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4MTA Atomki Lendület Quantum Correlations Research Group,

Institute for Nuclear Research, P.O. Box 51, H-4001 Debrecen, Hungary
5International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-308 Gdańsk, Poland

We propose an optimal numerical test for genuine multipartite nonlocality based on linear pro-
gramming. In particular, we consider two non-equivalent models of local hidden variables, namely
the Svetlichny and the no-signaling bilocal model. While our knowledge concerning these models is
well established for Bell scenarios involving two measurement settings per party, the general case
based on an arbitrary number of settings is a considerably more challenging task and very little work
has been done in this field. In this paper, we applied such general tests to detect and characterize
genuine n-way nonlocal correlations for various states of three qubits and qutrits. As a measure of
nonlocality, we use the probability of violation of local realism under randomly sampled observables,
and the strength of nonlocality, described by the resistance to white noise admixture. In particular,
we analyze to what extent the Bell scenario involving two measurement settings can be used to
determine genuine n-way non-local correlations generated for more general models. In addition, we
propose a simple procedure to detect genuine multipartite nonlocality for randomly chosen settings
with up to 100% efficiency.

I. INTRODUCTION

Genuine multipartite nonlocality (GMNL) is one of the
most fundamental non-classical features of multipartite
systems. Such genuinely n-way nonlocal correlations re-
tained by multipartite entangled states are distinguish-
able from the correlations that are local to some biparti-
tion. An inequality to test genuine tripartite nonlocality
was first introduced by Svetlichny in Ref. [1] and later
generalized to multipartite scenarios [2, 3]. Over time,
these inequalities have been investigated and discussed
extensively in many scientific papers (see e. g. [4–6]). Fur-
thermore, in Ref. [7], two alternative definitions of gen-
uine n-partite nonlocality were presented that are strictly
weaker than that in Ref. [1], along with a series of Bell-
type inequalities to detect genuine tripartite nonlocality.
Such definitions are in line with an operational approach
to GMNL, introduced independently in Ref. [8].

Genuinely n-way nonlocal correlations represent the
most fragile form of genuine multipartite quantum cor-
relations (GMQC) and are therefore at the top of the
GMQC hierarchy. Namely, for any N -partite qudit state,
there exists a hierarchy [9] such that genuine multipartite
total correlations (GMT) ) genuine multipartite discord
(GMD) ) genuine multipartite entanglement (GME) )

genuine multipartite steering (GMS) ) GMNL. Further-
more, various forms of GMQC are, in general, inequiva-
lent to each other. For instance, it was shown that GMNL
and GME are inequivalent for any number of parties [10].
In other words, there is a class of GME mixed states that
are not GMNL [10, 11] and some of them are even fully
local [12]. Exceptions are multipartite entangled pure
states that are never fully local [13, 14] and for pure n-

qubit symmetric states [15] and all pure 3-qubit states
[16], GME implies GMNL at the single-copy level. It
was also shown that pure GME states can be GMNL if
they have the structure of a network and also if there ex-
ist measurements that act on finitely many copies of any
GME state to yield a GMNL behavior [17]. On the other
hand, the GME mixed states that admit a fully local
hidden variable model can be activated and display ‘hid-
den nonlocality’ if local operators can be applied prior to
measurements [12, 18–22].

Recently, the violations of local realism by families
of multipartite quantum states has been analysed nu-
merically [23] and experimentally [24–26], showing that
the probability of violation can also serve as a witness
of GME. A notable advantage of these approaches is
that the probability of violation operates in a so-called
reference-frame-independent mode [27–29], lowering re-
quirements for alignment and calibration of remote de-
vices [26].

Despite the great effort put into the research of GMNL,
these studies are mainly limited to the Bell scenario with
two measurements per side. Consequently, the problem
of the existence of GMNL and its characterisation in a
general context (e.g with more than two measurements
per side) remains open. In this work, we tackle these
problems and use linear programming (LP) to analyze
GMNL in the broader scenario. In this case, the only
context information required is the number of parties,
the number of measurements per party and the number
of outcomes per measurement. We consider two measures
of GMNL: the strength of nonlocality and the probabil-
ity of violation of local realism. Since the complexity of
the method increases rapidly with the number of parties,
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we focus on the case of three qubits and three qutrits.
In Sec. II we introduce the tools that are used to quan-
tify nonlocality and derive LP constraints for the case
of tripartite standard nonlocality and tripartite genuine
nonlocality. In the case of genuine tripartite nonlocal-
ity, we consider Svetlichny-locality (S2) and no-signaling
bilocality (NS2). In the next two sections, we present our
numerical results and observations concerning the tripar-
tite qubit and qutrit states, respectively. We also show
that the three-qubit W state is NS2 nonlocal for four
tetrahedrally distributed settings and three-qubit GHZ
state is S2 nonlocal for two orthogonal planar settings.

II. THE METHOD

We consider a Bell-type scenario in which three ob-
servers share a quantum state ρ, each of them can act lo-
cally on their shared part of the system. The parties are
assumed to be spatially separated, and there is no com-
munication between them during the course of the exper-
iment. Each observer, labeled as i = {1, 2, 3}, then have

access to m measurement choices {M j
i }mj=1 that they can

perform in their own distant laboratories. The correla-
tions between measurement outcomes can be expressed
in terms of the conditional probability distribution given
by the expression

p(r1, r2, r3|M i1
1 ,M

i2
2 ,M

i3
3 ) = Tr(M i1

1 ⊗M i2
2 ⊗M i3

3 ρ),
(1)

where, {rj}3j=1 are the outcomes obtained by each party

and {ij}3j=1 ∈ [1,m].

