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Abstract
According to the public goods game (PGG) protocol, participants decide freely whether they want
to contribute to a common pool or not, but the resulting benefit is distributed equally. A
conceptually similar dilemma situation may emerge when participants consider if they claim a
common resource but the related cost is covered equally by all group members. The latter
establishes a reversed form of the original public goods game (R-PGG). In this work, we show that
R-PGG is equivalent to PGG in several circumstances, starting from the traditional analysis, via the
evolutionary approach in unstructured populations, to Monte Carlo simulations in structured
populations. However, there are also cases when the behavior of R-PGG could be surprisingly
different from the outcome of PGG. When the key parameters are heterogeneous, for instance, the
results of PGG and R-PGG could be diverse even if we apply the same amplitudes of heterogeneity.
We find that the heterogeneity in R-PGG generally impedes cooperation, while the opposite is
observed for PGG. These diverse system reactions can be understood if we follow how payoff
functions change when introducing heterogeneity in the parameter space. This analysis also reveals
the distinct roles of cooperator and defector strategies in the mentioned games. Our observations
may hopefully stimulate further research to check the potential differences between PGG and
R-PGG due to the alternative complexity of conditions.

1. Introduction

When an individual has to pay for the consumption of goods or services then there is a natural incentive to
moderate this consumption. But there are cases when the relationship between the consumption and the
emerging cost is more subtle because both actions are made by a group of persons. For example, in a
university dormitory or a shared household each member can use electricity or water freely, but all members
share the related bills equally. This collective responsibility may induce less trustworthy individual
consumption because members may easily consume more than they would if the personal consumption is
recorded and the related bill is paid separately. As a result, they can easily become careless because the extra
use is paid collectively. Notably, the reverse is also true: an individual saving of usage would result in just a
modest decrease in an individual bill because others will also benefit from a responsible act. On the other
side, if all participants behave trustworthily and consume just the necessary resource then they would pay the
minimal cost. In parallel, they could still enjoy the benefit of a collective venture, like maintaining a less
expensive joint infrastructure. This establishes a dilemma between individual and collective interests when
players are motivated to defect and consume more than they would individually. A similar dilemma occurs at
a larger scale when countries use the same natural resources, like the oceans or the atmosphere [1–4].

The conflict of individual and collective interests, often called as a social dilemma, is the central problem
of several game-theoretical models, including prisoner’s dilemma game [5–8], snowdrift game [9–11],
stag-hunt game [12–14], ultimatum game [15–18], trust game [19–21], donation game [22–24], or recently
proposed involution game [25–27], including the N-person versions of these games [28–34]. The common
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feature of all related situations, which are captured by the mentioned mathematical games, is that
cooperation would provide the highest collective benefit, but players can gain more individually if they
decide to defect and exploit others [35–37]. However, from the viewpoint of our present work, the most
important version is the so-called public goods game (PGG) played by several players simultaneously
[38–43]. In this framework, group members decide independently whether they want to contribute to a
common pool or not. The accumulated contributions are then enhanced by an r > 1 productivity factor
which expresses the synergy among collaborators: their collective efforts are more effective than a simple sum
of their contributions. Finally, the enhanced sum is distributed among all group members equally regardless
of whether they contributed to the common pool earlier. It is worth noting that the original public good
dilemma can be framed from different aspects: we may establish or maintain a common pool where both
goals generate the same individual dilemma [44].

In the original PGG, the contribution, which involves direct negative income to a participant, is optional,
while the benefit is universal for all group members. From this viewpoint, the situation we described earlier is
the opposite: consumption, which means a positive personal income, is optional while the contribution to
the resulting cost is mandatory. Put differently, in a PGG the negative part is optional and the positive part is
universal. In contrast, in our present case the positive part is optional and the negative part is universal. This
is why we can call this setup a reversed public goods game (R-PGG) where cooperation means to consume
the minimal from the common resource, while a defector chooses to consume the pool extravagantly and
wastefully.

In this work, we explore the proposed R-PGG model and reveal its relation to the original PGG. We
therefore study the equilibrium and evolutionary behavior of competing strategies and investigate how it is
possible to reduce the undesired overuse of common resources. Evidently, this is the core question of
evolutionary game theory which targets to understand the evolution of cooperation among self-interested
competitors [45–49]. Besides a well-mixed population, studied by replicator dynamics [50–53], we also
consider structured populations, which could be a decisive factor in how evolution proceeds [54–60].
Notably, we not only check the consequences when players are arranged on a lattice topology, but more
realistic topologies, including small-world and scale-free features are also considered.

Moreover, we also assume more complex conditions, including the heterogeneity of key parameters, and
explore their impacts on the evolutionary outcome. Indeed, heterogeneity in various forms is not simply a
more realistic approach, but could also be a decisive factor in how cooperation evolves [27, 61, 62]. For the
PGG, the heterogeneity of allocation [63–65], productivity [66–68], input [69–72], and their combinations
have been studied intensively [73–75]. In particular, Hauser et al [76] systematically analyzed PGGs among
unequals by equilibrium calculation, evolutionary analysis, and human experiments, where heterogeneous
game parameters depict unequal individuals. While heterogeneity can sometimes be a
cooperator-supporting condition, it could also lead to inequality [77].

The remaining of our paper is organized as follows. In the next section we define the R-PGG model and
discuss its extension to heterogeneous situations. Section 3 compares the original and reverse homogeneous
models for well-mixed and spatial structured populations where their equivalence is demonstrated. In
section 4 we present the heterogeneous case where the surprising difference between the models is revealed.
We here also present the mechanisms which explain the equivalence and difference between their behaviors.
In the last section we discuss our findings and provide some potential applications to alternative real-life
situations. Our arguments are greatly supported by an intensive appendix where all complementary
observations are presented.

2. Model

We here define the R-PGG model in analogy with the original PGG. First, we consider a specific case, where
players are homogeneous (section 2.1), then we extend our model to a more general case, where the players
are not necessarily equal (section 2.2).

2.1. The underlying model
Similarly to PGG, in an R-PGG a group is formed by g members. A player is free to require goods, but all
involved members should cover the emerging cost of the goods equally. For simplicity, we assume binary
strategies: (a) not requiring goods (cooperation, C); (b) requiring goods (defection, D). Later we explain why
these strategies can be considered as cooperation or defection. If a player defects and requires goods, she
receives goods valuedm (m> 0). Otherwise, she receives nothing. When all group members made their
independent decisions about their consumptions, each player equally pays a cost to cover the goods required
by the whole group. The payoff πC and πD for a cooperative or for a defective player can be calculated as
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πC =−gDmλ

g
(1a)

πD =m− (gD + 1)mλ

g
, (1b)

where there are gD other defectors among the neighbors of the focal player. Here λ> 1 parameter denotes the
waste factor associated with requiring public goods. The larger the waste factor, the greater the loss caused by
the consumption. If λ < g then requiring goods always brings positive income to a defective individual.
Therefore, to meet a proper dilemma, we assume that 1< λ < g.

