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Abstract

We establish variants of existing results on existence, uniqueness and contin-
uous dependence for a class of delay differential equations (DDE). We apply
these to continue the analysis of a differential equation from cell biology with
state-dependent delay, implicitly defined as the time when the solution of a
nonlinear ODE, that depends on the state of the DDE, reaches a thresh-
old. For this application, previous results are restricted to initial histories
belonging to the so-called solution manifold. We here generalize the results
to a set of nonnegative Lipschitz initial histories which is much larger than
the solution manifold and moreover convex. Additionally, we show that the
solutions define a semiflow that is continuous in the state-component in the
C([−h, 0],R2) topology, which is a variant of established differentiability of
the semiflow in C1([−h, 0],R2). For an associated system we show invariance
of convex and compact sets under the semiflow for finite time.
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1. Introduction

With this paper we would like to contribute to the development of meth-
ods to analyze differential equations with state-dependent delay (SD-DDE)
and to continue the analysis of a model from cell population biology, which
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can be formulated as a SD-DDE. In the cell population equation the delay
is implicitly defined as the time when the solution of a nonlinear ordinary
differential equation meets a threshold (see (1.1–1.4) below). The SD-DDE
additionally features continuously distributed delays.

In [7], the authors have elaborated conditions to guarantee via applica-
tion of results of [13, 22] that the solutions of the cell population equation
define a differentiable semiflow on the solution manifold, for n = 2 a sub-
manifold of C1 := C1([−h, 0],Rn). An advantage of the approach in [13, 22]
is the associability of a linear variational equation, from which a character-
istic equation, which allows to analyze local stability of equilibria, can be
deduced.

Motivated by simulations (see the discussion section), a future objective
is the proof of existence of periodic solutions for the cell population equation.
One way to do this is to use fixed point arguments for the Poincaré operator,
which is done for a general class of SD-DDE in [14]. As in many fixed point
arguments, also in [14] convexity and compactness of the domain is used,
properties the solution manifold in general does not have. Next, note that
differentiability of the semiflow in the C1-topology as established in [7] implies
continuous dependence on initial values in C1, i.e., convergence of sequences
of solution segments in C1, if sequences of initial histories converge in C1.
The latter however can appear as too strong in applications, see again the
discussion section.

We here show how - sometimes slightly modified - existing strategies
can be combined to show existence, uniqueness and continuous dependence
for a large class of SD-DDE. We apply the results to generalize (global)
existence and uniqueness of solutions of the SD-DDE (1.1–1.4) for initial
histories in the solution manifold to initial histories in a set of nonnegative
Lipschitz functions, the latter being a much larger set than the former and
moreover convex. Additionally, we show that the solutions define a semiflow
that is continuous in the C := C([−h, 0],Rn) topology. Compared to the
above discussed established continuous dependence with respect to initial
data in C1, the prerequisite of convergence of initial histories (as well as the
conclusion of convergence of solutions) is weaker here - C instead of C1 - and
we refer to the discussion section for possibilities to exploit this.

In [8] the existence of noncontinuable and global solutions is established
for systems of delay differential equations defined by functionals that are
continuous on domains that are open in the C-topology (C-open). Continuous
dependence on initial values is shown under the precondition that the solution
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is unique. Uniqueness of solutions is shown if the functional is Lipschitz on
a C-open domain. A known problem is that for SD-DDE the functional is
in general not Lipschitz on a C-open domain. A hint to see this is that the
evaluation operator (see (4.2) below) is in general not Lipschitz, if functions
in the domain are not.

In [15] the problem is overcome for one-dimensional SD-DDE, where di-
mension refers to the range space of the functional defining the equation,
with the help of the concept of almost local Lipschitzianity, which roughly
means local Lipschitzianity on a domain of Lipschitz functions. It is shown
that almost local Lipschitzianity in combination with the discussed results
in [8] yields existence and uniqueness on a domain of Lipschitz functions.

Functionals derived from applications are typically, and in our case, not
defined on the whole space but have a domain restricted to a subset of the
space. In [15] results are first established for an arbitrary functional de-
fined on the whole space C([−h, 0],R). Then, to work with restricted do-
mains, a retraction from C([−h, 0],R) to C([−h, 0], [−B,A]) is constructed
and the results are transferred to the case where the functional is defined
on C([−h, 0], [−B,A]) only. A negative feedback condition for the functional
ensures that solutions remain in the retracted domain.

We here start with a general functional defined on C. We argue that
almost local Lipschitzianity and its use to conclude uniqueness for Lipschitz
initial histories can be generalized from one to n dimensions in a straight-
forward way, conclude uniqueness, and combine it with results from [8] on
(global) existence and continuous dependence to get existence, uniqueness
and continuous dependence for Lipschitz initial histories for a large class of
functionals defined on (all of) C.

To allow for a domain of the form D = C([−h, 0], [−B,∞)n) of the func-
tional, i.e., in particular, a domain that can be specified to our application,
we modify the above discussed construction of retractions and feedback con-
ditions from [15]. One then can work with a retraction from C to D and a
component-wise feedback condition and transfer the general results on solu-
tions to the case of a functional defined on D. We conclude that the solutions
define a semiflow, in the sense of e.g. [1], that is continuous in the C-topology
on a set of Lipschitz functions and use this continuity to derive some further
properties.

We then establish compactness results employing the following ideas. In
[14] it is used that by the Arzela-Ascoli theorem a set of functions that share
the same finite bound and finite Lipschitz constant is compact in C. As will
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be motivated, the approach of [14] to show that a time t map leaves such a
set invariant for arbitrarily large t does not work here directly. However, a
class of two-dimensional systems that contains (1.1–1.4) can be transformed
to a one-dimensional equation. For the latter, invariance of a compact set
for finite time can be elaborated. We refer to the discussion section for more
details on future implementation of these results.

After having established the general results, we consider the SD-DDE

w′(t) = q(v(t))w(t), (1.1)

v′(t) =
γ(v(t− τ(vt)))

g(x1, v(t− τ(vt)))
g(x2, v(t))w(t− τ(vt))e

∫ τ(vt)
0 [d−D1g](y(s,vt),v(t−s))ds

−µv(t), (1.2)

where y = y(·, ψ) and τ = τ(ψ) are defined as the respective solutions of

y′(s) = g(y(s), ψ(−s)), s > 0, y(0) = x2 and (1.3)

y(τ, ψ) = x1, (1.4)

where x1 < x2 are given parameters. As common in delay differential equa-
tions (DDE) we use the notation xt(s) := x(t + s), s < 0, for functions x
defined in t+ s ∈ R. The system describes the dynamics of a stem cell pop-
ulation (w) regulated by the mature cell population (v). We refer to [7] and
references therein, in particular [6], for biological background of the model.
The SD-DDE can be deduced via integration along the characteristics from
a partial differential equation of transport type which features a progenitor
cell maturity density and maturity structure, see [7]. We apply our general
results to (1.1–1.4). To guarantee some of the required conditions, we show
that the functional that defines the system is almost locally Lipschitz. To
handle the implicitly defined state-dependent delay we consider evaluation
operators and implicitly defined operators and analyze them on Lipschitz
subsets of continuous functions.

The paper is structured top down: In Section 2 we consider our most
general class of equations. Section 3 contains results for an intermediate
class and Section 4 an application of these results to the stem cell SD-DDE;
in each of these two sections a subsection on main results precedes one on
proofs. Finally, Section 5 contains examples of modelling ingredients and
Section 6 a discussion of our results and potential future applications.
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2. Solving DDE on a state space of Lipschitz functions

2.1. Initial value problem

Definition 2.1. Suppose that φ ∈ D ⊂ C and f : D −→ R
n. By a solution

of

x′(t) = f(xt), t ≥ t0, (2.1)

xt0 = φ, (2.2)

or a solution of (2.1) through φ, we mean a continuous function xφ : [t0 −
h, t0 + α] −→ R

n for some α > 0, that is such that on [t0, t0 + α] one has
xφt ∈ D, the function xφ is differentiable and satisfies (2.1–2.2). Solutions on
half-open intervals [t0 − h, t0 + α) for α ∈ (0,∞] are defined analogously.

We shall sometimes write x instead of xφ.

2.2. Domain of the functional is C

2.2.1. Noncontinuable and global solutions

Theorem 2.2. Suppose that F : C −→ R
n is continuous and φ ∈ C. Then

(a) there exists a unique c = c(φ) ∈ (0,∞] such that xφ : [t0−h, t0+ c) −→
R
n is a non-continuable solution of

x′(t) = F (xt), t ≥ t0, xt0 = φ. (2.3)

If additionally F (U) is bounded whenever U ⊂ C is closed and bounded then
the following hold:

(b) If c < ∞ then for any closed and bounded U ⊂ C there exists some
tU ∈ (0, c) such that xφt /∈ U for all t ∈ [t0 + tU , t0 + c).

