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Magnetic hyperthermia is an adjuvant therapy for cancer where injected magnetic nanoparticles
are used to transfer energy from the time-dependent applied magnetic field into the surrounding
medium. Its main importance is to be able to increase the temperature of the human body locally.
This localization can be further increased by using a combination of static and alternating external
magnetic fields. For example, if the static field is inhomogeneous and the alternating field is oscil-
lating then the energy transfer and consequently, the heat generation is non-vanishing only where
the gradient field is zero which results in superlocalization. Our goal here is to study theoretically
and experimentally whether the perpendicular or parallel combination of static and oscillating fields
produce a better superlocalization. A considerable polarisation effect in superlocalization for small
frequencies and large field strengths which are of great importance in practice is found.

PACS numbers: 75.75.Jn, 82.70.-y, 87.50.-a, 87.85.Rs

I. INTRODUCTION

In cancer therapy local, heat generation is of great im-
portance since tumor cells are more sensible for temper-
ature increase than normal ones. Magnetic nanoparti-
cles (MNPs) injected into the human body can transfer
energy from the external applied time-dependent mag-
netic field into their environment thus can be used to
increase the temperature locally [1–7]. A recent review
can be accessed under Ref. [8]. However, these MNPs can
spread not just in cancerous tissues but can reach nor-
mal healthy cells. Therefore, there is a need to localize
further the heating efficiency which can be done by using
a combination of a gradient static and a time-dependent
alternating magnetic fields since for large enough static
field the dissipation is expected to be dropped to zero. As
a consequence, the temperature increase is observed only
where the static field vanishes [9]. There is an increasing
interest in the literature see e.g., [8, 10] on how to improve
the efficiency of the method, and how to ”superlocalize”
the heat transfer [11–14]. The idea of superlocalization
is based on that if the static field is present, the amount
of energy transferred is decreased and one expects a bell-
shaped curve of the energy transfer as a function of the
static field amplitude, see e.g. Fig. (10.4) of [8] or for
more details [15].

The superlocalization effect is studied recently in [16]
employing theoretical methods in particular by the deter-
ministic [17] and stochastic [18] Landau-Lifshitz-Gilbert
(LLG) equations. It was shown that the use of the
stochastic solver is important if one would like to com-
pare the efficiency and the superlocalization of various

types of applied fields. For example, when the orienta-
tion of the static and alternating fields and in addition
the type (oscillating or rotating) of the time-dependent
magnetic field are chosen differently. Results of Ref. [16]
suggest that the polarisation of the static field, which
can be parallel or perpendicular to the direction of oscil-
lation matters. However, it is not clear how this polari-
sation effect depends on the parameters, i.e., the applied
frequency, damping parameter, etc.

In this work, our goal is to study the details of the
polarisation effect, i.e., whether the parallel or the per-
pendicular combination of static and oscillating fields
give a better heating efficiency and a better superlocal-
ization. The parameter dependence of the method (ap-
plied frequency, damping parameter), the validity of ap-
proximations is examined herein. The results are then
compared with the experimental results performed. We
demonstrate that a considerable polarisation effect in su-
perlocalization is found, which is of great importance in
practice.

This paper is centered around the mentioned ques-
tions and is organized as follows. After the introduction
(Sec. I) we discuss the theoretical framework in Sec. II,
and present the theoretical results where the focus is on
the difference of the energy losses obtained for the parallel
and perpendicular combination of the static and the os-
cillating fields. As a next step, in Sec. III, we explain the
details of the experimental setup used to investigate the
polarization effect of the cases mentioned above, where
the static and the time-dependent fields are chosen to
be either parallel or perpendicular. In Sec. IV, we com-
pare the theoretical predictions and experimental data.
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Finally, Sec. V stands for the summary.

II. THEORETICAL STUDY OF
SUPERLOCALIZATION

To study the efficiency and the superlocalization effect
of magnetic hyperthermia, one should choose a theoret-
ical framework and appropriate approximations. MNPs
may form clusters but typically the aggregation is not
favored and can be neglected [8, 20]. Therefore, the in-
vestigation of single isolated MNPs is satisfactory.