In our work, we consider two measures of genuine mul-
tipartite nonlocality: the strength of nonlocality and the
probability of violation of local realism. The strength
of nonlocality S is related to the robustness to white
noise. In other words, S can be quantified in terms of
the amount of white noise that needs to be added to a
convex mixture with ρ in order to completely suppress
the nonlocality of it, and the resulting state can be ex-
pressed as

ρ(v) = vρ+ (1 − v)ρwhitenoise, (2)

where v is the visibility of the state. The strength of non-
locality can be defined as the smallest admixture of white
noise for which the state becomes local for a fixed set of
observables, S = 1 − vcrit, where vcrit is usually called
critical visibility. Evidently, S can also be considered as
a quantifier of nonlocality.

Finding the maximal S is a feasibility problem in linear
programming. To determine S, we consider the set of lin-
ear equations that is derived from relating the marginal
probabilities to the underlying joint probability distribu-
tions for all possible results of measurements performed
on ρ(v). They have the following form

P (ra, rb, rc|Ma
1 ,M

b
2 ,M

c
3) =

d
∑

ai,bi,ci=1

plr(a1, . . . , ra, . . . , am, b1, . . . , rb, . . . , bm, c1, . . . , rc, . . . , cm, ), (3)

where {ai, bi, ci}mi=1 account for the hypothetical out-
comes of the ith measurement, each performed by the
individual parties and d is the number of possible results.
The set of linear constraints can be formed by consider-
ing marginal probabilities of the outcomes of all possi-
ble combinations of measurements that the three parties
can independently perform in their laboratories. States
that fail to satisfy (3) do not attain local realism. vcrit
is obtained by increasing the value of v until the set of
equalities (3) can no longer be satisfied. In the next step,
we optimize vcrit over all possible measurement settings
to determine the minimal critical visibility required for a
given state which, in terms, gives us Smax = 1 − vmin

crit .

The second quantifier that we considered, denoted by
PV , is the probability of violation of local realism. This
quantity allows us to analyze the nonclassicality and cor-
relation properties under random measurements [30]. PV

can be expressed in terms of a joint probability distri-
bution when no specification on the Bell inequality is
made. Such a probability distribution can be treated as

an equivalent description of the analysis made by a full
set of tight Bell inequalities in a given Bell scenario [31].
PV is then defined as

PV (ρ) =

∫

f(ρ,Ω) dΩ, (4)

where the integration is over all parameters that vary
within the Bell scenario and

f(ρ,Ω) =











1, if settings lead to violations

of local realism,

0, otherwise.

(5)

A. The formulation of LP constraints for tripartite

standard and genuine nonlocality

Below we introduce different notions of genuine multi-
partite Bell nonlocality beyond standard Bell nonlocality.
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In particular, we define the sets L, S2 and NS2 for three
parties. We follow the works of Refs. [32, 33]. We show
that in order to decide if a given correlation point p is
within one of the above sets or lies outside the set is a
linear programming problem. We provide the LP task to
be solved and we also look at the problem from a geo-
metrical point of view.
Introducing the definitions of the sets—We define the

sets L, S2 and NS2. We consider three separated par-
ties, Alice, Bob and Charles, who can conduct m differ-
ent measurements with two outcomes (o = 2) each. We
use the notation a = r1, b = r2, c = r3 and x = i1,
y = i2, z = i3 in Eq. (1). Namely, we denote the mea-
surement settings by x, y, z and their outcomes by a, b, c.
The number of inputs are m, that is, x = (1, 2, . . . ,m),
y = (1, 2, . . . ,m) and z = (1, 2 . . . ,m) and their measure-
ment outcomes are a = (0, 1), b = (0, 1) and c = (0, 1).
Then a three-party Bell experiment is characterized by
the joint probability distribution P (a, b, c|x, y, z) consist-
ing of 8 ×m3 values. If the probability distribution can
be written as

P (a, b, c|x, y, z) =
∑

λ

qλPλ(a|x)Pλ(b|y)Pλ(c|z), (6)

with 0 ≤ qλ ≤ 1 and
∑

λ qλ = 1, then the correlation
point p = {P (a, b, c|x, y, z)} is inside the set L, and we
say that the point p is Bell local or Bell classical. Oth-
erwise, we say that the correlation p is Bell nonlocal or
nonclassical.

As pointed out by Svetlichny [1], some correlations p 6∈
L can be still written in the hybrid local-nonlocal form:

P (a, b, c|x, y, z) =
∑

λ1

qλ1
Pλ1

(a, b|x, y)Pλ1
(c|z)

+
∑

λ2

qλ2
Pλ2

(a, c|x, z)Pλ2
(b|y)

+
∑

λ3

qλ3
Pλ3

(b, c|y, z)Pλ3
(a|x), (7)

where 0 ≤ qλi
≤ 1 for i = 1, 2, 3 and

∑

λ1
qλ1

+
∑

λ2
qλ2

+
∑

λ3
qλ3

= 1. Note that above there is no restriction
on the form of the bipartite probability distributions
Pλ1

(a, b|x, y), Pλ2
(a, c|x, z) and Pλ3

(b, c|y, z). In particu-
lar, they can allow signaling as well. We call the correla-
tion p written in the form of Eq. (7) as Svetlichny-local,
or S2 correlations for brevity. These correlations are in-
side the set S2.

