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LANDEN INEQUALITIES FOR SPECIAL FUNCTIONS

ÁRPÁD BARICZ

(Communicated by Walter Van Assche)

Abstract. In this paper our aim is to present some Landen inequalities for
Gaussian hypergeometric functions, confluent hypergeometric functions, gen-
eralized Bessel functions and general power series. Our main results comple-
ment and generalize some known results in the literature.

1. Introduction

Let us consider the Gaussian hypergeometric function F (a, b; c; ·) : (−1, 1) → R,
which for real numbers a, b and c such that c is not in {0,−1, . . . } has the infinite
series representation

F (a, b; c;x) := 2F1(a, b; c;x) =
∑
n≥0

(a)n(b)n
(c)n

· x
n

n!
,

where x ∈ (−1, 1), (a)0 = 1 for a �= 0 and (a)n = a(a + 1) . . . (a + n − 1) =
Γ(a+n)/Γ(a) for each n ∈ {1, 2, . . . } denotes the Pochhammer (or Appell) symbol.
Some of the most important properties of the complete elliptic integral of the first
kind, i.e. K(r), defined by

K(r) =
π

2
F

(
1

2
,
1

2
; 1; r2

)
=

∫ π
2

0

(1− r2 sin2 t)
− 1

2 dt, r ∈ (0, 1),

are the Landen identities proved in 1771, [1]:

(1) K
(

2
√
r

1 + r

)
= (1 + r)K(r), K

(
1− r

1 + r

)
=

1 + r

2
K
(√

1− r2
)
.

These Landen identities, which are in fact equivalent to each other, have been
the starting points of the investigations of Qiu and Vuorinen [13], and recently of
Simić and Vuorinen [14]. In this paper, motivated by [14], we make a contribution
to the subject by showing that [14, Theorem 2.1], proved for the zero-balanced
hypergeometric function F (a, b; a + b; ·), can be extended to the hypergeometric
function F (a, b; c; ·) and also to general power series. Moreover, we prove that, by
using a generalization of the first Landen identity in (1), the Landen inequalities for
the Gaussian hypergeometric functions can be improved in some cases. Our main
results complement the results from [6, 8, 13] and [14].
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2. Landen inequalities for power series

Let us recall a result of Biernacki and Krzyż [9], which we will use in the sequel.

Lemma 1. Consider the power series f(x) =
∑
n≥0

anx
n and g(x) =

∑
n≥0

bnx
n, where

an ∈ R and bn > 0 for all n ∈ {0, 1, . . . }, and suppose that both converge on (−r, r),
r > 0. If the sequence {an/bn}n≥0 is increasing (decreasing), then the function
x �→ f(x)/g(x) is increasing (decreasing) too on (0, r).

For different proofs and various applications of this result the interested reader
is referred to the papers [2, 3, 5–8, 10, 12, 14] and to the references therein.

Our first main result is the following theorem.

Theorem 1. Let a, b, c ∈ R such that c is not a negative integer or zero and consider
the function Q : (0, 1) → (0,∞), defined by Q(x) = F (a, b; c;x)/F

(
1
2 ,

1
2 ; 1;x

)
. The

following assertions are true:

a. If a+ b ≥ c and 4ab ≥ max{1, c}, then Q is increasing, and consequently

(2) F

(
a, b; c;

4r

(1 + r)2

)
≥ (1 + r) · F (a, b; c; r2),

(3) F

(
a, b; c;

(
1− r

1 + r

)2
)

≤ 1 + r

2
· F

(
a, b; c; 1− r2

)
hold for each r ∈ (0, 1).

b. If a+ b ≤ c and 4ab ≤ min{1, c}, then Q is decreasing, and consequently

(4) F

(
a, b; c;

4r

(1 + r)2

)
≤ (1 + r) · F (a, b; c; r2),

(5) F

(
a, b; c;

(
1− r

1 + r

)2
)

≥ 1 + r

2
· F

(
a, b; c; 1− r2

)
hold for each r ∈ (0, 1).

Proof of a and b. We shall apply Lemma 1. Since Q(x) can be rewritten as

Q(x) =
F (a, b; c;x)

F
(
1
2 ,

1
2 ; 1;x

) =

∑
n≥0

(a)n(b)n
(c)n

· x
n

n!

∑
n≥0

(
1
2

)
n

(
1
2

)
n

(1)n
· x

n

n!

,

in view of Lemma 1, the monotonicity of the quotient Q depends on the mono-
tonicity of the quotient sequence {αn}n≥0, defined by

αn =
(a)n(b)n
(c)n

· (1)n(
1
2

)
n

(
1
2

)
n

.

