
TURÁN TYPE INEQUALITIES FOR SOME LOMMEL FUNCTIONS OF THE

FIRST KIND
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Abstract. In this paper certain Turán type inequalities for some Lommel functions of the first kind are

deduced. The key tools in our proofs are the infinite product representation for these Lommel functions
of the first kind, a classical result of G. Pólya on the zeros of some particular entire functions, and

the connection of these Lommel functions with the so-called Laguerre-Pólya class of entire functions.

Moreover, it is shown that in some cases J. Steinig’s results on the sign of Lommel functions of the first
kind combined with the so-called monotone form of l’Hospital’s rule can be used in the proof of the

corresponding Turán type inequalities.

1. Introduction

The Turán type inequalities for (orthogonal) polynomials and special functions have attracted many
mathematicians starting from 1948, when G. Szegő [22] published four different proofs of P. Turán’s
famous inequality on Legendre polynomials [23]. In the last 65 years it was shown by several researchers
that the most important (orthogonal) polynomials and special functions satisfy some Turán type in-
equalities. Recently, these kind of inequalities have attracted again the attention of many researchers
because some of the Turán type inequalities have been applied in different problems. For more details the
interested reader is referred to some very recent papers on the subject [4, 5, 6, 15] and to the references
therein. In this paper we make a contribution to the subject by proving the corresponding Turán type
inequalities for a particular Lommel function of the first kind. These Lommel functions of the first kind
are important because arise in the theory of positive trigonometric sums, see [14] for more details.

The Lommel function of the first kind sµ,ν is a particular solution of the inhomogeneous Bessel differ-
ential equation

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = zµ+1,

and it can be expressed in terms of a hypergeometric series

(1) sµ,ν(z) =
zµ+1

(µ− ν + 1)(µ+ ν + 1)
1F2

(
1;
µ− ν + 3

2
,
µ+ ν + 3

2
;−z

2

4

)
.

We note that for µ, ν ∈ C with Re(µ ± ν + 1) > 0 and z ∈ C \ (−∞, 0] we have the following integral
representation

(2) sµ,ν(z) =
π

2

[
Yν(z)

∫ z

0

tµJν(t) dt− Jν(z)

∫ z

0

tµYν(t) dt

]
,

where Jν and Yν are the usual Bessel functions of the first and second kind. It is also important to
mention here that in 1972, J. Steinig [20, Theorem 2] examined the sign of sµ,ν(z) for real µ, ν and
positive z. He showed, among other things, that for µ < 1

2 the function sµ,ν has infinitely many changes
of sign on (0,∞). See also [11] for related considerations. In [14] estimates for the location of the zeros of
the function sµ− 1

2 ,
1
2
, where µ ∈ (0, 1), have been obtained. Various properties of the zeros of sµ−k− 1

2 ,
1
2
,

where k ∈ {0, 1, . . .} and µ ∈ (0, 1), have been established in [13]. We note that although the Lommel
functions of the first kind occur in several places in physics and engineering, relatively very little has been
done in the literature for the Lommel functions of the first kind.

In this paper, our aim is to prove the following main result:
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Theorem 1. If z > 0 and µ ∈
(
− 5

2 ,−
1
2

)
, µ 6= − 3

2 , then the following Turán type inequality is valid

(3)
[
sµ, 12 (z)

]2
− sµ−1, 12

(z)sµ+1, 12
(z) >

1
1
2 − µ

[
sµ, 12 (z)

]2
.

2. Lemmas

For the proof of Theorem 1 we need the following lemmas.

Lemma 1. Let

ϕk(z) = 1F2

(
1;
µ− k + 2

2
,
µ− k + 3

2
;−z

2

4

)
,

where z ∈ C, µ ∈ R and k ∈ {0, 1, . . .} such that µ − k is not in {0,−1, . . . }. Then, ϕk is an even real
entire function of order ρ = 1 and of exponential type τ = 1. Moreover, ϕk is of genus 1. The Hadamard’s
factorization of ϕk is of the form

ϕk(z) =
∏
n≥1

(
1− z2

z2
µ,k,n

)
,

where ±zµ,k,1,±zµ,k,2, . . . are all zeros of the function ϕk and the infinite product is absolutely convergent.

Proof. The Pochhammer symbol (a)n is defined by

(a)0 = 1, (a)n = a(a+ 1) . . . (a+ n− 1) =
Γ(n+ a)

Γ(a)
, n ∈ {1, 2, . . . }.

