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Abstract

In 2004 a counterexample was given for a 1965 result of R. J. Elliott claiming
that discrete spectral synthesis holds on every Abelian group. Here we present
a ring-theoretical approach to this problem, and show that some varieties fail
to have spectral synthesis. In particular, we give a new proof for the result of
the second author that spectral synthesis does not hold on Abelian groups with
infinite torsion free rank.
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1. Introduction

Spectral analysis and spectral synthesis deal with the description of trans-
lation invariant function spaces over locally compact Abelian groups. One con-
siders the space C(G) of all complex valued continuous functions on a locally
compact Abelian group G, which is a locally convex topological linear space with
respect to point-wise linear operations (addition, multiplication with scalars) and
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to the topology of uniform convergence on compact sets. The translate by y in
G of an element f in C(G) is defined by τyf(x) = f(x + y) for each x in G. A
subset in C(G) is called translation invariant if it contains every translates of all
of its elements. A closed translation invariant linear subspace of the space C(G) is
called a variety on G. Continuous homomorphisms of G into the additive [mul-
tiplicative] topological group of [nonzero] complex numbers are called additive
[exponential] functions. A function is a polynomial if it belongs to the algebra
generated by the additive functions and constants. Usually, the product of a poly-
nomial and an exponential is called an exponential monomial. This is equivalent
to the property that the function generates a finite dimensional indecomposable
variety (see e.g. [12]). We shall use this latter definition here.

It turns out that exponential functions, or more generally, exponential mono-
mials can be considered as basic building blocks of varieties. A given variety may
or may not contain any exponential function or exponential monomial. If each
nonzero subvariety of a given variety contains an exponential function, then we
say that spectral analysis holds for the variety. Another property is if the vari-
ety is synthesizable, which means that all exponential monomials in this variety
span a dense subspace in the variety. If each subvariety of a given variety is
synthesizable, then we say that spectral synthesis holds for the variety. It can
be shown that spectral synthesis for a variety implies spectral analysis, too (see
[12], Theorem 1). If spectral analysis, respectively, spectral synthesis holds for
every nonzero variety on an Abelian group, then we say that spectral analysis,
respectively, spectral synthesis holds on the group. A famous and pioneer result
of L. Schwartz [8] exhibits the situation in a classical case by stating that if the
underlying group is the reals with the Euclidean topology, then every nonzero
variety contains an exponential function, that is, spectral analysis holds on the
reals. Moreover, spectral synthesis also holds: there are sufficiently many expo-
nential monomials in each variety in the sense that their linear hull is dense in
the variety.

In his 1958 result [7] M. Lefranc proved that spectral synthesis holds on the
group Zn for each positive integer n, Z being the integers. In his 1965 paper
[1] R. J. Elliot presented a theorem on spectral synthesis for arbitrary Abelian
groups. However, in his 1987 private communication [2] Z. Gajda called the sec-
ond author’s attention to the fact that the proof of Elliot’s theorem had several
gaps. Later on several efforts have been made to solve the problem of discrete
spectral analysis and spectral synthesis on arbitrary Abelian groups. Finally, a
counterexample for Elliot’s theorem was presented at the 41st International Sym-
posium on Functional Equations, Noszvaj, Hungary, 2003 (see [9]). For basics,
further developments and references on spectral analysis and spectral synthesis
the reader should refer to [3, 11, 12].

In this paper we give a new proof for the failure of spectral synthesis on
some types of discrete Abelian groups, which was shown by a counterexample
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in [9]. Our method is based on ring-theoretical results and uses the annihilator
technique. The basics of this method have been worked out in [13].

2. Basic concepts

In this paper we consider discrete commutative groups only, and C(G) is the
set of all functions from G to C. Let G be an Abelian group and let CG denote
its group algebra, which is identified with the set of all finitely supported complex
valued functions on G. Moreover, this set can be identified with the set of all
finitely supported complex measures Mc(G) on G, using the definition∫

G

fdµ =
∑
x∈G

f(x)µ(x) ,

whenever µ is in CG and f is in C(G). This formula expresses the well-known
fact about the dual C(G)∗ of the topological vector space C(G): it is identified
with Mc(G), the pairing given by the previous formula.

Via these identifications the multiplication in the complex algebra CG is given
by the convolution of measures as

µ ∗ ν(f) =
∑
x,y∈G

f(x+ y)µ(x)ν(y)

for each µ, ν in CG and f in C(G). With this operation CG is a commutative
unital complex algebra with identity δ0, which is the point mass concentrated
at 0, the zero element of G. More generally, we denote by δx the characteristic
function of the singleton {x} for each x in G: it takes the value 1 at the element
x and 0 otherwise.