2.2. The extension to heterogeneous players
More generally, we can consider heterogeneousm and λ game parameters for different players. A player i
(i = 1,2, . . . ,g) in a group may require goods valuedmi (mi > 0), with its waste factor λi. In the extended
version, we introduce a continuous strategy space, hence the strategy of player i can be denoted by a
proportion yi (0⩽ yi ⩽ 1) of goodsmi, where yi = 0 means full cooperation and yi = 1 is full defection. If
not mentioned otherwise, we use the pure strategy set, yi ∈ {0,1}, in this work. The payoff πi of player i can
be calculated as

πi = yimi−
1

g

g∑
j=1

y jm jλ j, (2)

where j goes through every player in the group, including player i.
In this extension,mi measures the full consumption capacity of player i. In real-world scenarios, an

individual’s needs and capacity may vary. Secondly, λi characterizes the ‘effectiveness’ of player i in spoiling
the required public goods. Note that players with the same consumption capacity and strategy may generate
different final cost values due to individual efficiency.

3. Equivalence between R-PGG& PGG

We first demonstrate that the proposed R-PGG model is equivalent to the PGG in many aspects. The static
analysis shows the equivalence in general homogeneous cases. From the perspective of evolutionary
dynamics, the equivalence of the underlying homogeneous model also holds both in well-mixed and
structured populations.

3.1. Static analysis among unequals
Hauser et al [76] proposed a general framework for the PGG among unequal participants (i.e. players with
heterogeneous game parameters). We here show that our R-PGG model fits this general framework. In the
following, we perform an equilibrium analysis.

According to the general heterogeneous case defined by equation (2), we denote the requirement vector
by y= (y1,y2, . . .,yg) in a group of g players, and assume that y> y ′ if yi > y ′i for all i ∈ {1, . . .g} group
members. We also denote the full consumption or desire profile by vectorm= (m1,m2, . . . ,mg) and the
waste vector λ= (λ1,λ2, . . . ,λg) for the actual group. Thesem, λ, and y vectors determine the payoff values
π(m,λ,y) ∈ Rg for all group members. In addition, we denote the accumulated group desire or maximal
group consumption byM :=

∑g
i=1mi, and the total payoff of all involved players by U(m,λ,y) :=∑g

i=1πi(m,λ,y).
In [76], the authors introduced a so-called ‘cooperation vector’, denoted by x= (x1,x2, . . . ,xg), which

characterizes the cooperation profile of all involved participants. In our R-PGG model, consumption is the
focus, therefore it is appropriate to use a ‘defection vector’ which practically determines the individual aims
to consume their maximal capacities via y= (y1,y2, . . . ,yg) requirement vector. Since cooperation and
defection complement each other, the sum of these vectors is always constant and gives a unit value for every
i component. Namely, y+ x= 1. In strong analogy with the heterogeneous PGG model [76], the following
properties are valid here, which describe the conflict between the collective and individual incentives on how
to utilize public resources:

• Continuity: the payoff function π(m,λ,y) is continuous in both the argumentsm and y.
• Negative externalities: if y and y ′ are two requirement vectors such that yi = y ′i and y j ⩾ y ′j for ∀ j ̸= i,
then πi(m,λ,y)⩽ πi(m,λ,y ′) for ∀m. The inequality πi(m,λ,y)< πi(m,λ,y ′) holds iff ∃ j such thatm j >
0,y j > y ′j.
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• Incentives to free-require: if y and y ′ are two requirement vectors such that yi > y ′i and y j = y ′j for ∀ j ̸=
i, then πi(m,λ,y)⩾ πi(m,λ,y ′) for ∀m. The inequality πi(m,λ,y)> πi(m,λ,y ′) holds iff the required
goods are positive,mi > 0.
• Non-optimality of defection: if y and y ′ are two requiring vectors such that y⩽ y ′, then U(m,λ,y)⩾
U(m,λ,y ′). The inequality U(m,λ,y)> U(m,λ,y ′) holds iff ∃i such thatmi > 0,yi < y ′i .

The so-called Grim player i cooperates in the initial round (yi = 0). Then, if all players cooperate as well,
player i keeps cooperating. Otherwise, if any player defects in previous rounds, player i defects and keep
defecting in the future (yi = 1) [35]. In anology to [76], when all players are Grim players, it is a subgame
perfect equilibrium for the given requirement distribution, which means that full cooperation can be
sustained among Grim players. Given that all players follow Grim strategy, the following condition must
hold for all players i to sustain cooperation:

δ(πi(m,λ,0+i)−πi(m,λ,1))⩾ πi(m,λ,0+i)−πi(m,λ,0), (3)

where δ is the probability of another round. Here vector 1means all players defect, 0means all players
cooperate, and 0+i means that all players cooperate but player i defects. According to equation (3), the
expected benefit from the future cooperation of others must exceed the incentive to defect in the current
round.

Based on equation (2), the individual payoff value is

πi(m,λ,y) =−1

g

∑
j

y jm jλ j +mi yi

=−1

g

∑
j ̸=i

y jm jλ j +mi

(
1− λi

g

)
yi . (4)

Therefore, 
π(m,λ,1) =−1

g

∑
j̸=i

m jλ j +mi

(
1− λi

g

)
π(m,λ,0) = 0

π(m,λ,0+i) =mi

(
1− λi

g

)
.

(5)

By substituting equations (5) into equation (3), the necessary and sufficient condition for the feasibility of
cooperation for all involved player i is

δ

g

∑
j ̸=i

m jλ j ⩾mi

(
1− λi

g

)
. (6)

Like the PGG, repeated games (indicated by a larger δ) promote cooperation. For example, according to
equation (6), given equal desirem= (M/g, . . . ,M/g), full cooperation is feasible iff

δ ⩾ g−min(λ j)∑g
j=1λ j−min(λ j)

. (7)

We can deduce the optimal requirement vectorm, maximally cooperative when requiring the lowest
continuation probability δ for cooperation to be feasible. In particular, if we consider only two players, then
full cooperation is feasible iff

δ ⩾max

(
m1(2−λ1)

m2λ2
,
m2(2−λ2)

m1λ1

)
. (8)

To minimize the right-hand side of equation (8), we have the condition

m1

m2
=

√
λ2(2−λ2)

λ1(2−λ1)
, (9)

which maximizes cooperation.
We can see that in the conditions of equations (6), (7) and (9), the parameter λ plays the same role as r in

PGG, and parameterm plays the same role as c in PGG (see [76] for the corresponding conditions in PGG
and note that they denote the contribution c by endowment e). In other words, R-PGG is equivalent to PGG
in the framework of social dilemmas among unequals.
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3.2. Evolutionary dynamics in a well-mixed population
The evolutionary game theory focuses on how cooperation can evolve via a dynamic process. Unlike the
traditional game theory, discussed in section 3.1, here we adopt the simplest strategy set (a player employs
unconditional cooperation or defection) [54]. In particular, according to microscopic dynamics, a strategy
with a higher payoff value can be reproduced with a higher probability via a certain dynamical rule,
including, but not limited to death–birth [55], birth–death [55], pairwise comparison [5], and imitation [55]
rules. For simplicity, we here apply the pairwise comparison dynamics with Fermi-function-type probability.
Accordingly, player i with payoff πi adopts the strategy of player i′ who has payoff πi ′ with the probability

Q(πi ← πi ′) =
1

1+ e−ω(πi ′−πi)
. (10)

Here, ω (ω > 0) is considered as the strength of selection. A stronger selection strength ω means that players
are more sensitive to the payoff difference. The higher the payoff of player i ′, the higher probability is that
player i imitates the strategy of player i ′.

Without loss of generality, we first study the evolutionary dynamics of R-PGG in a well-mixed
population of homogeneous players. In appendix A.1 we first apply deterministic dynamics and find two
solutions to the replicator equation. They are full defector and full cooperator states. Their stability depends
on the sign of the payoff difference between the competing strategies. To compare the results with the PGG
case, we obtain equivalent expressions if we replace the original r and c parameters with λ andm. Hence the
homogeneous R-PGG is equivalent to homogeneous PGG in the framework of replicator dynamics in an
infinite and unstructured population.

