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Abstract. An explicit description of the trace of Frobenius is given for any
elliptic curve over Q of the form 𝑦2 = 𝑥3 + 𝑑𝑥. This description leads to an
algorithm which computes the trace at a cost of one modular exponentiation.
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1. Introduction
One of the more notable problems currently being pursued in Number Theory is
the conjecture attributed to Lang and Trotter [7] on the distribution of primes
with given trace of Frobenius. Since the appearance of their paper, considerable
effort has been made to quantify the distribution, with many notable achievements
in this regard. Results in the literature on this topic vary from averaging results,
stemming from the ground-breaking work of David and Pappalardi [2], quantitative
bounds dependent upon GRH-type assumptions due to Cocojaru and Murty [1],
connections between the distribution of the trace for CM curves and the Hardy–
Littlewood conjecture by Ji and Qin [4], and numerous other fascinating lines of
research. The reader may wish to consult the survey paper by Katz [5] for more
on the Lang–Trotter conjecture.

Although the literature on this topic has grown substantially, with many results
about the Lang–Trotter conjecture, it was a curiosity of this author as to the depth
of the conjecture, which we take a moment to elaborate on now. Let us consider
what could be considered a simplest possible case, namely, the elliptic curve 𝐸
given by 𝑦2 = 𝑥3 + 𝑥 and trace equal to 2. 𝐸 has complex multiplication, meaning
that its endomorphism ring is 𝐸𝑛𝑑(𝐸) = Z[𝑖], and the characteristic polynomial of
the Frobenius endomorphism 𝑐𝐸(𝑋) = 𝑋2 − 2𝑋 + 𝑝 therefore splits in 𝐸𝑛𝑑(𝐸). It
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follows that the discriminant 22 −4𝑝 of 𝑐𝐸 is a square (𝑎+𝑏𝑖)2 in Z[𝑖], from which it
follows that 𝑎 = 0, 𝑏 is even, and 𝑝 = (𝑏/2)2 + 1. We now see that the distribution
of primes for which this curve has trace equal to 2, i.e. the Lang-Trotter conjecture
for this instance, is tantamount to the distribution of primes of the form 𝑥2 + 1,
a notoriously and profoundly difficult problem in analytic number theory. We
remark that the considerations made here were alluded to in the opening remarks
in a paper by Murty [8].

As a consequence of this observation, our interest in this research area moved
swiftly to simply understanding the trace for curves of the form 𝑦2 = 𝑥3 + 𝑑𝑥. The
primary goal of this paper is to give an exact description of the trace, and show
that for a given coefficient 𝑑 and prime 𝑝 not dividing 𝑑, one can compute the trace
very efficiently using this description.

2. The main result

As noted above, we are interested in the family of curves 𝑦2 = 𝑥3 + 𝑑𝑥, with 𝑑 ∈ Z,
and we wish to determine the trace of the curve, denoted 𝑎𝑝, at a prime 𝑝. Note
that we need to restrict to those 𝑝 not dividing 𝑑, for otherwise the curve is singular.
If 𝑝 = 2, then we need only consider 𝑑 = 1, and in this case 𝑎𝑝 = 0. Similarly, if
𝑝 is any prime satisfying 𝑝 ≡ 3 (mod 4), then by Deuring’s reduction theorem (for
example, see Theorem 12 in Ch. 13 of [6]), or the method given in Example 4.5 on
p. 144 of [9], the curve in question is supersingular, that is, 𝑎𝑝 = 0. Therefore, we
may restrict our attention to primes 𝑝 satisfying 𝑝 ≡ 1 (mod 4).

In what follows, 𝑝 will represent a prime which is 1 modulo 4. We will denote
by 𝑎 and 𝑏 integers such that 𝑝 = 𝑎2 + 𝑏2, 𝑎 odd, and 𝑏 > 0 even. However, 𝑎 will
not necessarily be positive, as it will be specified throughout by the congruence
𝑎 ≡ 1 (mod 4).

Let 𝐺 denote the multiplicative group Z/𝑝Z*. Then 𝐺 is a cyclic group whose
order is a multiple of 4. Let 𝐻 denote the cyclic subgroup of 𝐺 consisting of the
4-th powers of all elements in 𝐺. Then 𝐻 has order (𝑝 − 1)/4, and 𝐺/𝐻 is a
cyclic group of order 4. Because of the congruence 𝑎2 ≡ −𝑏2 (mod 𝑝), the 4-th
roots of unity in 𝐺 are 1, −1, 𝑎/𝑏, and 𝑏/𝑎. Therefore, if 𝑢 is an element in 𝐺
satisfying 𝑢(𝑝−1)/4 ≡ 𝑎/𝑏 (mod 𝑝) or 𝑢(𝑝−1)/4 ≡ 𝑏/𝑎 (mod 𝑝), then 𝑢𝐻 generates
𝐺/𝐻. In what follows, a non-square element 𝑢 ∈ 𝐺 will be chosen specifically by
the congruence

