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Abstract

L. Lovéasz and B. Szegedy proved in 2006 that the limits of convergent
graph sequences can be described by measurable symmetric functions
W :[0,1] x [0,1] — [0,1] called graphons. In our present paper we
investigate the structure of the set of all graphons within the semigroup
(F([0,1]%); 0) of all fuzzy subsets of the unit square [0,1]? = [0, 1] x [0, 1],
where the operation o is defined by: for every f, g € F([0,1]?) and every
s € 1012, (0 9)(s) = Vaeop (f(2) A g(s)).
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1 Introduction and motivation

Let G, be a sequence of finite simple graphs whose number of nodes tends
to infinity. For every fixed finite simple graph F', let hom(F,G,,) denote the
number of all homomorphisms from F' into G, that is, the edge-preserving
functions from V(F') into V(G,,). Put

_ hom(F,G,)
G = G

Clearly, t(F,G,) is the probability that a random mapping from V(F) into
V(G,) should be a homomorphism. The sequence G, is called convergent if
limpoot(F, G,) exists for every finite simple graph F. Let

HE) = limu oot (F, Gy).
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Then t is a graph parameter, that is, a function on simple graphs that is
invariant under isomorphism. In [4], the authors given characterizations of
graph parameters that arise in this manner; that is, the authors characterize
the set T of graph parameters ¢ for which there is a convergent sequence of
simple graphs G,, such that t(F) = lim, ,t(F,G,) for every simple graph
F'. In the characterization of ¥, the symmetric and measurable functions W :
0,1]*> = [0,1] x [0,1] + [0,1] called graphons play an important role. Recall
that a function W : [0, 1]* — [0, 1] is said to be symmetric if W (z,y) = W (y, x)
is satisfied for all z,y € [0,1]. A graph is said to be k-labelled (k is a positive
integer) if the graph has k nodes labelled by 1,2, ..., k. For a k-labelled simple
graph F' and a graphon W, the integral

t(F,W):/[OHk H W (x;, xj)dzdzs - - - dxy,

ijEE(F)

is called the density of the graph F' in the graphon W ([5]), where E(F") denotes
the set of all edges of F. In [4, Theorem 2.2] it was shown that a graph
parameter ¢ belongs to T if and only if there is a graphon W such that ¢(F') =
t(F, W) for all simple graphs F.

A function of a non-empty set S into the real unit interval [0, 1] is called a
fuzzy subset of S (see [11]). By [3] and [7], if = is an associative operation on a
non-empty set .S, then the set F(S) of all fuzzy subsets of S form a semigroup
under the operation o defined by the following way: for arbitrary f,g € F(95)
and s € S,

‘ 2
(f o g)(S) — {vs:x*y(f(x) A g(?/))? lf s € S (1)

0, otherwise.

As every graphon is a fuzzy subset of the unit square [0,1]%, the following
problem seems interesting from a semigroup theory perspective.

Problem: If an associative operation * is given on the unit square [0, 1%, what
can we say about the structure of the set Wy of all graphons in the semigroup
(F([0,1]2);0) ? Is it true that Wy forms a substructure of (F([0,1]?);0)? If so,
what kind of substructure is it?

In this paper we deal with this problem in a special case: the given as-
sociative operation * on [0, 1)? satisfies the identity (z,y) * (u,v) = (u,v).
A semigroup (S;x*) is called a right zero semigroup if it satisfies the identity
a*x b ="b. With this terminology, the above problem is examined in that case
when [0, 1]? is a right zero semigroup.

We note that if S is a non-empty set (and so it is a right zero semigroup),
then the operation o defined in ([l has the following form:

