Bending solution of third-order orthotropic Reddy plates with asymmetric interfacial crack

András Szekrényes*

Budapest University of Technology and Economics, Department of Applied Mechanics, Műegyetem rkp. 5, Building MM, 1111 Budapest, Hungary

A R T I C L E I N F O

Article history:
Received 31 July 2013
Received in revised form 10 March 2014
Available online 8 April 2014

Keywords:
Delamination
Energy release rate
Third-order plate
Mixed mode II/III fracture
J-integral

A B S T R A C T

In this paper Reddy’s third-order shear deformable plate theory is applied to asymmetrically delaminated orthotropic composite plates under antiplane–inplane shear fracture mode. A double-plate system is utilized to capture the mechanical behavior of the uncracked plate portion. An assumed displacement field is used and modified in order to satisfy the traction-free conditions at the top and bottom plate boundaries. Moreover, the system of exact kinematic conditions was also implemented into the novel plate model. An important improvement of this work compared to previous papers is the continuity condition of the shear strains at the interface of the double-plate system. Applying these conditions it is shown that the nineteen parameters of the third-order displacement field can be reduced to nine. Using the simplified displacement field the governing equations are derived, as well. The solution of a simply-supported delaminated plate is presented using the state-space model and the displacement, strain and stress fields are determined, respectively. The energy release rate and mode mixity distributions are calculated using the 3D J-integral. The analytical results are compared to those by finite element computations and it is concluded that the present model is the most accurate one among the previous plate theory-based approaches.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated composite materials have a very wide range of application, beginning with car and bodywork construction, sport industry, prosthetic devices, airplanes and continuing with wind turbines, ships, pressure vessels, etc. (see e.g: Giannis et al., 2008; Chirica et al., 2011; Chirica, 2013). In all of these applications the small weight/high stiffness property is utilized. Unfortunately laminated materials are susceptible to delamination fracture (Andrews et al., 2009; Zhou et al., 2013; Kiani et al., 2013; Marat-Mendes and Freitas, 2013), e.g. as a result of low velocity impact and free edge effect. The resistance to delamination is characterized by experimental tests under different fracture modes. The main parameters of linear elastic fracture mechanics (LEFM) are the stress intensity factor (SIF) (Hills et al., 1996; Cherepanov, 1997; Anderson, 2005) and energy release rate (ERR) (Adams et al., 2000; Anderson, 2005), respectively. The fracture tests are carried out on different type of delamination specimens including mode-I (Hamed et al., 2006; Sorensen et al., 2007; Islam and Kapania, 2011; Kim et al., 2011; Peng et al., 2011; Romhany and Szebenyi, 2012; Jumel et al., 2011a; Salem et al., 2013), mode-II (Kutnar et al., 2008; Arrese et al., 2010; Argüelles et al., 2011; Rizov and Mladensky, 2012; Mladensky and Rizov, 2013b; Jumel et al., 2013; Budzik et al., 2013), mixed-mode I/II (Szekrényes, 2007b; Nikbakht and Choupani, 2008; Yoshihara and Satoh, 2009; Bennati et al., 2009; Kenane et al., 2010; Jumel et al., 2011b; da Silva et al., 2011; Fernández et al., 2013; Bennati et al., 2013a; Bennati et al., 2013b), mode-III (Rizov et al., 2006; Szekrényes, 2009a; de Moura et al., 2009; Marat-Mendes and Freitas, 2009; de Morais and Pereira, 2009; de Morais et al., 2011; Pereira et al., 2011; Suemasu and Tanikado, 2012; Johnston et al., 2012; Mehrabadi and Khosravan, 2013), mixed-mode I/III (Szekrényes, 2009b; Pereira and de Morais, 2009) mixed-mode II/III (Szekrényes, 2007a; de Morais and Pereira, 2008; Suemasu et al., 2010; Ho and Tay, 2011; Kondo et al., 2010, 2011; Nikbakht et al., 2010; Szekrényes, 2012a; Suemasu and Tanikado, 2012; Miura et al., 2012; Mehrabadi, 2013; Mladensky and Rizov, 2013a) and mixed-mode I/II/III (Davidson et al., 2010; Szekrényes, 2011; Davidson and Sediles, 2011) tests, respectively. In the former works beam and plate specimens are applied. While for beams the closed-form solutions are...
available, for plates similar solutions exist only for some relatively simple systems (Lee and Tu, 1993; Saeedi et al., 2012a; Saedi et al., 2012b). This paper puts emphasis essentially on the application of plate theories in fracture mechanics under mixed-mode II/III condition. In this respect the classical laminted plate theory (CLPT) (Reddy, 2004; Kollár and Springer, 2003; Kumar and Lal, 2012), first-order (FSDT) (Reddy, 2004; Yu, 2005; Kharazi et al., 2010; Thai and Choi, 2013), second-order (SSDT) (Shahrjerdi et al., 2010, 2011), general third-order (TSDT) and Reddy’s third-order shear deformable theories are available (Reddy, 2004). These are the so-called equivalent single-layer theories (ESL). An important aspect of these approaches is that plane stress condition is assumed, therefore the transverse normal stress σ_z does not appear in the equations. The literature also offers the 3D elasticity solution and the layerwise or multilayer approaches (Reddy, 2004; Saeedi et al., 2012a,b; Batista, 2012; Ferreira et al., 2011; Massabò and Campi, 2013) (3D solutions). It has to be mentioned that there are some mixed analytical/numerical methods for the calculation of ERR in 3D structures (Sankar and Sonik, 1995; Davidson et al., 2000), as well. Concentrating on the pure analytical formulation of the problem of delaminated plates the precedents of the current work are the following:

- extension of the elastic interface model (e.g. Luo and Tong, 2009) for isotropic and orthotropic plates with midplane delamination (Szekrényes, 2012b, 2013b);
- application of classical, first-, second- and third-order plate theories to symmetrically delaminated orthotropic plates using interface constraints (Szekrényes, 2013a,c, in press);
- a refined model utilizing Reddy’s third-order shear deformable plate theory for midplane delaminated orthotropic plates (Szekrényes, 2014b);
- introduction of the system of exact kinematic conditions (SEKC) for first-order (Szekrényes, 2013d) and second-order plates with asymmetric delamination.

Based on these works it was shown that for plates with symmetric lay-up and midplane delamination the minimum requirement is the application of FSDT (Szekrényes, 2013a). Although the second- and third-order theories (Szekrényes, 2013c, in press, 2014b) provide some improvement, their main advantage can be exploited essentially if the delamination is not in the midplane of the plate. The latter case generates a complex strain and stress state around the delamination tip: the higher the order of the displacement field is, the higher the accuracy of the approach is. As a continuation of the previous researches, in this paper Reddy’s third-order theory is extended to orthotropic plates with asymmetric interfacial delamination. The analysis is based on the SEKC requirements, which are complemented with the continuity of shear strains at the interface plane of the top and bottom layers of the double-plate model. Fig. 1 shows the main aspects of the problems investigated in this paper. The laminated plate contains a through-width delamination, which is parallel to the $X\!-\!Y$ plane of the global coordinate system and in each case the direction of crack propagation is the global X axis. Four cases are presented in Fig. 1 including two different lay-ups. The governing equations are derived for asymmetrically delaminated plates and as an example a simply-supported plate is analyzed using the state-space formulation. The displacement and stress fields are determined and the distribution of the ERR along the delamination front is calculated by the 3D J-integral (e.g. Shivakumar and Raju, 1992; Mladensky and Rizov, 2013b). It is shown that the present approach is reasonable to obtain accurate results for asymmetrically delaminated plates.

2. The system of exact kinematic conditions

Let us assume a composite plate consisting of orthotropic plies, the plate contains an interfacial delamination between any plies as it is shown by Fig. 2. The local through-thickness coordinates are: $z^{(i)} \in (-t_i/2, t_i/2)$, $z^{(b)} \in (-t_b/2, t_b/2)$, where t_i and t_b are the thicknesses of the top and bottom layers. The global coordinates are denoted by X and Z. The delamination divides the plate into a top and a bottom plate element, each is modeled by ESLs. In the delaminated portion (see Fig. 2(b)) the displacement field is discontinuous in the plane of the delamination, the top and bottom layers of the delaminated part can be modeled by traditional plate theories. In contrast the displacement field is continuous in the undelaminated region. Therefore, in this section the kinematic continuity conditions between the top and bottom layers of the undelaminated plate portion are formulated. In fact, the problem can be solved by any plate theory. Whichever theory is used the assumed displacement field of the undelaminated plate portion has to satisfy certain kinematic conditions. First, the components of the displacement vector are continuous across the interface plane. The requirements are:

$$
\begin{align*}
(u_t, v_t, w_t)|_{z^{(i)}=z^{(b)}} &= (u_b, v_b, w_b)|_{z^{(i)}=z^{(b)}} \\
(u_t, v_t, w_t)|_{z^{(i)}=z^{(b)}} &= (u_b, v_b, w_b)
\end{align*}
$$

(1)

where u, v and w are the components of the displacement vector, moreover $z^{(i)}_b$ and $z^{(b)}_t$ are the positions of the reference planes of the top and bottom plates, respectively. Second, we choose a global reference plane given by z_R (see Fig. 2) in the uncracked region (similarly to plates without discontinuities, Reddy, 2004). Depending on the thicknesses of top and bottom plates this condition involves two cases:

$$
\begin{align*}
(\gamma_{xzt}, \gamma_{yzt})|_{z^{(i)}=z^{(b)}} &= (\gamma_{xzb}, \gamma_{yzb})|_{z=z^{(i)}+t_b-z^{(b)}} \\
(\gamma_{yzt})|_{z^{(i)}=z^{(b)}} &= (\gamma_{yzb})|_{z^{(i)}+t_b-z^{(b)}}
\end{align*}
$$

(2)

$$
\begin{align*}
&|_{z^{(i)}=z^{(b)}} \\
&|_{z^{(i)}=z^{(b)}} \\
&|_{z^{(i)}=z^{(b)}} \\
&|_{z^{(i)}=z^{(b)}}
\end{align*}
$$

(3)

