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Abstract. We construct infinite collections of monic Eisenstein polynomials
𝑓(𝑥) ∈ Z[𝑥] such that the power-compositional polynomials 𝑓(𝑥𝑑𝑛 ) are mono-
genic for all integers 𝑛 ≥ 0 and any integer 𝑑 > 1, where 𝑑 has the property
that 𝑓(𝑥) is Eisenstein with respect to every prime divisor of 𝑑. We also
investigate extending these ideas to power-compositional Eisenstein polyno-
mials 𝑓(𝑥𝑠𝑛 ), where 𝑠 has a prime divisor 𝑝 such that 𝑓(𝑥) is not Eisenstein
with respect to 𝑝.
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1. Introduction
Let 𝑓(𝑥) ∈ Z[𝑥] be monic. We define 𝑓(𝑥) to be monogenic if 𝑓(𝑥) is irreducible
over Q and {1, 𝜃, 𝜃2, . . . , 𝜃deg(𝑓)−1} is a basis for the ring of integers of 𝐾 = Q(𝜃),
where 𝑓(𝜃) = 0. We say that 𝑓(𝑥) is 𝑝-Eisenstein, or simply Eisenstein, if there
exists a prime 𝑝 such that 𝑓(𝑥) ≡ 𝑥deg(𝑓) (mod 𝑝), but 𝑓(0) ̸≡ 0 (mod 𝑝2). It is
well known that Eisenstein polynomials are irreducible over Q. Throughout this
article, we use the following notation:

• 𝒫(𝑧) is the set of all prime divisors of the integer 𝑧 > 1,

• ℰ𝑓 is the set of all primes 𝑝 for which 𝑓(𝑥) is 𝑝-Eisenstein,

• Π𝑓 is the product of all primes in ℰ𝑓 ,

• Γ𝑓 is the set of all integers 𝑑 > 1 such that 𝒫(𝑑) ⊆ ℰ𝑓 ,

• Λ𝑓 is the set of all integers 𝜆 > 1 such that the power-compositional polyno-
mials 𝑓(𝑥𝜆𝑛) are monogenic for all integers 𝑛 ≥ 0.
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The main purpose of this article is the construction of infinite collections of monic
Eisenstein polynomials 𝑓(𝑥) ∈ Z[𝑥] such that the power-compositional polynomials
𝑓(𝑥𝑑𝑛) are monogenic for all integers 𝑛 ≥ 0 and all integers 𝑑 ∈ Γ𝑓 . We divide
the main investigation section (Section 3) into subsections according to trinomials,
quadrinomials, quintinomials and sextinomials. Binomials, which are fully under-
stood, are discussed briefly in Section 4. The approach we use for trinomials utilizes
a result of Jakhar, Khanduja and Sangwan [11] that is tailored specifically for the
determination of the monogenity of trinomials. For quadrinomials and beyond, we
use a different approach that is based partly on ideas found in [12]. To facilitate
our methods in these cases, we also prove a new result that establishes the fact
that Γ𝑓 ⊆ Λ𝑓 for any monogenic Eisenstein polynomial with |𝑓(0)| = Π𝑓 (see
Lemma 3.1). The following theorem, which is an excerpt taken from Theorem 3.9
in Section 3.2, represents a typical result from Section 3.

Theorem 1.1. Let 𝑁, 𝒦, 𝑡, 𝐶 ∈ Z with 𝑁 ≥ 3, gcd(𝒦, 𝑁) = 1 and 𝒦 squarefree.
Let

𝑓(𝑥) = 𝑥𝑁 + 𝒦𝑡
(︀
(2𝐶𝑁 − 2𝐶 + 1)𝑥2 + (2𝐶𝑁2 − 4𝐶𝑁 + 𝑁 − 1)𝑥 + 1

)︀
.

Then there exist infinitely many prime values of 𝑡 such that 𝑓(𝑥𝑑𝑛) is monogenic
for all 𝑑 ∈ Γ𝑓 and all integers 𝑛 ≥ 0.

Remark 1.2. We point out that infinite families of monogenic power-compositional
trinomials were given in [8]. However, Eisenstein polynomials were not specifically
addressed there.

2. Preliminaries
We first require some standard tools and notation. Let Δ(𝑓(𝑥)), or simply Δ(𝑓),
and Δ(𝐾) denote the discriminants over Q, respectively, of 𝑓(𝑥) ∈ Z[𝑥] and a
number field 𝐾. If 𝑓(𝑥) is irreducible over Q with 𝑓(𝜃) = 0, then [1]

Δ(𝑓) = [Z𝐾 : Z[𝜃]]2Δ(𝐾). (2.1)

Observe then, from (2.1), that 𝑓(𝑥) is monogenic if and only if Δ(𝑓) = Δ(𝐾). We
also see from (2.1) that if Δ(𝑓) is squarefree, then 𝑓(𝑥) is monogenic. However,
the converse is false in general, and when Δ(𝑓) is not squarefree, it can be quite
difficult to determine whether 𝑓(𝑥) is monogenic.

Definition 2.1. [1] Let ℛ be an integral domain with quotient field 𝐾, and let
𝐾 be an algebraic closure of 𝐾. Let 𝑓(𝑥), 𝑔(𝑥) ∈ ℛ[𝑥], and suppose that 𝑓(𝑥) =
𝑎
∏︀𝑚

𝑖=1(𝑥 − 𝛼𝑖) ∈ 𝐾[𝑥] and 𝑔(𝑥) = 𝑏
∏︀𝑛

𝑖=1(𝑥 − 𝛽𝑖) ∈ 𝐾[𝑥]. Then the resultant
𝑅(𝑓, 𝑔) of 𝑓 and 𝑔 is:

𝑅(𝑓, 𝑔) = 𝑎𝑛
𝑚∏︁

𝑖=1
𝑔(𝛼𝑖) = (−1)𝑚𝑛𝑏𝑚

𝑛∏︁

𝑖=1
𝑓(𝛽𝑖).
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The following theorem is a well-known result in algebraic number theory [2].

Theorem 2.2. Let 𝑝 be a prime and let 𝑓(𝑥) ∈ Z[𝑥] be a monic 𝑝-Eisenstien
polynomial with deg(𝑓) = 𝑁 . Let 𝐾 = Q(𝜃), where 𝑓(𝜃) = 0. Then

1. 𝑝𝑁−1||Δ(𝐾) if 𝑁 ̸≡ 0 (mod 𝑝),

2. 𝑝𝑁 |Δ(𝐾) if 𝑁 ≡ 0 (mod 𝑝).

Theorem 2.3. Let 𝑓(𝑥) and 𝑔(𝑥) be polynomials in Q[𝑥], with respective leading
coefficients 𝑎 and 𝑏, and respective degrees 𝑚 and 𝑛. Then

Δ(𝑓 ∘ 𝑔) = (−1)𝑚2𝑛(𝑛−1)/2 · 𝑎𝑛−1𝑏𝑚(𝑚𝑛−𝑛−1)Δ(𝑓)𝑛𝑅(𝑓 ∘ 𝑔, 𝑔′).

Remark 2.4. As far as we can determine, Theorem 2.3 is originally due to John
Cullinan [3]. A proof of Theorem 2.3 can be found in [7].

The following theorem, known as Dedekind’s Index Criterion, or simply Dede-
kind’s Criterion if the context is clear, is a standard tool used in determining the
monogenity of a polynomial.

Theorem 2.5 (Dedekind [1]). Let 𝐾 = Q(𝜃) be a number field, 𝑇 (𝑥) ∈ Z[𝑥] the
monic minimal polynomial of 𝜃, and Z𝐾 the ring of integers of 𝐾. Let 𝑞 be a prime
number and let * denote reduction of * modulo 𝑞 (in Z, Z[𝑥] or Z[𝜃]). Let

𝑇 (𝑥) =
𝑘∏︁

𝑖=1
𝜏𝑖(𝑥)𝑒𝑖

be the factorization of 𝑇 (𝑥) modulo 𝑞 in F𝑞[𝑥], and set

𝑔(𝑥) =
𝑘∏︁

𝑖=1
𝜏𝑖(𝑥),

where the 𝜏𝑖(𝑥) ∈ Z[𝑥] are arbitrary monic lifts of the 𝜏𝑖(𝑥). Let ℎ(𝑥) ∈ Z[𝑥] be a
monic lift of 𝑇 (𝑥)/𝑔(𝑥) and set

𝐹 (𝑥) = 𝑔(𝑥)ℎ(𝑥) − 𝑇 (𝑥)
𝑞

∈ Z[𝑥].

Then
[Z𝐾 : Z[𝜃]] ̸≡ 0 (mod 𝑞) ⇐⇒ gcd

(︀
𝐹 , 𝑔, ℎ

)︀
= 1 in F𝑞[𝑥].

The following theorem appears as Theorem 1 in [12].

