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PERFECT PACKING OF SQUARES

ANTAL JOÓS

Abstract

It is known that
∞
∑

i=1

1/i2 = π2/6. Meir and Moser asked what is

the smallest ǫ such that all the squares of sides of length 1, 1/2, 1/3,
. . . can be packed into a rectangle of area π2/6 + ǫ. A packing into a
rectangle of the right area is called perfect packing. Chalcraft packed the
squares of sides of length 1, 2−t, 3−t, . . . and he found perfect packing
for 1/2 < t ≤ 3/5. We will show based on an algorithm by Chalcraft
that there are perfect packings if 1/2 < t ≤ 2/3. Moreover we show that
there is a perfect packing for all t in the range log

3
2 ≤ t ≤ 2/3.
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1. INTRODUCTION

Meir and Moser [10] originally noted that since
∞
∑

i=2

1/i2 = π2/6 − 1, it is

reasonable to ask whether the set of squares with sides of length 1/2, 1/3,
1/4, . . . can be packed into a rectangle of area π2/6 − 1. Failing that, find
the smallest ǫ such that the squares can be packed in a rectangle of area
π2/6 − 1 + ǫ. The problem also appears in [6], [4], [3].

A packing into a rectangle of the right (resp. not the right) area is called
perfect (resp. imperfect) packing. In [10], [7], [2], [11] can be found better and
better imperfect packing.

Chalcraft [5] generalized this question. He packed the squares of side n−t

for n = 1, 2, . . . into a square of the right area. He proved that for all t in
the range [0.5964, 0.6] there is a perfect packing of the squares. In [5] can be
read that ”Other packings will work for other ranges of t. We can probably
make the t0 in Theorem 8 as close to 1/2 as desired in this way. The more
interesting challenge, however, seems to be to increase the bound t ≤ 3/5.”
Our aim is to increase this bound.
Wästlund [12] proved if 1/2 < t < 2/3, then the squares of side n−t for
n = 1, 2, . . . can be packed into some finite collection of square boxes of the
same area ζ(2t) as the total area of the tiles. This is an increase of the bound
t ≤ 3/5, but we have many enclosing rectangles.
We can find several papers in this topic e.g. [9], [1], [8].

2. PERFECT PACKING

THEOREM 1 For t = 2/3, the squares St
n (n ≥ 1) can be packed perfectly

into the rectangle of dimensions ζ(2t)× 1.
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THEOREM 2 For all t in the range log3 2 ≤ t ≤ 2/3, the squares St
n (n ≥ 1)

can be packed perfectly into the rectangle of dimensions ζ(2t)× 1.

3. NOTATION

We use the Chalcraft′s algorithm in [5] and we modify the proof of Chal-
craft. For the sake of simplicity we use the Chalcraft′s notation. For the
completeness, we recall these.

Throughout the paper the width of a rectangle will always refer to the
shorter side and the height will always refer to the longer side. We use the

constant 1/2 < t ≤ 2/3. As usual, ζ(t) =
∞
∑

i=1

i−t. Let St
n denote the square

of side length n−t. A box is a rectangle of sides x, y > 0. Let x × y denote
the box B of sides x and y. We define its area a(B) = xy, its semi-perimeter
p(B) = x + y, its width w(B) = min(x, y) and its height h(B) = max(x, y).

Given a set of boxes B = {B1, . . . , Bn}, we define a(B) =
n
∑

i=1

a(Bi), h(B) =

n
∑

i=1

h(Bi) and w(B) = max
i=1,...,n

w(Bi). Let a(∅) = h(∅) = w(∅) = 0.

4. CHALCRAFT’S ALGORITHM

For the completeness, we repeat the description of the Chalcraft’s algo-
rithm.

First we recall the subroutine of Chalcraft, which we call Algorithm b as
in [5].
Algorithm b

Input: An integer n ≥ 1 and a box B, where w(B) = n−t.
Output: If the algorithm terminates, then it defines an integer mb

= mb(n,B) > n and a set of boxes Bb = Bb(n,B).
Action: If the algorithm terminates, then it packs the squares St

n, . . . , S
t
mb−1

into B, and Bb is the set of boxes containing the remaining area. If it does
not terminate, then it packs the squares St

n, S
t
n+1, . . . into B.

(b1) Let n1 = n+ 1, x1 = h(B)− n−t and B1 = ∅.
(b2) Put the square St

n snugly at one end of B.

(b3) If x1 > 0, then let B1 be the remainder of B, so that B1 has
dimensions x1 × n−t.

(b4) For i = 1, 2, . . .

(b5) (Note: At stage i, we have packed St
n, . . . , S

t
ni−1 into B. The

remaining boxes are Bi, which we never use again in this
algorithm, and Bi (as long as xi > 0), which has dimensions
xi × n−t.)

(b6) If xi = 0, then terminate with mb = ni and Bb = Bi.

(b7) If xi < n−t
i , then terminate with mb = ni and Bb = Bi ∪

{Bi}.
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(b8) Let xi+1 = xi − n−t
i .