Eqs. (1)-(3) are called the system of exact kinematic conditions (SEKC). As it is shown, there are seven conditions formulated. Since the neutral plane of laminated plates can be determined only in some particular cases (Nettles, 1991), it is convenient to choose the midplane of the plate to be the reference plane (Reddy, 2004, p. 113, Jones, 1999, p. 197). In this case Eqs. (1)-(3) reduce to:

$$
\begin{align*}
(u_t, v_t, w_t)|_{z^{(i)}=z^{(b)}} &= (u_b, v_b, w_b)
\end{align*}
$$

(4)

$$
\begin{align*}
&\leq t_f: (u_l|_{z^{(i)}=z^{(b)}} - u_0 = 0, \quad v_l|_{z^{(i)}=z^{(b)}} - v_0 = 0)
\\&\geq t_f: (u_l|_{z^{(i)}=z^{(b)}} - u_0 = 0, \quad v_l|_{z^{(i)}=z^{(b)}} - v_0 = 0)
\end{align*}
$$

(5)

$$
\begin{align*}
(\gamma_{xzt}, \gamma_{yzt})|_{z^{(i)}=z^{(b)}} &= (\gamma_{xzb}, \gamma_{yzb})|_{z^{(i)}+t_b-z^{(b)}}
\end{align*}
$$

(6)

In the sequel, the application of the SEKC to third-order Reddy plates is presented.
In this section we develop the displacement field and the governing equations of the uncracked plate portion, the delaminated part can be modeled by the traditional TSDT by Reddy (Reddy, 2004, p. 671). The inplane displacements in the undelaminated portion of general third-order plates can be written as:

\[u_d(x, y, z) = u_0(x, y) + u_0d(x, y) + h_xd(x, y)/C_1z(d) + h_yd(x, y)/C_2/C_3^2 + k_xd(x, y)/C_1z(d)/C_2/C_3^3 \]

\[v_d(x, y, z) = v_0(x, y) + v_0d(x, y) + h_yd(x, y)/C_1z(d)/C_2/C_3^2 + k_yd(x, y)/C_1z(d)/C_2/C_3^3 \]

where \(d \) takes \(t \) for the top and \(b \) for the bottom plate, respectively (refer to Fig. 2), furthermore \(z^{(0)} \) is the local coordinate, \(u_0 \) and \(v_0 \) are the global (through-thickness) constant parts of the displacement functions, \(u_{0t} \) and \(u_{0b} \) are the local constant parts (refer to \(u_{0t} \) and \(u_{0b} \) in Fig. 2), \(\theta_{0t} \) and \(\theta_{0b} \) are the rotations about the \(x \) and \(y \) axes, \(\phi_{0t} \) and \(\phi_{0b} \) are the parameters of the second-order, \(\lambda_{0t} \) and \(\lambda_{0b} \) are the parameters of the third-order terms, respectively. It should be highlighted that the local constant components (or membrane components, \(u_{0t} \) and \(u_{0b} \) in Fig. 2) are different in magnitude for the top and bottom plates. These are very important to satisfy the SEKC requirements. Based on the intersection points between the local reference planes with the curve of the through-thickness displacement distribution in Fig. 2(b) it can be seen that \(u_{0t} \) and \(u_{0b} \) should be different in magnitude (geometric consideration). The magnitude of the \(u_{0t} \) and \(u_{0b} \) parameters would be the same only for a plate with symmetric lay-up and midplane delamination (Szekrényes, 2014b). It is assumed (see Eq. 1) that the \(w(x, y) \) deflections of the top and bottom plates are the same, and so, we have nineteen parameters altogether. Utilizing Eqs. (4)–(6) and the first case in Eq. (5),
moreover taking the midplanes of the top and bottom plates to be
the membrane planes and finally using the
\[
\left(\gamma_{xz}, \gamma_{yz}\right)_{x_{m}, y_{m}} = \left(\gamma_{xz}, \gamma_{yz}\right)_{x_{m}, y_{m}} = 0
\]
(9)
conditions to ensure traction-free top and bottom surfaces (Reddy, 2004, p. 673) it is possible to eliminate ten from the nineteen parameters. However, we cannot choose arbitrarily that which ones of the displacement parameters are eliminated. The higher-order stress resultant denoted by \(\Phi\) (see later) plays an important role in Reddy's theory (Reddy, 2004, p. 704), therefore the corresponding parameters denoted by \(\lambda\) in Eqs. (7) and (8) must be untouched. On the other hand it is seen that the higher-order stress resultant denoted by \(L\) (Szekrényes, 2013c) is eliminated from Reddy's plate theory. Therefore, the corresponding two quadratic parameters, given by \(\phi\) can be eliminated. The next two parameters eliminated from Eqs. (7) and (8) are \(u_0\) and \(v_0\). Finally, the rotations of the top plate are also eliminated. Consequently, the remaining parameters are: \(u_0, v_0, \theta_{0b}, \theta_{0a}, \lambda_{xt}, \lambda_{yt}, \lambda_{xb}, \lambda_{yb}\) and the deflection \(w\), respectively. Based on these concepts and Eqs. (4)-(8) the displacement fields of the uncracked portion becomes:
\[
\{u\}_{1} = \{u_{0}\} + \{u_{1}\} \cdot z^{(t)} + \{u_{2}\} \cdot z^{(t)} + \{u_{3}\} \cdot z^{(t)}
\]
(10)
\[
\{u\}_{b} = \{u_{0}\} + \{u_{1}\} \cdot z^{(b)} + \{u_{2}\} \cdot z^{(b)} + \{u_{3}\} \cdot z^{(b)}
\]
(11)
where \(\{u\}_{T} = (u, v, \theta), \{u\}_{1T} = (u_{1}, v_{1}, \theta_{1T}), \) etc. Furthermore:
\[
\{u\}_{0} = \begin{bmatrix} u_{0} \\ v_{0} \end{bmatrix}, \quad \{u_{0}\}_{x} = \begin{bmatrix} \theta_{0b} \\ \theta_{0a} \end{bmatrix}, \quad \{u_{0}\}_{y} = \begin{bmatrix} \lambda_{xt} \\ \lambda_{yt} \end{bmatrix}, \quad \{u_{0}\}_{\gamma} = \begin{bmatrix} \lambda_{xb} \\ \lambda_{yb} \end{bmatrix}
\]
(12)
and:
\[
\{u\}_{10} = \begin{bmatrix} \theta_{0b} \\ \theta_{0a} \end{bmatrix}, \quad \{u\}_{1y} = \begin{bmatrix} \lambda_{xt} \\ \lambda_{yt} \end{bmatrix}, \quad \{u\}_{1\gamma} = \begin{bmatrix} \lambda_{xb} \\ \lambda_{yb} \end{bmatrix}
\]
(13)
where: \(\Delta = \frac{\pi^{2}}{2} (3t_{b}^{2} + t_{d} - t_{b}^{2}), \Phi_{t} = -\frac{1}{2} t_{b}^{2}, \Gamma_{t} = \frac{1}{2} (2t_{b} + t_{d}) / (5t_{b}^{2} - t_{d}^{2}), \lambda_{xt} = \frac{\pi^{2}}{2} (t_{b}^{2} + t_{d}^{2}), \lambda_{yt} = \frac{1}{2} (t_{b}^{2} + t_{d}^{2}), \lambda_{xb} = -\frac{1}{2}, \lambda_{yb} = -\frac{1}{2}, \Omega_{b} = \frac{1}{2}, \Psi_{b} = \frac{1}{2} t_{b}^{2}.
\]
It must be highlighted again that the SEK models essentially related to the uncracked portion of the plate. The parameters that were eliminated in Eqs. (10) and (11) \(u_0, v_0, \lambda_{xt}, \lambda_{yt}, \lambda_{xb}, \lambda_{yb} \) became the functions of the remaining parameters \(\theta_{0b}, \theta_{0a}, \lambda_{xt}, \lambda_{yt}, \lambda_{xb}, \lambda_{yb}\) and \(w\) in accordance with the second, third and fourth expressions in Eq. (12), moreover in accordance with the first and third expressions in Eq. (13). It is important that \(u_0\) are \(v_0\) are also remaining (independent) parameters.