Another issue is the mechanical motion (rotation) of
the particles in their environment. If the applied fre-
quency is high enough (f >∼ 100 kHz) and the diameter
of the nanoparticle is relatively small (∼ 20 nm), the me-
chanical rotation of the MNPs can be restricted in the
surrounding medium, and only the orientation of their
magnetic moment has to be taken into account [19, 21–
23]. Important to note that the frequency cannot be
chosen to be too high to minimize eddy currents and
to enable the use of the method for hyperthermic treat-
ments. For example, a typical maximum value is around
f ∼ 500 − 1000 kHz. Thus, if the applied frequency is
chosen to be around 500 kHz, the energy loss depends on
the dynamics of the magnetization only and this can be
described by the so-called deterministic [17] and stochas-
tic [18] Landau-Lifshitz-Gilbert (LLG) equation.

As a consequence, the frequency and the amplitude
of the applied field, whose product is proportional to the
power injected, has an upper bound, the Hergt-Dutz limit
[24]. General advice to exploit the heating potential of
the particles is to use a field frequency of several hundred
kHz in combination with a rather low field amplitude (few
kA/m) for superparamagnetic particles and a relatively
high field amplitude (a few tens of kA/m) in combination
with a frequency of a few hundred kHz for MNPs with
hysteretic behavior. Since the heat transfer depends on
both the frequency and the amplitude almost linearly, it
is a good choice to keep them at their maximum values.

Moreover, the diameter of the MNP matters [20], be-
cause as the volume is present in the stochastic descrip-
tion but we do not investigate the dependence of our
results on the diameter of the individual particles. Re-
alistically, it cannot be too small since then the MNPs
will not be stored in the human body for long enough,
but it also cannot be too large, because then particles
would have multiple magnetic domains, which is not in
the favor regarding the heating efficiency. In general, a
good choice for the diameter is between 10 and 50 nm,
and we adopt this value in our analysis [20].

A further approximation is related to the shape and
crystal anisotropy of the MNPs. In principle, the inclu-
sion of the anisotropy is straightforward in the theoretical
approach but its realization in practice is certainly more
difficult. It is very questionable whether the orientation
of an oblate or prolate MNP in the human body can
be supported by any experimental realization. Instead,

spherically symmetric particles require no special atten-
tion and technics. Thus, here we restrict the theoretical
study for the isotropic case where no shape and no crystal
anisotropy are considered.

Taking into account the above mentioned approxima-
tions, we use the stochastic LLG-equation to study the
motion of the magnetization vector of a single, isotropic
MNP which undergoes the so-called Néel relaxation. The
thermally induced and/or forced magnetic dynamics of
magnetic nanoparticles are being studied for a long time
where the interest is stimulated by experimental evidence
[28]. An excellent overview of the stochastic dynamics
can be found in Ref. [29]. The stochastic LLG equation
[18] where thermal fluctuations are taken into account by
introducing a random magnetic field, H = (Hx, Hy, Hz)
reads as

d

dt
M = −γ′[M× (Heff + H)]+α′[[M× (Heff + H)]×M].

(1)
Here, the Cartesian components of the stochastic field
are independent Gaussian white noise variables,

〈Hi(t)〉 = 0, 〈Hi(t1)Hj(t2)〉 = 2D δij δ(t1 − t2) (2)

with i = x, y, z. Furthermore, γ′ = µ0γ0/(1 + α2),
α′ = γ′α with the dimensionless damping α = µ0γ0η
with a damping factor η and γ0 = 1.76 × 1011 Am2/Js
is the gyromagnetic ratio, while µ0 = 4π × 10−7 Tm/A
(or N/A2) is the vacuum permeability. We introduced
the unit vector of the magnetic moment, M = m/mS ,
where m stands for the magnetization vector of a single-
domain particle normalized by the saturation magnetic
moment, mS . For example, a typical value for the satu-
ration magnetic moment is mS ≈ 105 A/m for a single
crystal Fe3O4 [27]. In addition, D is a parameter which
corresponds to the fluctuation-dissipation theorem, e.g.
in Ref. [30], that is defined as D = ηkBT/(msV µ0) with
the Boltzmann factor, kB , the absolute temperature, T ,
and the volume of the particle, V . The angular brack-
ets stand for averaging over all possible realization of the
stochastic field, H(t), and δ(t) is the Dirac δ function.

Setting the stochastic field H(t) to zero yields the de-
terministic LLG equation. In case of an oscillating effec-
tive magnetic field, or more generally when the external
field depends on t through a function of ωt, then the de-
terministic LLG equation is invariant under the following
simultaneous transformations

ω → kω, t→ t/k, H → kH. (3)

Here, k is a well-chosen normalization parameter. It
is important to note, that the same is not true for the
stochastic LLG equation, since the stochastic field breaks
this symmetry. To preserve the form of the stochastic
LLG equation under these transformations, the temper-
ature should be rescaled as well T → kT .

