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Abstract. In this paper, we introduce the concept of a Fuss-skew path and
then we study the distribution of the semi-perimeter, area, peaks, and corners
statistics. We use generating functions to obtain our main results.
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1. Introduction
A skew Dyck path is a lattice path in the first quadrant that starts at the origin,
ends on the 𝑥-axis, and consists of up-steps 𝑈 = (1, 1), down-steps 𝐷 = (1, −1),
and left-steps 𝐿 = (−1, −1), such that up and left steps do not overlap. The
definition of skew Dyck path was introduced by Deutsch, Munarini, and Rinaldi
[4]. Some additional results about skew Dyck path can be found in [2, 5, 8, 14].

Let 𝑠𝑛 denote the number of skew Dyck path of semilength 𝑛, where the
semilength of a path is defined as the number its up-steps. The sequence 𝑠𝑛 is
given by the combinatorial sum 𝑠𝑛 =

∑︀𝑛
𝑘=1

(︀
𝑛−1
𝑘−1

)︀
𝑐𝑘, where 𝑐𝑛 = 1

𝑛+1
(︀2𝑛

𝑛

)︀
is the

𝑛-th Catalan number. The sequence 𝑠𝑛 appears in OEIS as A002212 [15], and its
first few values are

1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587.

One way to generalize the classical Dyck paths is to regard the length of an
up-step 𝑈 as a parameter. Given a positive number ℓ, an ℓ-Dyck path is a lattice
path in the first quadrant from (0, 0) to ((ℓ + 1)𝑛, 0) where 𝑛 ≥ 0 using up-steps
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𝑈ℓ = (ℓ, ℓ) and down-steps 𝑈 = (1, −1). For ℓ = 1, we recover the classical
Dyck path. The total number of ℓ-Dyck path with length (ℓ + 1)𝑛 is given by
𝑐ℓ(𝑛) = 1

𝑡𝑛+1
(︀(𝑡+1)𝑛

𝑛

)︀
(cf. [1]). We will refer to ℓ-Dyck paths here as the “Fuss” case

because the sequence 𝑐ℓ(𝑛) was first investigated by N. I. Fuss (see, for example, [7,
16] for several combinatorial interpretations for both the Catalan and Fuss-Catalan
numbers).

Our focus in this paper is to introduce a Fuss analogue of the skew Dyck path.
Given a positive integer ℓ, an ℓ-Fuss-skew path is a path in the first quadrant that
starts at the origin, ends on the 𝑥-axis, and consists of up-steps 𝑈ℓ = (ℓ, ℓ), down-
steps 𝐷 = (1, −1), and left steps 𝐿 = (−1, −1), such that up and left steps do not
overlap. Given an ℓ-Fuss-skew path 𝑃 , we define the semilength of 𝑃 , denote by
|𝑃 |, as the number of up-steps of 𝑃 . For example, Figure 1 shows a 3-Fuss-skew
path of semilength 6. It is clear that the 1-Fuss-skew paths coincide with the skew
Dyck paths. Let S𝑛,ℓ denote the set of all ℓ-Fuss-skew path of semilength 𝑛, and
Sℓ =

⋃︀
𝑛≥0 S𝑛,ℓ. For example, Figure 4 shows all the paths in S2,2.

(20, 0)(0, 0)

Figure 1. 3-Fuss-skew path of semilength 6.

2. Counting special steps
For a given path 𝑃 ∈ Sℓ, we use 𝑢(𝑃 ), 𝑑(𝑃 ), and 𝑡(𝑃 ) to denote the number of
up-steps, down-steps, and left-steps of 𝑃 , respectively. In this section, we study
the distribution of these parameters over Sℓ. Using these parameters, we define the
generating function

𝐹ℓ(𝑥, 𝑝, 𝑞) :=
∑︁

𝑃 ∈Sℓ

𝑥𝑢(𝑃 )𝑝𝑑(𝑃 )𝑞𝑡(𝑃 ).

For simplicity, we use 𝐹ℓ to denote the generating function 𝐹ℓ(𝑥, 𝑝, 𝑞).