The strain field is obtained by using the basic equations of linear elasticity (Chou and Pagano, 1967):
\[
\begin{bmatrix} e_{xx} \\ e_{yy} \\ e_{xy} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{bmatrix} + \begin{bmatrix} \lambda_{xt} \\ \lambda_{yt} \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \end{bmatrix} + \begin{bmatrix} \lambda_{xb} \\ \lambda_{yb} \end{bmatrix} \begin{bmatrix} e_{xy} \\ e_{yx} \end{bmatrix}
\]
(14)
\[
\begin{bmatrix} \gamma_{xx} \\ \gamma_{yy} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \lambda_{xt} \\ \lambda_{yt} \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \end{bmatrix} + \begin{bmatrix} \lambda_{xb} \\ \lambda_{yb} \end{bmatrix} \begin{bmatrix} e_{xy} \\ e_{yx} \end{bmatrix}
\]
(15)
where the terms with superscript “0” are the constant strains:
\[
\begin{bmatrix} e_{0x} \\ e_{0y} \\ e_{0xy} \end{bmatrix} = \begin{bmatrix} \lambda_{xt} \\ \lambda_{yt} \end{bmatrix} \begin{bmatrix} e_{0x} \\ e_{0y} \end{bmatrix} + \begin{bmatrix} \lambda_{xb} \\ \lambda_{yb} \end{bmatrix} \begin{bmatrix} e_{0xy} \\ e_{0yx} \end{bmatrix}
\]
(16)
The first-, second- and third-order strains are defined as:
\[
\begin{bmatrix} e_{1x} \\ e_{1y} \\ e_{1xy} \end{bmatrix} = \begin{bmatrix} \lambda_{xt} \\ \lambda_{yt} \end{bmatrix} \begin{bmatrix} e_{1x} \\ e_{1y} \end{bmatrix} + \begin{bmatrix} \lambda_{xb} \\ \lambda_{yb} \end{bmatrix} \begin{bmatrix} e_{1xy} \\ e_{1yx} \end{bmatrix}
\]
(17)
\[
\begin{bmatrix} e_{2x} \\ e_{2y} \\ e_{2xy} \end{bmatrix} = \begin{bmatrix} \lambda_{xt} \\ \lambda_{yt} \end{bmatrix} \begin{bmatrix} e_{2x} \\ e_{2y} \end{bmatrix} + \begin{bmatrix} \lambda_{xb} \\ \lambda_{yb} \end{bmatrix} \begin{bmatrix} e_{2xy} \\ e_{2yx} \end{bmatrix}
\]
(18)
\[
\begin{bmatrix} e_{3x} \\ e_{3y} \\ e_{3xy} \end{bmatrix} = \begin{bmatrix} \lambda_{xt} \\ \lambda_{yt} \end{bmatrix} \begin{bmatrix} e_{3x} \\ e_{3y} \end{bmatrix} + \begin{bmatrix} \lambda_{xb} \\ \lambda_{yb} \end{bmatrix} \begin{bmatrix} e_{3xy} \\ e_{3yx} \end{bmatrix}
\]
(19)
\[
\begin{bmatrix} \gamma_{1x} \\ \gamma_{1y} \end{bmatrix} = \begin{bmatrix} \lambda_{xt} \\ \lambda_{yt} \end{bmatrix} \begin{bmatrix} \gamma_{1x} \\ \gamma_{1y} \end{bmatrix} + \begin{bmatrix} \lambda_{xb} \\ \lambda_{yb} \end{bmatrix} \begin{bmatrix} \gamma_{1xy} \\ \gamma_{1yx} \end{bmatrix}
\]
(20)
Finally the shear strains are given by the following equations:
\[
\begin{bmatrix} \gamma_{s0x} \\ \gamma_{s0y} \end{bmatrix} = \begin{bmatrix} \theta_{x} + \frac{\partial w}{\partial x} \end{bmatrix} + \begin{bmatrix} \lambda_{xt} \end{bmatrix} \begin{bmatrix} \gamma_{s0x} \\ \gamma_{s0y} \end{bmatrix}
\]
(21)
\[
\begin{bmatrix} \gamma_{s1x} \\ \gamma_{s1y} \end{bmatrix} = \begin{bmatrix} \theta_{x} + \frac{\partial w}{\partial x} \end{bmatrix} + \begin{bmatrix} \lambda_{xt} \end{bmatrix} \begin{bmatrix} \gamma_{s1x} \\ \gamma_{s1y} \end{bmatrix}
\]
(22)
\[
\begin{bmatrix} \gamma_{s2x} \\ \gamma_{s2y} \end{bmatrix} = \begin{bmatrix} \theta_{x} + \frac{\partial w}{\partial x} \end{bmatrix} + \begin{bmatrix} \lambda_{xt} \end{bmatrix} \begin{bmatrix} \gamma_{s2x} \\ \gamma_{s2y} \end{bmatrix}
\]
(23)
\[
\begin{bmatrix} \gamma_{s11} \\ \gamma_{s12} \end{bmatrix} = 2\Omega_{b} \begin{bmatrix} \theta_{x} + \frac{\partial w}{\partial x} \end{bmatrix} + 2\Psi_{b} \begin{bmatrix} \lambda_{xt} \end{bmatrix} \begin{bmatrix} \gamma_{s11} \\ \gamma_{s12} \end{bmatrix}
\]
(24)
\[
\begin{bmatrix} \gamma_{s21} \\ \gamma_{s22} \end{bmatrix} = 3 \begin{bmatrix} \lambda_{xt} \end{bmatrix} \begin{bmatrix} \gamma_{s21} \\ \gamma_{s22} \end{bmatrix}
\]
(25)
The relationship among the stress resultants and the strain field parameters of third-order plates is (Reddy, 2004):

\[
\frac{\partial N_{x y}}{\partial x} + \frac{\partial N_{y x}}{\partial y} + \Phi_1 \left(\frac{\partial N_{x y}}{\partial x} + \frac{\partial N_{y x}}{\partial y} \right) + \Phi_2 \left(\frac{\partial N_{y b}}{\partial x} + \frac{\partial N_{y b}}{\partial y} \right) + \Pi \left(\frac{\partial M_{x y}}{\partial x} + \frac{\partial M_{y x}}{\partial y} \right) = 0
\]

(26)

Moreover, \(\{N(x)\} \) is the vector of third-order in-plane forces, \(\{M(x)\} \) is the vector of bending and twisting moments, \(\{Q(x)\} \) is the vector of transverse shear forces, and finally \(\{P(x)\} \) are the vectors of higher-order stress resultants. The stress resultants are defined as:

\[
\begin{align*}
\{N_{x y}\} &= \int_{z_0}^{z_1} \sigma_{x y} \left(\begin{array}{c} 1 \\ z \\ z^2 \end{array} \right) \, dz \\
\{M_{x y}\} &= \int_{z_0}^{z_1} \sigma_{x z} \left(\begin{array}{c} 1 \\ z \\ z^2 \end{array} \right) \, dz \\
\{Q_{x y}\} &= \int_{z_0}^{z_1} \sigma_{x z} \left(\begin{array}{c} 1 \\ z \\ z^2 \end{array} \right) \, dz \\
\{S_{x y}\} &= \int_{z_0}^{z_1} \sigma_{x z} \left(\begin{array}{c} 1 \\ z \\ z^2 \end{array} \right) \, dz \\
\end{align*}
\]

(27)

where the symbols \(x \) and \(\beta \) take \(x \) or \(y \). The extensional, coupling, bending and higher-order stiffnesses can be defined as (Reddy, 2004):

\[
\begin{align*}
\{A_{i j}\} &= \sum_{k=1}^{N_i} \int_{z_k}^{z_{k+1}} \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz \\
\{B_{i j}\} &= \sum_{k=1}^{N_i} \int_{z_k}^{z_{k+1}} \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz \\
\{D_{i j}\} &= \sum_{k=1}^{N_i} \int_{z_k}^{z_{k+1}} \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz \\
\{E_{i j}\} &= \sum_{k=1}^{N_i} \int_{z_k}^{z_{k+1}} \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz \\
\{G_{i j}\} &= \sum_{k=1}^{N_i} \int_{z_k}^{z_{k+1}} \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz \\
\{H_{i j}\} &= \sum_{k=1}^{N_i} \int_{z_k}^{z_{k+1}} \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz \\
\end{align*}
\]

(30)

The stiffnesses above are calculated with respect to the local reference planes of the top and bottom plates (refer to Fig. 2). The application of the principle of virtual work (Reddy, 2004, p. 674) makes it possible to obtain the Euler–Lagrange equations (equilibrium equations) in the following forms:

\[
\frac{\partial N_{x x}}{\partial x} + \frac{\partial N_{y y}}{\partial y} + \frac{\partial N_{x y}}{\partial y} + \frac{\partial N_{y x}}{\partial x} = 0
\]

(31)

\[
\frac{\partial N_{x y}}{\partial x} + \frac{\partial N_{y y}}{\partial y} + \frac{\partial N_{x y}}{\partial y} + \frac{\partial N_{y x}}{\partial x} = 0
\]

(32)

\[
\frac{\partial P_{x}}{\partial x} + \frac{\partial P_{y}}{\partial y} + \Phi_1 \left(\frac{\partial N_{x y}}{\partial x} + \frac{\partial N_{y x}}{\partial y} \right) + \Phi_2 \left(\frac{\partial N_{y b}}{\partial x} + \frac{\partial N_{y b}}{\partial y} \right) + \Pi \left(\frac{\partial M_{x y}}{\partial x} + \frac{\partial M_{y x}}{\partial y} \right) - \Pi Q_{x y} - 3S_{x y} = 0
\]

(33)

As it can be seen there is significant coupling among the stress resultants. Taking Eqs. (26) and (27) back into (31)–(39) we obtain the governing PDE system in terms of the displacement parameters:

\[
\begin{align*}
\frac{\partial U_{i}}{\partial x} &= 0, \quad \frac{\partial U_{j}}{\partial x} = 0 \\
\frac{\partial U_{i}}{\partial y} &= 0, \quad i = 3, 4, \quad \frac{\partial U_{j}}{\partial x} + q = 0 \quad (43)
\end{align*}
\]

where \(q = q(x, y) \) is the function of external load, moreover:

\[
\begin{align*}
M_1 &= (a_1 \ldots a_{14})^T, \quad M_2 = (b_1 \ldots b_{14})^T \\
M_3 &= \begin{pmatrix}
21 & \ldots & c_{18} \\
c_1 & \ldots & c_{18}
\end{pmatrix}, \quad M_4 = \begin{pmatrix}
21 & \ldots & c_{18} \\
c_1 & \ldots & c_{18}
\end{pmatrix} \\
M_5 &= (f_1 \ldots f_{27})^T
\end{align*}
\]

(44)

where the constants denoted by \(a-h \) and \(j \) are given in Appendix A. The vectors \(U_i, i = 1, 2, 3, 4 \) and 5 are defined as:
4. Bending solution for a simply-supported plate

This section presents the solution for a simply-supported delaminated orthotropic plate depicted in Fig. 3 subject to a point force. In accordance with Lévy plate formulation (e.g. Reddy, 2004; Thai and Kim, 2012) the displacement parameters are approximated by trial functions:

\[
\begin{align*}
U_1 &= \begin{bmatrix} \phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \\
\phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \\
\phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \\
\phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \\
\phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \\
\phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \\
\phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \\
\phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \\
\phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \\
\phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \end{bmatrix}^T \\
U_2 &= \begin{bmatrix} \phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \end{bmatrix}^T \\
U_3 &= \begin{bmatrix} \phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \end{bmatrix}^T \\
U_4 &= \begin{bmatrix} \phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \end{bmatrix}^T \\
U_5 &= \begin{bmatrix} \phi_{n0}^x & \phi_{n0}^y & \phi_{n0}^\theta & \phi_{n0}^\lambda & \phi_{n0}^\lambda & \phi_{n0}^\chi & \phi_{n0}^\psi & \phi_{n0}^\chi & \phi_{n0}^\psi \end{bmatrix}^T
\end{align*}
\]

where \(\beta = n\pi / b \). The state-space model is used to solve the system of differential equations for both the delaminated and uncrazed plate portions.