We can also consider stochastic dynamics in a finite population of size N, as specified in appendix A.2. By
calculating the expected payoff values for both strategies, the transition matrix of the Markov process can be
determined. Similarly to the above-discussed approach, the process has two absorbing states. In the ω→ 0
weak selection limit, the fixation probability agrees with the one obtained for the original PGG if we replace
λ andm parameters with r and c. Therefore, we can conclude that homogeneous R-PGG & PGG are also
equivalent in the framework of stochastic dynamics in a finite and unstructured population.

3.3. Evolutionary dynamics in structured populations (the homogeneous case)
Now, we consider R-PGG on a graph G = (N ,L) of a finite and structured population N. The graph G is
unweighted and undirected.N is the node set of the graph,N = {1,2, . . . ,N} and each node represents a
player. L is the link set of the graph, L= {l1, l2, . . . , l|L|}. We denote by li1i2 a link with order 2, connecting
two nodes i1 and i2. The size of L varies with specific graphs (e.g. for a complete graph, the size of L is
|L|= N(N− 1)/2). The degree of node i (i.e. the number of link(s) containing i) is denoted by ki. Self-loop
is not allowed.

At each elementary Monte Carlo (MC) step, a random node i ∈N is selected. If ki = 0, nothing happens.
If ki ̸= 0, then a random link lii ′ is selected between the focal player i and a neighbor i′. We then calculate
their payoff values. Player i participates in ki + 1 R-PGGs centered on herself and all her neighbor(s). First,
the contribution is calculated from the gi = ki + 1-size group centered on player i. After, we calculate the
income from each group centered on an i’s neighbor(s). Last, player i accumulates these payoff values to
reach the total sum

πi =
1

ki + 1

yimi−
1

gi

yimiλi +
∑
li j1∈L

y j1m j1λ j1

+
∑
li j1∈L

yimi−
1

g j1

yimiλi +
∑

l j1 j2∈L

y j2m j2λ j2

 .

(11)

The πi ′ payoff of player i′ can be calculated in a similar way. Then, player i adopts the strategy of model
player i′ with the probability Q(πi← πi ′) defined by equation (10). Each full time step contains N
elementary MC steps specified above.

In the weak selection limit, we can determine the λ⋆ threshold value for the success of cooperation
through the identity-by-descent method introduced by Allen and Nowak [87]. The details can be found in
appendix B. This calculation suggests that the threshold λ⋆ in R-PGG is exactly the same as r⋆ for the original
PGG (see [47, 78] for the deduction of r⋆ in the original PGG). In other words, homogeneous R-PGG & PGG
predict equivalent threshold values for the emergence of cooperation in the weak selection limit.

For non-transitive graphs, which may lead to varying ki degree among different players i, the explicit
threshold of cooperation emergence in multiplayer games remains unsolved (only the results in two-player
games have been solved [57]). In this case, we may use the average degree ⟨k⟩= (

∑N
i=1 ki)/N to estimate the

threshold value. In this case, the average number of players in each group is ⟨g⟩= ⟨k⟩+ 1.
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Figure 1. Cooperation level as a function of normalized synergy factor r/⟨g⟩ and waste factor λ/⟨g⟩. Panels show the results on
different graphs, as indicated in the titles. In addition, we mark by arrows the threshold level of the control parameter favoring
cooperation under weak selection.

• Monte Carlo simulations
To extend our study, we also apply numerical simulations which can be done for arbitrary selection

strength. Now we choose ω= 10 (i.e. 1/ω = 0.1) and N = 40000. This intermediate level of selection strength
was frequently applied by previous works [40–42, 68, 79–83]. At the beginning, we randomly assign each
agent’s strategy by cooperation or defection. Then, we simulate for 15000 MC steps, and measure the ⟨x⟩
stationary portion of cooperators. This can be done by averaging xi values over the last 5000 steps of the
simulations.

To cover all significantly different interaction topologies, we apply both regular and heterogeneous
graphs. In the former case we use an L× L square lattice with periodic boundary conditions where players
have four nearest neighbors, hence they form five-member groups. The typical linear system size was
L= 200. Furthermore, we also use Watts–Strogatz-type small-world topology where the graph is generated
from a ring of N nodes having k= 4 bonds for each player [84]. Then, each link is rewired randomly with
probability p= 0.5, where self-loop and double links are forbidden. Finally, we also use Barabási–Albert-type
scale-free graphs where the graph is generated starting from a three-node complete graph and new nodes are
attached to the network with two new links [85]. In this way we keep ⟨k⟩= 4 average degree, which makes
the results comparable for all cases.

Our observations are summarized in figure 1 where we present the ⟨x⟩ cooperation level both for PGG
and R-PGG models. Evidently, as we pointed out earlier, parameters r and λ serve as control parameters in
the former and latter cases, respectively. The overlap between the results of the models is convincing.
Evidently, there are differences between the applied topologies, but both PGG and R-PGG change identically.
A similar conclusion can be drawn about the influence of cost c and consumptionm parameters. If one can
require more goods (by increasingm), then the cooperation proportion is more sensitive to the waste factor
(i.e. increasing with λmore gradually). On the one hand, this leads to the emergence of cooperation, ⟨x⟩> 0,
at a smaller λ value. On the other hand, it also leads to the dominance of cooperation, ⟨x⟩= 1, at a greater λ.
The latter effect is more evident on the small-world graph than on the square lattice graph, and is most
evident on the scale-free graph.

According to equation (11),m can be extracted as a common factor in every πi for the homogeneous
case. Then,m plays the same role as ω in the Fermi-function defined by equation (10). In other words, the
selection strength is also directly measured bym. The same inference holds in PGG, where the selection
strength can be measured by c. Taking c=m= 10−2, we have the results valid under a weak selection in
numerical simulations. Using N = 40000 and k= 4 in equation (B.7), we have λ⋆ ≈ 5 or λ⋆/⟨g⟩ ≈ 1. This
weak selection threshold is consistent with the cases of c=m= 10−2 in figure 1.

For completeness, we also measured how the cooperation level changes by varying the c contribution (in
PGG) orm requirement (in R-PGG). Our results are shown in figure C1 in appendix C for different
topologies. The comparison supports our original observation about the equivalence of homogeneous PGG
and R-PGG, no matter whether we consider spatially structured populations.

Summing up, both r & λ and c &m dependencies demonstrate nicely that R-PGG and PGG models are
equivalent if applying the appropriate λ−m or r− c parameter pairs, no matter we have unstructured or
structured populations with different interaction topologies or how intensive the selection strength is. The
only crucial condition, as we will demonstrate in the next section, is that the population should be
homogeneous where all players can be characterized by the same parameter value of the game.

6
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4. Difference between R-PGG& PGG

Our abovementioned conclusion becomes invalid if the population is more realistic and players are not
uniform anymore. Because of realistic conditions, we here focus on structured populations where
interactions are limited and fixedpermanent. The introduction of heterogeneity reveals the difference
between PGG and R-PGG models, as we illustrate in section 4.1. By means of the translation of payoff
functions we will argue that R-PGG is not a simple transformation of the original PGG, but instead a
reversed form of it.