Convolution is also defined between elements of CG and C(G) in the following
manner:

µ ∗ f(x) =
∑
y∈G

f(x− y)µ(y) ,

whenever µ is in CG, f is in C(G) and x is in G. With this operation C(G)
turns into a CG-module, closed submodules being exactly the varieties. The
intersection of all varieties including a particular f in C(G) is called the variety
of f and is denoted by τ(f).

For each subset H in C(G) the annihilator H⊥ of H in CG is defined by

H⊥ = {µ : µ ∗ f = 0 for each f in H} .

It is easy to see that H⊥ is an ideal in CG. If H = {f} is a singleton, then
H⊥ = τ(f)⊥ and we call it the annihilator of f .
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Similarly, the annihilator K⊥ in C(G) of a subset K in CG is defined by

K⊥ = {f : µ ∗ f = 0 for each µ in K} .

It is also easy to check that K⊥ is a variety in C(G).

The following two theorems are important technical tools (see [6, 13]).

Theorem 2.1. Let G be an Abelian group, V a variety on G and I an ideal in
CG. Then we have

V ⊥⊥ = V, I⊥⊥ = I .

Theorem 2.2. Let G be an Abelian group, (Vγ)γ∈Γ a family of varieties on G
and (Iγ)γ∈Γ a family of ideals in CG. Then we have

(
∑
γ∈Γ

Vγ)
⊥ =

⋂
γ∈Γ

V ⊥γ , (
⋂
γ∈Γ

Iγ)
⊥ =

∑
γ∈Γ

I⊥γ .

3. Exponentials and maximal ideals

The basic building blocks of spectral analysis and spectral synthesis are ex-
ponential monomials. We call the reader’s attention that we shall use the word
”exponential” in several different meanings in the sequel. The generalized char-
acters of G, that is, the homomorphisms of G into the multiplicative group of
nonzero complex numbers will be called exponential functions, or simply expo-
nentials. Later on we shall also use the terms ”exponential maximal ideal”,
”exponential monomial”, and ”generalized exponential monomial”, which refer
to different, however, related concepts.

Exponentials can be characterized by a number of properties. We shall use
the following result (see [13, Theorems 3 and 4], and [13, Corollaries 1 and 2]).

Theorem 3.1. Let G be an Abelian group and m : G→ C be an arbitrary func-
tion. Then the following conditions are equivalent:

1. m is an exponential.

2. The variety of m is one dimensional and m(0) = 1.

3. The annihilator τ(m)⊥ is a maximal ideal in CG, CG/τ(m)⊥ is isomorphic
to C and m(0) = 1.

Maximal ideals M in CG with the property that CG/M ∼= C play an impor-
tant role, and they will be called exponential maximal ideals. They are closely
related to modified differences defined as follows. For each function f : G → C
and y in G we define

∆f ;y = δ−y − f(y)δ0 .

The measure ∆f ;y is called modified difference. For products of modified differ-
ences we shall use the notation

∆f ;y1,y2,...,yn+1 = Πn+1
i=1 ∆f ;yi ,
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whenever y1, y2, . . . , yn+1 are in G. The product on the right side is meant as a
convolution.

Given f in C(G) the ideal in CG generated by all modified differences of the
form ∆f ;y with y in G is denoted by Mf . It is reasonable to ask whether Mf is
proper. We have the following result.

Theorem 3.2. Let G be an Abelian group and f : G → C be a function. The
ideal Mf is proper if and only if f is an exponential. In this case Mf = τ(f)⊥,
hence Mf is an exponential maximal ideal.

Proof. Suppose first that Mf is proper. Then M⊥
f is a nonzero variety, by Theo-

rem 2.1, hence there is a nonzero g annihilated by all modified differences of the
form ∆f ;y. For x, y in G we have

0 = ∆f ;y ∗ g(x) = g(x+ y)− f(y)g(x) . (3.1)

Putting x = 0 we have g(y) = g(0) · f(y). In particular, g(0) 6= 0, f 6= 0 and we
obtain f(x + y) = f(x)f(y). As f is nonzero, it follows f(0) = 1, hence f is an
exponential.

Conversely, suppose that f = m is an exponential. Then m is in M⊥
m, as

obviously ∆m;y ∗m(x) = m(x+ y)−m(y)m(x) = 0 for each x, y in G. Hence Mm

is proper. Moreover, τ(m)⊥ is an exponential maximal ideal in CG, by Theorem
3.1. If g is in M⊥

f , then, by (3.1), it is a constant multiple of m, hence it belongs

to τ(m). It follows M⊥
m ⊆ τ(m), thus τ(m)⊥ ⊆ Mm. As τ(m)⊥ is maximal and

Mm is proper, we have τ(m)⊥ = Mm, and the theorem is proved.

These latter two results have been used in [13] to prove the following charac-
terization results.