(b9) If xi+1 = 0, then let Ci = Bi.

(b10) If xi+1 > 0, then split Bi into two boxes: one called Ci with
dimensions n−t

i ×n−t, and the other called Bi+1 with dimen-
sions xi+1 × n−t.

(b11) Apply Algorithm b recursively with inputs ni and Ci. If this
terminates, let ni+1 = mb(ni, Ci) and Ci = Bb(ni, Ci).

(b12) Let Bi+1 = Bi ∪ Ci.
(b13) End For.

The subroutine b is used in the Chalcraft’s algorithm c.
Algorithm c

Input: An integer n ≥ 1 and a set of boxes B.
Action: If the algorithm does not fail, then it packs the squares St

n, S
t
n+1, . . .

into B.
(c1) Let n1 = n+ 1 and B1 = B.
(c2) For i = 1, 2, . . .

(c3) (Note: At stage i, we have packed St
n, . . . , S

t
ni−1 into B. The

remaining boxes are Bi.)

(c4) If w(Bi) < n−t
i , then fail.

(c5) Let wi = min{w(C)|C ∈ Bi, w(C) ≥ n−t
i }.

(c6) Let hi = min{h(C)|C ∈ Bi, w(C) = wi}.

(c7) Choose any Bi ∈ Bi which satisfies w(Bi) = wi and h(Bi) =
hi.

(c8) If wi = hi = n−t
i , then

(c9) Put St
ni

snugly into Bi.
(c10) Let Bi+1 = Bi \ {Bi}.
(c11) Let ni+1 = ni + 1.
(c12) Else

(c13) Cut Bi into two boxes: one called Ci of dimensions wi×n−t
i

and tho other called Di of dimensions wi × (hi − n−t
i ).

(c14) Call Algorithm b with inputs ni and Ci. If this terminates,
then let ni+1 = mb(ni, Ci) and Ci = Bb(ni, Ci).

(c15) Let Bi+1 = Bi \ {Bi} ∪ Ci ∪ {Di}.
(c16) End If.
(c17) End For.

5. THE PROOF

The key lemma of Chalcraft is Lemma 1 in [5]. We modify that in the
following way.

LEMMA 1 If B = {B1, . . . , Bn} (n ≥ 1), then a(B) ≤ w(B)h(B).
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Proof. We have

a(B) =

n
∑

i=1

a(Bi) =

n
∑

i=1

w(Bi)h(Bi) ≤
n
∑

i=1

w(B)h(Bi)

= w(B)
n
∑

i=1

h(Bi) = w(B)h(B),

which completes the proof.
We prove the modified Chalcraft’s lemmas in which we use the height

instead of the semi-perimeter.

LEMMA 2 Suppose w(B) = n−t and Algorithm b with inputs n and B termi-

nates with mb = mb(n,B) and Bb = Bb(n,B). Therefore

h(Bb) ≤

mb−1
∑

j=n

j−t.

Proof. The proof is similar to the proof of Lemma 2 in [5]. For completeness,
we write it again.

The proof is by induction on the number of squares packed. Of course, if

b terminates with mb = n+ 1, then h(Bb) ≤ n−t =
mb−1
∑

j=n

j−t.

We can assume that the lemma is true of all the recursive calls to Algorithm
b. We can also assume that b and all the recursive calls to b terminated.
Suppose Algorithm b terminates when i = k, so mb = nk. Since Algorithm b

terminated without placing the next square, xk < n−t
k < n−t, so h(Bk) = n−t.

Now by induction,

h(Ci) ≤

ni+1−1
∑

j=ni

j−t for i < k,

k−1
∑

i=1

h(Ci) ≤

nk−1
∑

j=n1

j−t =

mb−1
∑

j=n+1

j−t.

If the condition in (b6) was true, then

h(Bb) =

k−1
∑

i=1

h(Ci) ≤

mb−1
∑

j=n+1

j−t <

mb−1
∑

j=n

j−t.

If the condition in (b7) was true, then

h(Bb) =

k−1
∑

i=1

h(Ci) + h(Bk) ≤

mb−1
∑

j=n+1

j−t + n−t =

mb−1
∑

j=n

j−t,

which completes the proof.
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LEMMA 3 We have

(1) (b+ 1)1−t − a1−t < (1− t)

b
∑

j=a

j−t < b1−t − (a− 1)1−t,

(2) a1−2t − (b+ 1)1−2t < (2t− 1)
b

∑

j=a

j−2t < (a− 1)1−2t − b1−2t.

Proof. We omit the proof.

LEMMA 4 Consider step (c4) for some value of i. Suppose the following

conditions hold.

(3) a(Bi) ≥
∞
∑

j=ni

j−2t,

(4) h(Bi) ≤
n1−t
i

2t− 1
.

Therefore step (c4) will not fail for this value of i.

Proof. We assume, that the algorithm fail. Therefore we have w(Bi) < n−t
i .