4.1. Evolutionary dynamics in structured populations (the heterogeneous case)
To generalize our model, we here assume that players can be heterogeneous hence they may not participate in
the same way in the game. This can be done by introducing player-specific parameter values. Accordingly, we
assume uniform random distribution for each player’s parameters λi andmi. For each player i, we randomly

generate two numbers between 0 and 1: χ(λ)
i ∈ [0,1), χ(m)

i ∈ [0,1). Then, we set the parameters λi andmi for
player i as

λi = λ+
(
−2χ(λ)

i + 1
)
ηλ, (12a)

mi =m+
(
−2χ(m)

i + 1
)
ηm, (12b)

where ηλ (ηλ ⩾ 0) measures the heterogeneity of the waste factor λi, and ηm (ηm ⩾ 0) measures the
heterogeneity of the requirementmi. In this way, λi andmi are selected randomly from [λ− ηλ,λ+ ηλ) and
[m− ηm,m+ ηm) intervals where λ andm values act as the ‘baselines’: the expected waste factor and

requirement over all players are still
´ 1
0 λi dχ

(λ)
i = λ and

´ 1
0 mi dχ

(m)
i =m. In addition, by taking ηλ = 0,

ηm = 0, we return to the homogeneous case where λi = λ andmi =m for all players.
For PGG, we introduce the heterogeneity in the same way. Here, the two key parameters are ηr and ηc,

which make r and c player-specific in the extended case. As we demonstrated in the previous section, λ & r,
furthermorem & c parameters are identical in the original and reversed games, therefore the ηλ & ηr and ηm
& ηc amplitudes have similar roles in characterizing heterogeneity in the extended versions.

Our key findings are summarized in figure 2, where we plot the ⟨x⟩ cooperation level in dependence of ηr
or ηλ. While they are still equivalent when ηλ = ηr = 0 (in the homogeneous case), their difference becomes
striking as we increase the heterogeneity of the systems. In agreement with previous observations about the
principal role of heterogeneity [61, 62], the cooperation level increases as we increase ηr in PGG for all
interaction graphs. But the opposite is true for R-PGG where the extension to a heterogeneous population
has the reversed consequence for the cooperation level. While increasing the heterogeneity in the synergy
factor usually promotes cooperation in PGG, the opposite is observed for unequal waste factors in R-PGG.
This is generally true independently of the applied topology or the dilemma strength.

Our observations can be explained as follows. In PGG, those with a higher synergy factor tend to have a
higher payoff, for themselves and their co-players, which leads to an environment beneficial to cooperation.
The strategy of cooperation, hence, is favored to reproduce. In R-PGG, however, if we transform the payoff
function (see equation (15) for details), we can observe a redundant item−mλ compared with the payoff
function of PGG. Originally, those with a higher waste factor in R-PGG could have the chance of a higher
payoff. Nevertheless, the item−mλ tends to bring them a lower payoff. As a result, the same effect in PGG is
inhibited in R-PGG, and the heterogeneity of the waste factor usually hinders cooperation in R-PGG.

Evidently, we can introduce heterogeneity in an alternative way when a cooperator’s contribution (in
PGG) or a defector’s requirement (in R-PGG) becomes player-specific. Accordingly, we use individual ci or
mi values as it is introduced in equation (12a). Our results are summarized in figure D1 of appendix D. The
comparison of PGG and R-PGG confirms what we found previously. Namely, these systems show similar
cooperation levels only if the heterogeneity is mild. But their difference becomes striking if we increase the
amplitude of ηc and ηm.

A more comprehensive overview of the system behavior can be obtained if we plot the cooperation level
not just at a specific r or λ, but for arbitrarily large average values. For simplicity, we only show the results
obtained on square lattice topology. The results can be seen in figure 3 where we present the cooperation
level as a heat map on a two-dimensional parameter plane. Notably, figure 2 can be considered a
cross-section of this new diagram. Our first qualitative observation is the ‘red’ area, which represents the
highest cooperation level in the population, is significantly larger for PGG than for R-PGG, which highlights
that heterogeneity is generally more beneficial for the PGG system. If we compare the heat maps more
carefully then we can see that the difference between PGG and R-PGG is more striking in the low r and low λ
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Figure 2. The cooperation level in dependence on the heterogeneity of the synergy factor or the waste factor in structured
populations. Panels show different topologies, as indicated. When ηr = 0 & ηλ = 0, PGG & R-PGG are equivalent. But their
difference becomes crucial as we increase ηr and in parallel ηλ. We fix c= m= 1.

Figure 3. (a) The heat map of cooperation level on the parameter plane of normalized synergy factor r/g and heterogeneous ri.
(b) The same plot in dependence of normalized waste factor λ/g and heterogeneous λi. The difference between PGG and R-PGG
is more striking at low r and low λ region when there is a proper social dilemma and less noticeable for high r and high λ values.
But it still exists if the individual heterogeneity is large enough. The simulations are performed on square lattice topology. We fix
c= m= 1.

region when there is a proper dilemma situation. In this parameter region, even minimal cooperation is
challenging for the R-PGG model if the average λ value remains below λ/g≈ 0.75. For large r and large λ
values the difference is less visible between the models. But it still exists if the amplitude of individual
heterogeneity is large enough. Hence, we can generally conclude that the heterogeneous synergy factor in
PGG can promote cooperation while the heterogeneous waste factor in R-PGG cannot.

We have also compared the cooperation levels by means of heat maps when heterogeneity was introduced
via individual ci andmi values. The results are shown in figure D2 in appendix D. The difference between
PGG and R-PGG can also be revealed, showing that heterogeneity is a general condition to make a difference
between these games. Summing up, we can conclude that introducing the same level of heterogeneity has
significantly different consequences on PGG and R-PGG systems. This effect is robust and remains valid no
matter how we introduce the distinction among players.

4.2. Discussion on the translation of payoff function
To explain why R-PGG and PGG become different when heterogeneous players are present, we study the
translation of payoff functions. As equation (1a) describes, a focal player’s income from a group venture can
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always be expressed as a function of gC which is the number of cooperators among group neighbors. In the
following, we consider four different translations of PGG. The details of these games are as follows.

(a) PGG In the most well-known and widely accepted version of PGG a cooperator contributes a c amount
to the common pool, while a defector player does not. The sum of contributions is enlarged and
distributed among all group members. The corresponding payoff values of the focal player playing
either C or D in the group are 

πC =
(gC + 1)rc

g
− c

πD =
gCrc

g
.

(13)

(b) Alternative PGG In an alternative form, all players have an initial endowment c [76]. A cooperator
player invests this whole amount to the common pool, while a defector player keeps it. As previously, the
contributions are summed, enhanced and distributed among all competitors. The resulting payoff
values are 

πC =
(gC + 1)rc

g

πD =
gCrc

g
+ c.

(14)

(c) R-PGG According to our proposal, in an R-PGG a defector requiresm from a common resource, while a
cooperator player does not. The sum of required goods is wasted at a certain rate, which means an
enlarged, and equally shared cost to everyone in the group, yielding the payoff values

πC =−gDmλ

g

πD =m− (gD + 1)mλ

g

gC+gD=g−1⇐⇒


πC =−mλ+

(gC + 1)mλ

g

πD =−mλ+m+
gCmλ

g
.

(15)

(d) Alternative R-PGG In the alternative version, each player has an initialmλ deposit. Additionally, a
defector requiresm from a common resource, and related (enlarged) cost is shared among everyone in
the group. Therefore, the payoff values are

πC =mλ− gDmλ

g

πD =mλ+m− (gD + 1)mλ

g

gC+gD=g−1⇐⇒


πC =

(gC + 1)mλ

g

πD =m+
gCmλ

g
.