Now, observe that

αn+1

αn
=

(n+ a)(n+ b)(n+ 1)

(n+ c)
(
n+ 1

2

) (
n+ 1

2

) ≥ 1
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if and only if

Δn = (a+ b− c)n2 +

(
a+ b− c+ ab− 1

4

)
n+ ab− c

4
≥ 0.

Thus, if a + b ≥ c and 4ab ≥ max{1, c}, then Δn ≥ 0 for all n ∈ {0, 1, . . . };
that is, the sequence {αn}n≥0 is increasing, and consequently by using Lemma 1
the function Q is increasing. In other words, if 0 < x < y < 1, then we have
Q(x) < Q(y). Now, choosing x = x(r) = r2 and y = y(r) = 4r/(1 + r)2, we obtain
the inequality

F (a, b; c; r2)

F
(
1
2 ,

1
2 ; 1; r

2
) ≤

F
(
a, b; c; 4r

(1+r)2

)
F
(

1
2 ,

1
2 ; 1;

4r
(1+r)2

) ,
that is,

F (a, b; c; r2) ≤ F

(
a, b; c;

4r

(1 + r)2

)
· K(r)

K
(

2
√
r

1+r

) ,
which in view of the first Landen identity in (1) is equivalent to (2). Similarly, by
choosing x = x(r) = [(1− r)/(1 + r)]2 and y = y(r) = 1− r2 we get the inequality

F

(
a, b; c;

(
1−r
1+r

)2
)

F

(
1
2 ,

1
2 ; 1;

(
1−r
1+r

)2
) ≤

F
(
a, b; c; 1− r2

)
F
(
1
2 ,

1
2 ; 1; 1− r2

) ,
that is,

F

(
a, b; c;

(
1− r

1 + r

)2
)

≤ F
(
a, b; c; 1− r2

)
·

K
(

1−r
1+r

)
K
(√

1− r2
) ,

which in view of the second Landen identity in (1) is equivalent to (3). This proves
part a. The proof of part b is similar, and thus we omit the details. �

First of all we mention that the Landen inequalities (2) and (3) are equivalent,
as well as the inequalities (4) and (5). Namely, if we change r to (1− r)/(1 + r) in
(2) and (4), then we obtain (3) and (5). Similarly, if we change (1− r)/(1+ r) to r
in (3) and (5), then we obtain (2) and (4). It should also be mentioned here that
in Theorem 1 it is not necessary to assume that a, b and c are positive numbers.
However, if we suppose in inequalities (2) and (4), in particular that a, b > 0 and
c = a + b, then we reobtain [14, Theorem 2.1], which was obtained recently by
Simić and Vuorinen. We mention that the condition 4ab ≥ max{1, c} in part a of
Theorem 1 reduces to 4ab ≥ a+b, since by applying the arithmetic mean - geometric
mean inequality for the numbers a and b, the above condition implies that 4ab ≥ 1.
Similarly, the condition 4ab ≤ min{1, c} in part b of Theorem 1 reduces to 4ab ≤ 1,
since by applying the geometric mean - harmonic mean inequality for the numbers
a and b, the above condition implies that 4ab ≤ a+ b. We also note that a general
result about the monotonicity of quotients of Gaussian hypergeometric functions
was given by Ponnusamy and Vuorinen in [12, Theorem 2.31]. Finally, we note that
the inequality (5) was proved earlier by Qiu and Vuorinen [13, Theorem 1.2], but
just for a, b ∈ (0, 1) and c = a + b ≤ 1. Observe that in this case the condition

4ab ≤ 1 is clearly satisfied since 2
√
ab ≤ a+ b ≤ 1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Now, let us consider the sequence {ωn}n≥0, defined by

ωn =

[
(1)n(
1
2

)
n

]2

= π ·
[
Γ(n+ 1)

Γ
(
n+ 1

2

)
]2

.

By using this sequence we would like to show a generalization of Theorem 1. Note
that since the proof of this general result proceeds along the lines introduced in the
proof of Theorem 1, we omit the details. This result complements [6, Theorem 3.1].

Theorem 2. Suppose that the power series f(x) =
∑
n≥0

anx
n is convergent for all

x ∈ (0, 1), where an ∈ R for all n ∈ {0, 1, . . . }, and assume that the sequence
{an · ωn}n≥0 is increasing. Then the function x �→ f(x)/K(

√
x) is increasing on

(0, 1), and by using the notation λf (x) = f(x2) we have the Landen type inequality
for all r ∈ (0, 1) :

(6) λf

(
2
√
r

1 + r

)
≥ (1 + r) · λf (r).

Moreover, if the sequence {an · ωn}n≥0 is decreasing, then x �→ f(x)/K(
√
x) is

decreasing on (0, 1), and consequently (6) is reversed.