Theorem 2.1. The generating function 𝐹ℓ(𝑥, 𝑝, 𝑞) satisfies the functional equation

𝐹ℓ = 1 + 𝑥(𝑝𝐹ℓ + 𝑞)ℓ−1(𝑝𝐹 2
ℓ + 𝑞(𝐹ℓ − 1)). (2.1)

Proof. Let 𝒜𝑖 denote the ℓ-Fuss-skew paths whose last 𝑦-coordinate is 𝑖 and let
𝐴𝑖 denote the generating function defined by

𝐴𝑖 =
∑︁

𝑃 ∈𝒜𝑖

𝑥𝑢(𝑃 )𝑝𝑑(𝑃 )𝑞𝑡(𝑃 ).
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A non-empty ℓ-Fuss-skew path can be uniquely decomposed as either 𝑈ℓ𝑇𝐷𝑃 or
𝑈ℓ𝑇𝐿, where 𝑈ℓ𝑇 is a lattice path in 𝒜1 and 𝑃 is an ℓ-Fuss-skew path (see Figure 2
for a graphical representation of this decomposition). From this decomposition, we
obtain the functional equation (cf. [6])

𝐹ℓ = 1 + 𝑥(𝑝𝐴1𝐹ℓ + 𝑞𝐴1). (2.2)

ℓ

1

ℓ

1

Figure 2. Decomposition of a ℓ-Fuss-skew path.

The paths of 𝒜𝑖 can be decomposed as 𝑇𝐷𝑃 or 𝑇𝐿, where 𝑇 ∈ 𝒜𝑖+1 for
𝑖 = 1, . . . , ℓ − 2 and 𝑃 ∈ Sℓ (see Figure 3 for a graphical representation of this
decomposition). Moreover, the paths of 𝒜ℓ−1 are decomposed as 𝑃1𝐷𝑃2 or 𝑃 ′𝐿,
where 𝑃1, 𝑃2, 𝑃 ′ ∈ Sℓ and 𝑃 ′ is non-empty.

ℓ i+ 1 ℓ i+ 1

i i

Figure 3. Decomposition of the paths in 𝒜𝑖.

From the above decompositions, we obtain the functional equations

𝐴𝑖 = 𝑝𝐴𝑖+1𝐹ℓ + 𝑞𝐴𝑖+1, for 𝑖 = 1, . . . , ℓ − 2, and 𝐴ℓ−1 = 𝑝𝐹 2
ℓ + 𝑞(𝐹ℓ − 1).

Note that in these functional equations we do not consider the first up-step because
it was considered in (2.2). Therefore, we have

𝐹ℓ = 1 + 𝑥(𝑝𝐹ℓ + 𝑞)𝐴1 = 1 + 𝑥(𝑝𝐹ℓ + 𝑞)2𝐴2

= · · · = 1 + 𝑥(𝑝𝐹ℓ + 𝑞)ℓ−1(𝑝𝐹 2
ℓ + 𝑞(𝐹ℓ − 1)).

Let 𝑠ℓ(𝑛, 𝑝, 𝑞) denote the joint distribution over S𝑛,ℓ for the number of down
and left steps, that is,

𝑠ℓ(𝑛, 𝑝, 𝑞) =
∑︁

𝑃 ∈S𝑛,ℓ

𝑝𝑑(𝑃 )𝑞𝑡(𝑃 ).

It is clear that 𝐹ℓ =
∑︀

𝑛≥0 𝑠ℓ(𝑛, 𝑝, 𝑞)𝑥𝑛. From the Lagrange inversion theorem (see
for instance [13]), we give a combinatorial expression for the sequence 𝑠ℓ(𝑛, 𝑝, 𝑞).
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Theorem 2.2. For 𝑛 ≥ 1, the sequence 𝑠ℓ(𝑛, 𝑝, 𝑞) is given by

1
𝑛

𝑛∑︁

𝑗=0

𝑗∑︁

𝑘=0

(︂
𝑛

𝑗

)︂(︂
𝑗

𝑘

)︂(︂
𝑛(ℓ − 1)

𝑛 − 2𝑗 + 𝑘 − 1

)︂
𝑝2𝑛−1−2𝑗(2𝑝 + 𝑞)𝑘(𝑝 + 𝑞)𝑛(ℓ−2)+2𝑗−𝑘+1.