(f o 9)(s) = Vaes(f(z) Ag(s)). (2)
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Throughout the paper, for a non-empty set S, (§(S5); o) will denote the
semigroup in which the operation o is defined by (2)). Thus the purpose of
this paper is to examine the structure of the set W, of all graphons in the
semigroup (F([0,1]?);0). Our studies consist of two parts. In Section 2 we
describe the structure of the semigroup (§(5);0) for an arbitrary non-empty
set S, in Section Bl we focus on the semigroup (F([0,1]?);0) and its subset
Wo. A semigroup S is called a band if every element e of S is an idempotent
element, that is, €2 = e. A band satisfying the identity aza = za is called a
right regular band ([9]). In Section 2] we prove that if S is an arbitrary non-
empty set, then the semigroup (F(5); o) is a right regular band (Theorem [2.6)).
In Section 3] applying the above result for the right regular band (F([0, 1]%); o),
we show that the set W, of all graphons is a left ideal of (F([0,1]?);0). By
this result, if T is a graphon and f is a fuzzy subset of [0, 1]?, then f o W is
a graphon. Thus, for arbitrary simple graphs F', we can consider the densities
t(F; W) and t(F; foW) of F'in W and in f oW, respectively. In Section Bl we
give an upper bound to [t(F; W) —t(F; f o W)|. In Theorem 3.6l we show that
(L W) = t(F; f o W)| < [E(F)|(sup(W) — sup(f)) A{W > sup(f)}), where
A({W > sup(f)}) denotes the area of the set {W > sup(f)} = {(z,y) €
0,1 : W (z,y) > sup(f)}.

For notations and notions not defined here, we refer to the paper [4] and
the books [1], [6], [8], and [9].

2 On the semigroup (F(5);0), where S is an
arbitrary non-empty set

For a fuzzy subset f and a subset X of a non-empty set S, let supy(f) =

Veex f(z). Especially, let sup(f) = supg(f). If f and g are arbitrary fuzzy

subsets of .5, then let gy and g} denote the following fuzzy subsets of S: for
an arbitrary s € S, let

or(s) = {supm, if g(s) > sup(/)

9(s), otherwise

and
t(s) = {g(s) —sup(f). if g(s) > sup(f)

0, otherwise.

Remark 2.1 By the above definitions, gy + g} = g for every fuzzy subsets f
and g of a non-empty set S.



Remark 2.2 Let f and g be arbitrary fuzzy subsets of a non-empty set S.
It is clear that sup(g) < sup(f) implies g(s) < sup(f) for every s € S and
so g = g. In case sup(g) > sup(f), there is an element s € S such that

g(s) > sup(f) and so gs(s) = sup(f) < ¢(s). Hence gy # g. Thus, for
every fuzzy subsets f and g of S, the equation g; = ¢ holds if and only if

sup(g) < sup(f).
By Remark 2] the following lemma holds.

Lemma 2.3 For arbitrary fuzzy subsets f and g of a non-empty set S, the
equations gy = g and f, = f together hold if and only if sup(g) = sup(f).

The next lemma will be used in Lemma B.1].

Lemma 2.4 If f and g are fuzzy subsets of a non-empty set S such that
sup(f) < sup(g) then sup(gy) = sup(f) and sup(g;) = sup(g) — sup(f).

Proof. By the definition of gy and g7, it is obvious. Ol

Theorem 2.5 Let S be a non-empty set. For every fuzzy subsets f and g of
S, we have fog=gy.

Proof. Let f and g be arbitrary fuzzy subsets of a non-empty set S. By
the above, (F(5);0) is a semigroup. Let s be an arbitrary element of S. If

g(s) > sup(f), then f(x) A g(s) = f(z) for every x € S, and so (f o g)(s) =
Veesf(x) =sup(f). If g(s) < sup(f), then we have two subcases.
Case 1: If g(s) = sup(f), then f(z) A g(s) = f(x) for all x € S, and so

(f09)(s) = Vaes f(x) = sup(f) = g(s)-
Case 2: If g(s) < sup(f), then there is an zy € S such that f(zo) > g(s) and
so f(xo) A g(s) = g(s). Moreover, for arbitrary € S\ {zo}, we have

i o g(s), ifg(s) < f(x)
f(x) Ag(s) {f(:):), if f(z) < g(s),

and so (fog)(s) = (f(x0)Ag(s))V (Vaes\tzo} (f(2)Ag(s)) = g(s). Summarizing
our results, we get

sup(f), if g(s) > sup(f)
g(s), otherwise,

that is, (f o g)(s) = gf(s), which proves our assertion. O

A commutative band is called a semilattice. A congruence o on a semigroup
A is said to be a semilattice congruence if the factor semigroup A/« is a
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semilattice. A semigroup A is said to be semilattice indecomposable if the
universal relation is the only semilattice congruence on A. It is known ([10])
that every semigroup has a least semilattice congruence n; the classes of 7 are
semilattice indecomposable. By [0, 11.3.12. Proposition], a band is a right
regular band if and only if its n-classes are right zero semigroups.

