ T cell mediated 
cytotoxicity of MCF-7-CD19 transfected cells based on impedance measurements in the presence or absence of anti-CD19 antibodies [306]. C, Dose dependent 
activation of B-cells by BCR cross-linking in RWG based measurements [76]. D, SPR based determination of T-cell pMHC complex interactions reveals TCR affinity 
[300]. E, Impedance-based characterization of activating properties of various NK-cell ligands [309]. 
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antibodies Wu et al. coupled platelets with amine coupling to the sensor 
to determine and characterize its correlation with the clinical symptoms 
and facilitates compatibility testing [323]. 

5. Conclusions and outlook 

These recent efforts demonstrate that biosensor based monitoring of 
cellular activation on various substrates offers a realistic, low-cost, and 
most importantly label-free approach to studying leukocyte behavior. 
Table 1. summarizes the technologies available for biophysical single 
cell characterization. Novel developments in the field showed that single 
leukocytes can be studied, characterized and isolated individually. 
However, it is important to determine the robustness of each assay type 
and measured parameter and identify those most suitable for diagnostic 
purposes. Many of the discussed examples provide kinetic data. Deci-
phering and analyzing these complicated data sets as of now highly 
demanding on the bioinformatics side, in many case without trivial so-
lutions. In these cases, theoretical modelling of the phenomena is 
required to fully understand the mechanism of cell activation in real 
time. 

Clinical relevance in diagnostics and cell-based therapy is, however, 
yet to be demonstrated in most setups. Therefore, most importantly, 
well-defined samples have to be studied in close collaborations with 
clinical research groups. Building databases in which clinical data and 
biophysical variables of cells are combined is the necessary next step in 
our opinion. Determining healthy range reference of various measured 
parameters requires large donor cohorts. Moreover, comparative eval-
uation of the existing methods is desired to characterize cell activation. 
As even in specialized research centers only a few biosensors are 
available for a single assay type. Nonetheless, many of the recently 
developed devices are unique, therefore this step likely requires coop-
erative initiatives for comparison. Therefore, to fulfill the potential of 
biosensor based blood cell characterization each cell type is to be studied 
with the different biophysical techniques and compared to their gold 
standard methods. 

Viability and cell activation status are critical aspects of the sample 
preparation. Sample preparation by either autonomous or active 
microfluidics, and microdevices require rigorous testing to minimize cell 
stress. Varma and Voldman created guidelines on how to protect and 
assess cell health in microsystems [352]. While technically the sorting of 
viable cells using microfluidics provides a solution [353–355], and 
morphological and molecular markers of cell death can be employed to 
identify dying cells [356], the presence of danger signals may result 
altered cell activation as well and could possibly interfere with quick, 
functional testing [357]. Cell viability is also highly affected by the 
method of cell isolation. We consider minimal preprocessing as the most 
beneficial. Delay in blood sample processing, transportation or cryo-
preservation of the samples alter significantly the cell status, and 
therefore where available whole blood based assays are recommended 
[358–360]. 

To achieve this, further improvements are required in blood pro-
cessing as well, potentially for example chemo- and haptotaxis of the 
cells could be exploited for the separation of specific subsets [361,362]. 
Microfluidic systems offer various solutions including topography 
[363], microfluidic design [364,365] and various membrane based 
methods as well [366–368]. Furthermore, cells can be separated by size 
based fractionation [369], by dean flow fractionation or microsieves 
[370]. The recent review of Laxmi et al. summarizes microfluidic tech-
niques applied to isolate white blood cells [371]. Microfluidic separation 
and sorting of the cell types of interest is of great interest in various 
applications [372,373]. Although most of these techniques are micro-
fluidic, the sensing methods can as well be label-free and capable of 
separation at a single cell level in a nondestructive manner [374–377]. 

Following impedance-based bulk separation immunocapture allows 
for further differentiation by cell capture by functionalizing the sensor 
surface with various antibodies specific for the cell types of interest 

[378]. Successful SPR based detection of circulating tumor cells using 
cell surface marker specific antibodies in acute myeloid leukemia has 
been reported, showing a strong correlation with the flow cytometry- 
based evaluation [379]. For further details of affinity based cell sepa-
ration we direct the reader to the review by Zhang et al. [380]. Imaging 
based approaches, in combination with microfluidics, offer an oppor-
tunity to further refine cell sorting. Methods based on Raman scattering 
microscopy [381], and deformation assisted optical microscopy [382] 
are two recent techniques that enable high-throughput label-free 
sorting. 