Observe that the sequence {ω}n≥0 is increasing. Thus if the sequence {an}n≥0

is also increasing, then the power series f(x) of Theorem 2 immediately satisfies
the Landen type inequality (6), which is in fact equivalent to

λf

(
1− r

1 + r

)
≤ 1 + r

2
· λf

(√
1− r2

)
.

Note that if we consider, as in [6,8], the generalized Bessel function uν : (0,∞) → R

and the Kummer hypergeometric function Φ(p, q; ·) : (0,∞) → R, defined by

uν(x) =
∑
n≥0

(
− c

4

)n
(κ)n

· x
n

n!
and Φ(p, q;x) =

∑
n≥0

(p)n
(q)n

· x
n

n!
,

where ν, b, c, p, q ∈ R, κ = ν + b+1
2 and q are not in {0,−1, . . . }, then it can be

shown that the sequences{(
− c

4

)n
(κ)nn!

· ωn

}
n≥0

and

{
(p)n
(q)nn!

· ωn

}
n≥0

are decreasing if κ ≥ max
{
0,−c,− c+1

4

}
and q ≥ max

{
0, 4p, p+ 3

4

}
. Thus, if use

the notation λν(r) = uν(r
2) and λΦ(r) = Φ(p, q; r2), then in view of Theorem 4

we obtain the following result. Note that this result complements [6, Theorem 2.3]
and [6, Corollary 3.2].

Theorem 3. Let ν, b, c, p and q be real numbers such that κ ≥ max
{
−1,−c,− c+1

4

}
and q ≥ max

{
0, 4p, p+ 3

4

}
. Then x �→ uν(x)/K(

√
x) and x �→ Φ(p, q;x)/K(

√
x)

are decreasing on (0, 1), and consequently for all r ∈ (0, 1) we have

λν

(
2
√
r

1 + r

)
≤ (1 + r) · λν(r) and λΦ

(
2
√
r

1 + r

)
≤ (1 + r) · λΦ(r).
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Now, let us consider the following hypergeometric transformation [4, p. 128]:

(7) F

(
a, b; 2b;

4r

(1 + r)2

)
= (1 + r)2a · F

(
a, a+

1

2
− b; b+

1

2
; r2

)
,

which can be regarded as the generalization of the first Landen identity in (1). By
using this transformation we can obtain the following result. Observe that if the
conditions of part a of Theorem 4 are valid and in addition c > 0 and a ≥ 1

2 ,
then the Landen inequality (8) improves (2). Similarly, if the conditions of part
b of Theorem 4 are valid and in addition a ≤ 1

2 , then the Landen inequality (9)
improves (4).

Theorem 4. Let a, b > 0 and c ∈ R such that c is not a negative integer or zero.
The following assertions are true:

a. If max{1, c} ≤ 2b ≤ a+ 1
2 or c ≤ 2b ≤ a or 3c ≤ 6b ≤ min{6a, 4a+1}, then

(8) F

(
a, b; c;

4r

(1 + r)2

)
≥ (1 + r)2a · F (a, b; c; r2)

holds for each r ∈ (0, 1).
b. If a+ 1

2 ≤ 2b ≤ min{1, c} or max{6a, 4a+ 1} ≤ 6b ≤ 3c, then

(9) F

(
a, b; c;

4r

(1 + r)2

)
≤ (1 + r)2a · F (a, b; c; r2)

holds for each r ∈ (0, 1).

Proof of a and b. We proceed similarly as in the proof of Theorem 1. For this, first
we consider the function T : (0, 1) → (0,∞), defined by

T (x) =
F (a, b; c;x)

F (a, b; 2b;x)
=

∑
n≥0

(a)n(b)n
(c)n

· x
n

n!

∑
n≥0

(a)n(b)n
(2b)n

· x
n

n!

.

Now, in view of Lemma 1, for the monotonicity of the quotient T we need to study
the monotonicity of the quotient sequence {βn}n≥0, defined by βn = (2b)n/(c)n.
Since βn+1/βn = (n+2b)/(n+c), it is clear that the sequence {βn}n≥0 is increasing
(decreasing) if 2b ≥ c (2b ≤ c). Now, if we consider the case 2b ≥ c, then {βn}n≥0

is increasing, and applying Lemma 1 the function T is increasing. In other words,
if 0 < x < y < 1, then we have T (x) < T (y). Thus, choosing x = x(r) = r2 and
y = y(r) = 4r/(1 + r)2, we obtain the inequality

F (a, b; c; r2)

F (a, b; 2b; r2)
≤

F
(
a, b; c; 4r

(1+r)2

)
F
(
a, b; 2b; 4r

(1+r)2

) ,
which in view of (7) is equivalent to

(10) F (a, b; c; r2) ≤ F

(
a, b; c;

4r

(1 + r)2

)
· F (a, b; 2b; r2)

(1 + r)2aF
(
a, a+ 1

2 − b; b+ 1
2 ; r

2
) .