(c) If {xφt : t ∈ [t0, t0 + α)} ⊂ C is bounded, whenever α < ∞ and xφ is
defined on [t0, t0 + α), then c = ∞, i.e., the solution is global.

The existence of a solution xφ : [t0 − h, t0 + α] −→ R
n for some α > 0

follows from [8, Theorem 2.2.1] and the statement in (a) is concluded in [8,
Section 2.3] from Zorn’s lemma. Next, (b) follows from [8, Theorem 2.3.2].
Then (c) is standard: If c <∞ define

U := {xφt : t ∈ [t0, t0 + c)}.

Then by (b) there exists some tU ∈ (0, c) such that xφt0+tU /∈ U , which
contradicts the definition of U .
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Remark 2.3. Note that the cited results in [8] hold for non-autonomous
equations. Since our motivation here is an autonomous system and moreover
the uniqueness result that we will use is also for autonomous systems we have
rewritten these results for the autonomous case.

2.2.2. Uniqueness

To guarantee uniqueness, the notion of almost local Lipschitzianity for
n = 1 from [15] can be generalized to arbitrary finite dimensions in a straight-
forward way. As common, we define for any φ ∈ C

lip φ := sup

{

|φ(s)− φ(t)|

|s− t|
: s, t ∈ [−h, 0], s 6= t

}

∈ [0,∞]

and Bδ(x0) := {x : ‖x − x0‖ < δ}, where δ > 0, | · | denotes norms in Rn

with n depending on context, and the choice of norm ‖·‖ should also be clear
from the context, e.g., the choice of x0. In the following, however, we denote
by ‖ · ‖ the sup-norm on C. Then, a function φ is Lipschitz with Lipschitz
constant k (we will write k-Lipschitz) whenever ∞ > k ≥ lip φ. For each
φ0 ∈ C, δ > 0, R > 0 define

V (φ0; δ, R) := {φ ∈ Bδ(φ0) : lip φ ≤ R}.

Definition 2.4. A functional f : D ⊂ C = C([−h, 0],Rn) −→ R
m is called

almost locally Lipschitz if f is continuous and for all φ0 ∈ D, R > 0 there
exists some δ = δ(φ0, R) > 0, k = k(φ0, R, δ) ≥ 0 such that for all ϕ, ψ ∈
V (φ0; δ, R) ∩ D

|f(ϕ)− f(ψ)| ≤ k‖ϕ− ψ‖.

The following theorem is proven as [15, Theorem 1.2] for the case n = 1.
The proof for general n is analogous and we omit it. For D ⊂ C, define
VD := {φ ∈ D : lip φ <∞}. Note that if D is convex, so is VD.

Theorem 2.5. Suppose that F : C −→ R
n is almost locally Lipschitz. Let

φ ∈ VC and t0 ∈ R. If α > 0 and y, z : [t0 − h, t0 + α] −→ R
n are both

solutions of (2.3), then y(t) = z(t) for all t ∈ [t0, t0 + α].

2.2.3. Continuous dependence on initial values

The following result follows directly from [8, Theorem 2.2.2] if we use our
uniqueness result.
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Theorem 2.6. Suppose that F : C −→ R
n is almost locally Lipschitz, φ ∈ VC

and let α > 0 be such that a solution xφ through φ exists on [t0 − h, t0 + α].
Let (φk) ∈ V N

C with φk −→ φ. Then xφ is unique on [t0−h, t0+α], for some
k ≥ k0 there exist unique solutions xk through φk on [t0 − h, t0 + α] for all
k ≥ k0 and xk −→ xφ uniformly on [t0 − h, t0 + α].

Remark 2.7. Note that similarly as in [8, Theorem 2.2.2] we could include
continuous dependence on functional and initial time in the above formula-
tion. We did not do this, since, especially when transferring these results
to restricted domains, the exposition would suffer from further technicalities
and moreover we currently see no direct use for these properties.

2.3. Retraction onto a specific domain

It is remarked in [15] (without proof) that the following result holds in
case n = 1. The proof for general n is analogous and we present it for
completeness. Recall that a retraction is a continuous map of a topological
space into a subset that on the subset equals the identity.

Lemma 2.8. Let D ⊂ C, ρ : C −→ D be a locally Lipschitz retraction.
Suppose that for all φ0 ∈ C, δ > 0, R > 0

sup{lip ρ(φ) : φ ∈ V (φ0; δ, R)} <∞.

Then, if f : D −→ R
n is almost locally Lipschitz, so is F : C −→ R

n;F :=
f ◦ ρ.

Proof. First, F is continuous as a composition of continuous functions. Next,
let φ0 ∈ C, R > 0. Define L := sup{lip ρ(φ) : φ ∈ V (φ0; 1, R)} <∞. Choose
ε = ε(ρ(φ0), L), k = k(ρ(φ0), L) such that f is k-Lipschitz on V (ρ(φ0); ε, L).
Choose δ < 1, l ≥ 0 such that ρ(Bδ(φ0)) ⊂ Bε(ρ(φ0)) and ρ is l-Lipschitz on
Bδ(φ0). Then for ϕ, ψ ∈ V (φ0; δ, R), one has

|F (ϕ)− F (ψ)| = |f(ρ(ϕ))− f(ρ(ψ))| ≤ k|ρ(ϕ)− ρ(ψ)| ≤ kl‖ϕ− ψ‖.

Hence, F is kl-Lipschitz on V (φ0, δ, R) and thus almost locally Lipschitz.
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2.3.1. A specific retraction for a specific domain

For the remainder of the section we will use the following construction
(unless specified otherwise).

Remark 2.9. The construction is a modification of the retraction in [15],
the latter of which maps C([−h, 0],R) onto C([−h, 0], [−B,A]) with −∞ <
−B < A < ∞, to a retraction of C([−h, 0],Rn) onto C([−h, 0], [−B,∞)n)
with −∞ < −B. With the result we can work with nonnegative solutions,
if B = 0, of multi-dimensional systems. The construction could probably be
generalized to the range C([−h, 0],Πn

i=1[−Bi, Ai]), −∞ ≤ −Bi < Ai ≤ ∞,
i = 1, ..., n.

Let B ∈ R and define

D := C([−h, 0], [−B,∞)n). (2.4)

Note that the convexity of D implies convexity of VD. We define a map

r : R −→ [−B,∞), r(u) :=

{

u, u ∈ [−B,∞),

−B, u < −B.
(2.5)

Then r is a retraction and Lipschitz with lip r ≤ 1. With r we define another
map

ρ : C −→ D, ρ = (ρ1, ..., ρn), ρi(φ)(t) := r(φi(t)), i = 1, ..., n. (2.6)

Lemma 2.10. ρ is a retraction and maps bounded sets into bounded sets.

Proof. It is clear that ρ (is onto,) preserves the subset and maps bounded
sets into bounded sets. Regarding continuity, suppose that φn −→ φ, and let
ε > 0. Then

|[ρi(φ
n)− ρi(φ)](t)| = |r(φni (t))− r(φi(t))|.

Choose N ∈ N, δ > 0 such that ‖φn − φ‖ ≤ δ for all n ≥ N . Then

|φn(t)| ≤ ‖φ‖+ δ, |φ(t)| ≤ ‖φ‖+ δ, ∀t ∈ [−h, 0], n ≥ N.

Now, continuity follows by uniform continuity of r on compact sets.

The following result follows by definition of ρ from Lipschitzianity of r
with lip r ≤ 1. We omit the straightforward proofs of the two following
results.
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Lemma 2.11. One has lip ρ(φ) ≤ lip φ, hence if φ is Lipschitz so is ρ(φ).
Moreover, ρ is Lipschitz with lip ρ ≤ 1.

The result implies that sup{lip ρ(φ) : φ ∈ V (φ0; δ, R)} ≤ R < ∞ for all
φ0 ∈ C, δ > 0, R > 0. We can use the latter to directly apply Lemma 2.8 to
F := f ◦ ρ with ρ being our (locally) Lipschitz retraction:

Lemma 2.12. Suppose that f : D ⊂ C −→ R
n is almost locally Lipschitz.

Then so is F .

2.3.2. Noncontinuable and global solutions and uniqueness

To guarantee that a solution remains within a domain a feedback con-
dition can be used. The proof of the following result is a modification of a
similar result for one dimension [15, Theorem 1.3].

Lemma 2.13. Suppose that f : D −→ R
n satisfies

fi(φ) ≥ 0, if φi(0) = −B, ∀φ = (φ1, ..., φn) ∈ D, i = 1, ..., n. (F)

Now fix φ ∈ D and assume that x is a solution of x′(t) = f(ρ(xt)) through
φ on some interval [t0 − h, t0 + α]. Then xt ∈ D and thus ρ(xt) = xt for all
t ∈ [t0, t0 + α] and hence x is a solution of (2.1–2.2) on [t0, t0 + α].