In particular, the total number of ℓ-Fuss-skew paths of semilength 𝑛 is

𝑠ℓ(𝑛) := 𝑠ℓ(𝑛, 1, 1) = 1
𝑛

𝑛∑︁

𝑗=0

𝑗∑︁

𝑘=0

(︂
𝑛

𝑗

)︂(︂
𝑗

𝑘

)︂(︂
𝑛(ℓ − 1)

𝑛 − 2𝑗 + 𝑘 − 1

)︂
3𝑘2𝑛(ℓ−2)+2𝑗−𝑘+1.

Proof. The functional equation given in Theorem 2.1 can be written as

𝑄ℓ = 𝑥(𝑝(𝑄ℓ + 1) + 𝑞)ℓ−1(𝑝(𝑄ℓ + 1)2 + 𝑞𝑄ℓ),

where 𝑄ℓ = 𝐹ℓ − 1. From the Lagrange inversion theorem, we deduce

[𝑥𝑛]𝐻ℓ = 1
𝑛

[𝑧𝑛−1](𝑝(𝑧 + 1) + 𝑞)(ℓ−1)𝑛(𝑝(𝑧 + 1)2 + 𝑞𝑧)𝑛

= 1
𝑛

[𝑧𝑛−1]
∑︁

𝑠≥0

(︂
(ℓ − 1)𝑛

𝑠

)︂
(𝑝𝑧)𝑠(𝑝 + 𝑞)(ℓ−1)𝑛−𝑠(𝑝𝑧2 + (2𝑝 + 1)𝑧 + 𝑝)𝑛

= 1
𝑛

[𝑧𝑛−1]
∑︁

𝑠≥0

(︂
(ℓ − 1)𝑛

𝑠

)︂
(𝑝𝑧)𝑠(𝑝 + 𝑞)(ℓ−1)𝑛−𝑠

×
𝑛∑︁

𝑗=0

𝑗∑︁

𝑘=0

(︂
𝑛

𝑗

)︂(︂
𝑗

𝑘

)︂
𝑝𝑛−𝑗((2𝑝 + 𝑞)𝑧)𝑘(𝑝𝑧2)𝑗−𝑘

= 1
𝑛

𝑛∑︁

𝑗=0

𝑗∑︁

𝑘=0

(︂
𝑛

𝑗

)︂(︂
𝑗

𝑘

)︂(︂
𝑛(ℓ − 1)

𝑛 − 2𝑗 + 𝑘 − 1

)︂
𝑝2𝑛−1−2𝑗(2𝑝 + 𝑞)𝑘(𝑝 + 𝑞)𝑛(ℓ−2)+2𝑗−𝑘+1.

For example, Figure 4 shows all 2-Fuss-skew paths of semilength 2 counted by
the term 𝑠ℓ(2, 𝑝, 𝑞) = 3𝑝4 + 6𝑝3𝑞 + 4𝑝2𝑞2 + 𝑝𝑞3.
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Figure 4. 2-Fuss-skew paths counted by 𝑠ℓ(2, 𝑝, 𝑞).

From Theorem 2.2, we obtain that the total number of down-steps over the
ℓ-Fuss-skew paths of semilength 𝑛 is given by

𝜕𝑠ℓ(𝑛, 𝑝, 1)
𝜕𝑝

⃒⃒
⃒⃒
𝑝=1

= 1
𝑛

𝑛∑︁

𝑗=0

𝑗∑︁

𝑘=0

(︂
𝑛

𝑗

)︂(︂
𝑗

𝑘

)︂(︂
𝑛(ℓ − 1)

𝑛 − 2𝑗 + 𝑘 − 1

)︂
2(ℓ−2)𝑛+2𝑗−𝑘3𝑘−1(3𝑛(ℓ + 2) + 𝑘 − 6𝑗 − 3).

Moreover, the total number of left-steps over the ℓ-Fuss-skew paths of semilength
𝑛 is

𝜕𝑠ℓ(𝑛, 1, 𝑞)
𝜕𝑞

⃒⃒
⃒⃒
𝑞=1

= 1
𝑛

𝑛∑︁

𝑗=0

𝑗∑︁

𝑘=0

(︂
𝑛

𝑗

)︂(︂
𝑗

𝑘

)︂(︂
𝑛(ℓ − 1)

𝑛 − 2𝑗 + 𝑘 − 1

)︂
2(ℓ−2)𝑛+2𝑗−𝑘3𝑘−1(3𝑛(ℓ − 2) − 𝑘 + 6𝑗 + 3).