Theorem 2.6. Let 𝑁 and 𝑘 be integers with 𝑁 > 𝑘 ≥ 1. Let

𝑓(𝑥) = 𝑥𝑁 + 𝒯 𝑢(𝑥), where 𝒯 ∈ Z and

𝑢(𝑥) = 𝑎𝑘𝑥𝑘 + 𝑎𝑘−1𝑥𝑘−1 + 𝑎𝑘−2𝑥𝑘−2 + · · · + 𝑎1𝑥 + 𝑎0 ∈ Z[𝑥] with 𝑎0, 𝑎𝑘 ̸= 0.
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Suppose that 𝑓(𝑥) is irreducible over Q, and let 𝐾 = Q(𝜃), where 𝑓(𝜃) = 0. Then

Δ(𝑓) = (−1)
𝑁(𝑁+2𝑘−1)

2 𝒯 𝑁−1𝒩 (̂︀𝑢(𝜃))
𝑎0

,

where

̂︀𝑢(𝑥) = 𝑎𝑘(𝑁 − 𝑘)𝑥𝑘 + 𝑎𝑘−1(𝑁 − (𝑘 − 1))𝑥𝑘−1 + · · · + 𝑎1(𝑁 − 1)𝑥 + 𝑎0𝑁,

and 𝒩 := 𝒩𝐾/𝑄 is the algebraic norm. Moreover, if

̂︀𝑢(𝑥) =
𝑘∏︁

𝑖=1
(𝐴𝑖𝑥 + 𝐵𝑖),

where the 𝐴𝑖𝑥 + 𝐵𝑖 ∈ Z[𝑥] are not necessarily distinct, then

𝒩 (̂︀𝑢(𝜃)) =
𝑘∏︁

𝑖=1

⎛
⎝𝒯

𝑘∑︁

𝑗=0
𝑎𝑗𝐴𝑁−𝑗

𝑖 (−𝐵𝑖)𝑗 + (−𝐵𝑖)𝑁

⎞
⎠.

The following corollary of Theorem 2.6 will be useful in this article.
Corollary 2.7. Let 𝑓(𝑥), 𝑢(𝑥) and ̂︀𝑢(𝑥) be as defined in Theorem 2.6. Suppose
that 𝑓(𝑥) is irreducible over Q, 𝐾 = Q(𝜃) where 𝑓(𝜃) = 0, and the content of 𝑢(𝑥)
is 1. If 𝒯 𝒩 (̂︀𝑢(𝜃))/𝑎0 is squarefree, then gcd(𝒯 , 𝑁) = 1 and 𝑓(𝑥) is monogenic.
Proof. If 𝒯 = 1, the corollary is obviously true. If |𝒯 | ≥ 2, then 𝑓(𝑥) is Eisenstein
with Π𝑓 = |𝒯 |, since the content of 𝑢(𝑥) is 1. Let 𝑝 be a prime divisor of Π𝑓 . If 𝑝 |
𝑁 , then 𝑝𝑁 | Δ(𝐾) by Theorem 2.2, which contradicts the fact that Π𝑓 𝒩 (̂︀𝑢(𝜃))/𝑎0
is squarefree. Hence, 𝑝 ∤ 𝑁 and 𝑝𝑁−1 || Δ(𝐾) by Theorem 2.2, which completes
the proof.

The next theorem follows from Corollary (2.10) in [14].
Theorem 2.8. Let 𝐾 and 𝐿 be number fields with 𝐾 ⊂ 𝐿. Then

Δ(𝐾)[𝐿:𝐾] ⃒⃒ Δ(𝐿).

Theorem 2.9. Let 𝐺(𝑡) ∈ Z[𝑡], and suppose that 𝐺(𝑡) factors into a product of
distinct irreducibles, such that the degree of each irreducible is at most 3. Define

𝑁𝐺(𝑋) = |{𝑝 ≤ 𝑋 : 𝑝 is prime and 𝐺(𝑝) is squarefree}|.
Then,

𝑁𝐺(𝑋) ∼ 𝐶𝐺
𝑋

log(𝑋) ,

where

𝐶𝐺 =
∏︁

ℓ prime

(︃
1 − 𝜌𝐺

(︀
ℓ2)︀

ℓ(ℓ − 1)

)︃

and 𝜌𝐺

(︀
ℓ2)︀ is the number of 𝑧 ∈

(︀
Z/ℓ2Z

)︀* such that 𝐺(𝑧) ≡ 0 (mod ℓ2).
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Remark 2.10. Theorem 2.9 follows from work of Helfgott, Hooley and Pasten [9,
10, 15]. For more details, see [13].

Definition 2.11. In the context of Theorem 2.9, for 𝐺(𝑡) ∈ Z[𝑡] and a prime ℓ, if
𝐺(𝑧) ≡ 0 (mod ℓ2) for all 𝑧 ∈

(︀
Z/ℓ2Z

)︀*, we say that 𝐺(𝑡) has a local obstruction
at ℓ.

The following immediate corollary of Theorem 2.9 is a tool used to establish
the main results in this article.

Corollary 2.12. Let 𝐺(𝑡) ∈ Z[𝑡], and suppose that 𝐺(𝑡) factors into a product of
distinct irreducibles, such that the degree of each irreducible is at most 3. To avoid
the situation when 𝐶𝐺 = 0, we suppose further that 𝐺(𝑡) has no local obstructions.
Then there exist infinitely many primes 𝑞 such that 𝐺(𝑞) is squarefree.

We make the following observation concerning 𝐺(𝑡) from Corollary 2.12 in the
special case when each of the distinct irreducible factors of 𝐺(𝑡) is of the form
𝛼𝑖𝑡 + 𝛽𝑖 ∈ Z[𝑡] with gcd(𝛼𝑖, 𝛽𝑖) = 1. In this situation, it follows that the minimum
number of distinct factors required in 𝐺(𝑡) so that 𝐺(𝑡) has a local obstruction at
the prime ℓ is 2(ℓ − 1). More precisely, in this minimum scenario, we have

𝐺(𝑡) =
2(ℓ−1)∏︁

𝑖=1
(𝛼𝑖𝑡 + 𝛽𝑖) ≡ 𝐶(𝑡 − 1)2(𝑡 − 2)2 · · · (𝑡 − (ℓ − 1))2 (mod ℓ),

where 𝐶 ̸≡ 0 (mod ℓ). Then each zero 𝑟 of 𝐺(𝑡) modulo ℓ lifts to the ℓ distinct
zeros

𝑟, 𝑟 + ℓ, 𝑟 + 2ℓ, . . . . . . , 𝑟 + (ℓ − 1)ℓ ∈
(︀
Z/ℓ2Z

)︀*

of 𝐺(𝑡) modulo ℓ2 [4, Theorem 4.11]. That is, 𝐺(𝑡) has exactly ℓ(ℓ − 1) = 𝜑(ℓ2)
distinct zeros 𝑧 ∈

(︀
Z/ℓ2Z

)︀*. Therefore, if the number of factors 𝑘 of 𝐺(𝑡) satisfies
𝑘 < 2(ℓ−1), then there must exist 𝑧 ∈

(︀
Z/ℓ2Z

)︀* for which 𝐺(𝑧) ̸≡ 0 (mod ℓ2), and
we do not need to check such primes ℓ for a local obstruction. Consequently, only
finitely many primes need to be checked for local obstructions. They are precisely
the primes ℓ such that ℓ ≤ (𝑘 + 2)/2.

3. The main results
This section is devoted to the construction of infinite collections of monic Eisenstein
polynomials 𝑓(𝑥) ∈ Z[𝑥] with the property that the power-compositional polyno-
mials 𝑓(𝑥𝑑𝑛) are monogenic for all integers 𝑛 ≥ 0 and all integers 𝑑 ∈ Γ𝑓 . We begin
with a new result that is key to our investigations in Sections 3.2, 3.3 and 3.4.

Lemma 3.1. Let 𝑓(𝑥) ∈ Z[𝑥] be Eisenstein with deg(𝑓) = 𝑁 . If 𝑓(𝑥) is monogenic
and |𝑓(0)| = Π𝑓 , then Γ𝑓 ⊆ Λ𝑓 .
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Proof. Note first that we can write

𝑓(𝑥) = 𝑥𝑁 + Π𝑓 𝑤(𝑥), for some 𝑤(𝑥) ∈ Z[𝑥], with |𝑤(0)| = 1. (3.1)

Let 𝑑 ∈ Γ𝑓 . For 𝑛 ≥ 0, define

ℱ𝑛(𝑥) := 𝑓(𝑥𝑑𝑛

), 𝜃𝑛 := 𝜃1/𝑑𝑛

and 𝐾𝑛 := Q(𝜃𝑛),

where 𝑓(𝜃) = 0. Then 𝜃0 = 𝜃, ℱ0(𝑥) = 𝑓(𝑥) and, since 𝑓(𝑥) is monogenic, we have
that Δ(𝑓) = Δ(ℱ0) = Δ(𝐾0). Additionally, for all 𝑛 ≥ 0,

ℱ𝑛(𝜃𝑛) = 0, [𝐾𝑛+1 : 𝐾𝑛] = 𝑑 and ℱ𝑛(𝑥) is Eisesntein with |ℱ𝑛(0)| = Π𝑓 .