Proof. The statement would follow if xi(t+θ) ≥ −B for all t ≥ t0, θ ∈ [−h, 0],
i = 1, ..., n. First, φ ∈ D implies that φi(θ) ≥ −B for all θ ∈ [−h, 0], i =
1, ..., n. Suppose that for some i ∈ {1, ..., n} and x = xφ one has xi(t1) < −B
for some t1 > t0. Then τ := sup{t ∈ [t0, t1] : xi(t) = −B} ∈ [t0, t1). Then
xi(τ) = −B, xi(t) < −B for all t ∈ (τ, t1]. By the mean value theorem
x′i(t) < 0 for some t ∈ (τ, t1). Then ρi(xt)(0) = r(xi(t)) = −B. Hence by (F)
we have x′i(t) = fi(ρ(xt)) ≥ 0, which is a contradiction.

Theorem 2.14. Suppose that f : D −→ R
n is continuous and satisfies (F).

Then the following hold.

(a) For every φ ∈ D there exists a unique c = c(φ) ∈ (0,∞] and a non-
continuable solution xφ on [t0 − h, t0 + c) of (2.1–2.2).

(b) If f(U) is bounded, whenever U ⊂ D is bounded, and if for some φ ∈ D
the set {xφt : t ∈ [t0, t0 +α)} ⊂ D is bounded, whenever α <∞ and xφ

defined on [t0, t0 + α), then c = ∞, i.e., the solution is global.
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(c) If f is almost locally Lipschitz and φ ∈ VD, then x
φ is unique.

Proof. Since F := f ◦ ρ is continuous, by Theorem 2.2 (a) there exists a
noncontinuable solution of (2.3) for this F . Next, suppose that U ⊂ C is
(closed and) bounded. Then, as remarked, ρ(U) ⊂ D is bounded and hence
by the assumption of (b) F (U) = f(ρ(U)) is bounded. Thus by Theorem 2.2
(c) we have shown that if {xφt : t ∈ [t0, t0 + α)} ⊂ C is bounded whenever
α < ∞ and xφ defined on [t0, t0 + α), then c = ∞. If f is almost locally
Lipschitz, then by Lemma 2.12 so is F and thus by Theorem 2.5 we get
uniqueness. To complete the proof note that (F) guarantees via Lemma 2.13
that {xφt : t ∈ [t0, t0 + α)} ⊂ D and that xφ is a solution of (2.1–2.2).

Remark 2.15. If f would map only the closed and bounded sets on bounded
sets, as required in Theorem 2.2, we could not guarantee that F (U) = (f ◦
ρ)(U) is bounded if U is closed and bounded: the above defined retraction ρ
maps bounded on bounded, but in general does not map closed and bounded
on closed sets. To see the latter, consider e.g. C := C([0, 2],R), D := {x ∈
C : x(t) ≥ 0, ∀ t ∈ [−h, 0]} and r and ρ defined as above, but for n = 1,
B = 0 and the modified C and D. Define U := {xn : n ≥ 2} ⊂ C, where

xn(t) :=



















1
n

, t < 1− 1
n

1− t , 1− 1
n
≤ t < 1

−n(t− 1) , 1 ≤ t < 1 + 1
n

−1 , 1 + 1
n
≤ t ≤ 2.

Then it is easy to see that U is closed and bounded but

ρ(U) = {x : ∃ n ≥ 2 s.th. x(t) = xn(t) ∀ t ∈ [0, 1], x(t) = 0 ∀ t ∈ [1, 2]}.

is not closed.

2.3.3. Continuous dependence on initial values

The negative feedback condition (F ) now ensures that our results on
continuous dependence can be transferred to our case of a specific retraction
onto the domain of the functional.

Theorem 2.16. Suppose that f : D −→ R
n is almost locally Lipschitz and

satisfies (F), let φ ∈ VD and α > 0 be such that a solution xφ of (2.1–2.2)
through φ exists on [t0 − h, t0 + α]. Let (φk) ∈ V N

D with φk −→ φ. Then xφ

is unique on [t0 − h, t0 + α], for some k ≥ k0 there exist unique solutions xk

through φk on [t0 − h, t0 + α] and xk −→ xφ uniformly.
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Proof. Since xφ is a solution of (2.1–2.2) we have xφt ∈ D for all t ≥ t0. Thus,
for F := f ◦ ρ, one has F (xφt ) = f(xφt ) and x

φ is a solution of x′(t) = F (xt)
through φ. Since f is almost locally Lipschitz, by Lemma 2.12 so is F and
since φ ∈ VD the solution is unique. By Theorem 2.6 there exists some k0,
such that for all k ≥ k0 there exist unique solutions xk of x′(t) = F (xt)
through φk on [t0 − h, t0 + α] and xk −→ xφ uniformly. By Lemma 2.13 we
have xkt ∈ D for all t ≥ t0, hence the xk solve also (2.1– 2.2).

2.3.4. A continuous semiflow on a state-space of Lipschitz functions

If f satisfies the assumptions for global existence and uniqueness, we can
use the concept of a semiflow, e.g., in the sense of [1, Section 10]. We start
with some definitions:

Definition 2.17. Let (X, d) be a metric space. A map Σ : [0,∞)×X −→ X
is called a continuous semiflow if

(i) Σ(0, x) = x for all x ∈ X ,

(ii) Σ(t,Σ(s, x)) = Σ(t + s, x) for all s, t ∈ [0,∞), x ∈ X (“semigroup
property”),

(iii) Σ is continuous.

A trajectory of the semiflow Σ is a map σ : I −→ X defined on an interval
I ⊂ R with positive length, such that for s and t in I with s ≤ t one has

σ(t) = Σ(t− s, σ(s)).

The ω-limit set of a trajectory σ : I −→ X with sup I = ∞ is defined as

ω(σ) = {x ∈ X : ∃ (tn) ∈ IN, s.th. tn −→ ∞, σ(tn) −→ x as n→ ∞}.

Remark 2.18. Note that the definitions in [1, Section 10] and [4, Definition
VII 2.1] include also semiflows induced by local solutions. Moreover [4, Def-
inition VII 2.1] additionally requires completeness of the metric space, which
we here cannot expect, since by the Weierstrass approximation theorem VD
is not complete. On the other hand to our understanding this completeness
is not necessary here. Note also that [4, Definition VII 2.1] merely requires
continuity in each of the components, point-wise with respect to the other.
The definitions of trajectories and ω-limit sets are consistent with [4, Defini-
tions VII 2.3 and 2.4]. Note that the reference also contains similar results
for α-limit sets.
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The following properties of trajectories are proven in [4, Section VII].
We here merely will use the result on invariance of the ω-limit set - for an
alternative proof of Corollary 2.21 below.

Lemma 2.19. Let σ : I −→ X be a trajectory, then σ is continuous. If
sup I = ∞, then

ω(σ) =
⋂

t≥0

σ(I ∩ [t,∞)).

If additionally σ(I) is compact, then ω(σ) is nonempty, compact and con-
nected, dist(σ(t), ω(σ)) −→ 0 as t → ∞ and for x ∈ ω(σ) one has Σ(t, x) ∈
ω(σ) for all t ≥ 0.

We now conclude continuity of the semiflow from continuous dependence
on initial values and the semigroup property from uniqueness. In the follow-
ing we assume that t0 = 0.

Theorem 2.20. Suppose that f : D −→ R
n is almost locally Lipschitz and

satisfies (F), that f(U) is bounded whenever U ⊂ D is bounded and that
{xφt : t ∈ [0, α)} is bounded whenever φ ∈ VD and whenever xφ is defined on
[0, α). Then for any φ ∈ VD there exists a unique global solution and for all
t ≥ 0 one has xφt ∈ VD. Hence, we can define a map

S : [0,∞)× VD −→ VD; S(t, φ) := xφt .

This map defines a continuous semiflow on VD with respect to the sup-norm.

Proof. Existence of a unique global solution for all φ ∈ VD follows from
Theorem 2.14. Let φ ∈ VD and t > 0. By definition of a solution we have
xφt ∈ D. Let r, s ∈ [−h, 0]. Then

|xφt (r)− xφt (s)| = |xφ(t+ s)− xφ(t+ r)|.

First, xφ is Lipschitz on [−h, 0], since φ is Lipschitz. Next, xφ is as a solution
differentiable on [0, t] and satisfies (2.1–2.2). Hence, (xφ)′ is continuous. Thus
xφ is Lipschitz on [0, t] by the mean value theorem. Hence xφ is Lipschitz on
[−h, t] and thus xφt ∈ VD. Next, it is clear that S(0, φ) = φ for all φ ∈ VD.