(16)

Note that in equation (15) and in equation (16) we have used gD = g− gC− 1 notation to obtain a
consistent gC-dependent form of payoff values for all cases. The connections between the above-specified
cases are summarized in figure 4, where the curves represent the payoff of a focal player employing either
cooperation or defection.

The key assumption, which explains the equivalence, is the linear dependence on the gC value. We can see
that with the same parameters, the slope of payoff functions is constant everywhere. Also, the difference
between πD and πC (i.e. πD−πC) is constant at any gC value. Therefore, despite different interpretations, we
can say that all four translations expressed in panels (a1), (a2), (b1), and (b2) represent conceptually similar
PGGs.

The equivalence in the homogeneous case is clear because the results depend only on πi ′ −πi. Here
the translational items in πi ′ −πi can be subtracted, which leads to the equivalence among the four
interpretations. However, the absolute values of payoff functions vary from case to case, as indicated by the
value of πC(gC = 0), πC(gC = g− 1), πD(gC = 0), and πD(gC = g− 1) in figure 4. This leads to a significant
difference when introducing heterogeneity. As an example, take alternative PGG and original R-PGG
versions. We can see that R-PGG has a redundant item−mλ compared with alternative PGG. As mentioned
earlier, in a homogeneous case, such an item can be subtracted when calculating πi ′ −πi for strategy update.
However, in a heterogeneous case, such an item varies from player to player,−miλi ̸=−mi ′λi ′ , which cannot
be subtracted anymore.

To visualize this effect in a more intuitive way, we present figure 5 which shows πC and πD as a function
of gC in the mentioned cases when heterogeneous r or λ are introduced. The curves represent three specific

9
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Figure 4. Payoff value for a focal cooperator or defector player as a function of gC, denoting the number of cooperators among
neighbors. The four panels show the cases as indicated in the titles. They are equivalent in the payoff gap because the translational
items in πD −πC can be subtracted. They are different in πC(gC = 0), πC(gC = g− 1), πD(gC = 0), and πD(gC = g− 1), which
means that their translational items in πD −πC cannot be subtracted when parameters become heterogeneous. The green arrows
indicate that the given game models are equivalent in the homogeneous case. The red arrows mean the two models are different in
the heterogeneous case. The yellow arrow means the payoff functions of the models are seemingly equivalent, but later we will
show they are actually different. g= 5, r= λ= 1.5, and c= m= 1 parameters were used.

average values of key parameters, but we also mark the location of payoff values for intermediate values by
shaded areas. In this way the conceptual difference between different cases becomes clear. Staying at figure 5,
the shaded areas in panel (a1) and in panel (b1) are completely different because the difference in the payoff
values leads to unequal outcomes in the presence of heterogeneity.

Notably, the shape of the shaded area remains intact if we change PGG, shown in panel figure 5(a1), to
the alternative PGG, presented in panel figure 5(a2). This is because their coefficients in front of r are equal:
(gC + 1)c/g in πC, and gCc/g in πD. Therefore, the same change in r leads to the same change in the payoff
function. Although they are still different in their vertical positions, the identical shape confirms their
equivalence in the stationary cooperation level (the reader may compare figure D4(a) in appendix D and
figure 3(a)). Furthermore, if we compare the case of alternative PGG (figure 5(a2)) and the case of alternative
R-PGG (figure 5(b2)) then we can see that they show not only the same shape of shaded areas, but also the
same absolute payoff values. Their cooperation levels, however, as we show in figure D4 in appendix D, are
different. This fact is a direct consequence of the conceptual difference between PGG & R-PGG, as we will
discuss later.

For completeness, we also studied the consequence of heterogeneity in c orm parameter on the payoff
functions. The results are presented in figure D3 in appendix D. It shows that the same level of change in
individual c leads to a varying change in their payoff functions, resulting in different shapes of shaded areas.
We, however, stress that alone the payoff functions are not able to reveal all differences among the cases we
discussed above. For example, similar shapes of shaded areas can produce unequal heat maps of cooperation
levels on the parameter plane, as shown in appendix D.

To give a deeper insight into the origin of varying behavior in heterogeneous games, let us turn back to
the payoff functions. When we used the term gC = g− gD− 1 to replace gD with gC in R-PGG (as well as in
alternative R-PGG), we implicitly assumed homogeneous payoff functions. Therefore, the individual
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Figure 5. Payoff values for a cooperator (open symbols) and for a defector (solid symbols) player in dependence on the number of
other cooperative players in the group. Panels show different models, as indicated. While g= 5, c= m= 1 values are fixed, the
three curves for each πC or πD are plotted by taking ri = λi = 1.5− 2, 1.5, 1.5+ 2 (r= λ= 1.5, ηr = ηλ = 2). The shaded areas
mark the traces of curves when ri or λi changes in the mentioned interval bordered by r± ηr (λ± ηλ). These areas are marked by
different colors for competing strategies (green for D and yellow for C). The meaning of color arrows are similar to those we used
in figure 4.

parameter values have no importance. However, if we assume distinct players and consider player-specific
payoff values via equation (2), then we can rewrite the payoff function for the heterogeneous cases. For
example, the payoff for the original PGG can be written as

πi =
1

g

g∑
j=1

x jc jr j− xi ci, (17)

and for the original R-PGG it is

πi = yimi−
1

g

g∑
j=1

y jm jλ j

= (1− xi)mi−
1

g

g∑
j=1

(1− x j)m jλ j

=−
∑g

j=1m jλ j

g
+

1

g

g∑
j=1

x jm jλ j +(1− xi)mi. (18)
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Now we can see that the term−
∑g

j=1m jλ j/g is related to the waste factor of all players in the group.
Importantly, we can write the payoff for alternative R-PGG as

πi =miλi + yimi−
1

g

g∑
j=1

y jm jλ j

=miλi +(1− xi)mi−
1

g

g∑
j=1

(1− x j)m jλ j

=miλi−
∑g

j=1m jλ j

g
+

1

g

g∑
j=1

x jm jλ j +(1− xi)mi, (19)

while for alternative PGG it is

πi =
1

g

g∑
j=1

x jc jr j +(1− xi)ci. (20)

By comparing equations (19) and (20), we can identify a non-zero redundant itemmiλi− (
∑g

j=1

m jλ j)/g in R-PGG. This is the reason behind the observed difference in cooperation levels when we change
the independent variable from gD to gC. In particular, if we apply identical extension to PGG and alternative
PGG, then we have no such difficulties because cooperators take the key role hence crucial game parameters
belonging to this strategy in both model versions. A similar argument can be raised when we compare
R-PGG and alternative R-PGG, because the decisive game parameters determine the payoff values that
belong to defectors in both models. This explains why we cannot transform the family of PGGs into the
family of R-PGGs by simply switching cooperators & defectors.

The conceptual difference between the models can be termed a ‘reversed effect’ and its essence is
explained in the following way. The game parameters working in PGG & R-PGG belong to different
strategies. In PGG, the personal features of cooperator players count: if a player i cooperates, she contributes
ci and enlarges the contribution by ri; meanwhile, a defective player j has no chance to ‘activate’ her specific cj
and rj values. But she only receives the public goods of ri ci produced by a cooperator. On the contrary, in
R-PGG, the diversity of defectors players becomes essential: if a player j defects, she receivesmj which is
multiplied by λj factor as the public cost. Meanwhile, a cooperative player i never has a chance to validate her
mi and λi parameter values. Her role is limited to sharing the public cost ofm jλ j of a defector player.