4.1. Undelaminated plate portion

For the undelaminated plate portion the model developed in Sections 2 and 3 is utilized. The general form of the state-space model is:

\[
Z^{(ud)} = T^{(ud)} Z^{(ud)} + F^{(ud)}
\]

where the superscript \((ud)\) refers to the undelaminated plate portion and \(T \) is the system matrix, \(F \) is the vector of particular solutions, respectively. Utilizing Eq. (50) and taking it back into Eq. (43) results in a system of ODEs. The latter should be manipulated so that each equation contains the second derivative of only one displacement parameter. Then the system matrix \(T^{(ud)} \) takes the form of:

\[
T^{(ud)} = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
k_1 & 0 & 0 & k_2 & k_3 & 0 & 0 & k_4 & k_5 & 0 & 0 & k_6 & k_7 & 0 & 0 & k_8 & 0 & k_9 & 0 & k_10
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & l_1 & l_2 & 0 & 0 & l_3 & l_4 & 0 & 0 & l_5 & l_6 & 0 & 0 & l_7 & k_8 & 0 & l_9 & 0 & l_10 & 0
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
m_1 & 0 & m_2 & 0 & 0 & m_3 & 0 & m_4 & 0 & m_5 & 0 & m_6 & m_7 & 0 & 0 & m_8 & 0 & m_9 & 0 & m_{10}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & n_1 & n_2 & 0 & 0 & n_3 & n_4 & 0 & 0 & n_5 & n_6 & 0 & 0 & n_7 & n_8 & 0 & n_9 & 0 & n_{10}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & q_1 & q_2 & 0 & 0 & q_3 & q_4 & 0 & 0 & q_5 & q_6 & 0 & 0 & q_7 & q_8 & 0 & q_9 & 0 & q_{10}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & r_1 & 0 & 0 & r_2 & r_3 & 0 & 0 & r_4 & r_5 & 0 & 0 & r_6 & r_7 & 0 & 0 & r_8 & 0 & r_9 & 0 & r_{10}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & s_1 & s_2 & 0 & 0 & s_3 & s_4 & 0 & 0 & s_5 & s_6 & 0 & 0 & s_7 & s_8 & 0 & s_9 & 0 & s_{10}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & t_1 & t_2 & 0 & 0 & t_3 & t_4 & 0 & 0 & t_5 & t_6 & 0 & t_7 & 0 & t_8 & 0 & t_{10}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
where the elements of the matrix are constants depending on the top and bottom thicknesses, as well as the stiffness parameters of the plates. These are listed in Appendix B. The state vector and the vector of particular solutions are defined as:

\[
Z^{(ud)} = \{ U_0 \quad U'_0 \quad V_0 \quad V'_0 \quad X_{nb} \quad X'_{nb} \quad Y_{nb} \quad Y'_{nb} \quad Z_{xnb} \quad Z'_{xnb} \quad Z_{ynb} \quad Z'_{ynb} \quad Z_{xnb} \quad Z'_{xnb} \quad Z_{ynb} \quad Z'_{ynb} \quad W_n \quad W'_n \quad W''_n \quad W'''_n \}^T
\]

(53)

\[\mathbf{E}^{(ud)} = \begin{bmatrix} 0 & \ldots & 0 & t_0 Q_n \end{bmatrix}^T \]

The general solution of Eq. (51) is (Reddy, 2004):

\[
Z^{(ud)}(x) = e^{\lambda x} \left(\mathbf{K}^{(ud)} + \int_0^x e^{\lambda \zeta} \mathbf{F}^{(ud)}(\zeta) d\zeta \right)
\]

\[
= e^{\lambda x} \mathbf{K}^{(ud)} + \mathbf{F}^{(ud)}(x)
\]

(55)

where \(\mathbf{K} \) is the vector of constants (20).

4.2. Delaminated plate portion

The state-space model of the delaminated portion can be derived relatively simply based on Szekrényes (2014b). In the delaminated part (see Fig. 2) the SEKC does not enforce the two sub-plates to behave as a single plate, the parameters \((u_{ud}, v_{ud}, \theta_{ud}, \theta_{ud}, \ldots)\) of the top and bottom plates in the delaminated part are independent of each other. Since the in-plane displacement functions are discontinuous in the delaminated region we can apply two (a top and a bottom) traditional ESIs for each region (‘1a’, ‘1q’, ‘1’ and the undelaminated one is denoted by ‘2’, respectively. The boundary conditions (B.C.s) are formulated through the displacement parameters and the stress resultants. The latter can be expressed in the following forms:

\[
\begin{bmatrix} N_x \\ N_y \\ M_x \\ M_y \\ L_x \\ L_y \end{bmatrix}^{(a)} = \begin{bmatrix} n_{x} \\ n_{y} \\ m_{x} \\ m_{y} \\ l_{x} \\ l_{y} \end{bmatrix} \sin \beta y \quad \begin{bmatrix} P_x \\ P_y \\ Q_x \\ R_x \\ S_x \end{bmatrix}^{(a)} = \begin{bmatrix} p_{x} \\ p_{y} \\ q_{x} \\ r_{x} \\ s_{x} \end{bmatrix} \sin \beta y
\]

\[
\begin{bmatrix} N_{xy} \\ M_{xy} \\ L_{xy} \end{bmatrix}^{(a)} = \begin{bmatrix} n_{xy} \\ m_{xy} \\ l_{xy} \end{bmatrix} \cos \beta y \quad \begin{bmatrix} Q_y \\ R_y \\ S_y \end{bmatrix}^{(a)} = \begin{bmatrix} q_{y} \\ r_{y} \\ s_{y} \end{bmatrix} \cos \beta y
\]

(57)

5. Boundary and continuity conditions

The elements of the state vectors in Eq. (51) and that of the delaminated part can be referred to as:

In accordance with Fig. 3, we have four different plate portions. The point force causes singularity in the PDEs, therefore a plate portion loaded by a constant line force was applied, the length \(d_0\) was a very small value compared to the plate dimensions. In this case \(Q_n = 2q_{b}/bsin(\beta \delta_0)\) (Reddy, 2004), which was applied in the delaminated portion ‘1q’. Thus the three parts of the delaminated portion are denoted by ‘1a’, ‘1q’, ‘1’ and the undelaminated one is denoted by ‘2’, respectively. The boundary conditions (B.C.s) are formulated through the displacement parameters and the stress resultants. The latter can be expressed in the following forms:

\[
\begin{bmatrix} N_x \\ N_y \\ M_x \\ M_y \\ L_x \\ L_y \end{bmatrix}^{(a)} = \begin{bmatrix} n_{x} \\ n_{y} \\ m_{x} \\ m_{y} \\ l_{x} \\ l_{y} \end{bmatrix} \sin \beta y \quad \begin{bmatrix} P_x \\ P_y \\ Q_x \\ R_x \\ S_x \end{bmatrix}^{(a)} = \begin{bmatrix} p_{x} \\ p_{y} \\ q_{x} \\ r_{x} \\ s_{x} \end{bmatrix} \sin \beta y
\]

\[
\begin{bmatrix} N_{xy} \\ M_{xy} \\ L_{xy} \end{bmatrix}^{(a)} = \begin{bmatrix} n_{xy} \\ m_{xy} \\ l_{xy} \end{bmatrix} \cos \beta y \quad \begin{bmatrix} Q_y \\ R_y \\ S_y \end{bmatrix}^{(a)} = \begin{bmatrix} q_{y} \\ r_{y} \\ s_{y} \end{bmatrix} \cos \beta y
\]

(58)
\[W_{n}^{10}(a) = 0, \quad W_{n}^{01}(a) = 0, \quad Y_{n}^{10}(a) = 0 \] (59)

\[V_{n}^{10}(a) = 0, \quad n_{n}^{10}(a) = 0, \quad m_{n}^{10}(a) = 0 \]

\[W_{n}^{20}(-c) = 0, \quad V_{n}^{20}(-c) = 0, \quad Y_{n}^{20}(-c) = 0 \] (60)

\[Z_{n}^{20}(-c) = 0, \quad n_{n}^{20}(-c) = 0, \quad m_{n}^{20}(-c) = 0, \quad p_{n}^{20}(a) = 0 \]

where \(\delta \) can take \(t \) and \(h \), and so some of the equations involve two conditions, we have 20 B.C.s altogether. The continuity conditions between regions ‘1’ and ‘2’ are (considering Eqs. (10) and (11)):

\[W_{n}^{20}(0) = W_{n}^{10}(0), \quad W_{n}^{11}(0) = W_{n}^{21}(0) \] (61)

\[U_{n}^{00}(0) = U_{n}^{10}(0) + (\Delta x_{nt}^{2} + \Delta y_{nt}^{2} + \Delta z_{nt}^{2} + \Delta \beta W_{n}^{20}(0))_{x=0} \] (62)

\[V_{n}^{00}(0) = V_{n}^{10}(0) + (\Delta y_{nt}^{2} + \Delta z_{nt}^{2} + \Delta \beta W_{n}^{20}(0))_{x=0} \] (63)

\[X_{n}^{00}(0) = X_{n}^{10}(0), \quad Y_{n}^{01}(0) = Y_{n}^{20}(0), \]

\[-\frac{4}{3t_{b}}(X_{n}^{10}(0) + W_{n}^{10}(0))_{x=0} = Z_{n}^{20}(0), \quad -\frac{4}{3t_{b}}(Y_{n}^{10}(0) + \beta W_{n}^{10}(0))_{x=0} = Z_{n}^{20}(0) \] (64)