13



To see that the semigroup property holds, fix φ and define for some t > 0
and τ > 0

y(s) :=











φ(s), s ∈ [−h, 0]

S(s, φ)(0), s ∈ [0, t]

S(s− t, S(t, φ))(0), s ∈ [t, t+ τ ]

z(s) :=

{

φ(s), s ∈ [−h, 0]

S(s, φ)(0), s ∈ [0, t+ τ ].

We have y = z on [−h, t], hence in particular on [t− h, t], thus yt = zt. Now
suppose that s ∈ (t, t+ τ ]. Let θ ∈ [−h, 0]. If s− t+ θ ≥ 0, then

x
S(t,φ)
s−t (θ) = x

S(t,φ)
s−t+θ(0) = S(s+ θ − t, S(t, φ))(0) = y(s+ θ) = ys(θ).

If s− t+ θ < 0 then

x
S(t,φ)
s−t (θ) = S(t, φ)(s− t+ θ) = xφt (s− t+ θ) = xφ(s+ θ)

=

{

φ(s+ θ), s+ θ ≤ 0

S(s+ θ, φ)(0), s+ θ > 0
= y(s+ θ) = ys(θ).

Thus x
S(t,φ)
s−t = ys. Hence

y′(s) =
d

ds
x
S(t,φ)
s−t (0) = (xS(t,φ))′(s− t) = f(x

S(t,φ)
s−t ) = f(ys).

Hence with t and t0 replaced by s and t respectively, y is a solution of (2.1)
through zt on [−h, t + τ ]. One similarly shows that so is z. By uniqueness
we have y = z on [−h, t+ τ ]. If we fill s = t+ τ and use the definitions of y
and z, we see that this implies the semigroup property.

To see continuity of S note that

|S(t, φ)(θ)− S(t, φ)(θ)|

≤ |S(t, φ)(θ)− S(t, φ)(θ)|+ |S(t, φ)(θ)− S(t, φ)(θ)|

= |xφ(t+ θ)− xφ(t + θ)|+ |xφ(t+ θ)− xφ(t+ θ)|.

The first term can be estimated using our result on continuous dependence
(Theorem 2.16), the second using continuity of solutions in time.

Continuous dependence and the semigroup property can be combined to
prove the following result:
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Corollary 2.21. Suppose that f satisfies the assumptions of Theorem 2.20,
φ ∈ VD, x

φ(t) −→ x∗ ∈ R as t→ ∞. Then x∗ is an equilibrium solution.

Proof. Let (tk) ∈ [0,∞)N, tk → ∞, and fix t > 0. Define a sequence via
φk := S(tk, φ) ∈ D and denote by φ∗ the constant function with value x∗

on [−h, 0]. Then φk = xφtk −→ φ∗ (uniformly) by our assumption. Similarly
S(t + tk, φ) −→ φ∗. But also S(t + tk, φ) = S(t, S(tk, φ)) = S(t, φk) −→
S(t, φ∗) by Theorem 2.20. Hence S(t, φ∗) = φ∗. One can conclude that x∗ is
an equilibrium solution.

The result can also be concluded from Lemma 2.19:

Proof of Corollary 2.21 via Lemma 2.19. Define I := [0,∞), choose
any φ ∈ VD, and define σ(t) := S(t, φ). Then σ is a trajectory. We show
that σ(I) is compact, i.e., that σ(I) = S([0,∞), φ) is relative compact. Let
(tn) ∈ [0,∞)N. Case 1: tn ∈ [0, T ] for all n ∈ N and some T > 0. Hence,
there exists (tnj) ⊂ (tn), t ∈ [0, T ] such that tnj −→ t as j → ∞. Then
(S(tnj , φ)) ⊂ (S(tn, φ)) and S(tnj , φ) −→ S(t, φ) by continuity. Case 2: (tn)
is unbounded. Then there exists some (tnj) ⊂ (tn) such that tnj −→ ∞ as
j → ∞. Thus S(tnj , φ) −→ φ∗ where φ∗ ∈ VD is defined as φ∗(t) = x∗ for all
t ∈ [−h, 0]. Hence, in any case, (S(tn, φ)) has a Cauchy subsequence, thus
σ(I) is compact. Now note that for the ω-limit set of the trajectory one has
ω(σ) = {φ∗}. Then by Lemma 2.19 one has S(t, φ∗) ∈ ω(σ) = {φ∗}, i.e.,
S(t, φ∗) = φ∗ for all t ≥ 0.

3. Invariant compact sets

3.1. Assumptions, main results and discussion

In the setting of Section 2 we now set n = 2 and B = 0, such that
D = C([−h, 0],R2

+) ⊂ C = C([−h, 0],R2), where R+ = [0,∞), and consider
a functional j : D −→ R+, a function q : R+ −→ R and a DDE of the form

w′ = q(v)w, v′(t) = −µv(t) + j(wt, vt), t > 0, (w0, v0) = (ϕ, ψ) ∈ D,

(3.1)

where µ > 0 is a parameter. Define q := sup q and suppose throughout the
section that q < ∞, q is locally Lipschitz, j is almost locally Lipschitz and
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that for some kj > 0 at least one of the two,

j(ϕ, ψ) ≤ kj‖ϕ‖, or (3.2)

j(ϕ, ψ) ≤ kjϕ(−τ(ψ)), (3.3)

where τ : C([−h, 0],R+) −→ [τ , h) for some τ ∈ (0, h), holds.
Obviously (3.2) is a weaker requirement. As we will see, however, (3.3)

may lead to better results while still applicable to our model. Our proofs
in the context of invariant sets of bounded functions rely on an exponential
estimate for the w-component that uses the linearity of the w-equation. Ex-
ponential estimates can be derived for general DDE, see e.g. [8, Corollary
6.1.1], so our approach possibly works for systems more general than (3.1)
too. In the context of our application, however, we found (3.1) a good com-
promise between the wishes to be general and to provide sharp estimates for
our model.

Now note that, supposing a solution through (ϕ, ψ) ∈ D exists, one has
that

w(t) =

{

ϕ(t), t ∈ [−h, 0]

ϕ(0)e
∫ t
0 q(v(s))ds, t > 0,

(3.4)

hence

w(t) ≤ ‖ϕ‖qe(t), ∀ t ≥ −h, where qe(t) :=

{

1, t ∈ [−h, 0]

eqt, t > 0.
(3.5)

Note that qe is continuous, nondecreasing, increasing on [0,∞) and differen-
tiable on [−h, 0) ∪ (0,∞).

An important case is that q is decreasing and has one positive zero, see
also Section 5 and [6]. Hence, positivity of q is not out-ruled, and thus,
looking at (3.4), we cannot expect that a next-state operator φ 7→ S(t, φ)
maps a set of the form C([−h, 0], [0, A]× [0, B]), A,B ∈ (0,∞) into itself (to
avoid subindices, we here, other than in the previous section, let both A and
B denote upper bounds). For similar reasons (see the proof of Theorem 3.1
(b) below) we cannot expect this for a set of R-Lipschitz functions either. On
the other hand, filling (3.4) into the second equation of (3.1) yields a closed
system in v (depending on both initial histories). Motivated by this, next to
an initial result for the w-component, we will establish an invariant set for
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the v-component. We refer to the discussion section for possible extensions
of this research.

Define for any B > 0 and R > 0 the set

CB,R := {χ ∈ C([−h, 0], [0, B]), lip χ ≤ R}. (3.6)

Note that CB,R is convex and, by the Arzela-Ascoli theorem, compact. Next,
we formulate the main results of this section and give proofs in the next
subsection. With the cases (3.2–3.3), respectively, we associate functions
fl, fτ : R+ −→ R+;

fl(t) :=
kj

µ+ q
(eqt − e−µt),

fτ (t) :=

{

kj
µ
(1− e−µt), if t ≤ τ

kj
q(e−µ(t−τ)−e−µt)+µ(eq(t−τ)−e−µt)

µ(µ+q)
, if t > τ,

(where l stands for linear in reference to (3.2)). When writing about these
functions we will assume that the respective case holds, sometimes only im-
plicitly.

Theorem 3.1. Under the assumptions of this subsection, the following holds
for any (ϕ, ψ) ∈ VD .

(a) The system (3.1) has a unique solution x = (w, v) through (ϕ, ψ) on
[0,∞). The solutions define a continuous semiflow in the sense of
Theorem 2.20.

(b) Choose A, R and T such that qAeqT ≤ R. Then, if ‖ϕ‖ ≤ A and
lip ϕ ≤ R one has lip wt ≤ R for all t ∈ [0, T ].