In this way, the role of defectors is essential in R-PGG which is irreplaceable in a more complex
environment. Hence, we can conclude that R-PGG is not a simple translational transformation of the
original PGG, but rather a reversed form of it.

5. Conclusion

Generally, people make logical, and frequently economical decisions when their consumption and its cost
directly relate. However, if this connection is less clear, because the emerging cost is shared among a group of
people, then we face a dilemma situation: we may require more goods from a common source than it is
absolutely necessary because the related extra expense will be covered collectively. The reverse is also true:
our economic behavior by consuming fewer resources will not necessarily be awarded by a proportionally
smaller bill in the mentioned situation because all the others will also benefit from it. One might think this
social dilemma is just a simple transformation of the original PGG where players contribute freely to a
common pool and receive goods equally. In the reversed case described above, players receive goods from a
common resource freely and should contribute equally. But the relation between the original PGG and our
present R-PGG is more subtle.

In the case of a homogeneous population, where potential contributions and demands are constant,
R-PGG is equivalent to PGG. This fact can be supported by means of a static calculation, deterministic and
stochastic evolutionary analysis in a well-mixed population, and Monte Carlo simulations in structured
populations. In evolutionary game dynamics, the requirementm parameter in R-PGG plays the same role as
the cooperator contribution c does in PGG. Furthermore, the waste factor λ in R-PGG has the same duty as
the synergy factor r has in PGG. By transforming these parameters between R-PGG and PGG, we can obtain
exactly the same system behaviors.

The network reciprocity reveals the following conclusions in R-PGG. If requiring goods leads to more
cost to the group, then players tend to require fewer goods. Intriguingly, if players are allowed to require
more goods, then fewer players may do it. The opposite behavior, which is consistent with our intuition, can
only be detected clearly on small-world and scale-free graphs under the weak dilemma limit.
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Although the underlying R-PGG model seems equivalent to PGG, the agreement diminishes when we
introduce more realistic conditions, like supposing heterogeneous players with diverse contribution
capacities or unequal requirement levels for common resources. In the mentioned cases, R-PGG and PGG
show major differences and produce highly different cooperation levels even if we apply the same average
values of key parameters with equally strong amplitudes of diversity. The key observation is that while
heterogeneity can generally support cooperation in PGG, the mentioned condition impedes the evolution of
cooperation in R-PGG.

To understand the deeper origin of these diverse behaviors, we studied how payoff functions vary in
response to the heterogeneity condition for different cases. In the case of equivalent models, the mentioned
function should vary similarly if we apply varying average or growing diversity of key parameters. This
requirement is justified between alternative forms of the original PGG where cooperators play the decisive
role in collective income. This is also true between the alternative versions of R-PGG where the individual
defector’s profile becomes crucial. In this way, the equivalence cannot be held between PGG and R-PGG
where the heterogeneity reveals the conceptual difference between the model families. Hence, we can say that
R-PGG is not a trivial transformation of the original PGG, but can be considered a reversed version of it.

Our present work focused on the difference in structured populations, but of course, similar study can
also be done in a well-mixed system. Hopefully, our observations will stimulate forthcoming research. When
the applied microscopic rule leads to the heterogeneity of game parameters by any means, one can study the
consequence of extended parameters on PGGs and R-PGGs separately. The different results under the same
topic (e.g. environmental protection) can reveal how the introduced rule works in PGGs (e.g. players donate
to environmental protection), and how it works in corresponding R-PGGs (e.g. players litter for
convenience). Aside from heterogeneity, the potential difference between R-PGG and PGG can be further
investigated.
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Appendix A. Equivalence in well-mixed populations

A.1. Deterministic dynamics
According to the replicator equation approach [50], we denote the frequency of cooperation in the
population by fC and the frequency of defection by fD, yielding fC + fD = 1. In an R-PGG, a player is
selected to form a group with g− 1 other randomly chosen players. The probability that there are gC

cooperators and gD defectors among the neighbors can be given as
∑g−1

gD=0

(
g− 1

gD

)
fD

gD fC
gC .

Therefore, based on the payoff definition given by equations (1a) and (1b), the expected payoff ⟨πC⟩ and
⟨πD⟩ for the selected cooperator or defector player is

⟨πC⟩=
g−1∑
gD=0

(
g− 1

gD

)
fD

gD(1− fD)
g−gD−1πC =−mλ(g− 1)

g
fD (A.1)

⟨πD⟩=
g−1∑
gD=0

(
g− 1

gD

)
fD

gD(1− fD)
g−gD−1πD =m− mλ(g− 1)

g
fD−

mλ

g
. (A.2)

By using these values, the time-derivative of the frequencies of competing strategies are

ḟC = fC fDQ(⟨πD⟩ ← ⟨πC⟩)− fD fCQ(⟨πC⟩ ← ⟨πD⟩)

= fC(1− fC)

(
1

1+ e−ω(⟨πC⟩−⟨πD⟩)
− 1

1+ e−ω(⟨πD⟩−⟨πC⟩)

)
(A.3)

ḟD =− ḟC. (A.4)
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The stationary solutions are fC
∗ = 0 and fC

∗ = 1 whose stability depends only on the sign of
⟨πD⟩− ⟨πC⟩:

⟨πD⟩− ⟨πC⟩=m

(
1− λ

g

)
. (A.5)

Accordingly, if λ < g, then ⟨πD⟩> ⟨πC⟩ and fC
∗ = 0 is stable, while for λ > g, fC

∗ = 1 is stable. Intuitively, if
requiring goods brings too much waste and loss for the group, then players prefer not requiring and being
cooperative.

For the related PGG (see equation (13)), we know ⟨πD⟩− ⟨πC⟩= (1− r/g)c. In this way, λ &m
parameters play exactly the same role in R-PGG as r & c parameters in the original PGG. Hence, we can
conclude that the properties of homogeneous R-PGG are equivalent to the behaviors of homogeneous PGG
in the framework of replicator dynamics in a well-mixed infinite population.

A.2. Stochastic dynamics
Next, we consider a finite population of size N, in which NC cooperators are present. For a cooperative focal
player, the expected payoff ⟨πC⟩ is

⟨πC⟩=
g−1∑
gD=0

(
N−NC

gD

)(
NC− 1

g− gD− 1

)
(
N− 1

g− 1

) πC =−mλ(g− 1)(N−NC)

g(N− 1)
. (A.6)

Similarly, the expected payoff ⟨πD⟩ for a defective focal player is

⟨πD⟩=
g−1∑
gD=0

(
N−NC− 1

gD

)(
NC

g− gD− 1

)
(
N− 1

g− 1

) πD =m− mλ(g− 1)(N−NC)

g(N− 1)
− mλ(N− g)

g(N− 1)
. (A.7)

Therefore, we have

⟨πD⟩− ⟨πC⟩=m

(
1− λ

g

N− g

N− 1

)
. (A.8)

If we denote by P+NC
(P−NC

) the transition probability that NC is increased (decreased) by 1 then

P+NC
=

N−NC

N

NC

N
Q(⟨πD⟩ ← ⟨πC⟩) =

N−NC

N

NC

N

1

1+ e−ω(⟨πC⟩−⟨πD⟩)
(A.9)

and

P−NC
=

NC

N

N−NC

N
Q(⟨πC⟩ ← ⟨πD⟩) =

NC

N

N−NC

N

1

1+ e−ω(⟨πD⟩−⟨πC⟩)
. (A.10)