Equation (2.1) can be explicitly solved for ℓ = 1. In this case, we obtain the
generating function

𝐹1(𝑥, 𝑝, 𝑞) = 1 − 𝑞𝑥 −
√︀

(1 − 𝑞𝑥)(1 − (4𝑝 + 𝑞)𝑥)
2𝑝𝑥

.

Moreover, the generating functions for the total number of down-steps (A026388)
and left steps (A026376) over the skew-Dyck paths are respectively

1 − 4𝑥 + 3𝑥2 −
√

1 − 6𝑥 + 5𝑥2(1 − 𝑥)
2𝑥

√
1 − 6𝑥 + 5𝑥2
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and
1 − 3𝑥 −

√
1 − 6𝑥 + 5𝑥2

2
√

1 − 6𝑥 + 5𝑥2
.

Notice that we recover some of the results of [5].
Finally, Table 1 shows the first few values of the total number of ℓ-Fuss-skew

paths of semilength 𝑛.

Table 1. Values of 𝑠ℓ(𝑛, 1, 1) for 1 ≤ ℓ ≤ 5, 𝑛 = 1, . . . , 7.

ℓ∖𝑛 1 2 3 4 5 6 7
ℓ = 1 1 3 10 36 137 543 2219
ℓ = 2 2 14 118 1114 11306 120534 1331374
ℓ = 3 4 64 1296 29888 745856 19614464 535394560
ℓ = 4 8 288 13568 734720 43202560 2681634816 172936069120

2.1. The width of a path
For a given path 𝑃 ∈ Sℓ, we define the width of 𝑃 , denoted by 𝜈(𝑃 ), as the 𝑥-
coordinate of the last point of 𝑃 . For example, the width of the path given in
Figure 1 is 20. We define the generating function

𝐺ℓ(𝑥, 𝑦) := 𝐺ℓ =
∑︁

𝑃 ∈Sℓ

𝑥𝑢(𝑃 )𝑦𝜈(𝑃 ).

Note that each 𝑈ℓ and 𝐷 step of a path increases the width by ℓ units and 1 unit,
respectively, while the left-step 𝐿 decreases the width by 1 unit. Therefore, we
have the functional equation

𝐺ℓ = 1 + 𝑥𝑦ℓ(𝑦𝐺ℓ + 𝑦−1)ℓ−1(𝑦𝐺2
ℓ + 𝑦−1(𝐺ℓ − 1))

= 1 + 𝑥(𝑦2𝐺ℓ + 1)ℓ−1(𝑦2𝐺2
ℓ + (𝐺ℓ − 1)). (2.3)

Let 𝑔ℓ(𝑛, 𝑦) denote the distribution over S𝑛,ℓ for the width parameter, i.e.,

𝑔ℓ(𝑛, 𝑦) =
∑︁

𝑃 ∈S𝑛,ℓ

𝑦𝜈(𝑃 ).

From the functional equation (2.3) and the Lagrange inversion theorem, we obtain
the following theorem.

Theorem 2.3. For 𝑛 ≥ 1, the sequence 𝑔ℓ(𝑛, 𝑦) is given by

1
𝑛

𝑛∑︁

𝑗=0

𝑗∑︁

𝑘=0

(︂
𝑛

𝑗

)︂(︂
𝑗

𝑘

)︂(︂
𝑛(ℓ − 1)

𝑛 − 2𝑗 + 𝑘 − 1

)︂
𝑦4(𝑛−𝑗)−2(𝑦2 + 1)𝑛(ℓ−2)+2𝑗−𝑘+1(2𝑦2 + 1)𝑘.
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For example, 𝑔2(2, 𝑦) = 𝑦2 + 4𝑦4 + 6𝑦6 + 3𝑦8. This polynomial can be found
from the paths in Figure 4. For ℓ = 1, we obtain the explicit generating function
with respect to the width of a skew Dyck path.

𝐺1(𝑥, 𝑦) = 1 − 𝑥 −
√︀

(1 − 𝑥)(1 − 𝑥 − 4𝑥𝑦2)
2𝑥𝑦2 .