The effective magnetic field contains the applied field
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which is the combination of static and oscillating ones:

Parallel oscillating: Heff = H
(

cos(ωt) + b0, 0, 0
)
, (4)

Perpendicular oscillating: Heff = H
(

cos(ωt), b0, 0
)
, (5)

where H and Hb0 stands for the amplitude of the applied
and the static fields, respectively.

Let us now discuss the parameters of the stochastic
LLG equation (1). In particular, we are interested in
parameters that can be used for medical applications,
i.e., which are suitable for magnetic hyperthermia. As
mentioned earlier, the product of the frequency and the
amplitude of the applied field has to be chosen to its
maximum since it is related to the power injected and we
want to keep it as much high as possible with respect to
the Hergt-Dutz limit. The upper bound of 5× 108 A/(m
s) is used as a safe operational guideline [8], however,
depending on the seriousness of the illness and the diam-
eter of the exposed body region this critical product may
be exceeded implying a higher upper bound of 5 × 109

A/(m s) [24]. Another, less strict upper limit can be
found in clinical applications [25], where the maximum
of the applied frequency is f = 100 kHz and the maxi-
mum field strength is H = 18 kA/m. Moreover, in the
experimental study of Bordelon et al. [26], relatively high
amplitudes of H = 100 kA/m at f = 150 kHz were uti-
lized. In this work, we choose the following upper limit:
ω = 2πf = 2000 kHz (i.e., f ≈ 300 kHz) and H = 18
kA/m.

In addition, it is useful to introduce the following
frequency-like parameters, ωL = Hγ′ and αN = Hα′.
The typical values for the damping parameter are α = 0.1
and α = 0.3, which are used in Ref. [31] and in Ref. [32],
respectively. Thus, if α = 0.1 is taken (and H = 18
kA/m), a good and typical choice for parameters suitable
for hyperthermia is ωL = 4×109 Hz and αN = 4×108 Hz.
The following dimensionless parameters can be intro-
duced to simplify the description:

ω → ωt0

ωL = Hγ′ → ωLt0

αN = Hα′ → αN t0, (6)

where the dimension has been rescaled by a suitably cho-
sen time parameter, t0. Here we use t0 = 0.5 × 10−10s.
In this case, with α = 0.1, the dimensionless parameters
are ωL ∼ 0.2, and αN ∼ 0.02. From now on, t0 will be
omitted and only ωL and αN will be noted.

If the solution (Msol) of the LLG equation is given,
then the energy loss in a single cycle can be determined
in the following way,

E = µ0mS

∫ 2π
ω

0

dt

(
Heff ·

dMsol

dt

)
. (7)

Let us note, that Eq. (7) contains the average magnetiza-
tion, M, of a single particle. The energy given by Eq. (7)

is identical to the area of the dynamical hysteresis loop,
and it is related to the imaginary part of the frequency-
dependent susceptibility. We will use these relations over
the discussions of the theoretical numerical results.

The product E ·f , where E is the energy and f the ap-
plied frequency, is related to the specific loss power (SLP)
or specific absorption rate (SAR), which has a dimension
of W/kg,

E · f ∝ SAR = SLP =
∆T c

t
. (8)

Here, ∆T is the temperature increment, c is the specific
heat, and t is the time of the heating period. From Eq. (8)
one can derive another useful quantity, the intrinsic loss
power (ILP),

ILP =
SAR

H2f
∝ E

H2
, (9)

which are used to compare experimental and theoretical
SAR values obtained for different values of f and H. In
the present work, our theoretical numerical results are
usually given for the dimensionless value,

E

2πµ0msH
∝ ILP . (10)

This can be derived from Eqs. (7) and (9), when the
amplitude H is kept constant. For varying H, the pro-
portionality only holds if the lhs. of Eq. (10) is divided
by H as in Eq. (9).

Our strategy is based on the numerical solution of the
stochastic LLG equation (1) which is independent of the
initial conditions of the magnetization vector. Once this
solution is determined, the energy loss per cycle can be
calculated by using Eq. (7). We plot this variation as a
function of the magnitude of the static field, b0. In this
way, we can compare the efficiency and the superlocaliza-
tion of the parallel (4) and the perpendicular (5) cases for
various parameters which are plotted in Fig. 3 and Fig. 6.