We have that ℱ0(𝑥) is monogenic by hypothesis, and we need to show that ℱ𝑛(𝑥)
is monogenic for all integers 𝑛 ≥ 1. Assume that ℱ𝑛(𝑥) is monogenic, so that
Δ(ℱ𝑛) = Δ(𝐾𝑛), and proceed by induction on 𝑛 to show that ℱ𝑛+1(𝑥) is mono-
genic. Let Z𝐾𝑛

denote the ring of integers of 𝐾𝑛. Consequently, by Theorem 2.8,
it follows that

Δ(ℱ𝑛)𝑑 divides Δ(𝐾𝑛+1) = Δ(ℱ𝑛+1)
[Z𝐾𝑛+1 : Z[𝜃𝑛+1]]2 ,

which implies that

[Z𝐾𝑛+1 : Z[𝜃𝑛+1]]2 divides Δ(ℱ𝑛+1)
Δ(ℱ𝑛)𝑑

.

Since |𝑓(0)| = Π𝑓 , we see from Theorem 2.3 that
⃒⃒
Δ(ℱ𝑛)𝑑

⃒⃒
=
⃒⃒
⃒Δ(𝑓)𝑑𝑛+1

𝑑𝑛𝑑𝑛+1𝑁 (Π𝑓 )𝑑𝑛+1−𝑑
⃒⃒
⃒ and

|Δ(ℱ𝑛+1)| =
⃒⃒
⃒Δ(𝑓)𝑑𝑛+1

𝑑(𝑛+1)𝑑𝑛+1𝑁 (Π𝑓 )𝑑𝑛+1−1
⃒⃒
⃒.

Hence, ⃒⃒
⃒⃒Δ(ℱ𝑛+1)

Δ(ℱ𝑛)𝑑

⃒⃒
⃒⃒ = 𝑑𝑑𝑛+1𝑁 (Π𝑓 )𝑑−1.

Since 𝒫(𝑑) ⊆ ℰ𝑓 , it is enough to show that gcd(Π𝑓 , [Z𝐾𝑛+1 : Z[𝜃𝑛+1]]) = 1. To
establish this fact, we apply Theorem 2.5 to 𝑇 := ℱ𝑛+1(𝑥), with 𝑞 a prime divisor
of Π𝑓 . Then we see from (3.1) that 𝑇 (𝑥) = 𝑥𝑑𝑛+1𝑁 , and so we can let 𝑔(𝑥) = 𝑥

and ℎ(𝑥) = 𝑥𝑑𝑛+1𝑁−1. Hence

𝐹 (𝑥) = 𝑔(𝑥)ℎ(𝑥) − 𝑇 (𝑥)
𝑞

= −Π𝑓

𝑞
𝑤(𝑥𝑑𝑛+1

).

Since Π𝑓 is squarefree, and |𝑤(0)| = 1, we deduce that 𝐹 (0) ̸= 0 and therefore,
gcd(𝐹 , 𝑔) = 1. Thus, by Theorem 2.5, we conclude that

[Z𝐾𝑛+1 : Z[𝜃𝑛+1]] ̸≡ 0 (mod 𝑞)

and, consequently, ℱ𝑛+1(𝑥) is monogenic, which completes the proof.

98



Annal. Math. et Inf. The monogenity of power-compositional Eisenstein polynomials

We see from Lemma 3.1 that we only need to focus on finding infinite collections of
monogenic Eisenstein polynomials 𝑓(𝑥) with |𝑓(0)| = Π𝑓 to produce infinite collec-
tions of Eisenstein polynomials with the desired power-compositional properties.
Lemma 3.1 will be used for quadrinomials and beyond, but a separate approach is
used for trinomials.

3.1. Trinomials
The formula for the discriminant of an arbitrary monic trinomial, due to Swan [16],
is given in the following theorem.

Theorem 3.2. Let 𝑓(𝑥) = 𝑥𝑁 + 𝐴𝑥𝑀 + 𝐵 ∈ Z[𝑥], where 0 < 𝑀 < 𝑁 . Let
𝑟 = gcd(𝑁, 𝑀), 𝑁1 = 𝑁/𝑟 and 𝑀1 = 𝑀/𝑟. Then

Δ(𝑓) = (−1)𝑁(𝑁−1)/2𝐵𝑀−1𝐷𝑟,

where
𝐷 := 𝑁𝑁1𝐵𝑁1−𝑀1 − (−1)𝑁1𝑀𝑀1(𝑁 − 𝑀)𝑁1−𝑀1𝐴𝑁1 .

Applying Theorem 3.2 to the power-compositional trinomial

ℱ𝑛(𝑥) := 𝑓(𝑥𝑑𝑛

) = 𝑥𝑑𝑛𝑁 + 𝐴𝑥𝑑𝑛𝑀 + 𝐵 (3.2)

we get the following immediate corollary.

Corollary 3.3. Let 𝑓(𝑥) and 𝐷 be as given in Theorem 3.2, and let ℱ𝑛(𝑥) be as
defined in (3.2). Let 𝑑, 𝑛 ∈ Z with 𝑑 ≥ 1 and 𝑛 ≥ 0. Then

Δ(ℱ𝑛) = (−1)𝑑𝑛𝑁(𝑑𝑛𝑁−1)/2𝐵𝑑𝑛𝑀−1𝑑𝑛𝑑𝑛𝑁 𝐷𝑑𝑛𝑟.

The next result is essentially an algorithmic adaptation of Dedekind’s index
criterion for trinomials.

Theorem 3.4. [11] Let 𝑁 ≥ 2 be an integer. Let 𝐾 = Q(𝜃) be an algebraic
number field with 𝜃 ∈ Z𝐾 , the ring of integers of 𝐾, having minimal polynomial
𝑓(𝑥) = 𝑥𝑁 + 𝐴𝑥𝑀 + 𝐵 over Q, with gcd(𝑀, 𝑁) = 𝑟, 𝑁1 = 𝑁/𝑟 and 𝑀1 = 𝑀/𝑟.
Let 𝐷 be as defined in Theorem 3.2. A prime factor 𝑞 of Δ(𝑓) does not divide
[Z𝐾 : Z[𝜃]] if and only if 𝑞 satisfies one of the following conditions:

1. when 𝑞 | 𝐴 and 𝑞 | 𝐵, then 𝑞2 ∤ 𝐵;

2. when 𝑞 | 𝐴 and 𝑞 ∤ 𝐵, then

either 𝑞 | 𝐴2 and 𝑞 ∤ 𝐵1 or 𝑞 ∤ 𝐴2

(︁
(−𝐵)𝑀1𝐴𝑁1

2 − (−𝐵1)𝑁1
)︁

,

where 𝐴2 = 𝐴/𝑞 and 𝐵1 = 𝐵+(−𝐵)𝑞𝑒

𝑞 with 𝑞𝑒 || 𝑁 ;
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3. when 𝑞 ∤ 𝐴 and 𝑞 | 𝐵, then

either 𝑞 | 𝐴1 and 𝑞 ∤ 𝐵2 or 𝑞 ∤𝐴1𝐵
𝑀−1
2

(︀
(−𝐴)𝑀1𝐴𝑁1−𝑀1

1 −(−𝐵2)𝑁1−𝑀1
)︀
,

where 𝐴1 = 𝐴+(−𝐴)𝑞𝑗

𝑞 with 𝑞𝑗 || (𝑁 − 𝑀), and 𝐵2 = 𝐵/𝑞;

4. when 𝑞 ∤ 𝐴𝐵 and 𝑞 | 𝑀 with 𝑁 = 𝑠′𝑞𝑘, 𝑀 = 𝑠𝑞𝑘, 𝑞 ∤ gcd(𝑠′, 𝑠), then the
polynomials

𝑥𝑠′
+ 𝐴𝑥𝑠 + 𝐵 and 𝐴𝑥𝑠𝑞𝑘 + 𝐵 + (−𝐴𝑥𝑠 − 𝐵)𝑞𝑘

𝑞

are coprime modulo 𝑞;

5. when 𝑞 ∤ 𝐴𝐵𝑀 , then 𝑞2 ∤ 𝐷/𝑟𝑁1 .

The following theorem lays the groundwork for the construction of infinite col-
lections of monogenic power-compositional Eisenstein trinomials.

Theorem 3.5. Suppose that 𝑓(𝑥) = 𝑥𝑁 + 𝐴𝑥𝑀 + 𝐵 ∈ Z[𝑥] is Eisenstein with
𝑁 > 𝑀 > 0 and 𝐵 squarefree. Suppose further that Π𝑓 ≡ 0 (mod 𝜅), where 𝜅 is
the squarefree kernel of 𝑟 := gcd(𝑁, 𝑀). Let

𝜌 =
∏︁

𝑝|Π𝑓

𝑝 prime

𝑝𝜈𝑝(𝐷) and D = 𝐷/𝜌,

where 𝜈𝑝 is the 𝑝-adic valuation, and 𝐷 is as defined in Theorem 3.2. If D is
squarefree and 𝑑 ∈ Γ𝑓 , then ℱ𝑛(𝑥) := 𝑓(𝑥𝑑𝑛) is monogenic for all integers 𝑛 ≥ 0.