Since cell adhesion, spreading and activation is highly dependent of 
the assay temperature it is to be tightly controlled. For example in their 
AFM measurements Rico et al. showed that adhesion force through 
integrins and tethering decreases with the temperature [383], similarly 
Sadoun et al. showed increased stiffness and smaller cell adhesion area 
at room temperature compared to 37 ◦C [384]. Mechanical properties of 
monocytes are also affected by the temperature. These considerations 
emphasize that probing cellular activation, especially POC setups, 
require temperature controlled biosensing to provide reliable and 
comparable data. 

Several novel techniques measure single cell adhesion force or other 
parameters and even deposit or select single cells for further examina-
tions (i.e. RNA or DNA sequencing) [332,385].The computer controlled 
micropipette system is capable of sorting single cells with great accuracy 
and speed (https://www.cellsorter-scientific.com/). This automated 
system is mounted onto a normal inverted microscope for probing single 
cell interactions with specific macromolecules. The adhesion force of 
surface attached cells can be measured by repeating the pick-up process 
with increasing vacuum used in the pipette positioned above the 
examined cell. With this methodology, hundreds of cells adhered to 
specific macromolecules were tested one by one in a relatively short 
period of time (~30 min) [58,331]. The application of this technique 
together with an optical biosensor can be a good combination in single- 
cell studies [34] or even in experiments with immune cells as well [251]. 
Not just cells, but also microbeads can be used in adhesion studies. In a 
recent study, the authors applied the robotic micropipette both in 
microbead and live cell adhesion experiments to explore the adhesion 
force of biomolecules (for example cell surface receptors including 
specific integrins on immune cells) [386]. 

Selecting special cells is an important technical challenge because 
individual cells show a high degree of mechanical vulnerability. This 
problem is overcome by the piezoelectric cell sorting micropipette. This 
drop-based microfluidic technique is capable of selecting individual 
cells from almost any sample and prepares them for genetic or other 
assays. The selection may be based on a fluorescently labeled or unla-
beled microscopic image or, a signal from a waveguide sensor. With the 
fully automated piezoelectric micropipette with a precision of < 1 
nanoliter, improving the efficiency of imaging-based single-cell isolation 
to above 90% [387]. Furthermore, combining biosensor data processing 
with cell sorting methods allows complex biological and medical ex-
periments to be performed. 

FluidFM elevates applications to a higher level, from single-cell 
biology to surface analysis. FluidFM is basically an AFM device with a 
nanofluidic channel inserted into the sensitive probe, which is con-
nected to a pressure control system, thus we can control the movement 
of the liquid column in the channel between − 800 and 1000 mBar 
[388]. Its microfluidic system enables the handling liquid even down to 
femtoliter volumes (https://www.cytosurge.com/). Soluble molecules 
can be aspirated or dispensed through a sub-micrometer aperture at the 
tip of the probe. These developments have opened up possibilities for a 
wider range of applications, such as the real-time mechanical manipu-
lation of living cellular or bacterial systems, colloidal spectroscopy, and 
nanolithographic procedures. Latest developments allow even sampling 
of live cell cytoplasm through the incorporation of a nanofluidic channel 
in the AFM cantilever, and precise pressure control. Micropatterning of 
single living cells and cell clusters is also realizable. In a recent work, 
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Table 1 
Summary of biophysical label-free cell analysis methods.  

Measurement 
principle 

Measured 
parameter 

Throughput Image resolution Time resolution Sensitivity Cell type Information obtained Manufacturer if commercialy available 