As it can be seen, there is no need to impose continuity conditions with respect to \(X_{n}^{10} \) and \(Y_{n}^{10} \) (these are related to the delaminated portion and not eliminated from the displacement field). The reasons for that are the last two conditions of Eq. (64), which cause the continuity of \(X_{n}^{10} \) and \(Y_{n}^{10} \) is automatically satisfied. The continuity conditions of the stress resultants must consider the coupling among them, therefore the equivalent stress resultants given by Eq. (40) are used:

\[n_{n}^{10}(a) = n_{n}^{20}(a), \quad n_{n}^{11}(a) = n_{n}^{21}(a) \] (65)

\[m_{n}^{10}(a), \quad m_{n}^{11}(a) \]

\[m_{n}^{10}(\frac{4}{3t_{b}}P_{n}^{10}(a))_{x=0} = m_{n}^{20}(\frac{4}{3t_{b}}P_{n}^{20}(a))_{x=0} \] (66)

\[m_{n}^{11}(\frac{4}{3t_{b}}P_{n}^{11}(a))_{x=0} = m_{n}^{21}(\frac{4}{3t_{b}}P_{n}^{21}(a))_{x=0} \]

\[m_{n}^{10}(\frac{4}{3t_{b}}P_{n}^{10}(a))_{x=0} = m_{n}^{20}(\frac{4}{3t_{b}}P_{n}^{20}(a))_{x=0} \]

As it can be seen, we can formulate 20 continuity conditions between regions ‘1’ and ‘2’. It is important to mention that there are two continuity conditions with respect to the sum \(N_{q} \) and \(M_{q} \) normal forces. Therefore the normal forces are not continuous across the cracked and uncracked portions. The magnitude of normal forces is determined by the kinematic continuity conditions. The continuity between the ‘1’ and ‘1q’ portions involves 20 conditions:

\[W_{n}^{10}(x_{0}) = W_{n}^{11}(x_{0}), \quad W_{n}^{10}(x_{0}) = W_{n}^{11}(x_{0}) \] (68)

\[U_{n}^{10}(x_{0}) = U_{n}^{11}(x_{0}), \quad X_{n}^{10}(x_{0}) = X_{n}^{11}(x_{0}) \]

\[V_{n}^{10}(x_{0}) = V_{n}^{11}(x_{0}), \quad Y_{n}^{10}(x_{0}) = Y_{n}^{11}(x_{0}) \]

\[n_{n}^{10}(x_{0}) = n_{n}^{11}(x_{0}), \quad n_{n}^{20}(x_{0}) = n_{n}^{21}(x_{0}) \]

\[m_{n}^{10}(\frac{4}{3t_{b}}P_{n}^{10}(a))_{x=x_{0}} = m_{n}^{20}(\frac{4}{3t_{b}}P_{n}^{20}(a))_{x=x_{0}} \] (69)

\[m_{n}^{11}(\frac{4}{3t_{b}}P_{n}^{11}(a))_{x=x_{0}} = m_{n}^{21}(\frac{4}{3t_{b}}P_{n}^{21}(a))_{x=x_{0}} \]

where \(x_{0} = x_{d} - d_{o} \). Further 20 conditions can be derived between ‘1q’ and ‘1a’, these are similar to those in Eq. (60), therefore these are not presented here. Thus we have \(20 + 20 + 20 + 20 = 80 \) conditions in all.

6. Energy release rate and mode mixity

The ERR can be determined based on the 3D \(J \)-integral (Murakami and Sato, 1983; Shivakumar and Raju, 1992). The \(J \)-integral have already been determined for first- and second-order plates with asymmetric delamination (Szekrényes, 2013d), therefore only the final results are presented here:

\[J_{f} = \frac{1}{2} \sum_{a=1}^{2} \left\{ \left(N_{y_{1}}E_{y_{1}}^{(0)} - N_{y_{2}}E_{y_{2}}^{(0)} \right)_{x=0} \right\} \]

\[-\left(N_{y_{1}}E_{y_{1}}^{(0)} - N_{y_{2}}E_{y_{2}}^{(0)} \right)_{x=0} + \left(M_{x_{1}}E_{x_{1}}^{(1)} - M_{x_{2}}E_{x_{2}}^{(1)} \right)_{x=0} \]

\[-\left(M_{y_{1}}E_{y_{1}}^{(1)} - M_{y_{2}}E_{y_{2}}^{(1)} \right)_{x=0} + \left(L_{x_{1}}E_{x_{1}}^{(2)} - L_{x_{2}}E_{x_{2}}^{(2)} \right)_{x=0} \]

\[-\left(L_{y_{1}}E_{y_{1}}^{(2)} - L_{y_{2}}E_{y_{2}}^{(2)} \right)_{x=0} + \left(P_{x_{1}}E_{x_{1}}^{(3)} - P_{x_{2}}E_{x_{2}}^{(3)} \right)_{x=0} \]

\[-\left(P_{y_{1}}E_{y_{1}}^{(3)} - P_{y_{2}}E_{y_{2}}^{(3)} \right)_{x=0} \] (70)

and:

Table 1	Elastic properties of single carbon/epoxy composite laminates.								
\(\pm 45^\circ \)	16.39	16.39	16.4	5.46	5.46	16.4	0.5	0.5	0.3
0°	148	9.65	9.65	4.91	4.66	3.71	0.27	0.25	0.3
Fig. 4. Distribution of the in-plane displacements (u and v), normal stresses (σx and σy) and shear stresses (τxz and τyz) over the plate thickness for case I, b = 160 mm, lay-up: ±45°/0°/±45°/0°.

Fig. 5. Distribution of the in-plane displacements (u and v), normal stresses (σx and σy) and shear stresses (τxz and τyz) over the plate thickness for case II, b = 160 mm, lay-up: ±45°/0°/±45°/0°.
Fig. 6. Distribution of the in-plane displacements (u and v), normal stresses (σ_x and σ_y) and shear stresses (τ_{xz} and τ_{yz}) over the plate thickness for case III, $b = 160$ mm, lay-up: $\pm 45\%/0\%/\pm 45\%/0\%
$.

Fig. 7. Distribution of the in-plane displacements (u and v), normal stresses (σ_x and σ_y) and shear stresses (τ_{xz} and τ_{yz}) over the plate thickness for case IV, $b = 160$ mm, lay-up: $\pm 45\%/0\%/\pm 45\%/0\%$.

\[J_{III} = \frac{1}{2} \sum_{k=1}^{2} \left\{ \begin{array}{l} N_{y_1 y_2 y_3 y_4} \bigg|_{x=k} - N_{y_1 y_2 y_3 y_4} \bigg|_{x=-k} \\ M_{y_1 y_2 y_3 y_4} \bigg|_{x=k} - M_{y_1 y_2 y_3 y_4} \bigg|_{x=-k} \\ L_{y_1 y_2 y_3 y_4} \bigg|_{x=k} - L_{y_1 y_2 y_3 y_4} \bigg|_{x=-k} \\ P_{y_1 y_2 y_3 y_4} \bigg|_{x=k} - P_{y_1 y_2 y_3 y_4} \bigg|_{x=-k} \end{array} \right\} \] (71)

where the shear strains with the hat are defined as:

\[\hat{\gamma}_{x y}^{(0)} = \frac{\partial u_0}{\partial y} - \frac{\partial v_0}{\partial x}, \quad \hat{\gamma}_{x y}^{(1)} = \frac{\partial \theta_x}{\partial y} - \frac{\partial \theta_y}{\partial x}, \quad \hat{\gamma}_{x y}^{(2)} = \frac{\partial \theta_x}{\partial y} - \frac{\partial \theta_y}{\partial x} \] (72)

Under static conditions \(G_{II} = J_{II} \) and \(G_{III} = J_{III} \). The mode mixity \((G_{II}/(G_{II} + G_{III})) \) and \((G_{III}/(G_{II} + G_{III})) \) can also be calculated.

7. Results and discussions

In this section simply-supported plates with two different plate widths are analyzed with the following properties (refer to Fig. 2): \(a = 105 \text{ mm (crack length)}, c = 45 \text{ mm (uncracked length), } b = 100 \text{ mm and } b = 160 \text{ mm (plate widths), } t_t + t_b = 4.5 \text{ mm (plate thickness), } Q_0 = 1000 \text{ N (point force magnitude), } x_0 = 31 \text{ mm, } y_0 = 50 \text{ mm and } y_0 = 80 \text{ mm (point of action coordinates of } Q_0) \text{ and } d_0 = 0.1 \text{ mm. The plate is made of a carbon/epoxy material, two different lay-ups were investigated: the lay-ups of the uncracked part were } [\pm 45^\circ/0^\circ], [90^\circ/90^\circ], [0^\circ/90^\circ], [90^\circ/0^\circ], \text{ (cross-ply laminate). A single layer was 0.5 mm thick. The properties of the individual laminae are given by Table 1 (Kollár and Springer, 2003). The } \pm 45^\circ/0^\circ \text{ layers were isotropic, the } 90^\circ/90^\circ \text{ layers were obtained by rotating the } 0^\circ \text{ layers by } 90^\circ \text{ about the } z \text{ axis. Four different positions of the delamination was studied, these were assigned as cases I–IV and are shown in Fig. 1. The computation was performed in the code MAPLE (Garvan, 2002) in accordance with the following points. The stiffness matrices of each single layer of the plate were determined based on the elastic properties of the laminates given in Table 1. The problem in Fig. 3 was solved...
varying the number of terms (N) in the trial function by creating a for-do cycle. Based on the displacement parameters the stress resultants and the stresses were calculated. Finally the ERRs were calculated using the J-integral. The convergence of the results was analyzed and it was found that after the 13th Fourier term there was no change in the displacement field, stresses, forces and ERRs.

7.1. Finite element model

In order to verify the analytical results finite element analyses were carried out. The 3D finite element models of the plate with different delamination positions were created in the code ANSYS 12 using 8 node linear solid elements. Similar 3D models are documented in the literature (de Morais and Pereira, 2008, 2009; Pereira and de Morais, 2009), therefore the models are not shown here. The global element size was $2 \text{mm} 	imes 2 \text{mm} \times 0.4 \text{mm}$. In the vicinity of the crack tip a refined mesh was constructed including trapezoid shape elements. The z displacements of the contact nodes over the delaminated surface were imposed to be the same. The mode-II and mode-III ERRs were calculated by the virtual crack closure technique (VCCT) (e.g. Bonhomme et al., 2010), the size of the crack tip elements were $\Delta x = 0.25 \text{mm}$, $\Delta y = 2.0 \text{mm}$ and $\Delta z = 0.25 \text{mm}$. For the determination of G_{II} and G_{III} along the delamination front a so-called MACRO was written in the ANSYS Design and Parametric Language (ADPL). The MACRO gets the nodal forces and displacements at the crack tip and at each pair of nodes, respectively, then by defining the size of crack tip elements it determines and plots the ERRs at each node along the crack front.