On the other hand, following the definition of Ref. [32],
a tripartite correlation with probabilities P (a, b, c|x, y, z)
is no-signaling bilocal (NS2) and is inside the set NS2 if
it can be written as

P (a, b, c|x, y, z) =
∑

λ1

qλ1
PNS
λ1

(a, b|x, y)Pλ1
(c|z)

+
∑

λ2

qλ2
PNS
λ2

(a, c|x, z)Pλ2
(b|y)

+
∑

λ3

qλ3
PNS
λ3

(b, c|y, z)Pλ3
(a|x), (8)

where the bipartite correlations (for instance,
PNS
λ1

(a, b|x, y)) respect the no-signaling constraints,
which are given by
∑

a

PNS
λ1

(a, b|x, y) =
∑

a

PNS
λ1

(a, b|x′, y) for all x, x′, y, b, λ1

∑

b

PNS
λ1

(a, b|x, y) =
∑

b

PNS
λ1

(a, b|x, y′) for all y, y′, x, a, λ1,

(9)

and similar relations obtained from permutations of the
parties. If at least one of the above constraints is not sat-
isfied, then this allows for signaling. All the no-signaling
constraints are linear in the function of probabilities.
Note that we have the inclusion relations L ( NS2 ( S2

between the above defined sets [32].
Formulating the membership problem as an LP—Given

a correlation point p, we now give a linear programming
algorithm for detecting the point p inside the sets L,
NS2 or S2. The first step is to realize that any random-
ness present in either the two-party or one-party response
functions Pλ, Pλi

, PNS
λi

for i = 1, 2, 3 in Eqs. (6,7,8) can
always be incorporated in the shared random variable
λ and λi, i = 1, 2, 3. Hence we can assume that these
functions are deterministic functions of the inputs x, y
and z. In other worlds, each shared random variable λ,
λi, i = 1, 2, 3 defines an assigment of one of the possible
outputs to each input. There can only be a finite num-
ber of such assignments and we name them as Dλ(a|x),
Dλi

(a, b|x, y), DNS
λi

(a, b|x, y) for i = 1, 2, 3 and similarly
for the other two possible (AC|B) and (BC|A) biparti-
tions. Therefore, we can assume without the loss of gen-
erality that in Eqs. (6,7,8) the functions are the above
deterministic functions. For instance, equation (6) can
be equivalently written as

P (a, b, c|x, y, z) =
∑

λ

qλDλ(a|x)Dλ(b|y)Dλ(c|z). (10)

Let us then denote dλ such a product of these deter-
ministic functions. E.g. in equation (10), we have
dλ = Dλ(a|x)Dλ(b|y)Dλ(c|z). Then a correlation p is
local (within L) if it can be written as a convex combi-
nation of deterministic functions dλ, that is

p =
∑

λ

qλdλ, with qλ ≥ 0,
∑

λ

qλ = 1 . (11)

Similarly, in the S2 and NS2 cases we have

p =
∑

λ1

qλ1
dλ1

+
∑

λ2

qλ2
dλ2

+
∑

λ3

qλ3
dλ3

(12)

with

qλ1
, qλ2

, qλ3
≥ 0,

∑

λ

qλ1
+
∑

λ

qλ2
+
∑

λ

qλ3
= 1 . (13)

These representations are very useful as they provide
an algorithm for determining if a given correlation p is
within the above sets L, S2 or NS2 [34, 35].
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Indeed, determining whether there exist weights λ in
equation (11) and weights λi, i = 1, 2, 3 in equation (12)
satisfying the given linear constraints is a linear program-
ming problem, for which there exist efficient solvers (i.e.
which run in polynomial time in the number of vari-
ables [36]). However, there are 23m possible λ values
in the L problem (11), and there are 12 × 2mm2 in the
S2 problem (12). In fact for these cases (and for NS2 as
well) the scaling of the number of λ values is exponential
in m, hence the algorithm is not efficient by itself.

Now we turn (11) and (12) feasibility problems into a
problem of finding the critical visibility of a probability
distribution p such that the noisy distribution

pv = vp + (1 − v)piso (14)

can be still described within the respective sets of L,
S2 and NS2, where piso is the isotropic distribution de-
fined by Piso(a, b, c|x, y, z) = 1/23 for all a, b, c and x, y, z.
Then finding the critical visibility in the membership
problem for L translates to the following LP task:

vcrit = max v

s. t. vp + (1 − v)piso =
∑

qλ

qλdλ

with qλ ≥ 0,
∑

λ

qλ = 1 . (15)

On the other hand, in the case of S2 and NS2 problems
we compute the critical visibility via LP as follows:

vcrit = max v

s. t. vp + (1 − v)piso =
∑

i=1,2,3

∑

qλi

qλi
dλi

with qλi
≥ 0,

∑

i=1,2,3

∑

λ

qλi
= 1 . (16)

Since each of the above sets L, S2 and NS2 is the
convex hull of a finite number of points, each set de-
fines a polytope. The local deterministic points dλ corre-
spond to the vertices, or extreme points, of the polytope.
Then we can use the dual formulation of the above prob-
lems (15) and (16) to get a hyperplane (defined by the
normal plane S and a constant S), which separates the
point p from the respective polytope. This way by solv-
ing the dual LP we obtain a linear inequality S · dλ ≤ S
satisfied by all the vertices dλ, but violated by the cor-
relation point p(v): S · p(v) ≥ S for v > vcrit.