Using the duplication formula [3, p. 22]

(2a)2n = (a)n

(
a+

1

2

)
n

22n,

we find that for k ∈ {0, 1, . . .}

ϕk(z) =
∑
n≥0

(−1)n z2n

(µ− k + 2)2n
.

Taking into consideration the well-known limits

lim
n→∞

log Γ(n+ c)

n log n
= 1, lim

n→∞

[Γ(n+ c)]1/n

n
=

1

e
,

where c is a positive constant, and [16, p. 6, Theorems 2 and 3], we infer that the entire function ϕk is of
order ρ = 1 and of exponential type τ = 1. The rest of the assertions of the Lemma follow by applying
Hadamard’s Theorem [16, p. 26] and Lindelöf’s Theorem [16, p. 33]. �

Lemma 2. For z, µ and k as in Lemma 1 we have

(4) (µ− k + 1)ϕk+1(z) = (µ− k + 1)ϕk(z) + zϕ′k(z).

Proof. It follows from (1) that

(5)
√
zsµ−k− 1

2 ,
1
2
(z) =

zµ−k+1

(µ− k) (µ− k + 1)
ϕk(z).

Differentiating both sides of the relation (5) and by using the known formulae [24, p. 348]

[zνsµ,ν(z)]
′

= (µ+ ν − 1)zνsµ−1,ν−1(z),(6)

sµ,−ν(z) = sµ,ν(z),

we obtain the recurrence relation (4). The condition that µ ∈ R and k ∈ {0, 1, . . .} are such that µ − k
is not in {0,−1, . . . } is required since the Lommel function sµ,ν is undefined when either of the numbers
µ± ν is an odd negative integer, according to [24, p. 345]. �

Lemma 3. For µ > 0 we have

zϕ0(z) = µ(µ+ 1)

∫ 1

0

(1− t)µ−1 sin(zt)dt,

ϕ1(z) = µ

∫ 1

0

(1− t)µ−1 cos(zt)dt.



TURÁN TYPE INEQUALITIES FOR LOMMEL FUNCTIONS 3

Proof. Recall that

J 1
2
(z) =

√
2

πz
sin z and Y 1

2
(z) = −

√
2

πz
cos z .

By using (2) and (5) we find that

zµ+1

µ(µ+ 1)
ϕ0(z) =

√
zsµ− 1

2 ,
1
2
(z) =

∫ z

0

tµ−1 sin(z − t)dt(7)

= zµ
∫ 1

0

(1− t)µ−1 sin(zt)dt.

By (5), (6) and the above relation we obtain

zµ

µ
ϕ1(z) = (µ− 1)

√
zsµ− 3

2 ,
1
2
(z) =

∫ z

0

tµ−1 cos(z − t)dt(8)

= zµ
∫ 1

0

(1− t)µ−1 cos(zt)dt.

From (7) and (8) the assertions of the Lemma follow. �

We also need the following result, which corresponds to a famous theorem of G. Pólya [18]. See also
[12] and [21] for different proofs of this result.

Lemma 4. Suppose that the function f is positive, strictly increasing and continuous on [0, 1) and that∫ 1

0
f(t)dt <∞. Then, the entire functions

u(z) =

∫ 1

0

f(t) sin(zt)dt and v(z) =

∫ 1

0

f(t) cos(zt)dt

have only real and simple zeros and their zeros interlace.

3. Proof of Theorem 1

Proof. Observe that by Lemmas 3 and 4 we have that for µ ∈ (0, 1) the function ϕ0 has only real and
simple zeros. For n ∈ {1, 2, . . . } let ξµ,n := zµ,0,n be the nth positive zero of ϕ0, and let ξµ,0 = 0. Lemma
1 yields

ϕ0(z) =
∏
n≥1

(
1− z2

ξ2
µ,n

)
,

and consequently

(9)
ϕ′0(z)

ϕ0(z)
=
∑
n≥1

2z

z2 − ξ2
µ,n

.

From (4) we obtain

(10) (µ+ 1)ϕ1(z) = (µ+ 1)ϕ0(z) + zϕ′0(z).