(c) Both, fl and fτ are zero in zero, tend to ∞ at ∞, are increasing and
continuous, fl is differentiable, and fτ is differentiable on [0, τ)∪(τ ,∞).
The functions

t 7−→
fl(t)

1− e−µt
and t 7−→

fτ (t)

1− e−µt
,

respectively, increase from kj/µ to infinity on R+, and equal kj/µ on
[0, τ ] and increase to infinity on [τ ,∞). Finally, fl(t) > fτ (t) for all
t > 0.
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(d) Assume that (3.2) holds and choose A, B, R and T such that Afl(T )
1−e−µT

≤

B and R ≥ max{µB, kjAe
qT}. Then, if ‖ϕ‖ ≤ A and ψ ∈ CB,R one

has vt ∈ CB,R for all t ∈ [0, T ].

If (3.3) holds, then the following hold.

(e) Choose A, B, R and T such that Afτ (T )
1−e−µT

≤ B and

R ≥ max{µB, kjAqe(T − τ )}.

Then, if ‖ϕ‖ ≤ A and ψ ∈ CB,R, one has vt ∈ CB,R for all t ∈ [0, T ].

(f) Choose A, B and R such that Akj < Bµ ≤ R and δ such that Akje
qδ =

µB. Then, if ‖ϕ‖ ≤ A and ψ ∈ CB,R, one has vt ∈ CB,R for all
t ∈ [0, τ + δ].

For further discussion of the theorem we state some technical results.

Lemma 3.2. One has
kje

qt

µ
> fl(t)

1−e−µt
for all t > 0 and kje

q(t−τ ) > µ fτ (t)
1−e−µt

for t > τ .

Now, note that (f) is a simple corollary of (e). To prove this, define
T = τ + δ in (e), and apply the second estimate of the lemma with t = T .
We omit further details.

By the previous lemma, in Theorem 3.1 (d) and (e) it would be sufficient
to assume that

R ≥ µB ≥

{

kjAe
qT , respectively,

kjAe
q(T−τ),

which is stronger but easier to check than the present assumptions.
Note that (e) allows to establish for the solution a lower bound and a

lower Lipschitz constant than (d): Fix A and T . Then the lowest bound we

can achieve through (d) is Bd :=
Afl(T )
1−e−µT

, whereas through (e) we can achieve

the bound Be :=
Afτ (T )
1−e−µT

< Bd. The lowest Lipschitz constant we can achieve

through (d) is Rd := max{µBd, kjAe
qT} > max{µBe, kjAqe(T − τ )} =: Re,

where Re is a (the lowest) Lipschitz constant we can achieve through (e).
We get invariance for a longer time through (e) than through (d): Fix A,

B and R such that
Akj
µ
< B and R ≥ µB. Then the largest time spans which

(d) and (e) yield are respectively td := min{td1, td2} and te = min{te1, te2},
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where the involved quantities are defined via Afl(td1)

1−e−µtd1
= B, Afτ (te1)

1−e−µte1
= B,

R = max{µB,Akje
qtd2} and R = max{µB,Akjqe(te2−τ )}. One has tdj < tej ,

j = 1, 2, hence td < te.
Theorem 3.1 (f) shows that, if (3.3) holds, there is a lower bound (τ) for

the time for which invariance holds, which is uniform for all A, B satisfying
Akj
µ

< B. If merely (3.2) holds we cannot get such a lower bound through

(d).

3.2. Proofs

We start with some general facts regarding the computation with almost
locally Lipschitz functions. In the following lemma we let f and g denote
arbitrary functions and D ⊂ C an arbitrary domain.

Lemma 3.3. (a) Suppose that f, g : D ⊂ C −→ R are almost locally Lips-
chitz. Then so are fg, (f, g) and f + g.
(b) Let f : D ⊂ C −→ R be almost locally Lipschitz and g : f(D) ⊂ R −→ R

locally Lipschitz, then g ◦ f : D −→ R is almost locally Lipschitz.

Proof. (a) Clearly fg is continuous. Now let φ0 ∈ D, R > 0. Choose δf , kf ,
δg, kg in notation similar as in Definition 2.4 and according to the definition.
Define k := max{kf , kg}. By continuity of f and g we can choose M and δ1
such that f and g are bounded by M on Bδ1(φ0). Define δ := min{δf , δg, δ1}.
Then fg is k-Lipschitz on V (φ0;R, δ), hence almost locally Lipschitz. The
remainder of the proof of (a) is obvious.
(b) First, clearly g ◦ f is continuous. Next, let φ0 ∈ D, R > 0, choose ε, k1
such that g is k1-Lipschitz on Bε(f(φ0)). Choose, δ, k2 such that f is k2-
Lipschitz on V (φ0; δ, R) and f(Bδ(φ0)) ⊂ Bε(f(φ0)). Let ϕ, ψ ∈ V (φ0; δ, R).
Then the following estimate implies the statement:

|g(f(ϕ))− g(f(ψ))| ≤ k1|f(ϕ)− f(ψ)| ≤ k1k2‖ϕ− ψ‖.

In view of applying the general theory we next would like to show that
a functional f associated with (3.1) is almost locally Lipschitz. Due to the
previous result it is sufficient to show that so are the components of f and
we start with the first component.

Lemma 3.4. The functional f1 : D −→ R; f1(ϕ, ψ) := q(ψ(0))ϕ(0) is locally
Lipschitz, in particular almost locally Lipschitz.
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Proof. First note that the projection map and the evaluation map

C([−h, 0],R2
+) −→ C([−h, 0],R+); (ϕ, ψ) 7→ ϕ, and

C([−h, 0],R+) −→ R; ϕ 7→ ϕ(0)

and analogous maps for the ψ-component are locally Lipschitz. Hence, by
the preservation of local Lipschitzianity under composition and the Lipschitz
property of q it follows that (ϕ, ψ) 7→ q(ψ(0)) is locally Lipschitz. Moreover
(ϕ, ψ) 7→ ϕ(0) is locally Lipschitz. Thus by the product rule for locally
Lipschitz functions so is f1.

Proof of Theorem 3.1 (a). By Lemmas 3.3 and 3.4 it follows that

f(ϕ, ψ) = (q(ψ(0))ϕ(0),−µψ(0) + j(ϕ, ψ))T

is almost locally Lipschitz. Property (F ) is guaranteed by non-negativity of
j. The boundedness property of f required in Theorem 2.20 is guaranteed
by continuity of q and (3.2–3.3). The required boundedness property of the
trajectory can be guaranteed by (3.4–3.5) if one integrates the v-equation in
(3.1) using q < ∞ and the variations of constants formula. Application of
Theorem 2.20 completes the proof.

Proof of Theorem 3.1 (b). Let t ∈ [0, T ]. It is equivalent to show
that lip w|[t−h,t] ≤ R. Since lip ϕ ≤ R it follows that w is R-Lipschitz on
[t− h, t] ∩ [−h, 0]. On [t− h, t] ∩ [0,∞) the function w is differentiable with

|w′(t)| ≤ |q(v(t))|‖ϕ‖qe(t) ≤ qAeqt ≤ qAeqT ≤ R.

In subsequent proofs we will sometimes omit bars in q and τ for the sake
of the presentation.

Lemma 3.5. One has for any t > 0

v(t) ≤

{

e−µtψ(0) + ‖ϕ‖fl(t), if(3.2) holds,

e−µtψ(0) + ‖ϕ‖fτ (t), if(3.3) holds.
(3.7)

Moreover fl(t) > fτ (t) for all t > 0.
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Proof. By the variation of constants formula

v(t) = e−µtψ(0) + e−µt
∫ t

0

eµsj(ws, vs)ds.

If (3.2) holds,

e−µt
∫ t

0

eµsj(ws, vs)ds ≤ kje
−µt

∫ t

0

eµs‖ws‖ds ≤ ‖ϕ‖kje
−µt

∫ t

0

e(µ+q)sds,

which yields the first statement. If (3.3) holds, then

e−µt
∫ t

0

eµsj(ws, vs)ds ≤ e−µtkj

∫ t

0

eµsw(s− τ(vs))ds

≤ e−µtkj‖ϕ‖

∫ t

0

eµsqe(s− τ(vs))ds ≤ e−µtkj‖ϕ‖

∫ t

0

eµsqe(s− τ)ds.

If t ≤ τ the statement is obvious. If t > τ , then

e−µt
∫ t

0

eµsj(ws, vs)ds ≤ kj‖ϕ‖[e
−µt

∫ τ

0

eµsds+ e−µt
∫ t

τ

eq(s−τ)+µsds],

which also yields the first statement. Now note that by the above estimates

fl(t) = kje
−µt

∫ t

0

e(µ+q)sds, fτ (t) = kje
−µt

∫ t

0

eµsqe(s− τ)ds.

Hence fl(t) > fτ (t) for all t > 0 if eqs > qe(s− τ) for all s > 0, which is the
case.