Theorem 2.6 For an arbitrary non-empty set S, the semigroup (F(S);0) is a
right reqular band. The n-classes of F(S) are right zero semigroups. Two fuzzy
subsets f and g of S are in the same n-class if and only if sup(f) = sup(g).

Proof. Let S be an arbitrary non-empty set. Then S is a right zero semigroup,
and so (§(9);0) is a semigroup under the operation o defined in (), that is,
(fog)(s) = Vees(f(x) Ag(s)) for every fuzzy subsets f and g of S and every
element s € S. By Theorem 2.7 it is clear that fo f = f for every f € F(S5),
and so (§(95);0) is a band. Using also Theorem 5] we have go fog = gogy.
As sup(g) > sup(gy), we have go gy = gy. Thus go fog =gy = foy.
Hence (§(5);0) is a right regular band. Let 7 denote the least semilattice
congruence on (§(S5);0). The n-classes of (F(S);0) are right zero semigroups
by [9, I1.3.12. Proposition]. Let f and g be arbitrary fuzzy subsets of S. By [9]
I1.1.1. Proposition], (f,g) € nif and only if fogo f = fand go fog=g. As
(§(S); o) is a right regular band, we have fogo f =go fand go fog= fog.
Thus (f,g) € nif and only if go f = f and f o g = g. Using Theorem 2.5
(f,g) € nif and only if f, = f and gy = ¢g. By Lemma 2.3 we get (f,g) € n
if and only if sup(f) = sup(g). Cl

3 On the structure of the set of all graphons
in the semigroup (F([0,1]%);0)

Let (S, A, 1) be a measurable space ([2]). For a fuzzy subset h of S and a real
number A, let {h > A} = {s € S: h(s) > A}. A fuzzy subset h of S is
said to be measurable if, for every real number A, the subset {h > A} of S is
measurable (that is, {h > A} € A).

Lemma 3.1 Let (S, A, i) be a measurable space. Then, for an arbitrary fuzzy
subset f and an arbitrary measurable fuzzy subset g of S, the fuzzy subsets gy
and g3 are measurable.

Proof. Let f and g be arbitrary fuzzy subsets of S such that g is measurable.
If sup(f) > sup(g), then gy = fog =g and g; = 0. In this case the fuzzy
subsets gy and g} are measurable. Consider the case when sup(f) < sup(g).
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Then sup(gy) = sup(f) and sup(g}) = sup(g) — sup(f) by Lemma 2.4 Let A
be an arbitrary real number. It is easy to see that

0, if A > sup(f
{or> A} = *uplf)
{g > A}, otherwise
and
0, if A > sup(g) —sup(f)
{97 > Ay = {{9>A+sup(f)}, if 0 <A <sup(g)—sup(f)
S, if A<0
from which it follows that gy and g} are measurable fuzzy subsets of S. O

A fuzzy subset f of [0,1]? is said to be symmetric if f(z,y) = f(y,x) is
satisfied for all =,y € [0, 1].

Lemma 3.2 If f is an arbitrary fuzzy subset and g is a symmetric fuzzy subset
of [0,1]%, then g; and gy are symmetric fuzzy subsets of [0, 1%

Proof. It is obvious by the definition of g; and gj. Ol

Lemma 3.3 If W is a graphon and f is a fuzzy subset of [0,1]%, then W; and
Wi are graphons.

Proof. By Lemma B and Lemma B.2] it is obvious. 0

The following theorem provides an answer to the question raised in Problem
in the case, where the given operation - on [0, 1]? satisfies the identity a-b = b.

Theorem 3.4 The set Wy of all graphons is a left ideal of the right regular
band (F([0,1]%); 0) of all fuzzy subsets of [0,1]2. Thus the semigroup (Wo; o) of
all graphons is a right reqular band, and so it is a semilattice I of right zero
subsemigroups S; (i € I). Two graphons Wy and Wy are in the same S; if and
only if sup(W7) = sup(Ws).