7.2. Displacement and stress fields – analysis vs. FE solution

In this section the analytical and numerical results are compared to each other. The analyses were carried out by using the present TSDT (Reddy) and a previous FSDT solution (Szekrényes, 2013d), respectively. Four cases were investigated, simultaneously two different plate widths and two lay-ups were applied. However, not all of these cases are documented in this paper, but the corresponding geometry and lay-up are always indicated in the legend of the subsequent figures. Fig. 4 depicts the results for case I with $b = 160 \text{mm}$ for the $[\pm 45/0/\pm 45/0]$$_h$ laminate. The displacements and stresses were evaluated in the vicinity of some points.

Fig. 9. Distribution of the shear strains γ_{xz} and γ_{yz} at the transition between the delaminated and uncracked regions at $Y=b/2$ and $Y=0$ (case III, $b = 100 \text{mm}$, lay-up: $[\pm 45/0/\pm 45/0]$$_h$).
located at the delamination tip (refer to the legends again). It can be seen in Fig. 4 that the displacement distributions agree very well, in contrast the stresses are quite different. An immediate observation is that there is a misalignment between the numerically and analytically determined displacement distributions, more clearly, the intersection point of the displacement distributions by FEM are not the same as that of the analytical solution. It has to be mentioned that we can compare only the slope of the two solutions, because the intersection point slightly depends upon the boundary conditions related to the in-plane displacements.

The rigid body motion of the plate in the \(X-Y\) plane can be eliminated in several different ways, e.g. in the present analysis the following conditions were imposed: \(x = a, y = 0, z = -(t_1 + t_2)/2 : u = 0, v = 0\) and \(x = a, y = b, z = -(t_1 + t_2)/2 : u = 0\). For \(\sigma_x\) the FE solution indicates a peak in the plane of the delamination, the peak by TSDT solution is significantly less. The FSDT approximation is quite similar to the TSDT for case I. For \(\sigma_y\) each solution agrees more or less. The approximation of shear stresses is again very contradictory. The FE solution shows a peak in the delamination plane. The major difference between the analytical solutions is that the shear stress by FSDT does not vanish at the top and bottom boundaries (the traction-free condition is violated). In contrast, the TSDT does satisfy the dynamic boundary conditions, the shear strains (and so the stresses) vanish even at the delamination tip. Although there are differences, the area under the curves is approximately the same, which is in fact the shear force. The further cases (II, III and IV) are presented in Figs. 5–7. The conclusions are similar to those for case I. Apparently, the shear stresses are better approximated by TSDT and it is the only solution that satisfies the dynamic conditions. In spite of that in case III the direction of \(\tau_{xz}\) in the top plate does not agree with the FE result (Fig. 6), apart from that in case IV (Fig. 7) the shear stresses are somewhat overpredicted in the top plate again.

Figs. 8 and 9 plot the distribution of the shear strains in the neighborhood of the delamination tip (lay-up: \([\pm 45^\circ]/0/\pm 45^\circ]\). As expected the shear strains change suddenly at the transition between the delaminated and undelaminated plate portions. It has to be mentioned that the condition of shear strain continuity (Eq. (6)) in the delamination plane of the undelaminated part is very important to obtain accurate ERR distributions (see later). In the case of the FSDT the shear strains (and so the stresses) are discontinuous in the through-thickness direction, this leads to significant errors if the delamination gets closer to the top boundary surface of the plate. The results are similar in case III (Fig. 9), as well. The distribution of the interlaminar shear stress \((\tau_{xz}, \tau_{yz})\) in the delamination plane of the uncracked region are plotted in

Fig. 10. Distribution of the interlaminar shear stress for case I, \(b = 160\) mm, \(\tau_{xz}^{top}(a), \tau_{xz}^{bot}(b), \tau_{yz}^{top}(c)\) and \(\tau_{yz}^{bot}(d),\) lay-up: \([\pm 45^\circ]/0/\pm 45^\circ]\).
Figs. 10 and 11 for cases I and III with \(b = 160 \text{ mm} \) (lay-up: \(\{\pm 45^\circ/0/\pm 45^\circ/0\}_s \)). Satisfying the basic concepts of Reddy plates the shear stresses vanish along the delamination tip, which is followed by a sudden increase and a subsequent decay. Although it is possible to obtain these distributions by the FE model too, it would be a very lengthy process, the analytical solution is more reasonable in this case. For the cross-ply laminate the displacement and stress distributions are quite similar to those for the \(\{\pm 45^\circ/0/\pm 45^\circ/0\}_s \) lay-up, therefore only the results of the \(J \)-integral are presented for both lay-ups hereinafter.

7.3. Energy release rate and mode mixity

The ERR and the mode mixity is presented through Figs. 12 and 15 for both lay-ups. The solution by the VCCT, TSDT and the corresponding FSDT (Szekrényes, 2013d) results are compared to each other. In Fig. 12 it can be seen that for case I (Fig. 12(a), \(\{\pm 45^\circ/0/\pm 45^\circ/0\}_s \)) the FSDT solution underpredicts \(G_{II} \) but agrees quite well with the TSDT in the case of \(G_{III} \). On the contrary, the modified Reddy’s TSDT agrees excellently with the numerical results for both components. Based on Fig. 13 for cases III and IV (i.e. when the bottom plate thickness is larger) it is shown that the FSDT overpredicts significantly the mode-III ERR, simultaneously, the mode-II ERR agrees better with the numerical and TSDT results. The major difference between the FSDT and TSDT solutions is the shear strain continuity at the interface plane, that is the reason for the differences in Fig. 13. In accordance with case III, the FSDT seems to be inaccurate in cases III and IV for both plate widths. Eventually, the TSDT approaches quite well both ERR components for each plate width, but if \(b = 160 \text{ mm} \), then the mode-II ERR is dissimilar to the FE solution at the edges. Compared to the VCCT results, the mode-III ERR is approximated very well by TSDT. Figs. 14 and 15 present the ERR and mode ratio distributions for the cross-ply laminate. It is interesting, that for cases I and II in Fig. 14 the FSDT agrees very well with the VCCT and TSDT results, even the mode ratios are almost the same. According to Fig. 15 the FSDT seems to be better for the cross-ply laminate than the TSDT. However, it has to be mentioned that one of the mode ratios is wrongly predicted for case IV with \(b = 100 \text{ mm} \) in the middle region. Although the TSDT provides worst results in this case compared to the VCCT and FSDT, considering all of the cases investigated the TSDT captures better the problem of delaminated composite plates subjected to bending. Moreover it is the best solution among the higher-order plates models developed for the same problem (Szekrényes, 2013d) and captures very well the complex deformation around the delamination tip even if the delamination divides the plate into a relatively thin and a relatively thick layer.
Fig. 12. Distribution of the energy release rates and mode mixity along the delamination front for cases I and II, lay-up: $\{\pm 45^\circ/0/\pm 45^\circ/0\}$.

Fig. 13. Distribution of the energy release rates and mode mixity along the delamination front for cases III and IV, lay-up: $\{\pm 45^\circ/0/\pm 45^\circ/0\}$.

Fig. 14. Distribution of the energy release rates and mode mixity along the delamination front for cases I and II, lay-up: $90\degree/90\degree/0\degree$.

Fig. 15. Distribution of the energy release rates and mode mixity along the delamination front for cases III and IV, lay-up: $90\degree/0\degree/90\degree$.
8. Conclusions

This work presented an analytical model for delaminated orthotropic plates based on the third-order shear deformable theory by Reddy. The original theory was modified and the system of exact kinematic conditions was implemented into the theory. A novel condition involving the continuity of the shear strains across the interface plane was introduced and utilized in the development of the displacement field of the double-plate model. The main idea of the model is that the plane of the delamination divides the plate into two equivalent single layers. The kinematic conditions between these two plates were derived and simply-supported plates with straight delamination front were analyzed using the Lévy plate formulation and the state-space model. The displacement and stress fields were calculated and compared to results by corresponding finite element and first-order plate theory analyses. It was shown that the present model is better than any of the previous plate models, however for the mode-II energy release rate distribution there are moderate differences between the numerical and analytical solutions if the delamination is very close to the free surface of the plate. Nevertheless, the present model is very reasonable and predicts very well the displacement field and the stress state. It was shown that the energy release rate can be accurately predicted only if the stress state is approximated by an as correct way as possible (viz., the satisfaction of the dynamic boundary conditions is important).

The developed model can be utilized in the following cases too. For some recently developed fracture mechanical plate bending systems (Lee, 1993; de Morais and Pereira, 2008) analytical solutions can be given in closed-form for the energy release rates, that may replace the finite element models with high element numbers. A possible plate finite element model can be developed, which would make it possible to reduce the high element number in the vicinity of crack tips. By the reduction of the present analysis a possible beam model can be developed for the mode separation under mixed-mode I/II condition. An important aspect of the analysis is that it was shown that in the undelaminated part there are normal forces, as well. This indicates that for embedded delaminations the delaminated part is loaded by normal forces. The vibration analysis of beams and plates with embedded delaminations (the delamination has two tips and so it is closed) can be treated as a problem with time dependent stiffness, where the delaminated parts are loaded by periodic, nonconservative (i.e. follower) internal forces, and local instability can only be investigated by considering the normal forces. These tasks will be carried out in the near future.

Acknowledgments

This work was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and the Hungarian National Scientific Research Fund (OTKA) under Grant No. 44615-066-15 (108414).