Consequently, the P0NC
probability that NC keeps unchanged is

P0NC
= 1− P+NC

− P−NC
. (A.11)

At time step t, the probability that the system is found in state NC is described by φNC(t). The master
equation of φNC(t) is

φNC(t+ 1) = P0NC
φNC(t)+ P−NC

φNC+1(t)+ P+NC
φNC−1(t). (A.12)

The system has two absorbing states: NC = 0 and NC = N, in which P−NC
= P+NC

= 0, P0NC
= 1, and

φNC(t+ 1) = φNC(t).
The fixation probability that initial NC cooperative players finally take over the whole population is

denoted by ρNC . In previous works [45, 86], the master equation of ρNC has been deduced:

ρNC =

∑NC−1
i=0

∏i
j=1

P−j
P+j∑N−1

i=0

∏i
j=1

P−j
P+j

. (A.13)

14



New J. Phys. 24 (2022) 123030 C Wang and A Szolnoki

By taking NC = 1, we have the probability ρ1 that a single cooperative player can invade and take over the
remaining N − 1 defective players,

ρ1 =
1

1+
∑N−1

i=1

∏i
j=1

P−j
P+j

. (A.14)

If we suppose neutral selection (i.e. ω= 0), we have P−NC
/P+NC

= 1, such that ρNC = NC/N and ρ1 = 1/N.
Furthermore, if we consider weak selection (i.e. 0< ω≪ 1), we can use Taylor expansion to approximate the
expression,

P−j
P+j

= e−ω(⟨πC⟩−⟨πD⟩) ≈ 1−ω(⟨πC⟩− ⟨πD⟩) = 1+ωm

(
1− λ

g

N− g

N− 1

)
. (A.15)

Substituting equation (A.15) into equation (A.14) leads to the fixation probability

ρ1 =−
ωm

(
1− λ

g

N− g

N− 1

)
1−

(
1+ωm

(
1− λ

g

N− g

N− 1

))N . (A.16)

Note that limω→0 ρ1 = 1/N in equation (A.16), which is consistent with the result of neutral selection.
Accordingly, if λ < g(N− 1)/(N− g), then ⟨πD⟩> ⟨πC⟩ and ρ1 < 1/N (evolution disfavors cooperation),
while for λ > g(N− 1)/(N− g), ρ1 > 1/N (evolution favors cooperation).

Comparing the fixation probability ρ1 in R-PGG and the original PGG, we can see the parallel between
parameters λ & r and parametersm & c.

Appendix B. Threshold for cooperator success under weak selection

By means of the identity-by-descent method, Su et al [47, 78] identified the threshold value of the synergy
factor when natural selection favors cooperation over defection under a weak selection limit in the original
PGG. Their theory was built on three assumptions: (a) transitive graph; (b) weak selection; and (c) low
mutation. At a 0⩽ µ⩽ 1 mutation rate, a player randomly updates its strategy; otherwise, the player updates
its strategy via a Fermi process. In this work we do not consider mutation, but only use the Fermi process to
update strategies, which leads to the approximation of a low mutation µ→ 0 limit. In the homogeneous case,
we here show that R-PGG has exactly the same λ⋆ threshold value for cooperation, as it has for the original
PGG.

Based on the above assumptions and according to [87], the condition that favors cooperation is⟨
∂

∂ω
(bi− di)

⟩
ω=0
yi=0

> 0, (B.1)

where bi is the probability that player i reproduces its strategy to a neighbor, di is the probability that player
i’s strategy is replaced by the strategy of a neighbor, and bracket ⟨·⟩ω=0

yi=0
denotes the average over stationary

distribution given neural selection and a cooperator player i.
To describe the stochastic process, we define an (n, s)-random walk, which means that the player walks

with n steps on the interaction graph (where players play games) and s steps on the dispersal graph (where
players update strategies) [87]. In this work, the interaction graph and dispersal graph overlap. We denote by

y(n,s)i the probability that the player at the end of player i’s (n, s)-random walk is a defector. Naturally, the

probability that a neighbor of player i on the dispersal graph defects is y(0,1)i .
Then, for the Fermi process, bi and di respectively are

bi =
1

N

∑
lii ′∈L

Q(πi ′ ← πi)

k
(B.2)

di =
1

N

∑
lii ′∈L

Q(πi← πi ′)

k
. (B.3)
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By substituting equations (B.2) and (B.3) into equation (B.1), we have⟨
∂

∂ω
(bi− di)

⟩
ω=0
yi=0

> 0

⇔

⟨
∂

∂ω

 1

N

∑
lii ′∈L

1

k

1

1+ e−ω(πi−πi ′ )
− 1

N

∑
lii ′∈L

1

k

1

1+ e−ω(πi ′−πi)

⟩
ω=0
yi=0

> 0

⇔⟨πi⟩ω=0
yi=0
− 1

k

⟨ ∑
lii ′∈L

πi ′

⟩
ω=0
yi=0

> 0

⇔ π
(0,0)
i > π

(0,1)
i , (B.4)

where the average payoff of the players at the end of (n, s)-random walk from player i is denoted by π(n,s)
i .

The condition π
(0,0)
i > π

(0,1)
i means that the payoff of player i exceeds the average payoff of its neighbors.

According to [87], we have the following equation in the low mutation limit:

lim
µ→0

(
y(n,s)i − y(n,s+1)

i

)
=−µ

2

(
Np(n,s)i − 1

)
, (B.5)

where p(n,s)i is the probability of arriving at the starting node i after randomly walking n steps on the
interaction graph and s steps on the dispersal graph from i.

By still using the homogeneousm and λ assumption, the expected payoff of player i at the end of
(n, s)-random walk can be calculated as

π
(n,s)
i =

1
k+ 1

[
y(n,s)i m− 1

k+ 1

(
y(n,s)i mλ+ ky(n+1,s)

i mλ
)
+ k

(
y(n,s)i m− 1

k+ 1

(
y(n+1,s)
i mλ+ ky(n+2,s)

i mλ
))]

=− k2

(k+ 1)2
mλy(n+2,s)

i − 2k
(k+ 1)2

mλy(n+1,s)
i − 1

(k+ 1)2
mλy(n,s)i +my(n,s)i . (B.6)

If we substitute equations (B.6) and (B.5) into equation (B.4), we have

π
(0,0)
i > π

(0,1)
i

⇔− k2

(k+ 1)2
mλ

(
y(2,0)i − y(2,1)i

)
− 2k

(k+ 1)2
mλ

(
y(1,0)i − y(1,1)i

)
− 1

(k+ 1)2
mλ

(
y(0,0)i − y(0,1)i

)
+m

(
y(0,0)i − y(0,1)i

)
> 0

⇔−
(
Np(0,0)i − 1

)
+λ

[
N

(k+ 1)2

(
k2 p(2,0)i + 2kp(1,0)i + p(0,0)i

)
− 1

]
> 0

⇔ λ >
(N− 1)(k+ 1)

N− (k+ 1)
≡ λ⋆, (B.7)

which gives the explicit threshold λ⋆ over which cooperation emerges under weak selection. In

equation (B.7), we use p(0,0)i = 1, one stays at the starting node if not walking; p(1,0)i = 0, one cannot leave

and go back to the starting node within a single step; p(2,0)i = 1/k, the result produced by similar logic as

above. Note that transitiveness unifies p(n,s)i among different node i. Since g= k+ 1, we have
λ⋆ = g(N− 1)/(N− g), the same value by which we judge whether evolution favors cooperation in a finite
unstructured population. We can see that the resulting λ⋆ is exactly the same as r⋆ obtained for the original
PGG [47, 78], signaling the equivalence of homogeneous R-PGG & PGG in the weak selection limit.