𝑢(𝑝−1)/4 ≡ 𝑎/𝑏 (mod 𝑝). (2.1)

Theorem 2.1. Let 𝑑 ∈ Z, 𝑝 a prime not dividing 𝑑, 𝑝 ≡ 1 (mod 4), and 𝑎 and 𝑏
integers for which 𝑝 = 𝑎2 +𝑏2 as specified above. Let 𝑢 ∈ 𝐺 be an element for which
(2.1) holds, and 𝐻 as above. Let 𝐸𝑑 be the elliptic curve given by 𝑦2 = 𝑥3 + 𝑑𝑥
and 𝑎𝑝 the trace of 𝐸𝑑 at 𝑝. Then 𝑎𝑝 ∈ {2𝑎, −2𝑎, 2𝑏, −2𝑏}.
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More precisely,

𝑎𝑝 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2𝑎 if 𝑑 (mod 𝑝) ∈ 𝐻

−2𝑎 if 𝑑 (mod 𝑝) ∈ 𝑢2𝐻

2𝑏 if 𝑑 (mod 𝑝) ∈ 𝑢𝐻

−2𝑏 if 𝑑 (mod 𝑝) ∈ 𝑢3𝐻.

Remark. From a computational perspective, one can compute the trace of 𝐸𝑑 at
a prime 𝑝 very quickly by evaluating the modular exponentiation 𝑑(𝑝−1)/4 (mod 𝑝),
as the value of this expression will be one of 1, −1, 𝑎/𝑏 (mod 𝑝) or 𝑏/𝑎 (mod 𝑝),
explicitly determining the value of the trace as 2𝑎, −2𝑎, 2𝑏 or −2𝑏 respectively.

Proof. The proof of the assertion concerning the set of possible values of the trace
is basically identical to the argument given in the introduction, and so we leave
that for the reader to verify.

We will now proceed to each of the possible values of the trace, starting with
2𝑎, and for the sake of pedagogy, we will describe two different ways to arrive at
this result.

Let 𝑑 be any integer for which 𝑑 (mod 𝑝) is in 𝐻. The map from 𝐸𝑑 to 𝐸1
given by (𝑥, 𝑦) → (𝑑2𝑥, 𝑑3𝑦) evidently shows that these two curves are isomorphic
over 𝐺𝐹 (𝑝), hence have the same order modulo 𝑝. Thus we focus on computing
the trace of 𝐸1 at 𝑝.

What would be considered a more standard approach to this is to appeal once
again to Example 4.5 on p.144 of [9], wherein Silverman tersely points out that the
trace is given by the binomial coefficient

(︀(𝑝−1)/2
(𝑝−1)/4

)︀
, from which the result follows

from a congruence of Gauss, which is given explicitly in Theorem 7.1 in the seminal
paper by Hudson and Williams [3].

Another somewhat more long-winded way to arrive at this result is as follows.
Firstly, notice that since 2𝑎 ≡ 2 (mod 8), the desired result is a straightforward
deduction from the equation

|𝐸1 (mod 𝑝)| = 𝑝 + 1 − 𝑎𝑝,

provided that we can prove |𝐸1 (mod 𝑝)| ≡ 0 (mod 8) for 𝑝 ≡ 1 (mod 8) and |𝐸1
(mod 𝑝)| ≡ 4 (mod 8) for 𝑝 ≡ 5 (mod 8).

In order to prove these two congruences, we combine certain facts involving the
points of order two on 𝐸1 (mod 𝑝). Firstly, as is well known, the group structure
of this group is of the form Z/𝑛1Z × Z/𝑛2Z with 𝑛1 a divisor of 𝑛2. The desired
result will follow from the observation that for 𝑝 ≡ 1 (mod 8), 𝑛1 ≡ 𝑛2 ≡ 0
(mod 4), whereas for 𝑝 ≡ 5 (mod 8), 𝑛1 ≡ 𝑛2 ≡ 2 (mod 4).

Briefly, it is evident that the polynomial 𝑥3 + 𝑥 has three distinct roots, say
𝑟1, 𝑟2, 𝑟3, in 𝐺𝐹 (𝑝), and the resulting points (𝑟𝑖, 0) on 𝐸1 are points of order 2.
Using the doubling formula on 𝐸1, we can compute precisely when these points
are in 2𝐸1. In fact, if 2(𝑥, 𝑦) = (𝑟𝑖, 0), then 𝑥 is a root of the polynomial (𝑥 −
1)(𝑥 + 1)(𝑥4 + 6𝑥2 + 1). However, for 𝑥 = 1 or 𝑥 = −1 to give rise to a point on
𝐸1 (mod 𝑝), the value of 𝑥3 + 𝑥 must be a square in 𝐺𝐹 (𝑝), from which it follows
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that 𝑝 ≡ 1 (mod 8). In summary then, 𝐸1 (mod 𝑝) has points of order 4 only for
𝑝 ≡ 1 (mod 8) and not for 𝑝 ≡ 5 (mod 8). The remark above concerning the group
structure now proves the desired (mod 8) congruences above.