Proof. Let W be a graphon and f be a fuzzy subset of [0, 1]*>. By Theorem 2.5
foW =Wy;. Then foW is a graphon by Lemma 3.3l Thus the set W of all
graphons is a left ideal of the semigroup (F([0,1]?);0) of all fuzzy subsets of
0,1]2. By Theorem 2.6, the semigroup (F([0, 1]?); o) and so its subsemigroup
(Wo; o) is a right regular band. Moreover, the n-classes of W, are right zero
semigroups; two graphons W; and W5 are in the same n-class if and only if

sup(Wy) = sup(Ws). 0

Let o denote the equivalence relation on the set W, of all graphons defined
by (W1, Ws) € o if and only if W) = W, almost everywhere in [0, 1]2.
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Proposition 3.5 The equivalence relation o N1 is a congruence on the right
reqular band (Wy; o) of all graphons, where n is the least semilattice congruence

on (Wy; o).

Proof. Let W; and W5 be two graphons with (W3, W5) € o N'n. Then, using
Theorem [3.4], we have sup(WW;) = sup(Ws) and Wy = W, almost everywhere
in [0,1]%. Let W be an arbitrary graphon. As sup(W;) = sup(W5), we have
WioW = WeoW. Thus (Wy o W,Wyo W) € oNn. Hence c N7 is a
right congruence on (Wy;0). Let T = {(z,y) € [0,1]*| Wi(x,y) # Wa(x,y)}.
As (Wy,Ws,) € o, the area of T is 0. It is clear that {(z,y) € [0,1]* : (W o
Wi)(z,y) #(WoWs)(x,y)} €T and so (WoWy,WoWs) € 0. As (W, Ws) €
n and 7 is a congruence on (Wp; o), we have (W o Wy, W o Ws) € n. Thus
(WoW;,WoWs;) €onnandsooNmnis a left congruence on (Wp; o). Thus
o N is a congruence on (Wj; o). 0

Let W be a graphon and f a fuzzy subset of [0,1]2. By Theorem 3.4
f oW is a graphon. Thus, for arbitrary simple graphs F', we can consider the
densities t(F; W) and t(F; fo W) of F in W and f o W, respectively. The
next theorem gives an upper bound to |t(F; W) —t(F; f o W)|.

Theorem 3.6 Let W be an arbitrary graphon. Then, for an arbitrary fuzzy
subset f of [0,1]? and an arbitrary finite simple graph F,

(L(F5 W) = t(F; f o W)| < [E(F)|(sup(W) — sup(f))A{W > sup(f)}),

where E(F) denotes the set of all edges of F' and A({W > sup(f)}) denotes
the area of the set {W > sup(f)} = {(z,y) € [0,1]*: W(z,y) > sup(f)}.

Proof. Let W be an arbitrary graphon and f an arbitrary fuzzy subset of
[0,1]2. By Theorem B4, f o W is a graphon. If sup(WW) < sup(f), then
W = foW and {W > sup(f)} = 0. Thus [t((F;W) — t(F;foW)| =
0 = |E(F)|(sup(W) — sup(f))A{W > sup(f)}). Consider the case when
sup(W) > sup(f). By Remark I} W — (f o W) = W}. As W is a graphon,
Wy = foW and W7} are graphons by Lemma[3.3 Thus W, foW and W} are
integrable functions on [0, 1]?. Using 4, Lemma 4.1], [t(F; W) —t(F; foW)| <
|E(F)| - |[[WFlo, where |[WF[lo = SUp aclo.y | [y [y Wiz, y)dady|. As W} is a

non-negative function, [[W;|lo = [[W}||1, where [[Wf]|, = fol fol (W (x,y)|dedy.
Thus [t(F;W) = t(F; f o W)| < |[E(F)| - [[Wflli. As Wi(z,y) = 0 for all
(w,9) € [0,12\ {W > sup(f)}, we have [|[Wi|l = [i fy Wi(z,y)dedy <
(sup(W) — sup(f)) A{W > sup(f)}, because sup(W7) = sup(W) — sup(f)
by Lemma 2.4l Consequently [t(F; W) — ¢t(F; fo W)| < |E(F)|(sup(W) —
sup(f))A{W > sup(f)}). O
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