Proof. Note that ℱ𝑛(𝑥) is Eisenstein, and hence is irreducible over Q. Suppose
that ℱ𝑛(𝜃) = 0, and let Z𝐾 be the ring of integers of 𝐾 = Q(𝜃). To establish
monogenity, we use Theorem 3.4 to show that [Z𝐾 : Z[𝜃]] ̸≡ 0 (mod 𝑞) for all
primes 𝑞 dividing Δ(ℱ𝑛) in Corollary 3.3. Since 𝒫(𝑑) ⊆ 𝒫(𝐵), we only have to
address primes dividing 𝐵𝐷.

Suppose first that 𝑞 | 𝐵. If 𝑞 | 𝐴, then condition (1) of Theorem 3.4 is satisfied
since 𝐵 is squarefree. Suppose then that 𝑞 ∤ 𝐴, and we examine condition (3). Note
that 𝑞 ∤ Π𝑓 . If 𝑞 ∤ 𝐴1, then 𝑞𝑗 || (𝑑𝑛𝑁 − 𝑑𝑛𝑀) for some integer 𝑗 ≥ 1. Thus, since
𝑞 ∤ 𝑑, we conclude that

𝑁 − 𝑀 = 𝑞𝑗𝑐, (3.3)
for some integer 𝑐 ≥ 1. If 𝑁1 − 𝑀1 > 1, then

𝑞2 | 𝐵𝑁1−𝑀1 and 𝑞2 | (𝑁 − 𝑀)𝑁1−𝑀1 .

Thus, 𝑞2 | 𝐷, which implies that 𝑞2 | D since 𝑞 ∤ Π𝑓 , contradicting the fact that D
is squarefree. Therefore, 𝑁1 − 𝑀1 = 1 and we deduce from (3.3) that

1 = 𝑁1 − 𝑀1 = (𝑁 − 𝑀)/𝑟 = 𝑞𝑗𝑐/𝑟,
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which contradicts the fact that 𝑞 ∤ 𝑟. Hence, 𝑞 | 𝐴1, and since 𝐵 is squarefree,
condition (3) of Theorem 3.4 is satisfied.

Suppose next that 𝑞 | 𝐷 and 𝑞 ∤ 𝐵. If 𝑞 | 𝐴, then 𝑞 | 𝑁 so that

𝑞2 | 𝑁𝑁1 and 𝑞2 | 𝐴𝑁1 .

Then 𝑞2 | 𝐷, which implies that 𝑞2 | D since 𝑞 ∤ Π𝑓 , contradicting the fact that D
is squarefree. If 𝑞 ∤ 𝐴𝐵 and 𝑞 | 𝑀 , then 𝑞 | 𝑁 . We then conclude that

𝑞2 | 𝑁𝑁1 and 𝑞2 | 𝑀𝑀1(𝑁 − 𝑀)𝑁1−𝑀1 .

Then, as before, 𝑞2 | 𝐷, which implies that 𝑞2 | D since 𝑞 ∤ Π𝑓 , contradicting the
fact that D is squarefree. Finally, suppose that 𝑞 ∤ 𝐴𝐵𝑀 . Thus, 𝑞2 ∤ 𝐷/𝑟𝑁1 since
𝑞 ∤ Π𝑓 and D is squarefree, so that condition (5) is satisfied.

The following corollary illustrates how Theorem 3.5 can be used to construct
infinite collections of monic Eisenstein trinomials with the desired power-composi-
tional properties.

Corollary 3.6. Let 𝑁, 𝐶, 𝑡 ∈ Z be such that 𝑁 ≥ 2 and 𝐶𝑡 is squarefree. Then, in
each of the following situations, there exist infinitely many prime values of 𝑡 such
that 𝑓(𝑥𝑑𝑛) is monogenic for any 𝑑 ∈ Γ𝑓 and all integers 𝑛 ≥ 0:

1. 𝑓(𝑥) = 𝑥𝑁 + 𝐶𝑡𝑥 + 𝐶𝑡, where |𝐶𝑡| ≥ 2 and gcd(𝐶𝑡, 𝑁) = 1,

2. 𝑓(𝑥) = 𝑥𝑁 + 𝐶𝑥𝑁−1 + 𝐶𝑡, where |𝐶| ≥ 2 and gcd(𝐶, 𝑁𝑡) = 1,

3. 𝑓(𝑥) = 𝑥𝑝 + 𝑝𝑥𝑝−1 + 𝑝𝑡, where 𝑝 is prime.

Proof. Observe that 𝑓(𝑥) is Eisenstein for all situations. For (1), in the setting of
Theorem 3.5, we have

𝐴 = 𝐵 = 𝐶𝑡, Π𝑓 = |𝐶𝑡|, 𝑟 = 𝜅 = 1 and

𝐷 = (−1)𝑁−1(𝐶𝑡)𝑁−1(︀(𝑁 − 1)𝑁−1𝐶𝑡 − (−1)𝑁 𝑁𝑁
)︀
,

so that Π𝑓 ≡ 0 (mod 𝜅) and

D = (1 − 𝑁)𝑁−1𝐶𝑡 + 𝑁𝑁 ,

since gcd(𝐶𝑡, 𝑁) = 1. Thinking of 𝑡 as an indeterminate, let 𝐺(𝑡) = D. Since
𝐺(𝑡) has no local obstructions, we conclude from Corollary 2.12 that there exist
infinitely many primes 𝑞 such that 𝐺(𝑞) is squarefree. Since 𝐶𝑡 is also squarefree
for any such prime 𝑡 = 𝑞 > 𝐶, part (1) follows from Theorem 3.5.

For (2), in the setting of Theorem 3.5, we have

𝐴 = 𝐶, 𝐵 = 𝐶𝑡, Π𝑓 = |𝐶|, 𝑟 = 𝜅 = 1 and

𝐷 = 𝐶
(︀
𝑁𝑁 𝑡 − (−1)𝑁 (𝑁 − 1)𝑁−1𝐶𝑁−1)︀,
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so that Π𝑓 ≡ 0 (mod 𝜅) and

D = 𝑁𝑁 𝑡 − (−1)𝑁 (𝑁 − 1)𝑁−1𝐶𝑁−1.

The remainder of the proof for this part is identical to part (1), and we omit the
details.

Finally, for (3), we have that

𝑁 = 𝑝, 𝑀 = 𝑝 − 1, 𝐴 = 𝑝, 𝐵 = 𝑝𝑡, Π𝑓 = 𝑝, 𝑟 = 𝜅 = 1 and

𝐷 = 𝑝𝑝(𝑝𝑡 − (−1)𝑝(𝑝 − 1)𝑝−1) = 𝑝𝑝D.

Again, the remainder of the proof for this part is identical to part (1), and we omit
the details.

Note that part (3) of Corollary 3.6 is similar to part (2), except that we have
lifted the restriction gcd(𝐶, 𝑁𝑡) = 1. Indeed, this restriction is really unnecessary
in part (2). However, we have added it there to make the computation of D more
transparent. Similarly, the restriction gcd(𝐶𝑡, 𝑁) = 1 can be lifted from part (1)
as well.

3.2. Quadrinomials
The following lemma contains two special cases of Theorem 2.6.

Lemma 3.7. Let 𝑁, 𝒯 , 𝐶 ∈ Z with 𝑁 ≥ 3.

1. Suppose that

𝑓(𝑥) = 𝑥𝑁 + 𝒯
(︀
(2𝐶𝑁 − 2𝐶 + 1)𝑥2 + (2𝐶𝑁2 − 4𝐶𝑁 + 𝑁 − 1)𝑥 + 1

)︀

is irreducible over Q. Then |Δ(𝑓)| =
⃒⃒
𝒯 𝑁−1𝑇1𝑇2

⃒⃒
, where

𝑇1 = (2𝐶𝑁2 + 𝑁 + 1)𝒯 + (−𝑁)𝑁 and
𝑇2 = −(𝑁 − 2)𝑁−2(2𝐶𝑁 − 2𝐶 + 1)𝑁−1(2𝐶𝑁2 − 8𝐶𝑁 + 𝑁 + 8𝐶 − 3)𝒯

+ (−1)𝑁 .