Optical waveguide 
lightmode 
spectroscopy 

refractive index single sensor no image 1–3 s 1 ng/cm2 monocytes [250];TERA2 
and BHK cells [57] 

adhesion kinetics MicroVacuum Ltd. 
https://microvacuum.com 

Resonant 
waveguide 
grating (RWG) 

refractive index 96well, 384w 90 μm 3 s 0.078 ng cm− 2 primary monocytes, 
dendritic cells, 
macrophages [251,324]; 
B-cell lines [325]; 
primary B cells [78]; 
HeLa [65,70]; CHO and 
A431 cells [64]; HUVEC 
[74] 

adhesion kinetics, 
signalization kinetics 

Corning Inc. https://www.corning.com 

Single-cell RWG refractive index 12 well 25 μm 3 s 0.078 ng cm− 2 HT-29 cells [79]; HeLa 
cells [33,125] 

adhesion kinetics, 
signalization kinetics, 
adhesion force 

Corning Inc. https://www.corning.com 

Quantitative phase 
imaging 
(holographic 
microscopies) 

refractive index, 
phase shift 

96 well 0.58 μm–4 μm 1–16 frames per 
second 

0.01 RIU 
1 pg μm− 2 

Phase detection 
sensitivity down 
to 0.011 rad 

Hela and Vero [326]; 
HeLa and MC3T3 [49]; 
Eosinophil [210];T cell 
[303] 

cell morphology, 
proliferation, 
migration, motility, 
cancer invasion [Nagy 
in press] 

https://phiab.comhttps://telight.euhttps 
://www.nanolive.ch/https://www.tomo 
cube.com/ 

Molography refractive index single sensor no image 1 s 200 ng mL− 1, 
~5 pg mm− 2 

HEK293 [62] biomolecular 
interactions, 
signalization 

Lino Biotech AG https://www.lino-biotech. 
com 

Optical tweezers adhesion force 1 cell/experiment microscope image of 
targeted cells 

10− 4 s 0.1 pN NK cells [327]; RBC 
[328]; CD4+ T cells, NK 
cells, K562 [329]; 
neutrophils [178,330] 

interaction and binding, 
3D manipulation, 
tethered assay 

https://www.elliotscientific.com, htt 
p://www.impetux.com and home 
developed setups 

Surface plasmon 
resonance 

refractive index upto 96 well or 
400 spots 

optical lateral 
resolution: 25 μm if 
available 

upto 0.1 s 0.15 pg mm− 2 or 
1–10*10− 7 RIU 

monocyte [252], RBC 
[313,314,316], basophil 
[213,217] 

adhesion kinetics, 
signalization kinetics 

https://www.cytivalifesciences.comhttps 
://www.bionavis.comhttps://www.ibis-sp 
r.nl 
https://www.horiba.com/http://www.uni 
lim.fr/pages_perso/zeng/a17.pdf 

Electric cell- 
substrate 
impedance 
sensor 

impedance 96 and 384 well 
plates 

no image 10− 4 s under 10 to 
10,000 Ω cm2?? 

NK cells [309], γδ T cells 
[306] 

proliferation, 
migration, attachment 
and spreading, 
differentiation, 
cytotoxicity, 
inflammation, invasion, 
barrier function 

https://www.biophysics.com 
https://www.agilent.com/en/product/cell 
-analysis/real-time-cell-analysis 

Computer 
controlled 
micropipette 

pressure 
difference, 
adhesion force 

100–200 cells/h microscope image of 
targeted cells 

10–30s/cell nN range macrophages, dendritic 
cells, monocytes [331]; 
monocytes and 3T3 
[332]; primary 
monocytes, dendritic 
cells, and macrophages 
[251,324] 

adhesion strength Cellsorter https://www.cellsorter-scient 
ific.com/ 

FluidFM force upto 200 cell/day microscope image of 
targeted cells 

minutes/cell nN range HeLa [33,333,334] adhesion force, *Note, 
the technique is suitable 
for cell injection and 
extraction [335,336] 

Cytosurge https://www.cytosurge.com/ 

Raman based 
technologies 

infrared spectra couple of cells 0.3 μm, * Note, the 
lateral resolution can 
be significantly 
enhanced by tip 

~1 s per sampled 
point 

nN range macrophages [262]; 
neutrophils [176]; T and 
B cells [338];T and B 

cell identification, 
characterization of cell 
status through 
determination of 

https://www.enwaveopt.com/https://b 
wtek.com/ 
https://www.horiba.com/int/scientific/pr 

(continued on next page) 
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Table 1 (continued ) 