The above formalism can be generalized to a larger
number of parties. For example, in the case of the
four-party Svetlichny set, we obtain a decomposition
similar to the three-party decomposition (7), but in
addition to the partitions of type (A|BCD) (involv-
ing single-party terms), there are partitions of type
(AB|CD) (not involving single-party terms). That is,
we will have factorizations of probabilities with differ-
ent types of cuts, such as Pλi

(a, b|x, y)Pλi
(c, d|z, w) and

Pλ
i′

(a, b, c|x, y, z)Pλ
i′

(d|w). However, the problem is still

linear and involves a finite number of different possible
λ variables, and should not pose a problem for solving
the LP, apart from the fact that the complexity of the
optimization problem increases rapidly with the number
of parties.

III. RESULTS – QUBITS

We now apply our optimization method to different tri-
partite states, which are often considered as nonclassical
crucial resources:

− the Greenberger - Horne - Zeilinger (GHZ) state
[37, 38]

|GHZ〉 =
1√
2

(|000〉 + |111〉) (17)

− the W state [39]

|W〉 =
1√
3

(|100〉 + |010〉 + |001〉), (18)

− the ψs state mentioned in Ref. [40] that is equally
entangled in every bipartition

|ψs〉 =
1√
6

(|001〉 + |010〉 − |100〉) +
1√
2
|111〉. (19)

We investigate probabilities of violation PV and the
maximal nonlocality strengths Smax for these states with
an increasing number of measurement settings per site
and for L, S2, NS2 scenarios (see Tab I). The following
observations are drawn:

(1) Obviously, PV steadily increases with m. The L
condition is violated almost with certainty once the num-
ber of settings m > 2 for the states that has been con-
sidered and we see a probability of violation greater than
99.99% for m > 3. Similar, although slightly weaker,
behavior is observed concerning the NS2 constraint vi-
olation. While for m = 2, Pv values are significantly
smaller than that of the L case, the difference decreases
for m ≥ 4 for the GHZ state and m ≥ 5 for the W and ψs.
However, in the case of S2, the percentage is considerably
smaller, especially for the W state, even for m = 6.

A natural question arises about the nature of the in-
crease in PV with an increase in the number of settingsm.
This property might arise either by the growing number
of equivalent Bell inequalities (compared to the m = 2
case) or by the emergence of new tight Bell inequalities.
To answer this question, we consider families of tight Bell
inequalities that represent a complete set of facets char-
acterizing the L and NS2 polytopes (with m = 2), pro-
vided in Ref. [43, 44] and [32], respectively. As the com-
plete characteristic of the S2 polytope in terms of Bell
inequalities remains unknown, in this case, we restrict
our considerations to the symmetric facets discussed in
Ref. [45].
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Standard nonlocality Genuine multipartite nonlocality

State m L S2 NS2

PV Smax PI

V SI

max PV Smax PI

V SI

max PV Smax PI

V SI

max

GHZ 2 74.69 [23] 0.5 70.00 0.2929 0.5413 0.292893 0.5353 0.292893 11.57 0.292893 10.6270 0.1716

3 99.54[23] 0.5 99.22 6.6282 0.292893 6.6009 70.81 0.292893 67.2124

4 > 99.99 [23] 0.50301 [41] > 99.99 23.255 0.292893 22.9506 96.73 0.292893 95.6705

5 > 99.99 [23] 0.50481 > 99.99 46.01 0.292893 45.5509 99.77 0.292893 99.6375

6 > 99.99 [23] 0.50639 > 99.99 66.67 0.292893 66.6914 99.99 0.292893 99.9731

W 2 54.89 [23] 0.3558 [42] 50.86 0.3558 0.0085 0.082107 0.0030 0.08144 3.73 0.199118 3.2312 0.1895

3 97.80 [23] 0.3950 [42] 96.70 0.01951 0.082107 0.0696 41.29 0.199198 37.2382

4 > 99.99 [23] 0.3985[42] 99.92 1.3797 0.082107 0.4679 86.69 0.199860 83.1669

5 > 99.99 [23] 0.4009 > 99.99 5.49 0.082107 1.7823 98.71 0.203114 98.0032

6 > 99.99 [23] 0.4044 > 99.99 14.33 0.082107 4.8795 99.93 0.204638 99.8638

|ψs〉 2 64.38 0.46445 64.38 0.30094 0.2019 0.242821 0.2055 0.242821 6.8637 0.242821 5.4267 0.1700

3 99.03 0.46455 98.21 2.9871 0.242821 2.9877 58.9212 0.242821 49.9979

4 > 99.99 0.4669 99.97 12.3838 0.242821 12.3200 94.55 0.247833 89.9767

5 > 99.99 0.46699 > 99.99 28.91 0.242821 28.6249 99.6594 0.247856 98.9490

6 > 99.99 0.46747 > 99.99 48.32 0.242821 47.9802 > 99.99 0.247856 99.9158

TABLE I. Numerically obtained PV (in %) and Smax for an increasing number of measurement settings m per site and
different nonlocality scenarios: standard nonlocality: L; genuine multipartite nonlocality: S2, NS2. P

I

V denotes the probability
of violation (in %) for ’dominant Bell inequality’. In the same way SI

max is defined.