Since the zeros of the function ϕ0 are simple, equation (10) implies that ϕ0 and ϕ1 have no common
zeros. Note that ϕ0(0) = ϕ1(0) = 1. Combining (9) and (10) we have

ϕ1(z)

zϕ0(z)
=

1

z
+

1

µ+ 1

∑
n≥1

2z

z2 − ξ2
µ,n

for z 6= 0, z 6= ±ξµ,n, n ∈ {1, 2, . . . }. From the above Mittag-Leffler expansion for all z ∈ (ξµ,n−1, ξµ,n),
n ∈ {1, 2 . . . } we get [

ϕ1(z)

zϕ0(z)

]′
< 0.

Now, since ϕ′0(ξµ,n) 6= 0 and ϕ1(ξµ,n) 6= 0 for all n ∈ {1, 2, . . . }, we deduce from the above inequality
that for all z > 0 we have

(11) zϕ0(z)ϕ′1(z)− ϕ0(z)ϕ1(z)− zϕ1(z)ϕ′0(z) < 0.

On the other hand, in view of (5) we have

(µ+ 1)
ϕ1(z)

z ϕ0(z)
= (µ− 1)

sµ− 3
2 ,

1
2
(z)

sµ− 1
2 ,

1
2
(z)

.
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Using the differentiation formula (6) and the above relation, we see that, for µ ∈ (0, 1) and z > 0, the
inequality (11) is equivalent to

(12) (µ− 2)sµ− 5
2 ,

1
2
(z)sµ− 1

2 ,
1
2
(z)− (µ− 1)

[
sµ− 3

2 ,
1
2
(z)
]2
> 0,

and changing in this inequality µ to µ+ 3
2 , the desired inequality (3) follows for µ ∈

(
− 3

2 ,−
1
2

)
.

Lemma 4 implies also that for µ ∈ (0, 1) the function ϕ1 has only real and simple zeros. Then applying
(4) for k = 1, we conclude that the functions ϕ1 and ϕ2 have no common zeros. Let ζµ,n := zµ,1,n be the
nth positive zero of ϕ1. As above, by Lemma 1 and (4) we have the next Mittag-Leffler expansion

(13)
ϕ2(z)

zϕ1(z)
=

1

z
+

1

µ

∑
n≥1

2z

z2 − ζ2
µ,n

.

Hence, if z = x+ iy,

Im

[
ϕ2(z)

zϕ1(z)

]
= − y

µ

 µ

x2 + y2
+
∑
n≥1

[
1

(x+ ζµ,n)2 + y2
+

1

(x− ζµ,n)2 + y2

] ,

which is zero only if y = 0. Therefore the function ϕ2 has only real zeros and from (13) for z > 0 we
derive the inequality

(14) zϕ1(z)ϕ′2(z)− ϕ1(z)ϕ2(z)− zϕ2(z)ϕ′1(z) < 0.

This implies also that all zeros of ϕ2 are simple. On the other hand, from (5) we have

µ
ϕ2(z)

zϕ1(z)
= (µ− 2)

sµ− 5
2 ,

1
2
(z)

sµ− 3
2 ,

1
2
(z)

.

From this and (6) we conclude that for µ ∈ (0, 1) and z > 0 inequality (14) is equivalent to

(15) (µ− 3)sµ− 7
2 ,

1
2
(z)sµ− 3

2 ,
1
2
(z)− (µ− 2)

[
sµ− 5

2 ,
1
2
(z)
]2
> 0,

and changing in this inequality µ to µ+ 5
2 , the desired inequality (3) follows for µ ∈

(
− 5

2 ,−
3
2

)
. �

4. Concluding remarks

In this section our aim is to comment and complement the proof of the main result.
A. First, we would like to present a somewhat alternative proof of the Turán type inequality (3). For

this, let us recall that by definition the real entire function φ, defined by

(16) φ(z) = ϕ(z; t) =
∑
n≥0

bn(t)
zn

n!
,

is said to be in the Laguerre-Pólya class (denoted by LP), if φ(z) can be expressed in the form

φ(z) = czde−αz
2+βz

ω∏
n=1

(
1− z

zn

)
e

z
zn , 0 ≤ ω ≤ ∞,

where c and β are real, zn’s are real and nonzero for all n ∈ {1, 2, . . ., ω}, α ≥ 0, d is a nonnegative
integer and