Measurement 
principle 

Measured 
parameter 

Throughput Image resolution Time resolution Sensitivity Cell type Information obtained Manufacturer if commercialy available 

enhanced raman 
spectroscopy [337] 

cells, monocytes 
[339,340] 

biochemical 
composition 

oducts/raman-imaging-and-spectrometers/ 
labram-soleiltm-raman-microscope/ 

Surface acoustic 
waves and 
acoustic force 
spectroscopy 

force thousands of cells 
per measurement 

microscope image of 
targeted cells 

s-min 1 pN T cells [115], CAR T cells 
[341,342] 

cell avidity https://lumicks.com/ 

quartz crystal 
microbalance 

resonance 
frequency 

4 channel and 8 
sensors (QSense 
Pro QCM-D) 

no image 1–3 s, Biolin: up to 
200 data points 
per second 

0.2 ng/cm [2]– 
1 ng/cm [2] - 
~0.5 ng cm − 2 

RBC [343]; macrophages 
[253,254] 

biochemical reactions, 
cell adhesion and 
detachment, 
deformability 

MicroVacuum Ltd. 
https://microvacuum.com/ 
Biolin Scientific AB 
https://www.biolinscientific.com 
Attana 
https://www.attana.com 

traction force 
microscopy 

force 1–5 in single cell 
experiments, 
several hundreds 
of cells in 
collective 
migration studies 

microscope image of 
targeted cells 

10− 4 s no data macrophages [344,345] migration, adhesion 
force, mapping the 
traction field of cells 

custom made platform, can be adapted to 
commercial optical microscopes 

Atomic force 
microscopy 

deflection of the 
cantilever, force 

10 min/ whole 
cell 

topographic image 
with nm resolution 
depending on 
fixation 

topography is 
faster, elasticity 
measurement and 
evaluation is time 
consuming 

1 pN T cell [346];neutrophils 
and macrophages [347]; 
THP-1 and CHO cells 
[348] 

topography, elasticity, 
mechanical properties 

https://www.nanosurf.com/en/ 
https://www.hitachi-hightech.com/glo 
bal/ 
https://www.bruker.com/en.html 

dielectrophoresis dielectrophoretic 
activity 

upto 160,000 
cells/s 

no image not defined not defined RBC, fibroblast [349]; 
HeLa, Jurkat, MCF-7 [99] 

cell sorting http://www.siliconbiosystems.com/tech 
nology-products 

Impedance flow 
cytometry 

electric properties upto 1000 cell/s no image not defined not defined all blood cell types, WBC 
RBC separation [350] 

cell sorting https://amphasys. 
com/impedance-flow-cytometry/#ifc 

Grating-coupled 
interferometry 

refractive index 4 channel no image 150 ms transition 
time 

0.015 pg/mm2 yet only demonstrated 
for bacterial cells [351] 

ligand-analyte 
integration and kinetics 

Creoptix AG, Malvern Panalytical https 
://www.malvernpanalytical.com  
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micropatterning of living mammalian cells (HeLa) on carboxymethyl 
dextran hydrogel layers using the FluidFM BOT technology [389]. The 
combination of this technique with optical RWG biosensor to monitor 
cancer cell adhesion significantly increased the measurement 
throughput, and opened the way to combine the technology with the 
employed microplate-based, large area biosensor [33]. 

Studying population level heterogeneity at the single-cell level using 
these novel biophysical technologies, and identifying important sub-
populations will potentially open up new research directions with 
important aspects in medical diagnostics, and further treatment. Single- 
cell optical biosensors [33,390] and high-throughput robotic FluidFM 
[333] were already successfully demonstrated in monitoring population 
distributions of single-cell biological parameters in a label-free and 
noninvasive manner. Importantly, concerning adhesion strength, a 
lognormal distribution profile was revealed [33,333,390]. Therefore, 
treating the cell population as normally distributed or measuring only a 
few cells can easily result in misleading conclusions. 

In a recent study, FluidFM was combined with computer controlled 
micropipette as well to measure the adhesion strength of microbeads. 
Furthermore, the bead-support contact zone was directly characterized 
on an optical waveguide biosensor to determine the density of avidin 
molecules. The authors found that both methods provide unimodal 
histograms. FluidFM BOT can directly measure the detachment force 
curve of 50 microbeads in 150 min, and automated micropipette can 
provide calibrated binding/adhesion force values of 120 microbeads in 
an hour [391]. These methodologies could be extended to measure 
leukocyte surface interactions with pre-coated microbeads with bio-
logical relevancies. The proposed approach would enable the single-cell 
level characterization of the interaction forces with unprecedented 
throughput, and depending on the size of the microbeads, might offer 
some single cell level lateral mapping of the interaction forces, too. 
Unlike in other setups, the beads could be easily exchanged, mapping in 
this way the interactions with more than one biological coating on 
exactly the same cells. 