3. Number of peaks
For a given path 𝑃 ∈ Sℓ, we define the peaks of 𝑃 , denoted by 𝜌(𝑃 ), as the number
of subpaths of the form 𝑈ℓ𝐷 (for counting peaks in a Dyck path, for example, see
[9, 11]). For example, the number of peaks of the path given in Figure 1 is 5. We
define the generating function

𝑃ℓ(𝑥, 𝑦) := 𝑃ℓ =
∑︁

𝑃 ∈Sℓ

𝑥𝑢(𝑃 )𝑦𝜌(𝑃 ).

Theorem 3.1. The generating function 𝑃ℓ(𝑥, 𝑦) satisfies the functional equation

𝑃ℓ = 1 + 𝑥(𝑃ℓ + 1)ℓ−1((𝑃ℓ − 1 + 𝑦)𝑃ℓ + (𝑃ℓ − 1)).

Proof. Let 𝐶𝑖 denote the generating function defined by 𝐶𝑖 =
∑︀

𝑃 ∈𝒜𝑖
𝑥𝑢(𝑃 )𝑦𝜌(𝑃 ).

From the decomposition given for the ℓ-Fuss-skew paths, we have the equation
𝑃ℓ = 1 + 𝑥(𝐶1𝑃ℓ + 𝐶1). Moreover,

𝐶𝑖 = 𝐶𝑖+1𝑃ℓ + 𝐶𝑖+1, for 𝑖 = 1, . . . , ℓ − 2, and
𝐶ℓ−1 = (𝑃ℓ − 1 + 𝑦)𝑃ℓ + (𝑃ℓ − 1).

From these relations, we obtain the desired result.

Let 𝑝ℓ(𝑛, 𝑦) denote the distribution over S𝑛 for the peaks statistic, i.e.,

𝑝ℓ(𝑛, 𝑦) =
∑︁

𝑃 ∈S𝑛

𝑦𝜌(𝑃 ).

From the Lagrange inversion theorem, we deduce the following result.

Theorem 3.2. For 𝑛 ≥ 1, we have

𝑝ℓ(𝑛, 𝑦) = 1
𝑛

𝑛∑︁

𝑗=0

𝑗∑︁

𝑘=0

(︂
𝑛

𝑗

)︂(︂
𝑗

𝑘

)︂(︂
𝑛(ℓ − 1)

𝑛 − 2𝑗 + 𝑘 − 1

)︂
2𝑛(ℓ−2)+2𝑗−𝑘+1𝑦𝑛−𝑗(𝑦 + 2)𝑘.

In particular, the total number of peaks in all ℓ-Fuss-skew paths of semilength 𝑛 is

𝜕𝑝ℓ(𝑛, 𝑦)
𝜕𝑦

⃒⃒
⃒⃒
𝑦=1

= 1
𝑛

𝑛∑︁

𝑗=0

𝑗∑︁

𝑘=0

(︂
𝑛

𝑗

)︂(︂
𝑗

𝑘

)︂(︂
𝑛(ℓ − 1)

𝑛 − 2𝑗 + 𝑘 − 1

)︂
2𝑛(ℓ−2)+2𝑗−𝑘+13𝑘−1(3(𝑛 − 𝑗) + 𝑘).
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For example, 𝑝2(2, 𝑦) = 8𝑦 +6𝑦2. This polynomial can be found from the paths
in Figure 4. For ℓ = 1 we obtain the generating function

𝑃1(𝑥, 𝑦) = 1 − 𝑥𝑦 −
√︀

(1 − 𝑥𝑦)2 − 4(1 − 𝑥)𝑥
2𝑥

.

Moreover, the generating function for the total number of peaks is

1 − 𝑥 −
√

1 − 6𝑥 + 5𝑥2

2
√

1 − 6𝑥 + 5𝑥2
.

Table 2 shows the first few values of the number of peaks in ℓ-Fuss-skew paths of
semilength 𝑛.

Table 2. Total number of peaks in Sℓ.

ℓ ∖ 𝑛 1 2 3 4 5 6 7
ℓ = 1 1 4 17 75 339 1558 7247
ℓ = 2 2 20 226 2696 33138 415164 5270850
ℓ = 3 4 96 2672 78848 2400896 74568704 2347934464
ℓ = 4 8 448 29440 2054144 147986432 10878189568 810813030400

4. Number of corners
For a given path 𝑃 ∈ Sℓ, we define a corner of 𝑃 as a right angle caused by two
consecutive steps in the graph of 𝑃 . For example, the path given in Figure 5 has
4 corners, depicted in red. This statistic has been studied in other combinatorial
structures as integer partitions [3], compositions [10], and bargraphs [12].