∑ω
n=1 z

−2
i <∞. If ω = 0, then, by convention, the product is defined to be 1. For the various

properties of the functions in the Laguerre-Pólya class we refer to [7, 8, 9, 10] and to the references
therein. We note that in fact a real entire function φ is in the Laguerre-Pólya class if and only if φ can
be uniformly approximated on disks around the origin by a sequence of polynomials with only real zeros.
This implies that the class LP is closed under differentiation, that is, if φ ∈ LP, then φ(m) ∈ LP for all
m nonnegative integer. We also recall the following result (for more details we refer to H. Skovgaard’s
paper [19]): if a real entire function φ belongs to the Laguerre-Pólya class LP then satisfies the Laguerre
type inequalities

(17)
[
φ(m)(z)

]2
− φ(m−1)(z)φ(m+1)(z) ≥ 0,

for m ∈ {1, 2, . . . }. Now, recall that the zeros of ϕ0 are real and satisfy the inequalities (see [14])
ξµ,2n+1 > ξµ,2n > 2nπ, where µ ∈ (0, 1) and n ∈ {1, 2, . . . }. Combining this with the fact that the
series

∑
n≥1 n

−2 converges, the comparison test yields that
∑
n≥1 ξ

−2
µ,n converges. Note that this result

can be verified also by means of Lemma 1, since the function ϕ0 has genus 1, order 1 and therefore the
convergence exponent of their zeros is also 1. Now, the convergence of the above series together with the
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infinite product representation of the function ϕ0 yields that ϕ0 ∈ LP, which in turn implies that the
above function satisfies the Laguerre inequality (17). In particular, by choosing m = 1, for µ ∈ (0, 1) and
z > 0 we have that

[ϕ′0(z)]
2 − ϕ0(z)ϕ′′0(z) > 0.

Combining this with (10) and

ϕ′1(z) =
µ+ 2

µ+ 1
ϕ′0(z) +

z

µ+ 1
ϕ′′0(z),

we obtain that

zϕ0(z)ϕ′1(z)− ϕ0(z)ϕ1(z)− zϕ1(z)ϕ′0(z)

= − [ϕ0(z)]
2

+
z2

µ+ 1

[
ϕ0(z)ϕ′′0(z)− [ϕ′0(z)]

2
]
< 0,

that is, the inequality (11) is valid for µ ∈ (0, 1) and z > 0. The proof of inequality (14) can be done in a
similar way. More precisely, according to Lemma (4) the zeros of ϕ0 and ϕ1 interlace. This means that∑
n≥1 ζ

−2
µ,n also converges, and combining this with the infinite product representation of the function ϕ1

yields that ϕ1 ∈ LP. We note that the convergence of
∑
n≥1 ζ

−2
µ,n can be verified also by means of Lemma

1, since the function ϕ1 has genus 1, order 1 and therefore the convergence exponent of their zeros is also
1. Now, this in turn implies that the above function satisfies the Laguerre inequality (17). In particular,
by choosing m = 1, for µ ∈ (0, 1) and z > 0 we have that

[ϕ′1(z)]
2 − ϕ1(z)ϕ′′1(z) > 0.

Combining this with

ϕ2(z) = ϕ1(z) +
z

µ
ϕ′1(z),

ϕ′2(z) =
µ+ 1

µ
ϕ′1(z) +

z

µ
ϕ′′1(z),

we obtain that

zϕ1(z)ϕ′2(z)− ϕ1(z)ϕ2(z)− zϕ2(z)ϕ′1(z)

= − [ϕ1(z)]
2

+
z2

µ

[
ϕ1(z)ϕ′′1(z)− [ϕ′1(z)]

2
]
< 0,

that is, the inequality (14) is valid for µ ∈ (0, 1) and z > 0.
B. Now, we would like to present the following version of the monotone form of l’Hospital rule due

to I. Pinelis [17]. We note that another version of monotone form of l’Hospital rule was proved by G.D.
Anderson, M.K. Vamanamurthy and M. Vuorinen [1, 2].

Lemma 5. Let −∞ ≤ a < b ≤ ∞ and let f and g be differentiable functions on (a, b). Assume that
either g′ > 0 everywhere on (a, b) or g′ < 0 on (a, b). Furthermore, suppose that f(a+) = g(a+) = 0 or
f(b−) = g(b−) = 0 and f ′/g′ is (strictly) increasing (decreasing) on (a, b). Then the ratio f/g is (strictly)
increasing (decreasing) too on (a, b).