Appendix A. Coefficients for Eqs. (43) and (44)

The constant parameters in Eqs. (43) and (44) are defined in this Appendix. In the equations, e.g. the a_7 as $a_7 = a_7((..)^{(1)}_{11} \Rightarrow (..)^{(0)}_{66})$ notation means that a_7 can be obtained by replacing $A_{11}^{(1)}$, $B_{11}^{(1)}$, $D_{11}^{(1)}$, etc. with $A_{66}^{(1)}$, $B_{66}^{(1)}$, $D_{66}^{(1)}$, etc. in a_7.

\[a_4 = \sum_{\delta = b} \Delta A_{11}^{(1)} + B_{11}^{(1)} + \Delta D_{11}^{(1)}, \quad a_5 = a_5((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{66}) \]
\[a_6 = a_6((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{12} + (..)^{(0)}_{66}), \quad a_7 = \Phi A_{11}^{(1)} + \Pi B_{11}^{(1)} + E_{11}^{(1)} \] \hspace{1cm} (A.1)
\[a_8 = a_8((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{66}), \quad a_9 = a_9((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{12} + (..)^{(0)}_{66}), \]
\[a_{10} = \sum_{\delta = b} \Gamma A_{11}^{(0)} + \Sigma B_{11}^{(0)} + \Psi D_{11}^{(0)}, \quad a_{11} = a_{11}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{66}) \]
\[a_{12} = a_{12}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{12} + (..)^{(0)}_{66}), \quad a_{13} = \sum_{\delta = b} \Delta A_{11}^{(0)} + \Delta D_{11}^{(0)} \]
\[a_{14} = a_{14}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{12} + 2(..)^{(0)}_{66}) \] \hspace{1cm} (A.2)
\[b_1 = a_3, \quad b_2 = a_2, \quad b_3 = a_1((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{22}), \quad b_4 = a_5, \quad b_5 = a_5, \]
\[b_6 = a_4((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{22}), \quad b_7 = a_9, \quad b_8 = a_8, \quad b_9 = a_7((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{22}) \]
\[b_{10} = a_{10}, \quad b_{11} = a_{11}, \quad b_{12} = a_{10}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{22}), \quad b_{13} = a_{14} \]
\[b_{14} = a_{13}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{22}) \] \hspace{1cm} (A.3)
\[c_4 = -\Pi (A_{11}^{(0)} + 2B_{11}^{(0)} + 3D_{11}^{(0)} - 6U_{11}^{(0)}), \quad c_5 = A_{11}^{(0)} + B_{11}^{(0)} + D_{11}^{(0)} + \Delta \Pi_{11} + \Pi_{11} \]
\[\Delta U_{11}^{(0)} + F_{11}^{(0)} + C_{11}^{(0)} \] \hspace{1cm} (A.4)
\[c_6 = c_6((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{66}), \quad c_7 = c_7((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{12} + (..)^{(0)}_{66}) \]
\[c_8 = -\Pi_{11} + 2D_{11}^{(0)} - 9F_{11}^{(0)} \]
\[c_9 = A_{11}^{(0)} \Phi_{11}^{(0)} + 2B_{11}^{(0)} + D_{11}^{(0)} + 2F_{11}^{(0)} + 2E_{11}^{(0)} + H_{11}^{(0)} \]
\[c_{10} = c_{10}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{66}), \quad c_{11} = c_{11}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{12} + (..)^{(0)}_{66}) \]
\[c_{12} = -\Pi_{11} + 2B_{11}^{(0)} + 3D_{11}^{(0)} - 6U_{11}^{(0)}, \quad c_{13} = A_{11}^{(0)} \Phi_{11}^{(0)} + B_{11}^{(0)} \Phi_{11}^{(0)} + D_{11}^{(0)} + \Delta \Pi_{11} + \Pi_{11} \]
\[+ E_{11}^{(0)} + \Pi_{11} \Psi_{11} + \Gamma_{11} \] \hspace{1cm} (A.5)
\[c_{14} = c_{14}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{66}), \quad c_{15} = c_{15}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{12} + (..)^{(0)}_{66}), \quad c_{16} = c_{14} \]
\[c_{17} = A_{11}^{(0)} \Phi_{11}^{(0)} A_{11} + B_{11}^{(0)} \Pi_{11} A_{11} + D_{11}^{(0)} \Phi_{11} \Omega_{11} + E_{11}^{(0)} (\Pi_{11} \Omega_{11} + \Lambda_{11}) \Psi_{11} + C_{11}^{(0)} \]
\[c_{18} = c_{17}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{12} + (..)^{(0)}_{66}) \] \hspace{1cm} (A.6)
\[d_1 = c_3, \quad d_2 = c_2, \quad d_3 = c_1((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{22}) \]
\[d_4 = c_7, \quad d_5 = d_3 = c_4((..)^{(0)}_{55} \Rightarrow (..)^{(0)}_{44}) \]
\[d_6 = c_9, \quad d_7 = c_7((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{22}) \]
\[d_8 = c_{11}, \quad d_9 = c_3((..)^{(0)}_{55} \Rightarrow (..)^{(0)}_{44}), \quad d_{10} = c_{10} \]
\[d_{11} = c_9((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{22}) \]
\[d_{12} = c_{15}, \quad d_{13} = c_{12}((..)^{(0)}_{55} \Rightarrow (..)^{(0)}_{44}), \quad d_{14} = c_{14} \]
\[d_{15} = c_{13}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{22}) \]
\[d_{16} = c_{18}, \quad b_{17} = c_{17}((..)^{(0)}_{11} \Rightarrow (..)^{(0)}_{22}) \]
\[e_1 = a_4, \quad e_2 = a_5, \quad e_3 = a_6, \]
\[e_4 = e_{16} = -A^{(b)}_{11} \Delta + D^{(b)}_{11} \Omega_r, \quad j_2 = j_3 \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) + 2 \left(\cdots \right) \right) \]
\[j_4 = j_1 \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) \right) \]
\[j_5 = j_{23} = A^{(b)}_{11} + A^{(b)}_{15} + 4B^{(b)}_{11} \Omega_r + 4B^{(b)}_{13} \Omega_b + 4D^{(b)}_{11} \Omega^2 + 4D^{(b)}_{13} \Omega^2 \]
\[j_6 = -A^{(b)}_{11} \Delta \Omega_r - A^{(b)}_{15} \Omega_r - B^{(b)}_{11} \Lambda_r - B^{(b)}_{13} \Lambda_b - D^{(b)}_{11} \Omega_r \left(\Lambda_r + \lambda_r \right) + D^{(b)}_{13} \Omega_r \left(\Lambda_b + \Lambda \right) + D^{(b)}_{11} \Omega_b \left(\Lambda_b + \Lambda \right) - F^{(b)}_{13} \Omega^2 - F^{(b)}_{11} \Omega^2 \]
\[j_7 = j_6 \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) + 2 \left(\cdots \right) \right) \]
\[j_8 = j_{26} = j_4 \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) \right) \]
\[j_{10} = j_6 \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) \right) \quad j_{11} = A^{(b)}_{11} \Pi_r + 2B^{(b)}_{13} \Pi_r \Omega_r + 3D^{(b)}_{11} + 6E^{(b)}_{11} \Omega_r \]
\[j_{12} = -A^{(b)}_{11} \Phi_r \Lambda_r - B^{(b)}_{11} \Pi_r - B^{(b)}_{13} \Lambda_b - D^{(b)}_{11} \Phi_r \Omega_r - F^{(b)}_{11} \Lambda_r + \Pi_r \Omega_r \]
\[j_{13} = j_{15} = j_{12} \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) + 2 \left(\cdots \right) \right) \]
\[j_{14} = j_{11} \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) \right) \quad j_{16} = j_{12} \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) \right) \]
\[j_{17} = A^{(b)}_{11} \Sigma_r + B^{(b)}_{13} \Phi_r + \Sigma_r + 2B^{(b)}_{13} \Omega_r \Phi_r + 4D^{(b)}_{13} \Omega_r \Psi_r + 6E^{(b)}_{11} \Omega_r \]
\[+ 3 \left(4 \Omega_r \Psi_r + 6E^{(b)}_{13} \Omega_r \right) \]
\[j_{18} = j_{20} = j_{17} \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) \right) \quad j_{21} = j_2 \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) \right) \]
\[j_{24} = A^{(b)}_{11} \Lambda_r - A^{(b)}_{15} \Lambda_b - 2D^{(b)}_{11} \Lambda_r \Omega_r - 2D^{(b)}_{13} \Lambda_b \Omega_b - F^{(b)}_{13} \Omega_r^2 - F^{(b)}_{11} \Omega_b^2 \]
\[j_{25} = j_{24} \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) \right) \quad j_{27} = j_{25} \left(\left(\cdots \right) \Rightarrow \left(\cdots \right) \right) \]
\[j_{28} = 1 \]

Appendix B. Coefficients for Eqs. (52)–(54)

The constants in Eqs. (52) and (54) are defined in this Appendix. First, we define the determinants below with three and six indices:

\[
P_{ij \kappa} = \begin{vmatrix} c_1 & c_2 & c_3 \\ g_1 & g_2 & g_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_3 \\ g_1 & g_2 & g_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{vmatrix}
\]

Moreover we have:

\[
R_{ij \kappa} = \begin{vmatrix} c_1 & c_2 & c_3 \\ g_1 & g_2 & g_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_3 \\ g_1 & g_2 & g_3 \\ a_1 & a_2 & a_3 \end{vmatrix}
\]

\[
S_{ij \kappa} = \begin{vmatrix} c_1 & c_2 & c_3 \\ e_1 & e_2 & e_3 \\ e_1 & e_2 & e_3 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_3 \\ e_1 & e_2 & e_3 \\ e_1 & e_2 & e_3 \end{vmatrix}
\]
The denominators of the constants are defined by:

\[1/\Theta_1 = -a_0P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \]

\[1/\Theta_2 = b_1K_{26.10} - d_1L^{2.58}_{4.10} + f_1M^{2.58}_{1.10} - h_2N^{2.58}_{4.10} \]