The logical follow up of the measured cells is to perform molecular 
analysis. Matching biophysical parameters at a single-cell level with 
metabolomic, proteomic [392,393], genomic and transcriptomic 
[394,395] information provides verification and allows for comparison 
of the methods [396,397]. 

Combined with microfluidic platforms designed to process whole 
blood, the era of point-of-care diagnostics is certainly around the corner. 
It will be interesting to see whether these applications can be combined 
in the future with microneedle based approaches to continuously 
monitor various biomarkers of interest [398]. Implementation of 
smartphone based biosensors is highly desired [399], and as discussed, 
microfluidic sample preparation combined with label-free detection 
could as well be applied for blood cell based diagnostics in self- 
contained microfluidic systems [400]. 

The application of label-free techniques is expected to be more 
pronounced in the future. Compared to traditional methods based on 
structural or/and composition analysis, which are usually endpoint as-
says, the real-time kinetic measurements without introducing any dis-
turbing agents offer an interesting novel way of obtaining biological 
information. The specificity of the measurements might be weaker 
compared to traditional methods, but the rich data sets generated, 
especially in combination with artificial intelligence based decision 
making, can offer new routes in both basic researches and in the health 
industries. We also predict the emergence of more complex setups where 
the label-free sensing and the high-throughput single-cell isolation are 
effectively combined. These combinations not only can offer a simple 
and cost-effective cell-identification route, but allow for the isolated live 
cells to be readily used in further processing or culturing steps. 
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[43] Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem 2016;60: 
91–100. 

[44] Ungai-Salánki R, et al. A practical review on the measurement tools for cellular 
adhesion force. Adv Colloid Interface Sci 2019;269:309–33. 

[45] Arandian A, et al. Optical imaging approaches to monitor static and dynamic cell- 
on-Chip platforms: a tutorial review. Small 2019;15:1900737. 

[46] Chang C, Sud D, Mycek M. Fluorescence lifetime imaging microscopy. In: 
Methods in Cell Biology. vol. 81. Academic Press; 2007. p. 495–524. 

[47] Yakimov BP, et al. Label-free characterization of white blood cells using 
fluorescence lifetime imaging and flow-cytometry: molecular heterogeneity and 
erythrophagocytosis [invited]. Biomed Opt Express 2019;10:4220–36. 

[48] Kemper B, et al. Label-free quantitative in vitro live cell imaging with digital 
holographic microscopy. In: Wegener J, editor. Label-Free Monitoring of Cells In 
Vitro. Springer International Publishing; 2019. p. 219–72. https://doi.org/ 
10.1007/11663_2019_6. 

[49] Peter B, et al. Incubator proof miniaturized Holomonitor to in situ monitor cancer 
cells exposed to green tea polyphenol and preosteoblast cells adhering on 
nanostructured titanate surfaces: validity of the measured parameters and their 
corrections. J Biomed Opt 2015;20:067002. 
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immobilization methods and support materials of biosensors. Sens Rev 2018;39: 
377–86. 

[133] Zhao X, et al. Recent advances of designing dynamic surfaces to regulate cell 
adhesion. Colloid Interface Sci Commun 2020;35:100249. 

[134] Frutiger A, et al. Nonspecific binding—fundamental concepts and consequences 
for biosensing applications. Chem Rev 2021;121:8095–160. 

[135] Lichtenberg JY, Ling Y, Kim S. Non-specific adsorption reduction methods in 
biosensing. Sensors 2019;19:2488. 

[136] Chen Q, et al. The impact of antifouling layers in fabricating bioactive surfaces. 
Acta Biomater 2021;126:45–62. 

[137] Characterization and Chemical Modification of the Silica Surface. 1st ed.vol. 93; 
2022. https://www.elsevier.com/books/characterization-and-chemical-modificat 
ion-of-the-silica-surface/vansant/978-0-444-81928-4. 

[138] Shriver-Lake LC, et al. Antibody immobilization using heterobifunctional 
crosslinkers. Biosens Bioelectron 1997;12:1101–6. 

[139] Danczyk R, et al. Comparison of antibody functionality using different 
immobilization methods. Biotechnol Bioeng 2003;84:215–23. 