In this paper we proved that for z > 0 and µ ∈
(
− 5

2 ,−
1
2

)
, µ 6= − 3

2 , the Turán type inequality (3)
is valid. It is natural to ask whether for other values of µ the inequality (3) is valid or not. Based on
numerical experiments we believe but ar unable to prove the following conjecture.

Conjecture The Turán type inequality (3) is valid for z > 0 and µ ≥ 3
2 and fails to hold for z > 0

and µ ∈
(
− 1

2 ,
3
2

)
.

Below we show that to prove the first part of the above conjecture in fact it is enough to show that
(3) is valid for z > 0 and µ ∈

[
3
2 ,

5
2

)
. More precisely, we show that when µ ≥ 3

2 the inequality (3)
can be proved iteratively in the sense that the following chain of implications is valid: if (3) is valid for
µ ∈

[
3
2 ,

5
2

)
, then this implies that the Turán type inequality (3) is also valid for µ ∈

[
5
2 ,

7
2

)
, and this

implies that (3) holds true for µ ∈
[

7
2 ,

9
2

)
, and so on. For this first recall that according to J. Steinig [20,

Theorem 3] we have that sµ,ν(z) > 0 for z > 0 and µ > 1
2 . On the other hand, by using the recurrence

relation [24, p. 348]

s′µ,ν(z) +
ν

z
sµ,ν(z) = (µ+ ν − 1)sµ−1,ν−1(z),
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we get

s′µ, 12
(z) +

1

2z
sµ, 12 (z) =

(
µ− 1

2

)
sµ−1, 12

(z),

s′µ+1, 12
(z) +

1

2z
sµ+1, 12

(z) =

(
µ+

1

2

)
sµ, 12 (z),

and consequently

s′µ+1, 12
(z)sµ, 12 (z)− sµ+1, 12

(z)s′µ, 12
(z)

=

(
µ+

1

2

)[
sν, 12 (z)

]2
−
(
µ− 1

2

)
sν−1, 12

(z)sµ+1, 12
(z).

Now, suppose that the Turán type inequality (3) is valid for µ ∈
[

3
2 ,

5
2

)
and z > 0. The above relation

shows that (3) is equivalent to the fact that the function z 7→ sµ+1, 12
(z)/sµ, 12 (z) is increasing on (0,∞)

for µ ∈
[

3
2 ,

5
2

)
. Changing µ to µ − 1, we get that the function z 7→ sµ, 12 (z)/sµ−1, 12

(z) is increasing on

(0,∞) for µ ∈
[

5
2 ,

7
2

)
. But, this means that the function

z 7→

[√
zsµ+1, 12

(z)
]′

[√
zsµ, 12 (z)

]′ =

(
µ+ 1

2

)√
zsµ, 12 (z)(

µ− 1
2

)√
zsµ−1, 12

(z)
=
µ+ 1

2

µ− 1
2

sµ, 12 (z)

sµ−1, 12
(z)

is also increasing on (0,∞) for µ ∈
[

5
2 ,

7
2

)
. Now, since

√
zsµ+1, 12

(z) → 0 and
√
zsµ, 12 (z) → 0 as z → 0,

by using the monotone form of l’Hospital’s rule (see Lemma 5) we obtain that the function

z 7→
√
zsµ+1, 12

(z)
√
zsµ, 12 (z)

=
sµ+1, 12

(z)

sµ, 12 (z)

is also increasing on (0,∞) for µ ∈
[

5
2 ,

7
2

)
, and this is equivalent to inequality (3). A similar procedure

shows that the fact that (3) is valid for µ ∈
[

5
2 ,

7
2

)
implies that it is also valid for µ ∈

[
7
2 ,

9
2

)
, and so on.

C. We note that by using the above argument it can be shown that for z ∈ (0, ξµ−1,1) and µ ∈
(
− 1

2 ,
1
2

)
the Turán type inequality (3) is reversed, which is in agreement with the second part of the above
conjecture. Namely, taking into account the fact that (3) is valid for µ ∈

(
− 3

2 ,−
1
2

)
and z > 0, we get

that the function z 7→ sµ+1, 12
(z)/sµ, 12 (z) is decreasing on (ξµ,n−1, ξµ,n), n ∈ {1, 2, . . . }, for µ ∈

(
− 3

2 ,−
1
2

)
.