Theorem 3.3. Let G be an Abelian group and V be a variety on G. Then
spectral analysis holds for V if and only if each maximal ideal containing V ⊥ is
exponential.

Corollary 3.4. Let G be an Abelian group. Then spectral analysis holds on G if
and only if each maximal ideal in CG is exponential.

Corollary 3.5. Let G be an Abelian group and V be a variety on G. Then spectral
analysis holds for V if and only if each maximal ideal in CG/V ⊥ is exponential.

4. Exponential monomials

Let G be an Abelian group. The variety V on G is called decomposable, if
it is the sum of two proper subvarieties, which means that the algebraic sum
of two proper subvarieties is a dense submodule in it. Otherwise it is called
indecomposable. The following theorem is obvious, by Theorem 2.2.
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Theorem 4.1. Let G be an Abelian group. A variety on G is decomposable if
and only if its annihilator is the intersection of two ideals, which are different
from it.

Let G be an Abelian group. The function f : G → C is called a generalized
exponential monomial, if there exists an exponential m and a natural number n
such that for each y1, y2, . . . , yn+1 we have

∆m;y1,y2,...,yn+1 ∗ f = 0 (4.1)

holds. We reformulate this definition in terms of the annihilator of f .

Theorem 4.2. Let G be an Abelian group. The function f : G → C is a gener-
alized exponential monomial if and only if its annihilator contains some positive
power of an exponential maximal ideal.

Proof. The condition of the theorem is equivalent to the following condition:
there exists an exponential m and a natural number n such that

Mn+1
m ⊆ τ(f)⊥ . (4.2)

As the modified differences ∆m;y with y in G generate Mm, hence the modified
differences ∆m;y1,y2,...,yn+1 generate Mn+1

m , that is, (4.1) and (4.2) are equivalent
for f .

It is easy to check (see [13, Theorem 7]) that condition (4.2) can hold for at
most one exponential m.

Theorem 4.3. Let G be an Abelian group and f : G→ C be a nonzero generalized
exponential monomial. Then there is a unique exponential m satisfying (4.1) for
some natural number n. In other words, there is a unique exponential maximal
ideal M satisfying Mn+1 ⊆ τ(f)⊥ for some natural number n.

Now we have the following characterization results (see [13, Theorem 8]).

Theorem 4.4. Let G be an Abelian group. The function f : G→ C is a nonzero
generalized exponential monomial if and only if CG/τ(f)⊥ is a local ring with
nilpotent exponential maximal ideal.

Theorem 4.5. Let G be an Abelian group. The functionf : G → C is an expo-
nential monomial if and only if CG/τ(f)⊥ is a local Artin ring with exponential
maximal ideal.

Proof. By the previous theorem CG/τ(f)⊥ is a local ring with exponential max-
imal ideal. Any descending chain of ideals in CG/τ(f)⊥ induces a descending
chain of ideals containing τ(f)⊥ in CG, which induces an ascending chain of
subvarieties in τ(f), hence, by finite dimensionality, it terminates.

For the converse see [13, Theorem 8].
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5. The failure of spectral synthesis

Theorem 5.1. Let G be an Abelian group and V be a variety on G. If V is
indecomposable, and spectral synthesis holds for V , then CG/V ⊥ is a local Artin
ring.

Proof. If V is synthesizable, then it is the topological sum of all subvarieties
generated by exponential monomials belonging to V , by definition. This means
that we have, by Theorem 2.2,

V ⊥ =
⋂
ϕ∈V

τ(ϕ)⊥ , (5.1)

where the intersection is extended to all exponential monomials ϕ in V . As V is
indecomposable, hence, by Theorem 4.1, V ⊥ is equal to one of the factors of the
intersection on the right side, that is V ⊥ = τ(ϕ)⊥ for some exponential monomial
ϕ in V . By Theorem 4.5, CG/V ⊥ is a local Artin ring.

Theorem 5.2. Let G be an Abelian group, and let f : G→ C be a generalized ex-
ponential monomial. Then τ(f) is synthesizable if and only if f is an exponential
monomial.

Proof. The statement is obvious by the definition of exponential monomials and
by the previous theorem.

The following theorem follows immediately.

Theorem 5.3. Let G be an Abelian group and V be a variety on G. If there is
a generalized exponential monomial in V , which is not an exponential monomial,
then spectral synthesis does not hold for V .

As a consequence we obtain the following result (see [9]).

Theorem 5.4. Let G be an Abelian group with infinite torsion free rank. Then
spectral synthesis fails to hold on G.

Proof. Indeed, by [10, Theorem 3], the torsion free rank of an Abelian group is
infinite if and only if there is a generalized exponential monomial on the group,
which is not an exponential monomial.
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