Thus, the constants denoted by \(k, \ l, \ \bar{m}, \ \bar{n}, \ \bar{p}, \ \bar{q}, \ \bar{r} \) and \(\bar{s} \) are:

\[k_1 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[k_2 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[k_3 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[k_4 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[k_5 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[k_6 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[k_7 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[k_8 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[k_9 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[k_{10} = \Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[\bar{i}_1 = \beta^2\Theta_2 \left(b_{11}K_{16.10} - d_1L^{1.58}_{4.10} + f_1M^{1.58}_{4.10} - h_2N^{1.58}_{4.10} \right) \]

\[\bar{i}_2 = \beta^2\Theta_2 \left(-b_{11}K_{16.10} + d_1L^{1.58}_{4.10} - f_1M^{1.58}_{4.10} + h_2N^{1.58}_{4.10} \right) \]

\[\bar{i}_3 = \beta^2\Theta_2 \left(b_{11}K_{16.10} - d_1L^{1.58}_{4.10} + f_1M^{1.58}_{4.10} - h_2N^{1.58}_{4.10} \right) \]

\[\bar{i}_4 = \beta^2\Theta_2 \left(-b_{11}K_{16.10} + d_1L^{1.58}_{4.10} - f_1M^{1.58}_{4.10} + h_2N^{1.58}_{4.10} \right) \]

\[\bar{i}_5 = \beta^2\Theta_2 \left(-b_{11}K_{16.10} + d_1L^{1.58}_{4.10} - f_1M^{1.58}_{4.10} + h_2N^{1.58}_{4.10} \right) \]

\[\bar{i}_6 = \beta^2\Theta_2 \left(b_{11}K_{16.10} - d_1L^{1.58}_{4.10} + f_1M^{1.58}_{4.10} - h_2N^{1.58}_{4.10} \right) \]

\[\bar{i}_7 = \beta^2\Theta_2 \left(b_{11}K_{16.10} - d_1L^{1.58}_{4.10} + f_1M^{1.58}_{4.10} - h_2N^{1.58}_{4.10} \right) \]

\[\bar{i}_8 = \beta^2\Theta_2 \left(-b_{11}K_{16.10} + d_1L^{1.58}_{4.10} - f_1M^{1.58}_{4.10} + h_2N^{1.58}_{4.10} \right) \]

\[\bar{i}_9 = \beta^2\Theta_2 \left(-b_{11}K_{16.10} + d_1L^{1.58}_{4.10} - f_1M^{1.58}_{4.10} + h_2N^{1.58}_{4.10} \right) \]

\[\bar{i}_{10} = \beta^2\Theta_2 \left(b_{11}K_{16.10} - d_1L^{1.58}_{4.10} + f_1M^{1.58}_{4.10} - h_2N^{1.58}_{4.10} \right) \]

\[\bar{m}_1 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[\bar{m}_2 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[\bar{m}_3 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[\bar{m}_4 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[\bar{m}_5 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[\bar{m}_6 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[\bar{m}_7 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[\bar{m}_8 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[\bar{m}_9 = \beta^2\Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]

\[\bar{m}_{10} = \Theta_1 \left(-a_{10}P_{15.9} + c_{13}Q^{1.47}_{1.9} - e_{13}R^{1.7}_{1.9} + g_{13}S^{1.47}_{1.9} \right) \]
\[\begin{align*}
p_6 &= \beta_3 \Theta_3 \left(-a_{10} P_{1.5.11} + c_{13} Q_{1.5.11} + e_{12} P_{1.5.11} + g_{13} Q_{1.5.11} \right) \\
p_7 &= \beta_4 \Theta_4 \left(-a_{10} P_{1.5.14} - a_{10} P_{1.3.14} + a_{10} P_{1.3.14} + a_{11} P_{1.5.13} \right) \\
\Theta_7 &= \Theta_7 \left(-a_{10} P_{1.5.12} + a_{10} P_{1.5.12} - a_{10} P_{1.5.12} \right) \\
p_8 &= \Theta_8 \left(-a_{10} P_{1.5.15} + c_{13} Q_{1.5.15} + e_{12} P_{1.5.15} + g_{13} Q_{1.5.15} \right) \\
p_9 &= \beta_2 \Theta_9 \left(-a_{10} P_{1.5.18} - a_{10} P_{1.5.18} + a_{10} P_{1.5.18} + a_{11} P_{1.5.13} \right) \\
\Theta_9 &= \Theta_9 \left(-a_{10} P_{1.5.16} + a_{10} P_{1.5.16} + a_{10} P_{1.5.16} \right) \\
p_{10} &= \Theta_3 \left(a_{10} P_{1.5.17} - c_{13} Q_{1.5.17} + e_{11} P_{1.5.17} - g_{13} Q_{1.5.17} \right) \\
q_1 &= \Theta_3 \left(b_{11} K_{1.2.6} \right) - d_1 L_{1.2.6} + f_1 M_{1.2.6} - h_{12} N_{1.2.6} \\
q_2 &= \beta_2 \Theta_2 \left(b_{11} K_{2.3.6} \right) - d_4 L_{2.3.6} + f_4 M_{2.3.6} - h_{14} N_{2.3.6} \\
q_3 &= \Theta_2 \left(-b_{11} K_{2.4.6} + d_4 L_{2.4.6} + f_4 M_{2.4.6} - h_{14} N_{2.4.6} \right) \\
q_4 &= \beta_2 \Theta_2 \left(b_{11} K_{2.6.7} + b_{11} K_{2.6.7} + b_{11} K_{2.6.7} - b_{12} K_{2.6.7} \right) \\
q_5 &= \Theta_3 \left(b_{11} K_{2.6.8} - d_1 L_{2.6.8} + f_1 M_{2.6.8} - h_{12} N_{2.6.8} \right) \\
q_6 &= \beta_2 \Theta_2 \left(-b_{11} K_{2.6.11} + b_{11} K_{2.6.11} - b_{12} K_{2.6.11} + b_{12} K_{2.6.11} \right) \\
q_7 &= \Theta_3 \left(b_{11} K_{2.6.12} - b_{12} K_{2.6.12} + b_{12} K_{2.6.12} - b_{13} K_{2.6.12} + b_{15} K_{2.6.12} \right) \\
q_8 &= \Theta_2 \left(-b_{11} K_{2.6.15} - b_{12} K_{2.6.15} - b_{12} K_{2.6.15} - b_{13} K_{2.6.15} \right) \\
q_9 &= \Theta_2 \left(b_{11} K_{2.6.17} + b_{12} K_{2.6.17} + b_{12} K_{2.6.17} - b_{13} K_{2.6.17} - b_{14} K_{2.6.17} \right) \\
q_{10} &= \Theta_2 \left(b_{11} K_{2.6.18} + b_{12} K_{2.6.18} + b_{12} K_{2.6.18} - b_{13} K_{2.6.18} + b_{14} K_{2.6.18} \right) \\
q_1 &= \Theta_3 \left(a_{11} P_{5.3.9} - a_{11} P_{5.3.9} + a_{11} P_{5.3.9} + a_{11} P_{5.3.9} \right) \\
q_2 &= \Theta_3 \left(a_{11} P_{5.3.9} + a_{11} P_{5.3.9} + a_{11} P_{5.3.9} - a_{11} P_{5.3.9} \right) \\
q_3 &= \Theta_3 \left(-a_{11} P_{5.3.9} + a_{11} P_{5.3.9} - a_{11} P_{5.3.9} \right) \\
q_4 &= \Theta_3 \left(-a_{11} P_{5.3.9} + a_{11} P_{5.3.9} + a_{11} P_{5.3.9} \right) \\
q_5 &= \Theta_3 \left(a_{11} P_{5.3.9} + a_{11} P_{5.3.9} + a_{11} P_{5.3.9} \right) \\
q_6 &= \Theta_3 \left(-a_{11} P_{5.3.9} + c_{12} Q_{5.3.9} - e_{11} R_{5.3.9} + g_{11} S_{5.3.9} \right) \\
q_7 &= \Theta_3 \left(a_{11} P_{5.3.9} - a_{11} P_{5.3.9} + a_{11} P_{5.3.9} - a_{11} P_{5.3.9} \right) \\
q_8 &= \Theta_3 \left(a_{11} P_{5.3.9} - a_{11} P_{5.3.9} - a_{11} P_{5.3.9} - a_{11} P_{5.3.9} \right) \\
q_9 &= \Theta_3 \left(a_{11} P_{5.3.9} - a_{11} P_{5.3.9} + a_{11} P_{5.3.9} - a_{11} P_{5.3.9} \right) \\
q_{10} &= \Theta_3 \left(a_{11} P_{5.3.9} - a_{11} P_{5.3.9} - a_{11} P_{5.3.9} + a_{11} P_{5.3.9} \right) \\
\hat{s}_0 &= \beta^2 \Theta_2 \left(b_{12} K_{2.10.11} - b_{12} K_{2.10.11} + b_{13} K_{2.6.10} \right) \\
\hat{s}_1 &= \beta \Theta_3 \left(b_{12} K_{2.10.15} - b_{12} K_{2.10.15} + b_{12} K_{2.10.15} \right) \\
\hat{s}_2 &= \beta \Theta_3 \left(b_{12} K_{2.10.13} - b_{12} K_{2.10.13} + b_{12} K_{2.10.13} \right) \\
\hat{s}_3 &= \beta \Theta_3 \left(b_{12} K_{2.10.17} - b_{12} K_{2.10.17} + b_{14} K_{2.10.17} \right) \\
\hat{s}_4 &= \beta^2 \Theta_2 \left(b_{12} K_{2.6.7.10} + b_{12} K_{2.6.7.10} - b_{14} K_{2.6.7.10} \right) \\
\hat{s}_5 &= \beta \Theta_3 \left(b_{12} K_{2.6.8.8} + d_1 L_{2.6.8} - f_1 M_{2.6.8} + h_{12} N_{2.6.8} \right)
\end{align*}\]
\[\xi_8 = \Theta_3 \left(-p_3 \nu - p_4 t_0 - p_5 q_0 - p_6 s_0 \right)_{12} + \left(-r_2 \nu - r_3 t_0 - r_4 q_0 - r_5 s_0 \right)_{18} + \left(-k_2 \nu - k_3 t_0 + k_4 q_0 - k_5 s_0 \right)_{j1} + \left(-j_0 \left(m_6 q_0 + m_6 s_0 + m_6 t_0 + m_6 t_0 \right) \right)_{j6} \] (B.27)

\[\xi_9 = \Theta_3 \left(-j_2 \beta \nu + \left(j_9 + j_{15} q_0 + j_{15} s_0 + j_{15} t_0 + j_{15} s_0 \right) \right) \] (B.28)

\[\xi_9 = \Theta_3 \left(1_{14} + j_2 q_0 + j_2 s_0 + j_2 t_0 + j_2 s_0 \right) \] (B.29)

\[\xi_{11} = -1/\Theta_3 \] (B.31)

References