Figure 5. Corners of a path.

Let 𝜏(𝑃 ) denote the number of corners of 𝑃 . We define the bivariate generating
function

𝑊ℓ(𝑥, 𝑦) := 𝑊ℓ =
∑︁

𝑃 ∈Sℓ

𝑥𝑢(𝑃 )𝑦𝜏(𝑃 ).

In this section, we analyze the cases ℓ = 1 and ℓ = 2. We leave as an open question
the case ℓ ≥ 3.
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Theorem 4.1. The generating function 𝑊1(𝑥, 𝑦) satisfies the functional equation

𝑥𝑦(1 + 𝑦)𝑊 3
1 − (2 − 𝑥(2 − 𝑦2))𝑊 2

1 + 3(1 − 𝑥)𝑊1 + 𝑥 − 1 = 0.

Proof. Let 𝒟 and ℒ denote the skew Dyck paths whose last step is a down-step
or a left-step, respectively. Let 𝐷 and 𝐿 denote the generating functions defined
by

𝐷 =
∑︁

𝑃 ∈𝒟
𝑥𝑢(𝑃 )𝑦𝜏(𝑃 ) and 𝐿 =

∑︁

𝑃 ∈ℒ
𝑥𝑢(𝑃 )𝑦𝜏(𝑃 ).

A non-empty skew Dyck path can be uniquely decomposed as either 𝑈𝑇1𝐿 or
𝑈𝑇2𝐷𝑇3, where 𝑇1, 𝑇2, and 𝑇3 are lattice paths in S1 with 𝑇1 non-empty. In the
first case, 𝑇1 has two options: the last step is a down-step or a left step, see Figure 6.
Then, this case contributes to the generating function the term 𝑥(𝑦𝐷 + 𝐿).

Figure 6. Decomposition of a skew Dyck path.

On the other hand, 𝑇2 can be an empty path or a path in 𝒟 or ℒ. If 𝑇3 is empty,
then this case contributes to the generating function the term 𝑥(𝑦 + 𝐷 + 𝐿𝑦). On
the other hand, if the path 𝑇3 is non-empty, then this case contributes to the
generating function the term 𝑥(𝑦 + 𝐷 + 𝑦𝐿)𝑦(𝑊1 − 1), see Figure 7. Summarizing
these cases, we obtain the functional equation

𝑊1 = 1 + 𝑥(𝑦𝐷 + 𝐿) + 𝑥(𝑦 + 𝐷 + 𝑦𝐿)(1 + 𝑦(𝑊1 − 1)).

From a similar argument, we obtain the equations

𝐷 = 𝑥(𝑦 + 𝐷 + 𝑦𝐿)(1 + 𝑦𝐷) and 𝐿 = 𝑥(𝑦𝐷 + 𝐿) + 𝑥(𝑦 + 𝐷 + 𝑦𝐿)(𝑦𝐿).

Figure 7. Decomposition of a skew Dyck path.
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Using the Gröbner basis on the polynomial equations for 𝑊1, 𝐷, and 𝐿, we
obtain the desired result.

We can use a symbolic software computation to obtain the first few terms of
the formal power series of 𝑊1(𝑥, 𝑦) as follows:

𝑊1(𝑥, 𝑦) = 1 + 𝑥𝑦 + 𝑥2(𝑦 + 𝑦2 + 𝑦3) + 𝑥3(𝑦 + 2𝑦2 + 4𝑦3 + 2𝑦4 + 𝑦5)
+ 𝑥4(𝑦 + 3𝑦2 + 9𝑦3 + 9𝑦4 + 10𝑦5 + 3𝑦6 + 𝑦7) + · · · .