[140] Cell Adhesion. https://www.nhbs.com/cell-adhesion-book; 2022. 
[141] Alexander MR, Williams P. Water contact angle is not a good predictor of 

biological responses to materials. Biointerphases 2017;12:02C201. 
[142] Phillips JE, Petrie TA, Creighton FP, García AJ. Human mesenchymal stem cell 

differentiation on self-assembled monolayers presenting different surface 
chemistries. Acta Biomater 2010;6:12–20. 

[143] Wu L, et al. Cellular responses to thermoresponsive stiffness memory elastomer 
nanohybrid scaffolds by 3D-TIPS. Acta Biomater 2019;85:157–71. 

[144] Sridharan R, Cavanagh B, Cameron AR, Kelly DJ, O’Brien FJ. Material stiffness 
influences the polarization state, function and migration mode of macrophages. 
Acta Biomater 2019;89:47–59. 

[145] Kang H, Wong SHD, Pan Q, Li G, Bian L. Anisotropic ligand Nanogeometry 
modulates the adhesion and polarization state of macrophages. Nano Lett 2019; 
19:1963–75. 

[146] Zhao X, et al. Recent advances of designing dynamic surfaces to regulate cell 
adhesion. Colloid Interface Sci Commun 2020;35:100249. 

[147] Farkas E, et al. Development and in-depth characterization of Bacteria repellent 
and Bacteria adhesive antibody-coated surfaces using optical waveguide 
biosensing. Biosensors 2022;12:56. 

[148] Charles A, Janeway J, Travers P, Walport M, Shlomchik MJ. The components of 
the immune system. Immunobiol Immune Syst Health Dis 2001. https://www.ncb 
i.nlm.nih.gov/books/NBK27092/. 5th ed. 

[149] Melzer S, et al. Reference intervals for leukocyte subsets in adults: results from a 
population-based study using 10-color flow cytometry. Cytometry B Clin Cytom 
2015;88:270–81. 

[150] Kaczorowski KJ, et al. Continuous immunotypes describe human immune 
variation and predict diverse responses. Proc Natl Acad Sci 2017;114:E6097–106. 

[151] Duffy D, et al. Standardized whole blood stimulation improves 
immunomonitoring of induced immune responses in multi-center study. Clin 
Immunol 2017;183:325–35. 

[152] Urrutia A, et al. Standardized whole-blood transcriptional profiling enables the 
deconvolution of complex induced immune responses. Cell Rep 2016;16: 
2777–91. 

[153] Davis MM. A prescription for human immunology. Immunity 2008;29:835–8. 
[154] Tsang JS. Utilizing population variation, vaccination, and systems biology to 

study human immunology. Trends Immunol 2015;36:479–93. 
[155] Gnjatic S, et al. Identifying baseline immune-related biomarkers to predict clinical 

outcome of immunotherapy. J Immunother Cancer 2017;5:44. 
[156] Drabe CH, et al. Immune function as predictor of infectious complications and 

clinical outcome in patients undergoing solid organ transplantation (the 
ImmuneMo:SOT study): a prospective non-interventional observational trial. 
BMC Infect Dis 2019;19:573. 

[157] Piasecka B, et al. Distinctive roles of age, sex, and genetics in shaping 
transcriptional variation of human immune responses to microbial challenges. 
Proc Natl Acad Sci 2018;115:E488–97. 

[158] Brodin P, et al. Variation in the human immune system is largely driven by non- 
heritable influences. Cell 2015;160:37–47. 

[159] Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology 
and pathology. Biochemistry (Mosc) 2020;85:1178–90. 

[160] Rosales C. Neutrophil: a cell with many roles in inflammation or several cell 
types? Front Physiol 2018;9:113. 

[161] Shen X, Cao K, Zhao Y, Du J. Targeting neutrophils in Sepsis: from mechanism to 
translation. Front Pharmacol 2021;12:353. 

[162] Pant A, Mackraj I, Govender T. Advances in sepsis diagnosis and management: a 
paradigm shift towards nanotechnology. J Biomed Sci 2021;28:6. 

[163] Kumar S, Tripathy S, Jyoti A, Singh SG. Recent advances in biosensors for 
diagnosis and detection of sepsis: a comprehensive review. Biosens Bioelectron 
2019;124–125:205–15. 
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