Our calculations provide that in all scenarios discussed
above one can clearly distinguish a so-called dominant
Bell inequality, i.e. the family of equivalent Bell inequal-
ities, which are most often violated for a given Bell ex-
periment [25, 31]. For the the GHZ and |ψs〉 states such
dominant position is reserved for the 4th facet inequality
(IL4 ) for the L scenarios, the 4th facet inequality (INS2

4 )
for the NS2 scenarios, and Svetlichny’s original inequal-
ity (IS2

185) for the S2 polytope. For the W state one should

additionally consider the 16th facet inequality (INS2

16 ) of
the NS2 polytope. Note that all inequalities are num-
bered in the same manner as in Ref. [44] and [32].

As we see in Tab. I, despite the great limitations of the
problem [25, 31], the estimated probability of violation
(hereafter denoted as PI

V ) is surprisingly consistent with
the previous calculations for almost all Bell experiments.
In particular, a very good consistency is observed for the
L and NS2 scenarios. The worst result has been found
for the W states with S2 constraints, despite a very good
approximation for other scenarios. It suggests that either
the Svetlichny inequality is not the dominant inequality
for W states or there is no dominant inequality for this
case at all. Since we know only symmetric facets of the
S2 polytope, we cannot answer this question.

Next, using the lifting procedure [46], all dominant Bell
inequalities have been adapted to the m > 2 Bell sce-
nario. Similarly to the previous results, the probability of
violation PI

V increases with increasing number of settings
m. Moreover, except for the W states and S2 constraint,
the gap between PI

V and the linear-programming results
vanishes with growing m. It implies that for these cases
the increase of PV with m has a statistical explanation,

i.e. by increasing the number of settings, we increase the
number of equivalent Bell inequalities that belong to the
dominant family and hence, the probability that some of
them are violated, involving only two settings.

(2) For W state violating the L constrains, Smax prac-
tically appears to be dependent on the number of set-
tings. For other cases, however, either we do not observe
any dependence up to 6 decimal places (GHZ: S2, NS2)
or we see slight improvement on the 4th of 5th decimal
place (GHZ: L; W: S2, NS2; ψ2: L). Note that the
above improvements are a real effect and not the result
of numerical inaccuracy. Comparing these results with
the estimates obtained for the dominant Bell inequalities
(SI

max), we can see that such inequalities usually do not
provide a correct evaluation of Smax even for m = 2.
Moreover, the improvement of the Smax for m > 2 im-
plies the emergence of new types of Bell inequalities. In
other words, Smax solely depends on the chosen Bell ex-
periment and, in general, cannot be explained by the sce-
nario involving only two settings. The exception is the
S2 scenario, in which, regardless of the chosen m, Smax is
provided either by the Svetlichny inequality (GHZ state,
|ψs〉 state) or by the symmetric inequality no. 31 derived
in Ref. [45] (W state).

(3) We further investigate PV for violating NS2

constraints using the asymmetric GHZ state given by
|GHZ(α)〉 = cosα|000〉 + sinα|111〉 (see Tab. II). PV

exhibits interesting effect with respect to the increasing
value of α. For m = 2, 3, 4 we observe expected mono-
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PV PI

V

m 10o 20o 30o 40o 45o 10o 20o 30o 40o 45o

2 0.97 4.13 8.52 11.27 11.57 0.29 2.92 7.52 10.35 10.63

3 13.64 41.62 63.61 70.52 70.81 3.96 29.57 58.02 67.02 67.21

4 43.83 84.73 95.81 96.84 96.72 14.37 68.45 93.63 95.89 95.67

5 72.49 98.07 99.79 99.80 99.77 29.83 90.46 99.59 99.70 99.64

6 88.29 99.85 99.993 99.990 99.987 46.48 97.80 99.984 99.982 99.973

TABLE II. Probability of violation (in %) of NS2 model for the asymmetric GHZ state, |GHZ(α)〉 = cosα|000〉 + sinα|111〉,
determined from 107 (m = 2) and 106 (m > 2) random samples and various angles α.

tonic increase of PV with α. However, this monotonicity
is disrupted for m = 4, 5 where there is a local decrease of
PV (minimum) around α = 40o. Although the effect man-
ifests itself at the 4th decimal place, it is very likely not
due to numerical inaccuracies (an analysis based on con-
fidence interval is given below). It is worth noting that a
similar effect is not observed for the standard nonlocality
problem.

Interestingly, a similar phenomenon can be observed if
the 4th facet inequality of NS2 [32] is taken into con-
sideration. As presented in Table II, the monotonicity
of PV for INS2

4 is disrupted for m > 4 even more than
for the entire polytope NS2. Our analysis suggests that
this effect may be caused by the overlapping of the pa-
rameter space leading to a violation of a single inequality
INS2

4 . To be clear, let INS2

4 be the original Bell inequality

given in Ref. [32] and INS2

4 its equivalent form obtained
by permutation of inputs/outputs/parties. Furthermore,
let us define a parameters subspace ω (γ) which contains

all settings leading to violation of INS2

4 (INS2

4 ). One can

easily show that the intersection ω∩γ 6= ∅ for any INS2

4 .
Therefore, the overall PI

V cannot be considered as the
probability of violation for a single Bell inequality (the
cardinality of ω) multiplied by the number of equivalent
inequalities and the degree of intersection, which depends
on the state under consideration, has to be taken into
consideration. For that reason, although the probability
of violation for a single Bell inequality INS2

4 reveals the
monotonicity with respect to α, such property may be
disrupted for the total PI

V if m is sufficiently high.