From the equation given in Theorem 4.1, we obtain

3𝑥𝑆3(𝑥) + 6𝑥𝑆2(𝑥)𝐾(𝑥) − 2𝑥𝑆2(𝑥) − 2(2 − 𝑥)𝑆(𝑥)𝐾(𝑥) + 3(1 − 𝑥)𝐾(𝑥) = 0,

where 𝐾(𝑥) is the generating function for the total number of corners in skew
Dyck paths and 𝑆(𝑥) = (1 − 𝑥 −

√
1 − 6𝑥 + 5𝑥2)/(2𝑥) is the generating function

for the number of the skew Dyck paths. Solving the above equation, we obtain the
generating function

𝐾(𝑥) = 2(1 − 𝑥)(3 + 𝑥)𝑥
(1 − 𝑥)(3 − 2𝑥)(1 − 5𝑥) + (3 − 11𝑥 + 4𝑥2)

√
1 − 6𝑥 + 5𝑥2

= 𝑥 + 6𝑥2 + 30𝑥3 + 145𝑥4 + 695𝑥5 + 3327𝑥6 + 15945𝑥7 + · · · .

Theorem 4.2. The generating function 𝑊2(𝑥, 𝑦) satisfies the functional equation
𝑥2𝑦4(1 + 𝑦)3𝑊 6

2 − 𝑥𝑦2(1 + 𝑦)2(1 − 𝑥(1 + 6𝑦 + 𝑦2 − 3𝑦3))𝑊 5
2

+ 𝑥𝑦(−4 − 7𝑦 + 3𝑦3 + 𝑥(1 + 𝑦)2(4 + 9𝑦 − 11𝑦2 − 6𝑦3 + 3𝑦4))𝑊 4
2

+ (4 − 2𝑥(1 + 𝑦)2(4 − 7𝑦 + 𝑦2) − 𝑥2(1 + 𝑦)2(−4 + 2𝑦 + 21𝑦2 − 8𝑦3 − 5𝑦4 + 𝑦5))𝑊 3
2

+ (−12 − 𝑥2(1 + 𝑦)2(8 + 4𝑦 − 18𝑦2 + 4𝑦3 + 𝑦4) − 2𝑥(−10 − 9𝑦 + 6𝑦2 + 6𝑦3 + 𝑦4))𝑊 2
2

+ (12 + 𝑥2(1 + 𝑦)2(5 + 4𝑦 − 7𝑦2 + 𝑦3) + 𝑥(−17 − 16𝑦 + 2𝑦2 + 4𝑦3 + 3𝑦4))𝑊2

+ (−4 + 𝑥2(1 + 𝑦)2(−1 − 𝑦 + 𝑦2) + 𝑥(5 + 4𝑦 − 𝑦4)) = 0.

Proof. Let 𝒟2 and ℒ2 denote the 2-Fuss-skew paths whose last step is a down-step
or a left-step, respectively. Let 𝐷2 and 𝐿2 denote the generating functions defined
by

𝐷2 =
∑︁

𝑃 ∈𝒟2

𝑥𝑢(𝑃 )𝑦𝜏(𝑃 ) and 𝐿2 =
∑︁

𝑃 ∈ℒ2

𝑥𝑢(𝑃 )𝑦𝜏(𝑃 ).

From a similar argument as in the proof of Theorem 4.1, we obtain the system of
polynomial equations

𝑊2 = 1 + 𝑥((𝑦 + 𝑦𝐷2 + 𝐿2)(1 + 𝑦2𝐷2 + 𝑦𝐿2)(1 + 𝑦(𝑊2 − 1)) + (𝐷2 + 𝑦𝐿2)
+ (𝐷2 + 𝑦𝐿2)𝑦(1 + 𝑦(𝑊2 − 1)) + (𝑦 + 𝑦𝐷2 + 𝐿2)(𝑦 + 𝑦𝐷2 + 𝑦2𝐿2)),

𝐷2 = 𝑥((𝑦 + 𝑦𝐷2 + 𝐿2)(1 + 𝑦2𝐷2 + 𝑦𝐿2)𝑦𝐷2 + (𝐷2 + 𝑦𝐿2) + (𝐷2 + 𝑦𝐿2)𝑦(𝑦𝐷2)
+ (𝑦 + 𝑦𝐷2 + 𝐿2)(𝑦 + 𝑦𝐷2 + 𝑦2𝐿2)),

𝐿2 = 𝑥((𝑦 + 𝑦𝐷2 + 𝐿2)(1 + 𝑦2𝐷2 + 𝑦𝐿2)(1 + 𝑦𝐿2) + (𝐷2 + 𝑦𝐿2)𝑦(1 + 𝑦𝐿2)).