A. Vanishing static field

Let us first discuss the case of a vanishing static field.
On the upper panel of Fig. 1, the dynamic hysteresis
loops for various angular frequencies but at a fixed field
strength is presented. First of all, the shape and the area
of the loops depend on the frequency. It is also clear,
from the upper panel of Fig. 1, that an optimal value for
the frequency can be found, where the area of the hys-
teresis loop is the largest, i.e., one expects a peak of the
energy loss as a function of the applied frequency (for
fixed field strength).

Similar conclusions can be drawn from the lower panel
of Fig. 1, where dynamic hysteresis loops are given for
various field strengths, but for fixed frequency.

Similarly to the previous figure, the shape and the area
of the loops depend on the parameters of the applied
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FIG. 1: (Color online.) Dynamical hysteresis loops are given
(on the upper panel) for various angular frequencies of the
applied AC magnetic field while the amplitude (field strength)
is fixed, and (on the lower panel) for various field strengths of
the applied AC magnetic field while the frequency is fixed.

magnetic field, in this case, the field strength. One finds
parameters, where the shape of the loop is an ellipse (e.g.,
the blue-colored loop of the lower panel of Fig. 1), i.e., the
averaged magnetization vector of a single nanoparticle
has the following time dependence,

M = M0

(
cos(ωt− ϕ), 0, 0

)
. (11)

Thus, the computation of the imaginary, χ′′, and the real
part, χ′, of the magnetic AC susceptibility is straight-
forward. The imaginary part of the susceptibility is re-
lated to the energy loss (7), and is proportional to sinϕ,
while its real part is related to cosϕ. Furthermore, it
is also shown that for certain field strength and angular
frequency values, the shape of the loops differ from an
ellipse caused by the saturation effect. Since both the
shape and the area of the hysteresis loops are different,
the corresponding AC susceptibility has an unusual de-
pendence on the frequency and field strength.

In Fig. 2 the imaginary and the real parts of the AC
susceptibility are presented as a function of the applied

angular frequency (dimensionless). The field amplitude
in the upper and the lower panels are different, and it
is chosen to be identical to the corresponding panels of
Fig. 3. Thus, the field strength is a magnitude larger on
the lower panel of Fig. 2, compared to the value used in
the upper panel.
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0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

 d e t  χ' '   s t o c h  χ' '   s t o c h  χ'

AC
 su

sce
pti

bili
ty

ω

FIG. 2: (Color online.) The real and imaginary parts of the
AC susceptibility as a function of the applied (dimensionless)
angular frequency for α = 0.1. The field amplitude is chosen
to be identical to the curves presented in Fig. 3, i.e., on the
upper panel αN = 0.002, ωL = 0.02, and on the lower panel
αN = 0.02, ωL = 0.2. Dashed lines are the solution of the
deterministic LLG equation. The solid lines are fits to nu-
merical data based on the functions given by Eqs. (12) and
(13).

An important observation is that the imaginary and
real parts of the AC susceptibility of Fig. 2 agree well
with those presented in Fig. 2 of Ref. [35].

If a single relaxation process is present, the real and
imaginary parts of the complex magnetic susceptibility
simplify reduces to the following forms (see e.g., Eq. (4)
and Eq. (5) of Ref. [36]),

χ′(ω) = χ0
1

1 + ω2τ2
, (12)

χ′′(ω) = χ0
ωτ

1 + ω2τ2
. (13)

Here, the angular frequency dependence is thought to
be described by the relaxation time of the nanoparti-
cles, 1/τ = 1/τN + 1/τB , where the Néel and Brown
relaxation times are related to the motion of the mag-
netization with respect to the particles and the motion
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of the particle itself, respectively. Since relatively small
nanoparticles are considered, the motion of the particle
as a whole can be neglected, thus only the Néel process
counts and one can write τ ≈ τN . Eqs. (12) and (13) are
used to fit the numerical results obtained from the direct
solution of the stochastic LLG equation. The solid lines
of Fig. 2 stand for these fitted curves. The deterministic
LLG equation cannot reproduce the full curve described
by Eq. (13). However, for relatively large angular fre-
quencies, ω > 1/τ , it yields a quite accurate approxima-
tion, as noted by the dashed lines of Fig. 2.