2. Suppose that

𝑓(𝑥) = 𝑥𝑁 + 𝒯 ((𝐶𝑁 − 𝐶 + 1)𝑥2 + (𝐶𝑁 + 2)𝑥 + 1)

is irreducible over Q. Then |Δ(𝑓)| =
⃒⃒
𝒯 𝑁−1𝑇1𝑇2

⃒⃒
, where

𝑇1 = (𝑁 − 2)𝑁−2(𝐶𝑁2 + 4)𝒯 + (−𝑁)𝑁 and
𝑇2 = −𝐶(𝐶𝑁 − 𝐶 + 1)𝑁−1𝒯 + (−1)𝑁 .
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Proof. We give details only for (1) since the details for (2) are similar. For (1),
we have in the setting of Theorem 2.6 that

𝑢(𝑥) = (2𝐶𝑁 − 2𝐶 + 1)𝑥2 + (2𝐶𝑁2 − 4𝐶𝑁 + 𝑁 − 1)𝑥 + 1 and
̂︀𝑢(𝑥) =

(︀
𝑥 + 𝑁

)︀(︀
(𝑁 − 2)(2𝐶𝑁 − 2𝐶 + 1)𝑥 + 1

)︀
,

so that

𝑎2 = 2𝐶𝑁 − 2𝐶 + 1, 𝑎1 = 2𝐶𝑁2 − 4𝐶𝑁 + 𝑁 − 1, 𝑎0 = 1,

𝐴1 = 1, 𝐵1 = 𝑁, 𝐴2 = (𝑁 − 2)(2𝐶𝑁 − 2𝐶 + 1) and 𝐵2 = 1.

Then |Δ(𝑓)| in (1) can be calculated easily using Theorem 2.6.

Remark 3.8. Both cases of Lemma 3.7 provide generalizations of the example
𝑣(𝑥) := 𝑥𝑁 +𝒯 (𝑥2 +(𝑁 −1)𝑥+1) given in [12, Corollary 1] for the construction of
infinite families of monogenic quadrinomials. For example, 𝑓(𝑥) in (1) of Lemma
3.7 specializes to 𝑣(𝑥) at 𝐶 = 0.

The following theorem uses Lemma 3.1 and Lemma 3.7 to construct monogenic
power-compositional Eisenstein quadrinomials.

Theorem 3.9. Let 𝑁, 𝒦, 𝑡, 𝐶 ∈ Z, where 𝑁 ≥ 3, gcd(𝒦, 𝑁) = 1 and 𝒦 is square-
free. With 𝒯 = 𝒦𝑡, let 𝑓(𝑥) be as given in either (1) or (2) of Lemma 3.7. Then
there exist infinitely many prime values of 𝑡 such that 𝑓(𝑥𝑑𝑛) is monogenic for any
𝑑 ∈ Γ𝑓 and all integers 𝑛 ≥ 0, for any 𝑁 ≥ 3 in (1), and any 𝑁 ≡ 1 (mod 2) in
(2).

Proof. Since the two cases are handled in a similar manner, we give details only
for (1) of Lemma 3.7. Thinking of 𝑡 as an indeterminate, let 𝐺(𝑡) := 𝑇1𝑇2. We
claim that there exist infinitely many primes 𝑞 such that 𝐺(𝑞) is squarefree. To
see this, we apply Corollary 2.12 to 𝐺(𝑡). Observe that 𝑇1 ̸= 𝑇2, and that each
𝑇𝑖 is of the form 𝛼𝑖𝑡 + 𝛽𝑖 ∈ Z[𝑡], with gcd(𝛼𝑖, 𝛽𝑖) = 1. We need to check for local
obstructions. According to the discussion following Corollary 2.12, we only need to
check the prime ℓ = 2. An easy computer calculation reveals that either 𝐺(1) ̸≡ 0
(mod 4) or 𝐺(3) ̸≡ 0 (mod 4) for every one of the 48 possible combinations of [𝑁
(mod 4), 𝐶 (mod 4), 𝒦 (mod 4)], noting that 𝒦 ̸≡ 0 (mod 4) since 𝒦 is squarefree.
Thus, 𝐺(𝑡) has no local obstructions, and we conclude from Corollary 2.12 that
there exist infinitely many primes 𝑞 such that 𝐺(𝑞) is squarefree, and the claim is
verified. Then, for such a prime 𝑞 with 𝑡 = 𝑞 > 𝒦𝑁 , it follows that 𝒦𝑞𝐺(𝑞) is
squarefree. Thus, since 𝑓(𝑥) is Eisenstien with |𝑓(0)| = Π𝑓 = |𝒦𝑡|, we deduce that
𝑓(𝑥) is monogenic by Corollary 2.7. Hence, by Lemma 3.1, we have that 𝑓(𝑥𝑑𝑛) is
monogenic for any 𝑑 ∈ Γ𝑓 and all integers 𝑛 ≥ 0.

3.3. Quintinomials
In this section, we use Theorem 2.6 with 𝒯 = 𝒦𝑡, where 𝒦, 𝑡 ∈ Z with 𝒦𝑡 ≡ 1
(mod 2), 𝒦𝑡 squarefree and |𝒦𝑡| ≥ 3. Then, a strategy similar to [12] is employed
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to construct infinite collections of monogenic Eisenstein quintinomials. For an
integer 𝑁 ≥ 4, suppose that gcd(𝑁, 𝒦) = 1, and let

𝑓(𝑥) = 𝑥𝑁 + 𝒯 𝑢(𝑥) = 𝑥𝑁 + 𝒦𝑡(𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0),

where 𝑎𝑖 ∈ Z with 𝑎0 = 1. Thus, 𝑓(𝑥) is Eisenstein. In the context of Theorem
2.6, we have that

̂︀𝑢(𝑥) = 𝑎3(𝑁 − 3)𝑥3 + 𝑎2(𝑁 − 2)𝑥2 + 𝑎1(𝑁 − 1)𝑥 + 𝑁. (3.4)

Suppose that ̂︀𝑢(𝑥) factors as

̂︀𝑢(𝑥) = (𝑎3𝑥 + 1)(𝑥 + 𝑁)((𝑁 − 3)𝑥 + 1). (3.5)

Then, in Theorem 2.6, we have

𝐴1 = 𝑎3, 𝐵1 = 1
𝐴2 = 1, 𝐵2 = 𝑁
𝐴3 = 𝑁 − 3, 𝐵3 = 1,

so that |Δ(𝑓)| =
⃒⃒
(𝒦𝑡)𝑁−1𝑇1𝑇2𝑇3

⃒⃒
, where

𝑇1 = 𝑎𝑁−3
3 (𝑎3

3 − 𝑎1𝑎2
3 + 𝑎2𝑎3 − 𝑎3)𝒦𝑡 + (−1)𝑁 ,

𝑇2 = (1 − 𝑎1𝑁 + 𝑎2𝑁2 − 𝑎3𝑁3)𝒦𝑡 + (−𝑁)𝑁 ,

𝑇3 = (𝑁 − 3)𝑁−3(︀(𝑁 − 3)3 − 𝑎1(𝑁 − 3)2 + 𝑎2(𝑁 − 3) − 𝑎3
)︀
𝒦𝑡 + (−1)𝑁 .

(3.6)

Thinking of 𝑡 as an indeterminate, we define 𝐺(𝑡) := 𝑇1𝑇2𝑇3. Note that each 𝑇𝑖

is of the form 𝛼𝑖𝑡 + 𝛽𝑖, where gcd(𝛼𝑖, 𝛽𝑖) = 1. To show that there exist infinitely
many primes 𝑞 such that 𝐺(𝑞) is squarefree, we use Corollary 2.12. However, we
must first show that 𝐺(𝑡) has no obstruction at the prime ℓ = 2. Expanding ̂︀𝑢(𝑥)
in (3.5) gives

̂︀𝑢(𝑥) = 𝑎3(𝑁 −3)𝑥3+(𝑎3(𝑁2−3𝑁 +1)+𝑁 −3)𝑥2+(𝑎3𝑁 +𝑁2−3𝑁 +1)𝑥+𝑁. (3.7)

Equating coefficients in (3.4) and (3.7) then yields the system of linear Diophantine
equations

(𝑁 − 1)𝑎1 − 𝑁𝑎3 = 𝑁2 − 3𝑁 + 1
(𝑁 − 2)𝑎2 − (𝑁2 − 3𝑁 + 1)𝑎3 = 𝑁 − 3,

(3.8)

which has infinitely many solutions since

gcd(𝑁 − 1, 𝑁) = gcd(𝑁 − 2, 𝑁2 − 3𝑁 + 1) = 1.

Using a parity argument on (3.8), we conclude that:

𝑎1 ≡ 𝑎3 ≡ 1 (mod 2) when 𝑁 ≡ 0 (mod 2),
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𝑎2 ≡ 𝑎3 ≡ 1 (mod 2) when 𝑁 ≡ 1 (mod 2).

Upon closer inspection of (3.6), we see that if 𝑎2 ≡ 0 (mod 2) when 𝑁 ≡ 0 (mod 2),
then 𝑇1 ≡ 𝑇3 ≡ 𝑡 + 1 (mod 2) and 𝑇2 ≡ 𝑡 (mod 2). Thus, 𝐺(1) ≡ 𝐺(3) ≡ 0
(mod 4) so that 𝐺(𝑡) has a local obstruction at ℓ = 2. Similarly, if 𝑎1 ≡ 0 (mod 2)
when 𝑁 ≡ 1 (mod 2), then 𝐺(𝑡) has a local obstruction at ℓ = 2. However,
if 𝑎1 ≡ 𝑎2 ≡ 𝑎3 ≡ 1 (mod 2), then it is easy to verify that 𝐺(𝑡) has no local
obstruction at ℓ = 2. To isolate such solutions of (3.8), we let 𝑎𝑖 = 2𝑏𝑖 + 1 for each
𝑖 ∈ {1, 2, 3} and substitute into (3.8) to get

(𝑁 − 1)𝑏1 − 𝑁𝑏3 = 𝑁2 − 3𝑁 + 2
2

(𝑁 − 2)𝑏2 − (𝑁2 − 3𝑁 + 1)𝑏3 = 𝑁2 − 3𝑁

2 .