By using the Gröbner basis, we obtain the desired result.
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Expanding with Mathematica the functional equation for 𝑊2, we find

𝑊2(𝑥, 𝑦) = 1 + (𝑦 + 𝑦2)𝑥 + (𝑦 + 3𝑦2 + 5𝑦3 + 4𝑦4 + 𝑦5)𝑥2

+ (𝑦 + 5𝑦2 + 16𝑦3 + 27𝑦4 + 33𝑦5 + 25𝑦6 + 9𝑦7 + 2𝑦8)𝑥3 + · · · .

Moreover, the first few terms of the total number of corners in S2 are

3𝑥+43𝑥2+561𝑥3+7209𝑥4+92703𝑥5+1197151𝑥6+15532917𝑥7+202428373𝑥8+· · · .

From Figure 4 one can verify that there are 43 corners over all paths in S2,2.

5. Other generalization
Let Hℓ denote the skew Dyck paths where left steps are below the line 𝑦 = ℓ. In
particular, H0 are the Dyck path and H∞ are the skew Dyck path. We define the
generating function

𝐻ℓ(𝑥, 𝑝, 𝑞) :=
∑︁

𝑃 ∈Hℓ

𝑥𝑢(𝑃 )𝑝𝑑(𝑃 )𝑞𝑡(𝑃 ).

For simplicity, we use 𝐻ℓ to denote the generating function 𝐻ℓ(𝑥, 𝑝, 𝑞).

Theorem 5.1. For ℓ ≥ 1, we have

𝐻ℓ = 1 + 𝑞𝑥(𝐻ℓ−1 − 1) + 𝑝𝑥𝐻ℓ−1𝐻ℓ, (5.1)

with the initial value 𝐻0 = 1−√
1−4𝑝𝑥

2𝑝𝑥 .

Proof. A non-empty skew Dyck path in Hℓ can be decomposed as 𝑈𝑇1𝐿 or
𝑈𝑇2𝐷𝑇3, where 𝑇1, 𝑇2 ∈ Hℓ−1 with 𝑇1 a non-empty path, and 𝑇3 ∈ Hℓ. From
this decomposition follows the functional equation.

Recall that the 𝑚th Chebyshev polynomial of the second kind satisfies the
recurrence relation 𝑈𝑚(𝑡) = 2𝑡𝑈𝑚−1(𝑡) − 𝑈𝑚−2(𝑡) with 𝑈0(𝑡) = 1 and 𝑈1(𝑡) = 2𝑡.
Thus by induction on ℓ and Theorem 5.1, we obtain the following result.

Theorem 5.2. Let 𝑡 = 1+𝑞𝑥

2
√

𝑥(𝑝+𝑞−𝑝𝑞𝑥)
and 𝑟 =

√︀
𝑥(𝑝 + 𝑞 − 𝑝𝑞𝑥). The generating

function 𝐻ℓ is given by

(𝑞𝑥𝑈𝑛−1(𝑡) − 𝑟𝑈𝑛−2(𝑡))𝐶(𝑝𝑥) + (1 − 𝑞𝑥)𝑈𝑛−1(𝑡)
𝑈𝑛−1(𝑡) − 𝑟𝑈𝑛−2(𝑡) − 𝑝𝑥𝑈𝑛−1(𝑡)𝐶(𝑝𝑥) ,

where 𝑈𝑚 is the 𝑚th Chebyshev polynomial of the second kind and 𝐶(𝑥) = 1−√
1−4𝑥

2𝑥

the generating function for the Catalan numbers 1
𝑛+1

(︀2𝑛
𝑛

)︀
.
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The generating functions for the total number of skew Dyck path in Hℓ for
ℓ = 1, 2, 3 are

𝐻1(𝑥, 1, 1) = 3 − 2𝑥 −
√

1 − 4𝑥

1 +
√

1 − 4𝑥
,

𝐻2(𝑥, 1, 1) = 1 + 2𝑥 − 2𝑥2 − (1 − 2𝑥)
√

1 − 4𝑥

1 − 𝑥 − 2(1 − 𝑥)𝑥 + (1 + 𝑥)
√

1 − 4𝑥
,

𝐻3(𝑥, 1, 1) = 1 − 3𝑥 + 7𝑥2 − 4𝑥3 + (1 + 𝑥 − 3𝑥2)
√

1 − 4𝑥

1 − 4𝑥 + 2𝑥3 + (1 + 2𝑥2)
√

1 − 4𝑥
.
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