The inset of the upper panel of Fig. 2 shows that the
ratio of the real and imaginary parts obtained by the di-
rect solution of the stochastic LLG equation is almost a
straight line in the low-frequency regime. Therefore, we
can conclude that the frequency-dependence of the sus-
ceptibility can be well described by Eqs. (12) and (13)
if the applied field strength is small. In other words, for
small field strength, the linear response theory can be ap-
plied for the results of the stochastic LLG equation. In
addition, our result gives τN ∼ 70 ns which is a typical
value for the Néel relaxation time for magnetic nanopar-
ticles [37].

However, a different result can be obtained if the ap-
plied field is large. Indeed, the inset of the lower panel of
Fig. 2 demonstrates that the ratio of the real and imagi-
nary parts obtained by the direct solution of the stochas-
tic LLG equation, has considerable deviations from the
straight line in the low-frequency range. Therefore, the
linear response theory seems to be an adequate approx-
imation only for relatively large frequencies and small
magnetic fields.

Accordingly, if the product of the frequency and the
field strength is kept constant (to satisfy the Hergt-Dutz
limit), the linear response theory cannot be applied for
small frequencies (and for large field strengths) which is
otherwise required for any medical treatments of mag-
netic hyperthermia.

B. Finite static field, superlocalization

Our main goal in this work is to consider whether the
superlocalization effect depends on the particular choice
of the parallel (4) and perpendicular (5) combinations
of static and oscillating fields. In particular, we study
how sharp the superlocalization is in the parallel and
perpendicular cases for various parameters.

As a first step, let us compare the superlocalization
of the parallel and perpendicular cases at relatively high
angular frequency (2 × 107Hz) and small field strength
(1.8 kA/m). In the upper panel of Fig. 3, the ILP of the
parallel (4) and the perpendicular (5) cases are plotted as
a function of the static field amplitude or more precisely,
b0. The figure shows a moderate polarisation effect, i.e.,
the superlocalization is better for the perpendicular case.

As a second step, we compare the superlocalization of
the parallel and perpendicular cases at small angular fre-
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FIG. 3: (Color online.) On the upper panel, we compare the
superlocalization effect of the parallel (4) and perpendicular
combination (5) of the static and oscillating fields averaged
over 34 cycles. We choose the following dimensionful parame-
ters, ω = 2×107 Hz, H = 1800 A/m where the dimensionless
damping is α = 0.1. On the lower panel, one finds the same
but the following dimensionful parameters suitable for hyper-
thermia, ω = 2 × 106 Hz, H = 18000 A/m.

quency (2×106Hz) and large field strength (18 kA/m), as
depicted in the lower panel of Fig. 3. The product of the
frequency and the field strength is the same in the upper
and lower panels of Fig. 3. An important observation is
that the superlocalization effect is more pronounced in
the lower panel of Fig. 3 than in the other case. In both
cases, the superlocaization is better for the perpendicular
combination.

Let us note, the presented theoretical results for the
parallel case (see the black curves of Fig. 3) agree well
with previous literature, see for example, Figs. 10.3 and
10.4 of the review [8]. Those figures are taken from
Ref. [15] where the results were obtained by solving the
Martensyuk, Raikher, and Shliomis (MRSh) equation.
Thus, Ref. [15] represents a different theoretical frame-
work which leads to the same superlocalization for the
parallel case, i.e., if the AC and DC (bias) magnetic fields
are parallel to each other, energy loss can only be ob-
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served if the magnitude of the DC field is smaller than
or identical to the AC field.

Concludingly, a considerable polarisation effect in su-
perlocalization of the parallel and perpendicular cases
in the range of hyperthermia is observed, i.e., for small
frequencies and large field strengths. We showed in the
previous subsection that this is the case where the linear
response theory cannot be applied.

The theoretical results presented in Fig. 3 suggest that
for magnetic hyperthermia the superlocalization effect is
much stronger if the static and the oscillating fields are
perpendicular to each other. Notably, the perpendicu-
lar combination seems to be a better choice for magnetic
hyperthermia as determined from calculations. As the
conclusion of our theoretical considerations is obtained
for a particular damping parameter, α = 0.1 and based
on various approximations, experimental verification is
required, which is discussed in the next section. Further-
more, it has to be shown whether our conclusion remains
unchanged if α is increased or decreased (of course within
a reliable range), which is considered in our last section
before the summary.