To support the above claims, we analyze the problem
statistically by interpreting the probability of violation
(Pv) as the success probability of a Bernoulli trial [47]. In
a Bernoulli trial, one performs independent repeated tri-
als of a random experiment with two possible outcomes.
One outcome is called “success” and the other outcome is
called “failure”. In our case “success” is when a quantum
correlation point is genuinely tripartite nonlocal. For a
similar interpretation of the relative volume for the set of
bipartite quantum correlations, see the recent paper [48].

In a Bernoulli trial process, p = ns/n is the proportion
of success, measured by n trials yielding ns successes.
For a confidence level of 99%, the error is ǫ = 0.01 and
z = 2.576 (which is the quantile (1− ǫ/2) of the standard
normal distribution). From z and p, we can estimate the

value of Pv, giving lower and upper bounds on it based
on the central limit theorem. However, this approxima-
tion is not reliable if the sample size is small or if Pv is
close to 0 or 1. In our case, we would like to compare two
values of Pv corresponding to m = 4 settings and angles
of α = 40o and α = 45o. The respective proportion of
successes are p1 = 0.9684 and p2 = 0.9672 (see Tab. II).
Since these values are relatively close to 1, we use the
Wilson score interval instead of the normal approxima-
tion interval for the estimation of Pv. This interval can
be calculated directly from Wilson’s formula for a given
confidence level [49]. This gives the following estimates
of the probability of violation for a confidence level of
99%:

0.9679 < P1
v < 0.9688,

0.9667 < P2
v < 0.9677. (20)

As can be observed, there is no overlap between the two
above intervals. Thus, with a confidence level of 99% we
can state that the probability of violation Pv is indeed
slightly higher around the angle α = 40o than around
the angle α = 45o. The same conclusion can be drawn
for PI

v for m = 4 (see Tab. II). In this case we can also
conclude with a confidence level of 99% that PI

v is larger
for the angle α = 40o than for the angle α = 45o.

IV. RESULTS – QUTRITS

We now investigate PV and Smax for qutrits but lim-
iting it to L and NS2-type violation. We run our in-
vestigation for m = 2 and m = 3 measurement settings
considering a range of three qutrit states given by:

− the three qutrit GHZ-type state

|GHZ〉 =
1√
3

(|000〉 + |111〉 + |222〉), (21)

− the three qutrit GHZ-type state reduced to qubit
subspace (rank-2 state)

|rank − 2〉 =
1√
2

(|000〉 + |111〉), (22)
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State m L NS2

GHZ 2 81.1435 0.5516

3 99.9996 16.5618

rank-2 2 33.1366 0.1854

3 92.2090 3.2805

D1

3 2 17.2009 0.0190

3 73.4908 0.3483

D2

3 2 39.3363 0.0506

3 98.5799 1.2658

D3

3 2 42.5216 0.0807

3 99.6149 2.0036

Aharonov 2 68.7038 0.0056

3 99.9859 0.1643

TABLE III. Probabilities of violation (in %) obtained for
qutrit states from 106 random samples for L and NS2 models.

− the three qutrit Dicke states [50]

|D1
3〉 =

1√
3

(|001〉 + |010〉 + |100〉), (23)

|D2
3〉 =

1√
15

(|002〉 + |020〉 + |200〉 (24)

+ 2(|011〉 + |101〉 + |110〉)),

|D3
3〉 =

1√
10

(|012〉 + |021〉 + |102〉 (25)

+ |120〉 + |201〉 + |210〉 + 2|111〉),

− the three qutrit singlet state [51, 52]

|Aharonov〉 =
1√
6

(|012〉 − |021〉 − |102〉 (26)

+ |120〉 + |201〉 − |210〉).

The numerical results are provided in Tab. III. At first
glance, it is striking that the probability of witnessing
genuine multipartite nonlocality (NS2) is negligible, and
is only noticeable (16.56%) in the case of the the GHZ
state for measurement settings m = 3. If we compare
these probabilities of violation (for m = 2) with the val-
ues for the case of standard nonlocality (L), it turns out
that they are smaller by two (GHZ, rank-2), three (D1

3,
D2

3, D3
3) and even five (Aharonov) orders of magnitude.

However, the probability of violation for the NS2 prob-
lem increases up to 17-30 times depending on the state
with measurement settings set to m = 3. For qubits, the
increment is smaller and varies in the range of 6-11 times.
Of course, it is difficult to compare these two cases due
to the fact that different states were considered in both
cases. If we limit ourselves to comparing only the family
of the GHZ states then in the case of qubits the increment
was 6.12 times, while for qutrits it is 30.02 times.

V. THREE-QUBIT W STATE IS NS2

NONLOCAL FOR FOUR TETRAHEDRALLY

DISTRIBUTED SETTINGS

We consider an experimental situation in which three
observers can choose between four seetings forming a reg-
ular tetrahedron (see Fig. 1(a)). The corresponding ob-
servables are given by: Oi

j = U ioij(U
i)†, where

oi1 =
√

8/9σx − 1/3σz; (27)

oi2 = −
√

2/9σx +
√

2/3σy − 1/3σz;

oi3 = −
√

2/9σx −
√

2/3σy − 1/3σz;

oi4 = σz .

with i enumerates the observers (i = 1, 2, 3) and j - the
measurement settings (j = 1, 2, 3, 4). For 107 random
settings we observe that the W state always exhibits gen-
uine multipartite nonlocality violating the NS2 model
(Pv = 100%).