(3.9)

Unimodular row reduction produces the following parametric solutions of (3.9):

𝑏1 = −
(︂

𝑁4 − 7𝑁3 + 15𝑁2 − 9𝑁 + 2
2

)︂
− (𝑁2 − 2𝑁)𝑧,

𝑏2 = −(𝑁 − 2)
(︂

𝑁4 − 7𝑁3 + 15𝑁2 − 9𝑁 + 2
2

)︂
− (𝑁3 − 4𝑁2 + 4𝑁 − 1)𝑧,

𝑏3 = −𝑁4 + 8𝑁3 − 22𝑁2 + 23𝑁 − 8
2 − (𝑁2 − 3𝑁 + 1)𝑧,

(3.10)

where 𝑧 ∈ Z. Thus, for any (𝑎1, 𝑎2, 𝑎3), where 𝑎𝑖 = 2𝑏𝑖 + 1 and (𝑏1, 𝑏2, 𝑏3) is a
solution to (3.10), it follows that there exist infinitely many primes 𝑞 such that
𝐺(𝑞) is squarefree. Consequently, Corollary 2.7 implies the following theorem.
Theorem 3.10. Let 𝑁, 𝒦, 𝑡 ∈ Z with 𝑁 ≥ 4, 𝒦𝑡 ≡ 1 (mod 2), 𝒦𝑡 squarefree,
|𝒦𝑡| ≥ 3 and gcd(𝒦, 𝑁) = 1. Then, for each (𝑎1, 𝑎2, 𝑎3), where 𝑎𝑖 = 2𝑏𝑖 + 1 with
(𝑏1, 𝑏2, 𝑏3) a solution to (3.10), there exist infinitely many prime values of 𝑡 such
that

𝑓(𝑥) = 𝑥𝑁 + 𝒦𝑡(𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0)
is monogenic.

Then, the following corollary, which is immediate from Lemma 3.1, gives us our
desired collections of quintinomials.
Corollary 3.11. As described in Theorem 3.10, let 𝑡 = 𝑞 be a prime such that
𝑓(𝑥) is monogenic. Then Π𝑓 = |𝒦𝑞| and 𝑓(𝑥𝑑𝑛) is monogenic for all 𝑑 ∈ Γ𝑓 and
integers 𝑛 ≥ 0.

3.4. Sextinomials
In this section, we show how techniques similar to previous sections can be used
to construct sextinomials with the desired properties. Let 𝑚 be an integer with
𝑚 ̸∈ {−1, 0}, and let

𝑁 = 9𝑚2 + 9𝑚 + 2 = (3𝑚 + 1)(3𝑚 + 2),
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so that 𝑁 ≥ 20. Let

𝑓(𝑥) = 𝑥𝑁 + 𝑡𝑢(𝑥) = 𝑥𝑁 + 𝑡(𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0) ∈ Z[𝑥],

where |𝑡| > 1 is squarefree, 𝑎𝑖 ̸= 0 and 𝑎0 = 1. Note that 𝑓(𝑥) is Eisenstein. We
use Theorem 2.6 and assume that

̂︀𝑢(𝑥) = (𝑎4𝑥 + 1)(𝑥 + 3𝑚 + 1)(𝑥 + 3𝑚 + 2)((𝑁 − 4)𝑥 + 1) (3.11)
= 𝑎4(𝑁 − 4)𝑥4 + 𝑎3(𝑁 − 3)𝑥3 + 𝑎2(𝑁 − 2)𝑥2 + 𝑎1(𝑁 − 1) + 𝑁. (3.12)

Equating coefficients in (3.11) and (3.12) yields the linear Diophantine system

(𝐶 + 1)𝑎1 − (𝐶 + 2)𝑎4 = 𝐶2 + 6𝑚 − 1
𝐶𝑎2 − (𝐶2 + 6𝑚 − 1)𝑎4 = (6𝑚 + 3)𝐶 − 12𝑚 − 5

(𝐶 − 1)𝑎3 − ((6𝑚 + 3)𝐶 − 12𝑚 − 5)𝑎4 = 𝐶 − 2,

(3.13)

where 𝐶 = 9𝑚2 + 9𝑚. Straightforward gcd arguments reveal that

gcd(𝐶 + 1, 𝐶 + 2) = 1

gcd(𝐶, 𝐶2 + 6𝑚 − 1) =
{︂

7 if 𝑚 ≡ 6 (mod 7)
1 otherwise

gcd(𝐶 − 1, (6𝑚 + 3)𝐶 − 12𝑚 − 5) = 1.

Since (6𝑚 + 3)𝐶 − 12𝑚 − 5 ≡ 0 (mod 7) when 𝑚 ≡ 6 (mod 7), it follows that
the system (3.13) has infinitely many solutions. We give the following example
to illustrate how to complete the process of constructing infinite collections of
Eisenstein sextinomials 𝑓(𝑥) of degree 20, such that 𝑓(𝑥𝑑𝑛) is monogenic for all
integers 𝑛 ≥ 0 and any 𝑑 ∈ Γ𝑓 .

Example 3.12. Let 𝑚 = −2. Then the solutions to (3.13) are given by

𝑎1 = 1729 + 6120𝑧,

𝑎2 = 28103 + 100453𝑧,

𝑎3 = −13685 − 48906𝑧,

𝑎4 = 1627 + 5814𝑧,

where 𝑧 is any integer. Suppose that 𝑧 = −1. Then

𝑓(𝑥) = 𝑥20 + 𝑡(−4187𝑥4 + 35221𝑥3 − 72350𝑥2 − 4391𝑥 + 1),

and Δ(𝑓) = −𝑡19𝑇1𝑇2𝑇3𝑇4, where

𝑇1 = 7109𝑡 + 1099511627776,

𝑇2 = 44954𝑡 − 95367431640625,

𝑇3 = 19152350481273015674863616𝑡 − 1,
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𝑇4 = 𝑠𝑡 − 1,

with

𝑠 = 144908492743671980251811132224257097263134126277964322808069004613234102.

Let 𝐺(𝑡) := 𝑇1𝑇2𝑇3𝑇4. Since 𝐺(1) ≡ 1 (mod 4), we see that 𝐺(𝑡) has no local
obstruction at the prime ℓ = 2. We may apply Corollary 2.12 to 𝐺(𝑡) to deduce
that there exist infinitely many primes 𝑞 such that 𝐺(𝑞) is squarefree, and using
the same arguments as before, we conclude that 𝑓(𝑥) is monogenic when 𝑡 = 𝑞 for
each of these primes 𝑞.

4. Extending results beyond Γ𝑓

Up to this point, all results in this article have dealt with power-compositional
Eisesntein polynomials 𝑓(𝑥𝑑𝑛), where 𝑑 ∈ Γ𝑓 . What drives this situation is that
the exponent 𝑑𝑛 in this case does not contribute any new prime factors to the
discriminant. Indeed, Lemma 3.1 is predicated upon this very fact. It then seems
natural to ask if we can improve Lemma 3.1. That is, do there exist monogenic
Eisenstein polynomials 𝑓(𝑥) such that Γ𝑓 is a proper subset of Λ𝑓 ? In particular,
can we find monogenic Eisenstein polynomials 𝑓(𝑥) such that the polynomials
𝑓(𝑥𝑠𝑛) are monogenic for all integers 𝑛 ≥ 0 and all integers 𝑠 ∈ 𝒮, where Γ𝑓 ⊂ 𝒮 ⊆
Λ𝑓 ? In general, this is tricky business since new prime factors 𝑝 would be introduced
in the discriminants Δ(𝑓(𝑥𝑠𝑛)), where 𝑓(𝑥) is not 𝑝-Eisenstein. However, we are
able to present some results that provide an affirmative answer to the questions
posed here.

For an integer 𝑎 ≥ 2, we say a prime 𝑝 is a base-𝑎 Wieferich prime if 𝑎𝑝−1 ≡ 1
(mod 𝑝2). When 𝑎 = 2, such primes are usually referred to simply as Wieferich
primes. Although it is conjectured that the number of base-𝑎 Wieferich primes is
infinite, the only Wieferich primes up to 6.7×1015 are 1093 and 3511 [5]. It is easy
to show that 𝑝 is a base-𝑎 Wieferich prime if and only if 𝑎𝑝𝑘 ≡ 𝑎 (mod 𝑝2) for any
𝑘 ≥ 1.

Our first theorem gives simple examples of binomials 𝑓(𝑥) to show that Γ𝑓 can
be a proper subset of Λ𝑓 . Moreover, the set Λ𝑓 is completely determined.