III. EXPERIMENTAL STUDY OF
SUPERLOCALIZATION

In this section, we describe the measurement setup and
the experimental determination of the power absorption
as a function of the static (DC) magnetic field for two
different orientations of the AC and DC fields.

A. Materials and Measurement Method

We used a FERROTEC EMG 705 commercial nano-
material sample with 65 mg enclosed in a capillary. We
employed the resonator-based approach to determine the
absorbed power as described in Refs. [33, 34]. The res-
onant circuit consists of a solenoid coil (containing the
sample) and 2 trimmer capacitors, presented in Fig. 4.
The resonator is inside the gap of an electromagnet that
can produce DC magnetic field (BDC) up to 0.6 T in a
stepwise manner. We measured the frequency-dependent
reflection from the resonator and the resulting resonance
curve yields directly the quality factor (Q) as a function
of BDC. The power absorbed by the sample can be cal-
culated from the quality factor [33] as:

Pabs = Pin(1−Q/Qsat), (14)

where Pin is the input power and Qsat is the quality fac-
tor when the sample magnetization is saturated, thus the
loss vanishes. We determined that Qsat matches that
of the empty cavity within experimental accuracy. This
method is non-invasive and is much less time-consuming
as compared to a more conventional calorimetric determi-
nation of the absorbed power. The calorimetric approach

FIG. 4: (Color online.) The setup of the measuring circuit.
The sample is placed inside the coil (L) and the 2 trimmer
capacitors (tuning, CT, and matching, CM) are used for set-
ting the 50 Ω impedance at the resonance frequency. It is
placed inside the gap of an electromagnet. The axis of the
coil can be rotated around a vertical axis, the AC magnetic
field can thus be perpendicular or parallel with respect to the
DC magnetic field (blue arrows).

requires the placement of a thermometer inside the sam-
ple and relatively large power densities to achieve rapid
sample heating, while the reflectometry can be measured
with a power of 1 mW or lower. The readout of Q is
also instantaneous (faster than 1 sec) while an accurate
calorimetric measurement requires consecutive heating
and cooling cycles.

The axis of the coil can be rotated around a vertical
axis, therefore the direction of the AC magnetic field can
be perpendicular or parallel with respect to the DC field.
We performed the measurements at 2 different power lev-
els, 0 dBm (1 mW) and 6 dBm (4 mW). In the latter case,
we placed a 6 dB attenuator in front of the detector to
avoid its saturation and the same detecting power. We
did not observe any dependence of the observed effects
as a function of the AC field strength. Our operating fre-
quency is 35 MHz due to technical reasons that is about
2 orders of magnitude larger than the optimal range for
hyperthermia as mentioned in Sec. I. We also note that
the electromagnet has a small remanent magnetic field
(between 4 and 6 mT depending on the magnetizing his-
tory), which however did not affect our conclusions.



7

7 4

7 6

7 8

8 0

8 2

                     
H A C   | |  H D C :             
H A C  ^  H D C :  Q 

fac
tor

0 . 0 0 . 1 0 . 2 0 . 30 . 0

0 . 1

� 0 H  ( T )

Lo
ss 

(ar
b. 

u.)

FIG. 5: (Color online.) The quality factor of the resonator
as a function of the DC magnetic field for two respective ori-
entations of the DC and AC fields. We observe a saturation
of the absorbed power for high magnetic fields and also an
orientation dependence. The lower panel shows the loss in
arbitrary units.

B. Experimental Results

Fig. 5 shows the change of the quality factor, Q of the
resonator as a function of the DC magnetic field. This
also enabled the determination of the loss as a function of
the magnetic field. We observe a gradual saturation of Q,
i.e., a switching-off of the loss above 0.1 T. In addition,
the loss data shows a marked anisotropy, i.e., it vanishes
slower for the geometry when the AC and DC magnetic
fields are perpendicular.

IV. COMPARISON OF THEORY END
EXPERIMENT

Now we try to put our results into practice and com-
pare the theoretical predictions with the measured data.
In the theoretical description, we use parameters that ap-
proximate the experimental conditions. We choose a less
powerful oscillating field H = 1 kA/m and a higher angu-
lar frequency of ω = 5×107 Hz. The damping parameter

α, is not fixed directly by the experimental setup, it is
thus a free parameter. If one takes α = 1.0 (which is
close to its usual value and is physically relevant), then
the dimensionless damping and dimensionless Larmor-
frequency becomes equal, αN = ωL = 0.0055. In ad-
dition, the dimensionless angular frequency is given by
ω = 0.0025. With these parameters, the theoretical pre-
dictions for the perpendicular and parallel configurations
become similar to each other, as shown in Fig. 6.