Proof of Theorem 3.1 (c). First note that by the previous lemma fl(t) >
fτ (t) for all t > 0. Next, if (3.2) holds,

sgn
d

dt

fl(t)

1− e−µt
= sgn[(qeqt + µe−µt)(1− e−µt)− (eqt − e−µt)µe−µt]

= sgn[qeqt − (q + µ)e(q−µ)t + µe−µt] = sgn g(t)

for obviously defined g. Then g(0) = 0 and

g′(t) = q2eqt + (µ2 − q2)e(q−µ)t − µ2e−µt

= q2eqt(1− e−µt) + µ2e−µt(eqt − 1) > 0.
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Thus g(t) > 0 for all t > 0 and hence t 7→ fl(t)/(1− e−µt) is increasing.
If (3.3) holds, to see that t 7→ fτ (t)/(1− e

−µt) is increasing, it is sufficient
to show that

g(t) :=
q(e−µ(t−τ) − e−µt) + µ(eq(t−τ) − e−µt)

1− e−µt

is increasing for t > τ . One has

sgn g′(t) = sgn {[q(µe−µt − µe−µ(t−τ)) + µ(qeq(t−τ) + µe−µt)](1− e−µt)

−µe−µt[q(e−µ(t−τ) − e−µt) + µ(eq(t−τ) − e−µt)]}

= sgn {[q(e−µt − e−µ(t−τ)) + qeq(t−τ) + µe−µt](1− e−µt)

−e−µt[q(e−µ(t−τ) − e−µt) + µ(eq(t−τ) − e−µt)]}

= sgn {q(e−µt − e−µ(t−τ)) + qeq(t−τ) + µe−µt + q(e−µ(2t−τ) − e−2µt)

−qe(q−µ)t−qτ − µe−2µt + q(e−2µt − e−µ(2t−τ)) + µ(e−2µt − e(q−µ)t−qτ )}

= sgn {q(e−µt − e−µ(t−τ)) + qeq(t−τ) + µe−µt − (q + µ)e(q−µ)t−qτ}

= sgn h(q)

for obviously defined h. Then h(0) = 0. Next,

h′(q) = e−µt − e−µ(t−τ) + eq(t−τ) + q(t− τ)eq(t−τ)

−[e(q−µ)t−qτ + (q + µ)(t− τ)e(q−µ)t−qτ ],

h′(0) = 1− e−µ(t−τ) − µ(t− τ)e−µt =: j(t)

in obvious notation. Then j′(t) = µe−µt[eµτ − 1 + µ(t − τ)] > 0, hence
j(t) > j(τ) = 0 and thus h′(0) > 0. Next,

h′′(q) = (t− τ)eq(t−τ){2 + q(t− τ)− [2 + (q + µ)(t− τ)]e−µt}

= (t− τ)eq(t−τ)k(q)

for obviously defined k. Then, applying ex ≥ 1 + x to x = µ(t− τ),

k(0) = 2− [2 + µ(t− τ)]e−µt ≥ 1− e−µt + 1− e−µτ > 0,

k′(q) = t− τ − e−µt(t− τ) > 0.

Hence, k is positive for q > 0, thus so is h′′, hence so is h′, thus so is h,
hence so is sgn g′. We have shown that t 7→ fτ (t)(1 − e−µt) is increasing.
Monotonicity of fl follows from monotonicity of fl(t)/(1−e

−µt) and the same
conclusion holds for fτ . Using that (1 − e−µt)−1 is bounded at infinity the
remaining statements are easy to see.
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Lemma 3.6. Assume that (3.2) holds and that A, B and T are such that
Afl(T )
1−e−µT

≤ B. Then ‖ϕ‖ ≤ A and ‖ψ‖ ≤ B imply that v(t) ≤ B for all
t ∈ [−h, T ].

Proof. By (3.7) one has v(t) ≤ Be−µt+Afl(t) for t ∈ (0, T ]. Hence v(t) ≤ B
if Afl(t)/(1 − e−µt) ≤ B and the latter follows by assumption and Theorem
3.1 (c).

An elaboration of the maximum in the following lemma will be carried
out further down.

Lemma 3.7. Let ‖ϕ‖ ≤ A and ‖ψ‖ ≤ B. Let T > 0 and choose

R ≥



















maxt∈[T−h,T ]∩[0,∞)max{kjqe(t)A, µ(e
−µtB + Afl(t))},

if (3.2) holds,

maxt∈[T−h,T ]∩[0,∞)max{kjqe(t− τ )A, µ(e−µtB + Afτ (t))},

if (3.3) holds.

Then, if lip ψ ≤ R, also lip vT ≤ R.

Proof. We should show that lip v|[T−h,T ] ≤ R. First,

lip v|[T−h,T ]∩[−h,0] = lip ψ|[T−h,T ]∩[−h,0] ≤ R.

Next, if (3.2) holds, we get v′(t) ≤ j(wt, vt) ≤ kj‖wt‖ ≤ kjqe(t)‖ϕ‖. If (3.3)
holds, then v′(t) ≤ kjw(t − τ(vt)) ≤ kjqe(t − τ(vt))‖ϕ‖ ≤ kjqe(t − τ)‖ϕ‖.
Moreover

v′(t) ≥ −µv(t) ≥

{

−µ(e−µt|ψ(0)|+ ‖ϕ‖fl(t)), if (3.2) holds

−µ(e−µt|ψ(0)|+ ‖ϕ‖fτ (t)), if (3.3) holds.

Hence for t > 0 one has

|v′(t)| ≤ max{kjqe(t)‖ϕ‖, µ(|ψ(0)|e
−µt + ‖ϕ‖fl(t))},

if (3.2) holds

|v′(t)| ≤ max{kjqe(t− τ)‖ϕ‖, µ(|ψ(0)|e−µt + ‖ϕ‖fτ (t))},

if (3.3) holds.

Hence lip v|[T−h,T ]∩[0,∞) ≤ maxt∈[T−h,T ]∩[0,∞) |v
′(t)| ≤ R.
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Lemma 3.8. Assume that (3.2) holds, choose A and B such that Akj/µ < B

and define t1 via A fl(t1)
1−e−µt1

= B, then if T ≤ t1 one has

max
t∈[0,T ]

µ[e−µtB + AfA(t)] = µB.

Proof. Define g : [0, t1] −→ R+; g(t) := µ[e−µtB + Afl(t)]. Then,

g′(t) = µ[
Akj
µ+ q

(qeqt + µe−µt)− µBe−µt], g′(0) = µ(Akj − µB) < 0,

g′(t1) = Bµ[
(1− e−µt1)(qeqt1 + µe−µt1)

eqt1 − e−µt1
− µe−µt1 ]

=
Bµ

eqt1 − e−µt1
[qeqt1 + µe−µt1 − (q + µ)e−(µ−q)t1 ] =

Bµ

eqt1 − e−µt1
h(t1)

for obviously defined h. We have seen in the proof of Theorem 3.1 (c) that
h(t1) > 0. Thus g′(t1) > 0. Next

g′′(t) = µ[
Akj
µ+ q

(q2eqt − µ2e−µt) + µ2Be−µt]

= µ[
Akj
µ+ q

(q2eqt − µ2e−µt) + µ2e−µt
Afl(t1)

1− e−µt1
]

> µ[
Akj
µ+ q

(q2eqt − µ2e−µt) + µ2e−µt
Afl(t)

1− e−µt
]

=
µAkj
µ+ q

[q2eqt − µ2e−µt + µ2e−µt
eqt − e−µt

1− e−µt
]

=
µAkj

(µ+ q)(1− e−µt)
[q2eqt(1− e−µt) + µ2e−µt(eqt − 1)] > 0.

Hence, g′ increases monotonously from a negative value to a positive value.
Thus g decreases monotonously to a minimum, then increases monotonously,
hence assumes a maximum either in zero, or in t1. Since g(0) = g(t1) = µB
the statement follows.

Proof of Theorem 3.1 (d). First note that T < t1 for t1 as in Lemma 3.8.
Hence by this lemma and Lemma 3.7 one has lip vt ≤ R for all t ∈ [0, T ].
The boundedness property follows by Lemma 3.6.

24



Proof of Theorem 3.1 (e). The stated boundedness is implied by the
monotonicity shown in (c) and Lemma 3.5. Moreover, since µB ≥ µ(Be−µt+
Afτ (t)) for t ∈ [0, T ], one has

R ≥ max{Akjqe(T − τ), µB}

≥ max
t∈[0,T ]

max{Akjqe(t− τ), µ(Be−µt + Afτ (t))}.

Hence the Lipschitz-property follows by Lemma 3.7.