Appendix C. Monte Carlo results for homogeneous spatial populations

Figure C1 presents MC results for average ⟨x⟩ cooperation level as a function of c (in PGG) orm (in R-PGG)
for different interaction topologies. The details of the simulations agree with those specified in the main text.
It may seem puzzling that in R-PGG the increase in consumption range may result in a higher cooperation
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Figure C1. Cooperation level as a function of contribution c in PGG and requirementm in R-PGG at a fixed value of social
dilemma strength. The normalized values of r and λ are marked by the legends. Panels show the results for different topologies.
The inset in panel (a) is the enlarged part of the upper region. On the top, we also mark how selection strength changes bym.

level. In other words, if we want the whole population to require and waste fewer goods, we may allow them
to use more individually when just a few will do it properly. But this result, of course, only holds for small λ
values when the social dilemma is strong. The opposite behavior is true for a large λ (weak dilemma), which
meets our expectations.

As we noted above,m plays the same role as selection strength in the Fermi-function, hence by increasing
m we increase the selection strength. This is shown on the top of all panels in figure C1. This interpretation
suggests that the cooperation level changes just until a certain level of selection, above this, for higherm, to
strengthen the selection further has no particular consequence on the cooperation level.

Appendix D. Evolutionary dynamics for heterogeneous populations

We here present our numerical results obtained for heterogeneous populations. First, figure D1 shows the
cases when heterogeneity is introduced via individual cost or requirement values. Accordingly, the key
parameter is ηc for PGG or ηm for R-PGG models. The system behaviors, hence the conclusions, are more or
less similar to those we obtained when alternative heterogeneity was used via ηr or ηλ in section 4.1. As we
already stressed, when ηc = ηm = 0, means in the homogeneous case, R-PGG and PGG are equivalent. But
their difference becomes striking as we increase the heterogeneity. More precisely, if the dilemma is hard, at
low r and low λ values, then there is a small initial interval in heterogeneity where both PGG and R-PGG
behave similarly. In this limited parameter region the cooperation level decreases by enlarging the
heterogeneity among players. But beyond a threshold value the difference between the models starts growing
again. Comparing with the heterogeneous ηr and ηλ cases, discussed in the main text, we here also observe a
convergence toward the same cooperation level independently of the actual value of r or λ which
characterizes the dilemma strength. But the convergence is significantly faster for R-PGG here, especially for
square lattice topology.

As we have done previously, the whole range of r and λ can be studied by using the same range of
heterogeneity. This can be seen in figure D2 where we present the general cooperation level as a heat map on
r− ηc and λ− ηm parameter planes. The comparison of these panels supports our original observation. In
particular, while heterogeneity can be useful for PGG to elevate the cooperation level, it is always detrimental
in R-PGG. And this negative effect can be observed for any λ value.

To complete our comparison, in figure D3 we present the consequence of heterogeneity in c orm
parameter on the payoff functions. Similarly to the previously discussed situation, there are conceptual
differences among the four cases. As panel figures D3(a1) and D3(a2) show, PGG and alternative PGG are
different. This is because their coefficients in front of c are distinct: in πC, the coefficient is (gC + 1)r/g− 1
for PGG and (gC + 1)r/g for alternative PGG; in πD, the coefficient is gCr/g for PGG and gCr/g+ 1 for
alternative PGG. As a result, the same level of change in individual c leads to a varying change in their payoff
functions, resulting in different shapes of shaded areas. Nevertheless, both shapes and the absolute value of
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Figure D1. The ⟨x⟩ cooperation level in dependence on the contribution’s heterogeneity ηc (for PGG) or the requirement’s
heterogeneity ηm (for R-PGG). Panels show the results for different topologies. We can observe conceptually similar differences
between the two models as we presented in figure 2. We fix c= m= 1.

Figure D2. (a) The heat map of cooperation level on the parameter plane of normalized synergy factor r/g and the heterogeneous
ηc contribution in PGG. (b) The same plot for R-PGG on the parameter plane of normalized waste factor λ/g and requirement’s
heterogeneity ηm. The simulations are performed on the square lattice graph. While heterogeneity may have a positive
consequence for PGG in the low r region, this effect is completely missing in panel (b) for R-PGG. We fix c= m= 1.

payoff functions for alternative PGG (shown in figure D3(a2)) and for alternative R-PGG (depicted in
figure D3(b2)) are still the same. However, the resulting cooperation levels are different, as shown in
figure D5. We hence stress that monitoring how payoff functions vary is not enough to reveal all differences
among the cases we discussed above. Therefore, to complete the results presented in figure 3 and in figure D2,
we also measure the general cooperation level for alternative PGG and alternative R-PGG. These results are
summarized in figure D4 and in figure D5. The comparison of figures D4(a) and 3(a) confirms that the
original PGG and the alternative PGG behave similarly when individual ri is introduced via nonzero ηr .

Similarly, figures D2(a) and D5(a) show that PGG and alternative PGG are different when heterogeneous
c values are introduced via nonzero ηc. Importantly, the comparison of figures D4(a) and (b) highlights that
the cooperation levels in heterogeneous alternative PGG and in alternative R-PGG are different. No matter
whether their payoff values vary similarly by changing the average r, λ values. Hence, we can confirm that
alone the payoff values and how they change by varying key parameters, i.e. the shape of the shaded area,
cannot provide sufficient information to compare different games.
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Figure D3. Payoff values for a cooperator (open symbols) and for a defector (closed symbols) player in dependence on the
number of other cooperator players in the group. Panels show cases specified in figure 4 and in figure 5. While g= 5, r= λ= 1.5
parameters are fixed, the three curves for each πC or πD are plotted by taking ci = mi = 1− 2, 1, 1+ 2 (c= m= 1,
ηC = ηm = 2). The shaded areas mark the traces of curves when ci ormi values changes in the mentioned interval bordered by
c± ηC (m± ηm). These areas are marked by different colors for competing strategies (purple for D and pink for C). The meaning
of color arrows are similar to those we used in figure 4 in the main text.

Figure D4. (a) The heat map of cooperation level on the parameter plane of average synergy factor r/g and the amplitude of ηr in
alternative PGG. (b) Similar plot for alternative R-PGG on the parameter plane of average waste factor and the amplitude of ηλ.
Note that the results of alternative PGG (panel (a)) are equivalent to PGG (figure 3 (a)). Intriguingly, the results of alternative
PGG (panel (a)) are different from alternative R-PGG (panel (b)). The simulations are performed on the square lattice graph. We
fix c= m= 1.
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Figure D5. (a) The heat map of cooperation level on the parameter plane of normalized synergy factor r/g and the amplitude of
ηC in alternative PGG. (b) The same plot for alternative R-PGG on the plane of normalized waste factor λ/g and the amplitude of
requirement’s heterogeneity ηm. Interestingly, the results of alternative PGG (panel (a)) are different from alternative R-PGG
(panel (b)). The simulations are performed on the square lattice graph. We fix c= m= 1.
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