Qualitatively, this result can be explained by the
strong activation of the 47th facet inequality of NS2

polytope (hereafter INS2

47 ). For tetrahedrally distributed

settings INS2

47 provides PI
V = 99.9997% while uniform

random measurements yield PI
V = 52.3103%. Moreover,

our numerical research based on n = 109 random settings
reveal that all those few measurements which did not
provide violation of INS2

47 always give violation of INS2

4 .

Note that PI
V for INS2

4 and INS2

16 with tetrahedrally dis-
tributed settings is equal to 99.998% (c.f. Table I), so

less than INS2

47 .

On the other hand, if the distribution of PV is tested
against Smax, then the inequality INS2

4 and INS2

16 gives
a good approximation of the LP results for uniform ran-
dom settings (see Fig. 1(b)). This result confirms the

usefulness of (INS2

4 , INS2

16 ) for the study NS2-nonlocal
correlations for W states. For tetrahedrally distributed
settings the approximation of PV to Smax is much worse
for both INS2

47 and (INS2

4 , INS2

16 ). In other words, the in-

equalities INS2

47 and INS2

4 seem sufficient to explain the
final value of PV but not sufficient to explain details of
PV for tetrahedrally distributed settings.

Finally, it is worth noting that the restriction of mea-
surement settings to those that form tetrahedrons im-
pacts the distribution of nonlocality strange, shifting it
toward higher values (Fig. 1(b)).

For the other states, settings with tetrahedral distri-
bution also give an improvement of PV over the uni-
form random measurements. The probability of viola-
tion the model for the GHZ state is also high, PV =
99.9986%, but less than 100%. In this case, INS2

4 pro-

vides PI
V = 99.9777% while INS2

47 provides PI
V = 0%.

For ψs, PV = 99.9944 < 100% and PI = 99.9693%. In
both cases the statistics was 106.
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FIG. 1. (a) Tetrahedral distribution of measurement set-
tings; (b) Probability density function for PV (solid) and PI

v

(dashed) for the W state: tetrahedrally (red) vs. uniformly
distributed settings (blue).

VI. THREE-QUBIT GHZ STATE IS

SVETLICHNY NONLOCAL FOR TWO

ORTHOGONAL PLANAR SETTINGS

We consider three observers that share the three qubit
GHZ state and perform a Bell type experiment, in which
they can choose between two orthogonal planar set-
tings. The corresponding observables are given by Oi

j =

U ioij(U
i)†, where oi1 = σx, oi2 = σy, (i = 1, 2, 3; j = 1, 2).

In such scenario, for 107 random set of settings, we ob-
serve that all probability points turn out to be genuine
multipartite nonlocal. The computed critical visibilities
are in the range: 0.707106781 ≤ vcrit ≤ 0.999999782< 1.

Restricting the measurements exclusively to the x− y
plane it can be analitically proved that measurements on
the GHZ state are orthogonal for each 8 party in the
x − y plane and no aligned reference frames are needed
to violate a Svetlichny-type inequality. There are analyt-
ical family of Svetlichny-type inequalities which detect
GMNL for any such random orthogonal directions in the
common plane x− y. The inequalities are in general not
exactly the Svetlichny one, but they are related to it (we
have to apply some appropriate rotation on the coeffi-
cients of the three-party Svetlichny inequality).

Let the observers choose the following observables:

Ai = cosαiσx + sinαiσy,

Bj = cosβjσx + sinβjσy,

Ck = cos γkσx + sin γkσy, (28)

where σx and σy are the Pauli matrices. These give the
three-party correlations

〈AiBjCk〉 = 〈GHZ|Ai⊗Bj⊗Ck|GHZ〉 = cos(αi+βj+γk)
(29)

for i, j, k = 1, 2. In addition, the following measurement
angles are chosen for the second setting:

α2 = α1 + π/2,

β2 = β1 + π/2,

γ2 = γ1 + π/2. (30)

That is, the first and second settings are orthogonal to
each other for each party. We will show that the quantum
correlation (29) describing the experiment is genuinely
tripartite nonlocal for generic angles α1, β1 and γ1.

To this end, we take the Svetlichny-type inequality

2
∑

(i,j,k)=1

Sijk〈AiBjCk〉 ≤ S2, (31)

with the following coefficients:

Sijk = cos(αi + βj + γk) (32)

for i, j, k = (1, 2), where α2, β2 and γ2 are defined by
(30). Define the sum of the three angles α1, β1 and γ1:

θ = α1 + β1 + γ1. (33)

Then, the Svetlichny inequality looks like this

2
∑

(i,j,k)=1

Sijk〈AiBjCk〉 ≤ 4 max (| cos θ|, | sin θ|), (34)

where the value on the right is the Svetlichny-type local
bound, i.e. the bound that can be attained with S2 local
correlations. Note that the above inequality is a function
of the three-parameters (α1, β1 and γ1).
Quantum maximum with GHZ state—First we calcu-

late the quantum value of the Svetlichny expression with
the GHZ state and the above measurement directions.
This gives 4 for any value of θ. As we can see, this means
that randomly generated measurement angles will always
produce genuinely tripartite nonlocal Svetlichny correla-
tions, apart from a set of zero measure. Using (30), we
obtain the following