Proof of Lemma 3.2. For t > s ≥ 0 one has

eq(t−s) >
q(e−µ(t−s) − e−µt) + µ(eq(t−s) − e−µt)

(µ+ q)(1− e−µt)
(3.8)

⇔ qeq(t−s) + (µ+ q)e−µt − (µ+ q)eq(t−s)−µt − qe−µ(t−s) > 0

⇔ eq(t−s)f(t) > 0, where

f(t) := q + (µ+ q)e−q(t−s)−µt − (µ+ q)e−µt − qe−(q+µ)(t−s).

Then

f(s) = 0,

f ′(t) = (µ+ q)e−µt[−(µ+ q)e−q(t−s) + µ+ qe−q(t−s)+µs]

= (µ+ q)e−µt[qe−q(t−s)(eµs − 1) + µ(1− e−q(t−s))] > 0.

Hence f(t) > 0 for all t > s and (3.8) holds. Setting s = τ and s = 0 shows
the respective statements.

4. The stem cell model formulated as a SD-DDE

In this section, in regard to Section 3 and the DDE (3.1), we keep the
assumptions on q, µ and D, but specify j and τ , such that the DDE (3.1)
becomes the SD-DDE (1.1–1.4) that describes the stem cell dynamics. Then
we apply the previous results to analyze this SD-DDE.
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4.1. Assumptions and main results

Suppose that the function g satisfies the following property, which we
denote by (G): There exist x1, x2, b,K, ε ∈ R, such that x1 < x2, 0 < ε < K
and b > 0, and g : Bb(x2)×R+ −→ R

(G1) is locally Lipschitz in the second argument, uniformly with respect to
the first,

(G2) is partially differentiable with respect to the first argument with D1g
Lipschitz and

sup
(y,z)∈Bb(x2)×R+

|D1g(y, z)| <
K

b
,

(G3) satisfies ε ≤ g(y, z) ≤ K on Bb(x2)×R+ and x2 − x1 ∈ (0, b
K
ε).

Note that (G3) implies that x1 ∈ Bb(x2). We now define h := b
K
. The

following result is an application of the Picard-Lindelöf theorem.

Lemma 4.1. Let ψ ∈ C([−h, 0],R+). Then there exists a unique solution
y = y(·, ψ) on [0, h] of (1.3) with y([0, h], ψ) ⊂ Bb(x2). Moreover, there exists
a unique

τ = τ(ψ) ∈ [
x2 − x1
K

,
x2 − x1

ε
] ⊂ (0, h)

solving (1.4).

Proof. Define fψ : [0, h] × Bb(x2) −→ R; fψ(s, y) := −g(y, ψ(−s)) and
with fψ a non-autonomous ODE y′(s) = fψ(s, y(s)). Then (G) guarantees
directly that fψ satisfies the conditions of the Picard-Lindelöf Theorem, e.g.
[9, Theorem II.1.1], which guarantees that there exists a unique solution y
on [0, h], since we defined h := b

K
. The remaining statements can be shown

by integrating the ODE and using (G3).

Accordingly, with τ := (x2 − x1)/K we can now define a functional

τ : C([−h, 0],R+) −→ [τ , h)

to describe the state-dependence of the delay. Moreover, we suppose that
d : Bb(x2)×R+ −→ R is bounded and Lipschitz and that γ : R+ −→ R+ is
bounded and locally Lipschitz and define

j(ϕ, ψ) :=
γ(ψ(−τ(ψ)))

g(x1, ψ(−τ(ψ)))
g(x2, ψ(0))ϕ(−τ(ψ))e

∫ τ(ψ)
0 [d−D1g](y(s,ψ),ψ(−s))ds.

(4.1)
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Then clearly the DDE (3.1) becomes the SD-DDE (1.1–1.4) and (3.3) holds
with

kj :=
K

ε
e
(K
b
+sup(y,z)∈Bb(x2)×R+

|d(y,z)|)h
sup
z∈R+

γ(z) <∞.

The following result will be proven in the next subsection.

Theorem 4.2. For any φ = (ϕ, ψ) ∈ VD, under the conditions given in
this subsection, the SD-DDE (1.1–1.4) has a unique solution xφ = (w, v)
on R+ through φ. The solutions define a continuous semiflow in the sense
of Theorem 2.20 and with fτ as in Theorem 3.1 (c) satisfy the invariance
properties Theorem 3.1 (e-f).

4.2. Proofs

We can apply Theorem 3.1 to obtain the statement of Theorem 4.2 if we
show that j is almost locally Lipschitz. To show this, it is useful to introduce a
notation that summarizes model ingredients with the same type of delay: Let
first β : R+ −→ R, r : C([−h, 0],R+) −→ [0, h] and G : C([−h, 0],R+) −→ R

be arbitrary maps. As a tool to prove several results that follow we define
the evaluation operator

C([−h, 0],R+)× [−h, 0] −→ R; ev(ϕ, s) := ϕ(s). (4.2)

Trivially, ev inherits continuity from the functions in its domain. We will
show that j is a special case of the functional defined in the following lemma.

Lemma 4.3. Suppose that β is locally Lipschitz and that r and G are almost
locally Lipschitz, then the functional D −→ R+;

(ϕ, ψ) 7−→ β(ψ(−r(ψ)))ϕ(−r(ψ))G(ψ) (4.3)

is almost locally Lipschitz.

Proof. By the discussed sum - and product rules and by other rules, which
are straightforward, it suffices to show that the two maps ψ 7→ β(ψ(−r(ψ)))
and (ϕ, ψ) 7→ ϕ(−r(ψ)) are almost locally Lipschitz. Now note that the first
map can be decomposed as

ψ 7→ (ψ,−r(ψ))
ev
7−→ ψ(−r(ψ))

β
7−→ β(ψ(−r(ψ))).
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Hence it is continuous as a composition by continuity of r, ev and β. Similarly
the second map can be written as

(ϕ, ψ) 7→ (ϕ,−r(ψ))
ev
7−→ ϕ(−r(ψ))

and continuity can be concluded. Next, let ψ0 ∈ C([−h, 0],R+), R > 0.
Choose δ > 0, k such that r is k-Lipschitz on V (ψ0; δ, R). Now note that for
ψ, χ ∈ V (ψ0; δ, R)

|ψ(−r(ψ)− χ(−r(χ)))|

≤ |ψ(−r(ψ)− ψ(−r(χ)))|+ |ψ(−r(χ)− χ(−r(χ)))|

≤ R|r(ψ)− r(χ)|+ ‖ψ − χ‖ ≤ (Rk + 1)‖ψ − χ‖.

Hence, ψ 7→ ψ(−r(ψ)) is almost locally Lipschitz. Since β is locally Lipschitz,
ψ 7→ β(ψ(−r(ψ))) is almost local Lipschitz by the discussed composition rule.
The stated Lipschitz property of the second map follows similarly.

A Gronwall-Lemma type estimate and use of (G1) and (G2) lead to the
following result.

Lemma 4.4. The map Y : C([−h, 0],R+) −→ C([0, h], Bb(x2)); Y (ψ)(t) :=
y(t, ψ) is locally Lipschitz.

Proof. Let ψ0, ψ, ψ ∈ C([−h, 0],R+). One has

|g(y(s, ψ), ψ(−s))− g(y(s, ψ), ψ(−s))|

≤ |g(y(s, ψ), ψ(−s))− g(y(s, ψ), ψ(−s))|

+|g(y(s, ψ), ψ(−s))− g(y(s, ψ), ψ(−s))| =: (I) + (II)

in obvious notation. By (G2) and the mean value theorem one has

(I) ≤ L1|y(s, ψ)− y(s, ψ)| ≤ L1‖y(·, ψ)− y(·, ψ)‖ = L1‖Y (ψ)− Y (ψ)‖,

where L1 := sup(y,z)∈Bb(x2)×R+
|D1g(y, z)|. By (G1), one has (II) ≤ L2‖ψ−ψ‖

for some L2 ≥ 0 and ψ and ψ in a neighborhood of ψ0. Now combine

|y(t, ψ)− y(t, ψ)| ≤

∫ t

0

|g(y(s, ψ), ψ(−s))− g(y(s, ψ), ψ(−s))ds|

with the previous estimates and L1 <
1
h
, which follows from (G2), to complete

the proof.

We can use this result to deduce
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Lemma 4.5. The map C([−h, 0],R+) −→ [0, h]; ψ 7→ τ(ψ) is locally Lips-
chitz.

Proof. Let ψ, ψ ∈ C([−h, 0],R+). By definition of τ(ψ) and τ(ψ) one has

y(τ(ψ), ψ) = y(τ(ψ), ψ) (= x1).

Hence,

|y(τ(ψ), ψ)− y(τ(ψ), ψ)| = |y(τ(ψ), ψ)− y(τ(ψ), ψ)|.