Observe that if 2b ≤ a + 1
2 and 2b ≥ 1, then for all n ∈ {0, 1, . . . } we have (b)n ≤(

a+ 1
2 − b

)
n
and

(
b+ 1

2

)
n
≤ (2b)n. Similarly, if 0 < 2b ≤ a, then we clearly have
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(
b+ 1

2

)
n
≤

(
a+ 1

2 − b
)
n
and (b)n < (2b)n for all n ∈ {0, 1, . . . }. In both cases we

have
(b)n
(2b)n

· (a)n
n!

≤
(
a+ 1

2 − b
)
n(

b+ 1
2

)
n

· (a)n
n!

for all n ∈ {0, 1, . . . }, and consequently for all r ∈ (0, 1) one has

(11) F (a, b; 2b; r2) ≤ F

(
a, a+

1

2
− b; b+

1

2
; r2

)
.

On the other hand, observe that if a ≥ b and 2a+ 1
2 ≥ 3b, then for all n ∈ {0, 1, . . . }

we have (a − b)n + b
(
2a+ 1

2 − 3b
)
≥ 0, and consequently the sequence {γn}n≥0,

defined by

γn =
(b)n

(
b+ 1

2

)
n

(2b)n
(
a+ 1

2 − b
)
n

,

satisfies
γn+1

γn
=

(n+ b)
(
n+ b+ 1

2

)
(n+ 2b)

(
n+ a+ 1

2 − b
) ≤ 1

for all n ∈ {0, 1, . . . }. Thus, by using Lemma 1, the function

r �→ F (a, b; 2b; r)

F
(
a, a+ 1

2 − b; b+ 1
2 ; r

)
is decreasing on (0, 1), and consequently

F (a, b; 2b; r)

F
(
a, a+ 1

2 − b; b+ 1
2 ; r

) < lim
r↘0

F (a, b; 2b; r)

F
(
a, a+ 1

2 − b; b+ 1
2 ; r

) = 1

for all r ∈ (0, 1). Now, changing r to r2 we again obtain (11), and combining (10)
with (11) we obtain (8). This proves part a. The proof of part b is similar, and
thus we omit the details. �

We mention that by changing r to (1− r)/(1+ r) in inequality (8) we obtain for
all r ∈ (0, 1) the Landen inequality

F

(
a, b; c;

(
1− r

1 + r

)2
)

≤
(
1 + r

2

)2a

· F
(
a, b; c; 1− r2

)
,

where a, b and c are as in part a of Theorem 4. Moreover, if a, b and c are as in
part b of Theorem 4, then the above Landen inequality is reversed. Note that these
inequalities can also be obtained by using the steps of the proof of Theorem 4 and
the formula

F
(
a, b; 2b; 1− r2

)
=

(
1 + r

2

)−2a

· F
(
a, a+

1

2
− b; b+

1

2
;

(
1− r

1 + r

)2
)
,

which is the generalization of the second Landen identity in (1) and readily follows
from (7) by changing r to (1− r)/(1 + r), or from [4, p. 132]

F
(
a, b; 2b; r2

)
=

(
1 +

√
1− r2

2

)−2a

· F

⎛
⎝a, a+

1

2
− b; b+

1

2
;

(
1−

√
1− r2

1 +
√
1− r2

)2
⎞
⎠

by replacing r with
√
1− r2.
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Finally, we note that for some rational values of (a, b, c) the hypergeometric
function F (a, b; c; ·) reduces to some well-known special elementary functions, and
thus the results of Theorems 1 and 4 yield Landen inequalities for many elementary
functions. For a list of elementary representations we refer to [11, pp. 386-387] and
the references therein. For example, if we choose the triplets (a, b, c) =

(
1
2 ,

1
2 ,

3
2

)
and (a, b, c) =

(
1
2 , 1,

3
2

)
, then in view of the representations

F

(
1

2
,
1

2
;
3

2
; r2

)
=

1

r
arcsin r,

F

(
1

2
, 1;

3

2
; r2

)
=

1

2r
log

(
1 + r

1− r

)
,

and the inequalities (2) and (9), we obtain the next Landen inequalities for r ∈
(0, 1): √

r

2
arcsin

(
2
√
r

1 + r

)
< arcsin r,

(
1 +

√
r

1−
√
r

)√
r

>
1 + r

1− r
.
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