Sij1〈AiBjC1〉 + Sij2〈AiBjC2〉 = cos2(αi + βj + γ1)

+ cos2(αi + βj + γ1 + π/2) = 1 (35)
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for all i, j. Therefore, summing up the above expression
for all (i, j) pairs, we have

Q =

2
∑

i,j=1

(Sij1〈AiBjC1〉 + Sij2〈AiBjC2〉) = 4. (36)

Bilocal S2 maximum—We calculate the bound S2 for
bipartite nonlocality (i.e., we prove the right-hand side of
(34)). It suffices to consider the AB|C bipartition. The
proof of the bound for the other two partitions A|BC
and B|AC is analogous. For the partition AB|C, the
correlation function is factorized as follows:

〈AiBjCk〉 = 〈AiBj〉〈Ck〉. (37)

Then S2 is given by

S2 = max
∑

i,j,k

Sijk〈AiBj〉〈Ck〉, (38)

where the maximum is taken over all 〈Ck〉 and 〈AiBj〉
functions. Without loss of generality, to compute S2, we
can take the extremal values 〈Ck〉 = ±1 for k = 1, 2 and
〈AiBj〉 = ±1 for i = 1, 2, j = 1, 2. Then we have

S2 = max
C1=±1,C2=±1

2
∑

i,j=1

|C1Sij1 + C2Sij2|. (39)

Here we prove that

max
C1=±1,C2=±1

2
∑

j=1

|C1Sij1 + C2Sij2| ≤ 2 max (| cos θ|, | sin θ|)

(40)
for i = 1, 2. The value 2 on the right is therefore only
achieved for special values of θ. Indeed, if we explicitly
write out Sij1 and Sij2 in (32) and denote

ϕi = αi + β1 + γ1, (41)

we get ϕ1 = θ and ϕ2 = θ + π/2 by using (33), and the
left-hand side of (40) will be

|C1 cosϕi+C2 cos(ϕi+π/2)|+|C1 cos(ϕi+π/2)−C2 cosϕi|.
(42)

Now we use the simple relation |a| + |b| = max(|a +
b|, |a− b|) for two real numbers a and b to get the bound

2 max(| cosϕi|, | sinϕi|) (43)

on (40), which in turn entails the bound S2 ≤
4 max (| cos θ|, | sin θ|). The value 4 is attained only if
θ = kπ/2, where k is an arbitrary integer. This implies
α1 + β1 + γ1 = kπ/2. However, this is only a subset
of measure zero of all possible triples (α1, β1, γ1). There-
fore, in the case of generic XY planar random orthogonal
measurements on the GHZ state, the correlations will al-
ways be genuinely Svetlichny nonlocal.

It worth noting that for the generalized GHZ state
cosα|000〉 + sinα|111〉, if we break the symmetry and

20 30 40
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0

0.2

0

0.1

0.3

25 35 45

a

VP Smax

a (deg) Pv Smax

45 100.00 0.2929

40 98.02 0.2820

35 91.56 0.2476

30 78.34 0.1736

25 50.28 0.0770

22.501 1.03 0.0001

22.5 0.00 0.0000

FIG. 2. Probability (red) and strength (blue) of violation of
NS2 model by the asymmetric GHZ(α) state and measure-
ment settings distributed on the x-y plane.

decrease the value of α, we immediately start to observe
cases that do not exhibit genuine multipartite nonlocality
to finally make it disappear for α = 22.5o (see Tab. 2, and
Fig. 2). Note that the numerical results given in Tab. 2

are in agreement with vcrit = 1/[
√

2 sin(2θ)], i. e., the
critical visibility for Svetlichny inequality.

VII. CONCLUSIONS

We present a linear programming method for explor-
ing the conflict of quantum predictions with local and
realistic models for multipartite systems. Such conflicts
lead to the conclusion that genuine multipartite nonlo-
cality is present in our system. Moreover, the nature of
our method implies its optimality. We show some exam-
ples for systems of three particles (qubits and qutrits).
By introducing some restrictions on the distribution of
observables, we obtain guaranteed nonlocality for the W
and GHZ states. In the first case, we sample four ob-
servables such that their corresponding direction vectors
form a tetrahedron. In the second case, we deal with two
observables lying in the same (x-y) plane.
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Phys. Rev. Lett. 115, 030404 (2015).
[11] R. Augusiak, M. Demianowicz, and J. Tura,

Phys. Rev. A 98, 012321 (2018).
[12] J. Bowles, J. Francfort, M. Fillettaz, F. Hirsch, and

N. Brunner, Phys. Rev. Lett. 116, 130401 (2016).
[13] S. Popescu and D. Rohrlich,

Physics Letters A 166, 293 (1992).

[14] M. Gachechiladze and O. GÃŒhne,
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[24] A. Barasiński, A. Černoch, K. Lemr, and J. Soubusta,

Phys. Rev. A 101, 052109 (2020).
[25] A. Barasiński, A. Černoch, W. Laskowski, K. Lemr,
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[40] S. López-Rosa, Z.-P. Xu, and A. Cabello,
Phys. Rev. A 94, 062121 (2016).
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[48] P.-S. Lin, T. Vértesi, and Y.-C. Liang, arXiv preprint
arXiv:2107.05646 (2021).

[49] E. B. Wilson, Journal of the American Statistical Asso-
ciation 22, 209 (1927).

[50] W. Laskowski, J. Ryu, and M. Żukowski,
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