- 1 . 5 - 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5 αN = 0 . 0 0 5 5
ω L = 0 . 0 0 5 5
ω = 0 . 0 0 2 5

 p a r a l l e l  b 0
 p e r p e n d i c u l a r  b 0

 

 

E/(
2π

µ 0m
sH

) ∝
 IL

P  
 

b 0

FIG. 6: (Color online.) Theoretical predictions for αN =
0.0055, ωL = 0.0055, ω = 0.0025 which can be compared di-
rectly to the experimental results plotted in Fig. 5.

We conclude that theoretical predictions in Fig. 6 are
consistent with the experimental results presented in
Fig. 5 when the dimensionless damping parameter is dis-
played to be relatively large, i.e., α = 1.0. The overall
trend in the experimentally observed anisotropic loss can
be reproduced with our theoretical description. However,
the observed superlocalization effect is still much smaller
than that predicted for reasonable parameters in Fig. 3.
This is probably related to the relatively large value of
α = 1.0 and the high experimental frequency.

We believe that a much stronger superlocalization ef-
fect on the loss can be observed at lower frequencies and
for alternative ferrofluids which display a lower damping
parameter. This should motivate further experimental
investigations in this direction.

V. SUMMARY

In summary, we studied the stochastic Landau-
Lifshitz-Gilbert (LLG) equations for a particular geome-
try, i.e., when a simultaneously applied AC and DC mag-
netic fields have varying respective orientations. Our goal
was to study whether the loss in a hyperthermia-relevant
nanomagnetic material can be controlled with an exter-
nal DC magnetic field and its orientation. The theoret-
ical results predict a strong superlocalization effect on
the loss. This finding is valid for low-frequencies and
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relatively large field strengths where the linear response
theory cannot be applied. The magnetization vector fol-
lows the external magnetic field with almost no phase
shift. Thus, energy loss can only be observed if the ex-
ternal field vanishes. If the AC and DC magnetic fields
are parallel to each other, the magnitude of the DC field
should be smaller than or identical to the AC field to find
a zero applied field. If the AC and DC magnetic fields
have a perpendicular orientation, a very small DC field
is sufficient to result in a non-vanishing applied field, so
in this case, the superlocalization effect is much stronger
than in the parallel case. However, if the frequency is
high and the field strength is small, one expects a lin-
ear response, and almost identical superlocalization for
the two orientations. This was investigated experimen-
tally using a recently developed accurate measurement
method of the loss. The experimental data reproduced
the theoretically predicted trend for the anisotropy of the
superlocalization, however with a different magnitude.
The slight difference between the theoretical calculations
and the experimental results can be either due to i) the
MNPs are assumed to be isotropic and spherical and the
slight anisotropy, not treated here, might play a role. ii)
The Brown relaxation (mechanical rotation of the parti-
cle as a whole) was neglected, but this should only yield
a lower order correction; iii) The material studied in the
experiments might have some multidomain particles, as
well as clustered flakes which cannot be treated easily and
beyond the scope of the present investigation; (iv) The
parameters used in the theoretical predictions of Fig. 6
and in the experimental results of Fig. 5 are not identi-
cal but closer to each other, than those used in Fig. 3,
so, one expect a better agreement between Fig. 6 and

Fig. 5 which is indeed the case. Nonetheless, the pre-
sented theoretical results agree well with previous litera-
ture at lower frequencies. This can be probably assigned
to the large AC frequency in the experiment and a large
damping parameter.

Regarding future works let us discuss the validity of
our findings. We argued that the polarisation effect is
related to the breakdown of the linear response of the sys-
tem which happens for relatively large field strength and
small frequencies. If the field strength is much smaller
than the value used by us, linear response could work
even for low frequencies valid for hyperthermia. Thus,
our findings, i.e., the polarised superlocalization may not
hold in that case. However, in order to maximize the heat
transfer, the field strength and the frequency (and their
product) have to be chosen as high as possible. There-
fore, our finding is valid for those cases which are more
useful for hyperthermia. The detailed study of polarised
superlocalization for moderate or small field strengths are
reserved for future works.
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