Theorem 4.1. Let 𝑎, 𝑠 ∈ Z with 𝑎 ≥ 2 and 𝑠 ≥ 2. Suppose that 𝑎 is squarefree,
and let 𝑓(𝑥) = 𝑥−𝑎. Then 𝑓(𝑥𝑠𝑛) is monogenic for all integers 𝑛 ≥ 0 if and only if
𝑠 has no prime divisors that are base-𝑎 Wieferich primes. That is, Λ𝑓 = 𝒮, where

𝒮 = {𝑠 ∈ Z : 𝑠 ≥ 2 and no prime divisor of 𝑠 is a base-𝑎 Wieferich prime}.

Remark 4.2. We do not provide a proof of Theorem 4.1 for two reasons: the
first reason is that it can be deduced from results in [6], and the second reason is
that the methods used in the proof are similar to, but less complicated than, the
methods used to establish the main result of this section (see Theorem 4.5).
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We can then use Lemma 3.1 and Theorem 4.1 to construct an infinite collec-
tion of binomials with the desired power-compositional properties in the following
immediate corollary, whose proof is omitted.

Corollary 4.3. Let 𝑓(𝑥) = 𝑥 − 𝑎 ∈ Z[𝑥]. Then there exist infinitely many prime
values of 𝑎 such that 𝑓(𝑥𝑎𝑛) is monogenic for all integers 𝑛 ≥ 0.

The main result of this section (Theorem 4.5) is an attempt to extend the ideas
of Theorem 4.1 to monogenic trinomials of the form 𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑎 ∈ Z[𝑥],
where 𝑎 ≥ 2 is squarefree. For the sake of completeness, we begin with a basic
proposition which gives a simple condition to determine when such trinomials are
monogenic.

Proposition 4.4. Let 𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑎 ∈ Z[𝑥], with 𝑎 ≥ 2 and squarefree. Then
𝑓(𝑥) is monogenic if and only if 𝑎 − 4 is squarefree.

Proof. Note that 𝑓(𝑥) is irreducible since 𝑓(𝑥) is Eisenstein. Let 𝐾 = Q(𝜃),
where 𝑓(𝜃) = 0. We use Theorem 2.5 with 𝑇 (𝑥) := 𝑓(𝑥), and 𝑝 a prime divisor of
Δ(𝑓) = 𝑎(𝑎 − 4).

Suppose first that 𝑝 | 𝑎. Then 𝑇 (𝑥) = 𝑥2, and we may let 𝑔(𝑥) = ℎ(𝑥) = 𝑥, so
that

𝐹 (𝑥) = 𝑔(𝑥)ℎ(𝑥) − 𝑇 (𝑥)
𝑎

= −𝑥 − 1.

Hence, gcd(𝑔, 𝐹 ) = 1 and therefore, [Z𝐾 : Z[𝜃]] ̸≡ 0 (mod 𝑝) by Theorem 2.5.
Now suppose that 𝑎 ≡ 4 (mod 𝑝). Then

𝑇 (𝑥) = 𝑥2 + 4𝑥 + 4 = (𝑥 + 2)2,

and we may let 𝑔(𝑥) = ℎ(𝑥) = 𝑥 + 2. Thus,

𝐹 (𝑥) = 𝑔(𝑥)ℎ(𝑥) − 𝑇 (𝑥)
𝑝

=
(︂

4 − 𝑎

𝑝

)︂
(𝑥 + 1).

It follows that

𝐹 (−2) = −
(︂

4 − 𝑎

𝑝

)︂
= 0 if and only if 𝑎 ≡ 4 (mod 𝑝2),

which completes the proof.

Theorem 4.5. Let 𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑎 with 𝑎 ∈ {2, 3}, and let 𝑠 ∈ Z with 𝑠 ≥ 2.
Then 𝑓(𝑥𝑠𝑛) is monogenic for all integers 𝑛 ≥ 0 if and only if 𝑠 has no prime
divisors that are base-𝑎 Wieferich primes. That is, Λ𝑓 = 𝒮, where

𝒮 = {𝑠 ∈ Z : 𝑠 ≥ 2 and no prime divisor of 𝑠 is a base-𝑎 Wieferich prime}.

Proof. For 𝑎 ∈ {2, 3}, define

ℱ𝑛(𝑥) := 𝑓(𝑥𝑠𝑛

) = 𝑥2𝑠𝑛

+ 𝑎𝑥𝑠𝑛

+ 𝑎.
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Thus, ℱ𝑛(𝑥) is irreducible, and

Δ(ℱ𝑛) = (−1)𝑠𝑛(2𝑠𝑛−1)𝑎2𝑠𝑛−1(4 − 𝑎)𝑠𝑛

𝑠2𝑛𝑠𝑛

by Corollary 3.3. Let 𝑛 ∈ Z with 𝑛 ≥ 1, and let 𝐾 = Q(𝜃), where ℱ𝑛(𝜃) = 0.
To show that ℱ𝑛(𝑥) is monogenic, we use Theorem 2.5 with 𝑇 (𝑥) := ℱ𝑛(𝑥), and 𝑞
equal to a prime divisor of Δ(ℱ𝑛). That is, we need to examine the prime 𝑞 = 𝑎
and the prime divisors 𝑞 of 𝑠.

When 𝑞 = 𝑎, we have that 𝑇 (𝑥) = 𝑥2𝑠𝑛 . So, we can let 𝑔(𝑥) = 𝑥 and ℎ(𝑥) =
𝑥2𝑠𝑛−1. Thus,

𝐹 (𝑥) = 𝑔(𝑥)ℎ(𝑥) − 𝑇 (𝑥)
𝑞

= −𝑥𝑠𝑛 − 1,

so that 𝐹 (0) = −1. Hence, gcd(𝑔, 𝐹 ) = 1 and, therefore, [Z𝐾 : Z[𝜃]] ̸≡ 0 (mod 𝑞)
by Theorem 2.5.

Next, let 𝑞 = 𝑝 be a prime divisor of 𝑠, where 𝑝 ̸= 𝑎 and 𝑝𝑚 || 𝑠 with 𝑚 ≥ 1.
Let

𝜏(𝑥) = 𝑥2𝑠𝑛/𝑝𝑚𝑛

+ 𝑎𝑥𝑠𝑛/𝑝𝑚𝑛

+ 𝑎 =
𝑘∏︁

𝑖=1
𝜏𝑖(𝑥)𝑒𝑖 ,

where the 𝜏𝑖(𝑥) are irreducible. Then 𝑇 (𝑥) =
∏︀𝑘

𝑖=1 𝜏𝑖(𝑥)𝑝𝑚𝑛𝑒𝑖 . Thus, we can let

𝑔(𝑥) =
𝑘∏︁

𝑖=1
𝜏𝑖(𝑥) and ℎ(𝑥) =

𝑘∏︁

𝑖=1
𝜏𝑖(𝑥)𝑝𝑚𝑛𝑒𝑖−1,

where the 𝜏𝑖(𝑥) are monic lifts of the 𝜏𝑖(𝑥). Note also that

𝑘∏︁

𝑖=1
𝜏𝑖(𝑥)𝑒𝑖 = 𝜏(𝑥) + 𝑝𝑟(𝑥),

for some 𝑟(𝑥) ∈ Z[𝑥]. Suppose that 𝜏(𝛼) = 0.
We treat the case 𝑎 = 2 first. Note that 𝑝 ≥ 3. Then

(︀
𝛽 − (−1 +

√
−1)

)︀(︀
𝛽 − (−1 −

√
−1)

)︀
= 0,

where 𝛽 = 𝛼𝑠𝑛/𝑝𝑚𝑛 . With 𝛽 = −1 +
√

−1 or 𝛽 = −1 −
√

−1, straightforward
induction arguments reveal that

𝛼𝑠𝑛

= 𝛽𝑝𝑚𝑛

= 2(𝑝𝑚𝑛−1)/2(︀𝜖1 + 𝜖2
√

−1
)︀

(4.1)

for some 𝜖𝑖 ∈ {−1, 1}. Then, the remainder when 𝑇 (𝑥) = ℱ𝑛(𝑥) is divided by 𝑥−𝛼
is

𝑇 (𝛼) = 2
(︁

2(𝑝𝑚𝑛−1)/2𝜖1 + 1
)︁

+ 2(𝑝𝑚𝑛+1)/2𝜖2

(︁
2(𝑝𝑚𝑛−1)/2𝜖1 + 1

)︁√
−1

= 2
(︁

2(𝑝𝑚𝑛−1)/2𝜖1 + 1
)︁(︁

2(𝑝𝑚𝑛−1)/2𝜖2
√

−1 + 1
)︁

≡ 0 (mod 𝑝).
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Since 𝑝𝐹 (𝑥) = (𝜏(𝑥) + 𝑝𝑟(𝑥))𝑝𝑚𝑛 − 𝑇 (𝑥), it follows that

𝐹 (𝛼) = 𝑝𝑝𝑚𝑛−1𝑟(𝛼)𝑝𝑚𝑛 − 𝑇 (𝛼)
𝑝

.