We now consider the second case, namely the set of curves with trace −2𝑎. We
will show that if 𝑢 is a non-square modulo 𝑝, and 𝑑 (mod 𝑝) ∈ 𝑢2𝐻, then the trace
of 𝐸𝑑 at 𝑝 is −2𝑎. As argued in the previous case, we need only consider the curve
𝐸𝑢2 . Our approach will be to compare points on 𝐸1 (mod 𝑝) and 𝐸𝑢2 (mod 𝑝). Let
𝐶1, respectively 𝐶2, denote the number of 𝑥 ∈ 𝐺𝐹 (𝑝) for which 𝑥3 +𝑥, respectively
𝑥3 + 𝑢2𝑥, is a non-zero square in 𝐺𝐹 (𝑝). Then |𝐸1 (mod 𝑝)| = 4 + 2𝐶1 and |𝐸𝑢2

(mod 𝑝)| = 4 + 2𝐶2. We forego displaying the computations, but it is straightfor-
ward to verify that because 𝑢 is a non-square,

(︁
𝑥3+𝑥

𝑝

)︁
= −

(︁
(𝑢𝑥)3+𝑢2(𝑢𝑥)

𝑝

)︁
. Finally,

a simple counting exercise gives the relation 𝐶1 + 𝐶2 = 𝑝 − 3, from which it follows
that |𝐸𝑢2 (mod 𝑝)| = 𝑝 + 1 + 2𝑎.

We wish to remark that in the last step of the proof above, multiplication by
𝑢 can be thought of as flipping 𝑥, like a light switch. It is an illuminating way to
think of the proof.

As the fourth case follows from the third case in exactly the same way that the
second case followed from the first case, we are left only to deal with the third case.
For this, we will use the observation made by Silverman in Example 4.5 on p.144
of [9], but provide the reader with a little more to go on.

By the remark used earlier concerning the fact that all curves in the same class
mod 𝐻 are isomorphic over 𝐺𝐹 (𝑝), we may restrict our attention to the curve 𝐸𝑢

given by 𝑦2 = 𝑥3 + 𝑢𝑥, where 𝑢 is a fixed non-square in 𝐺𝐹 (𝑝) satisfying (2.1). We
note that for for a fixed non-zero 𝑥 ∈ 𝐺𝐹 (𝑝), the value of 1 +

(︁
𝑥3+𝑢𝑥

𝑝

)︁
is either 0

if 𝑥 does not give rise to a point on the curve, 1 if 𝑥 is a root of the cubic giving
rise to 1 point, or 2 is 𝑥 gives rise to 2 points with 𝑦 coordinates of opposite sign.
Therefore, counting 1 for the point at infinity, we have that

|𝐸𝑢 (mod 𝑝)| = 1 +
𝑝−1∑︁

𝑥=0
1 +

(︂
𝑥3 + 𝑢𝑥

𝑝

)︂
= 𝑝 + 1 +

𝑝−1∑︁

𝑥=0
(𝑥3 + 𝑢𝑥)(𝑝−1)/2.

Therefore, the trace of interest 𝑎𝑝 is explicitly given by this last summand but with
opposite parity. Continuing from above by expanding the polynomials, switching
order of summation, and pulling out common factors, we see that

𝑎𝑝 = −
𝑝−1∑︁

𝑥=0

(𝑝−1)/2∑︁

𝑖=0

(︂
(𝑝 − 1)/2

𝑖

)︂
𝑥3𝑖(𝑢𝑥)(𝑝−1)/2−𝑖

= −
(𝑝−1)/2∑︁

𝑖=0

(︂
(𝑝 − 1)/2

𝑖

)︂
𝑢(𝑝−1)/2−𝑖

(︃
𝑝−1∑︁

𝑥=0
(𝑥)(𝑝−1)/2+2𝑖

)︃
.

A closer look at the far right term in this last expression shows that for 𝑖 ̸= (𝑝−1)/4,
the sum represents possibly multiple copies of a complete sum over a non-trivial
subgroup of Z/𝑝Z*, and hence must sum to 0 modulo 𝑝. We now use the congruence
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quoted above from [3], together with our assumption on the choice of 𝑢, and the
fact that 𝑎/𝑏 ≡ −𝑏/𝑎 (mod 𝑝), to deduce finally that

𝑎𝑝 = −
(︂

(𝑝 − 1)/2
(𝑝 − 1)/4

)︂
𝑢(𝑝−1)/4 ≡ −2𝑎(𝑎/𝑏) ≡ −2𝑎(−𝑏/𝑎) ≡ 2𝑏 (mod 𝑝).
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