By Lemma 1, (4), (2),

a(Bi) ≤ w(Bi)h(Bi) <
n1−2t
i

2t− 1
≤

∞
∑

j=ni

j−2t ≤ a(Bi),

a contradiction, which completes the proof of the lemma.

LEMMA 5 Given an integer n ≥ 1 and a non-empty set of boxes B, suppose

the following conditions hold

(5) a(B) ≥
∞
∑

j=n

j−2t,

(6) h(B) ≤
1

1− t
(n− 1)1−t,

t ≤
2

3
.

If we run Algorithm c with the inputs n and B, then the conditions

(7) a(Bi) ≥
∞
∑

j=ni

j−2t,
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(8) h(Bi) ≤ h(B) +

ni−1
∑

j=n

j−t.

hold at step (c4) for all i ≥ 1 for which step (c4) is executed. Moreover, the

algorithm will never fail.

Proof. First, we will show that (7) and (8) ensure that the algorithm will not
fail. By (8), (1), and (6),

h(Bi) ≤ h(B) +

ni−1
∑

j=n

j−t

< h(B) +
1

1− t
((ni − 1)1−t − (n− 1)1−t)

≤
1

1− t
(ni − 1)1−t.

Since t ≤ 2/3,
1

1− t
≤

1

2t− 1
.

Thus

h(Bi) <
1

1− t
(ni − 1)1−t ≤

1

2t− 1
(ni − 1)1−t <

n1−t
i

2t− 1
.

By Lemma 4, (c4) will not fail.
Now we prove (7) and (8) by induction on i. Of course they hold for i = 1

and (7) holds for all i. Let i > 1 be the smallest i for which (8) is not true.
If the condition in (c8) was true for i − 1, then h(Bi) = h(Bi−1) − n−t

i−1

and ni = ni−1 + 1. Thus by induction,

h(Bi) = h(Bi−1)− n−t
i−1

≤ h(B) +

ni−1−1
∑

j=n

j−t − n−t
i−1

< h(B) +

ni−1−1
∑

j=n

j−t = h(B) +

ni−2
∑

j=n

j−t < h(B) +

ni−1
∑

j=n

j−t.

If the condition in (c8) was not true for i− 1, then we distinguish two cases.
If wi−1 ≥ hi−1 − n−t

i−1
(that is h(Di−1) = wi−1), then

h(Bi) = h(Bi−1) + h(Ci−1)− h(Bi−1) + h(Di−1)

= h(Bi−1) + h(Ci−1)− hi−1 + wi−1 ≤ h(Bi−1) + h(Ci−1).

If wi−1 < hi−1 − n−t
i−1

(that is h(Di−1) = hi−1 − n−t
i−1

), then similarly

h(Bi) ≤ h(Bi−1) + h(Ci−1).
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Figure 1: The squares St
1, S

t
2, S

t
3 and the set of boxes B.

By induction and Lemma 2,

h(Bi) ≤ h(Bi−1) + h(Ci−1)

≤ h(B) +

ni−1−1
∑

j=n

j−t +

ni−1
∑

j=ni−1

j−t = h(B) +

ni−1
∑

j=n

j−t,

which completes the proof.
Proof of Theorem 1. If the first three squares are packed in the box B =
ζ(2t)×1 as in Fig. 1 (this is the Paulhus’s algorithm [11]), then the remaining
boxes are

B =
{(

ζ(2t)− 1− 2−t − 3−t
)

× 1, 2−t ×
(

1− 2−t
)

, 3−t ×
(

1− 3−t
)}

and
h(B) = ζ(2t)− 2 · 3−t = 2.639

< 4.327 =
1

1− t
(4− 1)1−t.

By Lemma 5, the Algorithm c pack perfectly the squares St
n (n ≥ 4) into B,

which completes the proof.

REMARK 1 The squares St
n (n ≥ 1) in Theorem 1 can be packed similarly in

a square of the right area.

Proof of Theorem 2. If the first three squares are packed in the box B =
ζ(2t)× 1 as in Fig. 1, then the remaining boxes are

B =
{(

ζ(2t)− 1− 2−t − 3−t
)

× 1, 2−t ×
(

1− 2−t
)

, 3−t ×
(

1− 3−t
)}

.

Observe ζ(2t) − 1 − 2−t − 3−t > 1, 2−t > 1 − 2−t and 1 − 3−t ≥ 3−t if
t ∈ [log3 2, 2/3]. Let f(t) = h(B). Thus

h(B) = f(t) = ζ(2t)− 2 · 3−t.

Since

g(t) =
1

1− t
31−t
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is an increasing, f(t) is a decreasing function on the interval [log3 2, 2/3] and

f(log3 2) = 3.41 < 4.06 = g(log3 2),

the Algorithm c pack perfectly the squares St
n (n ≥ 4) into B, which completes

the proof.

5. DISCUSSION

If we increase the number of the packed squares before we start the Al-
gorithm c and do detailed analysis of the height of the boxes, then we can
decrease the constant log3 2. It remains an interesting question to increase the
bound 2/3.
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