Hence,

𝐹 (𝛼) = −𝑇 (𝛼)
𝑝

= −2
(︀
2(𝑝𝑚𝑛−1)/2𝜖1 + 1

)︀(︀
2(𝑝𝑚𝑛−1)/2𝜖2

√
−1 + 1

)︀

𝑝
.

If 2(𝑝𝑚𝑛−1)/2𝜖2
√

−1+1 ≡ 0 (mod 𝑝), then −2𝑝𝑚𝑛 ≡ 2 (mod 𝑝), which implies that
𝑝 = 2, a contradiction. Consequently,

[Z𝐾 : Z[𝜃]] ≡ 0 (mod 𝑝) ⇐⇒ gcd(𝐹 , 𝑔) ̸= 1
⇐⇒ 𝐹 (𝛼) = 0
⇐⇒ 2(𝑝𝑚𝑛−1)/2𝜖1 + 1 ≡ 0 (mod 𝑝2)
⇐⇒ 2(𝑝𝑚𝑛−1) ≡ 1 (mod 𝑝2)
⇐⇒ 𝑝 is a Wieferich prime,

which completes the proof when 𝑎 = 2.
Suppose now that 𝑎 = 3. Since 𝑝 ̸= 3, we have two possibilities: 𝑝 = 2 and 𝑝 ≥ 5.

We first handle the situation when 𝑝 = 2. Then 𝛽3 = 1, where 𝛽 = 𝛼𝑠𝑛/2𝑚𝑛 ̸= 1.
Thus,

𝛼𝑠𝑛

= 𝛽2𝑚𝑛

=
{︂

𝛽 if 2𝑚𝑛 ≡ 1 (mod 3)
𝛽2 if 2𝑚𝑛 ≡ 2 (mod 3).

Hence, the remainder when 𝑇 (𝑥) = ℱ𝑛(𝑥) is divided by 𝑥 − 𝛼 is

𝑇 (𝛼) = 𝛽2𝑚𝑛+1 + 3𝛽2𝑚𝑛

+ 3 =
{︂

2𝛽 + 2 if 2𝑚𝑛 ≡ 1 (mod 3),
2𝛽2 + 2 if 2𝑚𝑛 ≡ 2 (mod 3).

Since 2𝐹 (𝑥) = (𝜏(𝑥) + 𝑝𝑟(𝑥))2𝑚𝑛 − 𝑇 (𝑥), it follows that

𝐹 (𝛼) = 22𝑚𝑛−1𝑟(𝛼)2𝑚𝑛 − 𝑇 (𝛼)
2 .

Therefore,

𝐹 (𝛼) = −𝑇 (𝛼)
2 = −

{︂
𝛽 + 1 ̸≡ 0 (mod 2) if 2𝑚𝑛 ≡ 1 (mod 3),
𝛽2 + 1 ̸≡ 0 (mod 2) if 2𝑚𝑛 ≡ 2 (mod 3).

Thus, [Z𝐾 : Z[𝜃]] ̸≡ 0 (mod 2).
We now address the situation when 𝑝 ≥ 5. In this case, we have

(︂
𝛽 −

(︂−3 +
√

−3
2

)︂)︂(︂
𝛽 −

(︂−3 −
√

−3
2

)︂)︂
= 0,
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where 𝛽 = 𝛼𝑠𝑛/𝑝𝑚𝑛 . With 𝛽 = (−3+
√

−3)/2 or 𝛽 = (−3−
√

−3)/2, straightforward
induction arguments reveal that

𝛼𝑠𝑛

= 𝛽𝑝𝑚𝑛

= 3(𝑝𝑚𝑛−1)/2
(︂

3𝜖1 + 𝜖2
√

−3
2

)︂
(4.2)

for some 𝜖𝑖 ∈ {−1, 1}. Then, the remainder when 𝑇 (𝑥) = ℱ𝑛(𝑥) is divided by 𝑥−𝛼
is

𝑇 (𝛼) = 3𝑝𝑚𝑛 + 3(𝑝𝑚𝑛+3)/2𝜖1 + 6
2 +

(︂
3𝑝𝑚𝑛

𝜖1𝜖2 + 3(𝑝𝑚𝑛+1)/2𝜖2
2

)︂√
−3

=
(︂

3(𝑝𝑚𝑛−1)/2 + 𝜖1
2

)︂
(𝐴 + 𝐵),

where
𝐴 = 3(𝑝𝑚𝑛+1)/2 + 6𝜖1 and 𝐵 = 𝜖1𝜖23(𝑝𝑚𝑛+1)/2√

−3.

Then
𝐴2 ≡ 45 ± 36 (mod 𝑝) and 𝐵2 ≡ −27 (mod 𝑝).

Hence,
𝐴2 − 𝐵2 (mod 𝑝) ∈ {108, 36}. (4.3)

If 𝐴 + 𝐵 ≡ 0 (mod 𝑝), then 𝐴2 − 𝐵2 ≡ 0 (mod 𝑝), and we deduce from (4.3) that
𝑝 ∈ {2, 3}, contradicting the fact that 𝑝 ≥ 5. Consequently, 𝐴 + 𝐵 ̸≡ 0 (mod 𝑝) so
that

𝐹 (𝛼) = −𝑇 (𝛼)
𝑝

=
(︂

3(𝑝𝑚𝑛−1)/2 + 𝜖1
2𝑝

)︂
(𝐴 + 𝐵) = 0

if and only if 3 is a base-𝑎 Wieferich prime, which completes the proof of the
theorem.

Remark 4.6. Although the precise values of 𝜖1 and 𝜖2 in (4.1) are not essential
for the proof of Theorem 4.5, it can be shown for 𝑎 = 2 and odd 𝑁 = 𝑝𝑚𝑛 that

𝛽𝑁 = 2(𝑁−1)/2(𝜖1 + 𝜖2
√

−1),

where 𝛽 = −1 +
√

−1 and

(𝜖1, 𝜖2) =

⎧
⎪⎪⎨
⎪⎪⎩

(−1, 1) if 𝑁 ≡ 1 (mod 8)
(1, 1) if 𝑁 ≡ 3 (mod 8)

(1, −1) if 𝑁 ≡ 5 (mod 8)
(−1, −1) if 𝑁 ≡ 7 (mod 8).

A similar result holds for (𝜖1, 𝜖2) in (4.2) when 𝑎 = 3 and 𝑁 is in the respective
congruence classes 1,5,7,11 modulo 12.
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At first encounter, Theorem 4.5 seems a bit curious, and it also raises some
questions. For one, is it true that Λ𝑓 can never contain any integers 𝑠 ≥ 2 with
prime factors that are base-𝑎 Wieferich primes, where 𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑎 with
squarefree 𝑎 ≥ 2? The example 𝑓(𝑥) = 𝑥2 + 7𝑥 + 7 provides a negative answer to
this question, since 𝑝 = 5 is a base-7 Wieferich prime but 𝑓(𝑥5𝑛) is monogenic for
all integers 𝑛 ≥ 0.

A second related question that arises is whether Λ𝑓 must contain all primes that
are not base-𝑎 Wieferich primes. The example 𝑓(𝑥) = 𝑥2 + 7𝑥 + 7 also provides
a negative answer to this question since 37 is not a base-7 Wieferich prime, but
𝑓(𝑥37) is not monogenic.

A third question then is why is it that Theorem 4.5 cannot be extended to 𝑎 = 7?
When 𝑎 ∈ {2, 3}, the elements 𝛽𝑝𝑚𝑛 are well-behaved and well-understood, where
𝑓(𝛽) = 0. This stability and clarity seem to disappear when 𝑎 ≥ 5. Could it be a
result of the loss of a one-to-one correspondence between the set of possibilities for
(𝑒1, 𝑒2) and the congruence classes of (Z/4𝑎Z)*? That is, we have that 𝜑(4𝑎) = 4
if and only if 𝑎 ∈ {2, 3}. Or could it simply be explained by the fact that 𝛽 ̸∈ R
when 𝑎 ∈ {2, 3} and 𝛽 ∈ R when 𝑎 ≥ 5?

A final question is how large can Λ𝑓 be for monogenic 𝑓(𝑥) = 𝑥2 +𝑎𝑥+𝑎, where
𝑎 ≥ 2 is squarefree. In particular, could Λ𝑓 equal the set of all positive integers
larger than one? We do not know the answer to this question, but we suspect the
answer is negative.

One avenue of future research is to establish results for monogenic trinomials
𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑎, with squarefree 𝑎 ≥ 2, that are analogous to Theorem 4.1 and
Corollary 4.3. In other words, can we explicitly determine Λ𝑓 for these trinomials
in terms of conditions on 𝑎? And then, can we use this information to construct
infinite collections of such trinomials 𝑓(𝑥) for which 𝑓(𝑥𝑠𝑛) is monogenic for all
integers 𝑛 ≥ 0 and 𝑠 ∈ 𝒮 ⊆ Λ𝑓 , where Γ𝑓 ⊂ 𝒮?
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