Now, changing µ to µ−1 we get that the function z 7→ sµ, 12 (z)/sµ−1, 12
(z) is also decreasing on (0, ξµ−1,1)

for µ ∈
(
− 1

2 ,
1
2

)
. But, this means that the function

z 7→

[√
zsµ+1, 12

(z)
]′

[√
zsµ, 12 (z)

]′ =

(
µ+ 1

2

)√
zsµ, 12 (z)(

µ− 1
2

)√
zsµ−1, 12

(z)
=
µ+ 1

2

µ− 1
2

sµ, 12 (z)

sµ−1, 12
(z)

is increasing on (0, ξµ−1,1) for µ ∈
(
− 1

2 ,
1
2

)
. Now, since

√
zsµ+1, 12

(z) → 0 and
√
zsµ, 12 (z) → 0 as z → 0,

by using Lemma 5 we obtain that the function

z 7→
√
zsµ+1, 12

(z)
√
zsµ, 12 (z)

=
sµ+1, 12

(z)

sµ, 12 (z)

is also increasing on (0, ξµ−1,1) for µ ∈
(
− 1

2 ,
1
2

)
, and this is equivalent to the reversed form of the

inequality (3). Moreover, changing again µ to µ − 1 we get that the function z 7→ sµ, 12 (z)/sµ−1, 12
(z) is

increasing on (0, ξµ−2,1) for µ ∈
(

1
2 ,

3
2

)
. But, this means that the function

z 7→

[√
zsµ+1, 12

(z)
]′

[√
zsµ, 12 (z)

]′ =

(
µ+ 1

2

)√
zsµ, 12 (z)(

µ− 1
2

)√
zsµ−1, 12

(z)
=
µ+ 1

2

µ− 1
2

sµ, 12 (z)

sµ−1, 12
(z)

is increasing on (0, ξµ−2,1) for µ ∈
(

1
2 ,

3
2

)
. Now, since

√
zsµ+1, 12

(z)→ 0 and
√
zsµ, 12 (z)→ 0 as z → 0, by

using again the monotone form of l’Hospital’s rule (see Lemma 5) we obtain that the function

z 7→
√
zsµ+1, 12

(z)
√
zsµ, 12 (z)

=
sµ+1, 12

(z)

sµ, 12 (z)
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is also increasing on (0, ξµ−2,1) for µ ∈
(

1
2 ,

3
2

)
, and this is equivalent to the fact that the Turán type

inequality (3) is valid for z ∈ (0, ξµ−2,1) and µ ∈
(

1
2 ,

3
2

)
. Combining this with part B of these concluding

remarks we get that the inequality (3) is valid for all z ∈ (0, ξµ−m,1) and m − 3
2 < µ < m − 1

2 , m ∈
{2, 3, . . . }.

D. Finally, observe that the right-hand side of (3) for µ > 1
2 is negative, and thus it is natural to ask

whether the next Turán type inequality (or its reverse) is valid for µ > 1
2 and z > 0

(18) ∆µ(z) :=
[
sµ, 12 (z)

]2
− sµ−1, 12

(z)sµ+1, 12
(z) > 0.

However, for example the Turán expression ∆ 3
2
(z) has an infinity of changes of sign on (0,∞). For this

first observe that

s 1
2 ,

1
2
(z) =

1− cos z√
z

, s 3
2 ,

1
2
(z) =

z − sin z√
z

and s 5
2 ,

1
2
(z) =

z2 + 2 cos z − 2√
z

.

The first relation follows from the fact that when µ = ν the Lommel function of the first kind can be
expressed with the aid of the Struve function of order ν, for more details see [20, p. 124]. The third
relation follows from [24, p. 348]

sµ+2,ν(z) = zµ+1 −
[
(µ+ 1)2 − ν2

]
sµ,ν(z)

by taking µ = ν = 1
2 , while the second relation follows from (6) by choosing µ = 5

2 and ν = 1
2 . Now, since

η(z) := z∆ 3
2
(z) = (z2 − 4) cos z + cos2 z − 2z sin z + 3 takes the values

η((2n− 1)π) = 8− (2n− 1)2π2 < 0 and η(2nπ) = (2nπ)2 > 0

for n ∈ {1, 2, . . . }, it is clear that indeed ∆ 3
2
(z) has an infinity of changes of sign on (0,∞).

References

[1] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps,

John Wiley & Sons, New York, 1997.
[2] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Inequalities for quasiconformal mappings in space, Pacific J.

Math. 160(1) (1993) 1–18.

[3] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 1999.
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