The left hand side is dominated by ‖Y (ψ) − Y (ψ)‖. There exists some
t ∈ [0, h], such that the right hand side equals

|D1y(t, ψ)||τ(ψ)− τ(ψ)|

= |g(y(t, ψ), ψ(−t))||τ(ψ)− τ(ψ)| ≥ ε|τ(ψ)− τ(ψ)|

by (G3). Thus |τ(ψ) − τ(ψ)| ≤ 1
ε
|Y (ψ) − Y (ψ)| and the proof is completed

using Lipschitzianity of Y .

Lemma 4.6. Let G : C([−h, 0],R+) × C([0, h], Bb(x2)) −→ C([0, h],R) be
an arbitrary locally Lipschitz operator with

sup
(ψ,z)

lip G(ψ, z) <∞.

Define G : C([−h, 0],R+) −→ R; G(ψ) := g(x2, ψ(0))e
G(ψ,Y (ψ))(τ(ψ)). Then G

is locally Lipschitz.

Proof. Choose ϕ0 ∈ C([−h, 0],R+) and R := sup(ψ,z) lip G(ψ, z). Choose

k and δ such that G is k-Lipschitz on Bδ((ϕ0, Y (ϕ0))) and Y and τ are
k-Lipschitz on Bδ(ϕ0). Choose ε ≤ δ such that

|G(ψ, Y (ψ))−G(ϕ0, Y (ϕ0))| ≤ δ, if ψ ∈ Bε(ϕ0).

Let ϕ, ψ ∈ Bε(ϕ0). Now note that ev is max{R, 1}-Lipschitz on V (ϕ; δ, R)×
[−h, 0] for any ϕ, δ, R. Hence, for ψ, χ ∈ Bε(ϕ0)

|ev(G(ψ, Y (ψ)), τ(ψ))− ev(G(χ, Y (χ)), τ(χ))|

≤ max{R, 1}{|G(ψ, Y (ψ))−G(χ, Y (χ))|+ |τ(ψ)− τ(χ)|}

≤ max{R, 1}{k[‖ψ − χ‖+ ‖Y (ψ)− Y (χ)‖] + |τ(ψ)− τ(χ)|}

≤ max{R, 1}max{k, k2}‖ψ − χ‖.
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Thus ψ 7→ ev(G(ψ, Y (ψ)), τ(ψ)) is locally Lipschitz. This implies that G is
locally Lipschitz.

Lemma 4.7. Let J ⊂ R, k : J × R+ −→ R be an arbitrary Lipschitz and
bounded map. Define

G : C([−h, 0],R+)× C([0, h], J) −→ C([0, h],R);

G(ψ, z)(t) :=

∫ t

0

k(z(s), ψ(−s))ds.

Then G is Lipschitz and

sup
(ψ,z)

lip G(ψ, z) <∞.

Proof. The first result follows from the estimates

|G(ψ, z)(t)−G(ψ, z)(t)| ≤

∫ t

0

|k(z(s), ψ(−s))− k(z(s), ψ(−s))|ds,

|k(z(s), ψ(−s))− k(z(s), ψ(−s))| ≤ L[‖z − z‖+ ‖ψ − ψ‖],

for some L ≥ 0. Boundedness of k implies the second statement.

Remark 4.8. In Lemma 4.6 and below we merely need local Lipschitzianity
of G. We presented a sketch of the rather straightforward proof of the previous
lemma to also hint that mere local Lipschitzianity of k would not yield local
Lipschitzianity of G, however. The point is that continuous functions being
close in a point obviously in general does not make them close in the sup-
norm. See [2] for more details on smoothness properties of related Nemytskii-
operators.

We now combine our results and prove

Proposition 4.9. The functional j as defined in (4.1) is almost locally Lip-
schitz.

Proof. By Lemma 4.3 it is sufficient to show that γ(·)
g(x1,·)

is locally Lipschitz and

that τ and ψ 7→ g(x2, ψ(0)) exp{
∫ τ(ψ)

0
[d−D1g](y(s, ψ), ψ(−s))ds} are almost

locally Lipschitz. Local Lipschitzianity of the first map follows directly from
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local Lipschitzianity of γ, (G1) and (G3). (Almost) local Lipschitzianity of
τ is shown in Lemma 4.5. (Almost) local Lipschitzianity of the third map
follows by Lemma 4.6, provided we show local Lipschitzianity of G, defined
as G(ψ, z)(t) :=

∫ t

0
[d − D1g](z(s), ψ(−s))ds and that for this G one has

sup(ψ,z) lip G(ψ, z) <∞. The latter follow by Lemma 4.7 from boundedness

and Lipschitzianity of k := d − D1g with J := Bb(x2). Thus, j is almost
locally Lipschitz.

5. Examples of model ingredients

In the previous section we have elaborated conditions on the model ingre-
dients specified as functions q, γ, g and d and the nonnegative parameter µ.
The exact nature of the cellular and sub-cellular processes related to these in-
gredients is subject to current research [21]. In [6] a combination of available
knowledge with mathematical considerations led to the specification

q(z) := [2sw(z)− 1]dw(z)− µw, γ(z) := 2[1− sw(z)]dw(z), where

sw(z) :=
aw

1 + kaz
, dw(z) :=

pw
1 + kpz

with aw ∈ [0, 1] and pw, µw, ka and kp nonnegative parameters. It is obvious
that for these examples q and γ are Lipschitz, in particular locally Lipschitz.
The function d considered is of the form

d(y, z) =
α(y)

1 + kdz
− µu(y)

for a nonnegative parameter kd and nonnegative functions α and µu. Note
that we here assumed the y-component of the domain to be compact (Bb(x2)).
Hence, if α and µu are Lipschitz, then d is Lipschitz and bounded.

In [5] based on [16] the authors consider g of the shape

g(y, z) = 2[1−
a(y)

1 + kgz
]p(y) (5.1)

for nonnegative kg, a and p. Further specifications are considered, which
lead to y- and z-independent g respectively. We here suppose that a and
p are differentiable and that a′ and p′ are Lipschitz. If we slightly modify
(5.1) such that g(y, z) ≥ ε on Bb(x2)×R+, and choose the constants in (G)
appropriately, we can guarantee that g satisfies (G).
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Note that, though our assumption that g is bounded away from zero has
a mathematical motivation, a nonzero maturation rate also has biological
consistency. An example of a g that is decreasing in z could be

g(y, z) := ε+ e−zγg(y)

with γg differentiable and γ′g Lipschitz.
A choice g(y, z) ≡ 1 also fulfills the requirements and with this choice y

could be interpreted as the age of a progenitor cell.

6. Discussion and outlook

Note that in [17, Theorem 6.8] a large class of SD-DDE is analyzed.
An alternative approach to proving well-posedness for (1.1-1.4) could be, to
investigate whether the cited result can be modified to include distributed
delays and whether the there required smoothness conditions can be guar-
anteed. Possibly also with that approach the implementation of retractions
could be useful. For results on differentiability of solutions with respect to
parameters and initial data, which are related to our results on continuous
dependence on initial values, we refer to the work of Hartung, e.g. [10, 11].

For the specifications in Section 5 and under some additional assumptions,
see [6], the here analyzed model (1.1–1.4) has a unique positive equilibrium
emerging from the trivial equilibrium in a transcritical bifurcation: the rate
q can be assumed to be decreasing to a negative value, hence the bifurcation
parameter should guarantee that q(0) > 0.

In a manuscript in preparation Ph.G. and G.R. are using the theory of
[19] to show that the trivial equilibrium is globally asymptotically stable in
absence of the positive equilibrium, whereas in its presence, there is uniform
strong population persistence. The latter can be concluded, essentially, if the
system is dissipative. In the manuscript, Ph.G. and G.R. encounter a situa-
tion in which there either is dissipativity or C-convergence of the solution to
a constant, where the constant depends on the initial condition. A priori it is
not clear how dissipativity can be concluded from the second case. By Corol-
lary 2.21, however, it can be concluded that the constant is an equilibrium
solution and, as the equilibrium is unique, this implies dissipativity. Note
also that Corollary 2.21 follows from continuous dependence of the solution
on the initial value in the C-topology. Using continuous dependence of the
solution on the initial value in the C1-topology, as established in [7], one could
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possibly prove similarly that the limit is an equilibrium, if the convergence
of the solution to the constant is in C1. In the manuscript in preparation,
the authors, however, are not able to show this convergence in C1. Hence,
a C1-variant of Corollary 2.21 would not be applicable in that manuscript.
In summary the present Corollary 2.21 can be expected to be a necessary
and sufficient tool to show dissipativity and uniform strong persistence for
(1.1–1.4).

In [7], the derivative of the semiflow defined on the solution manifold is
computed, such that a linearization is at hand. General theorems of linearized
stability, applicable to our system, are shown in [13] (stability) and [20]
(instability).

By the analysis of the characteristic equation derived from this lineriza-
tion in a manuscript in preparation by Mats Gyllenberg, Yukihiko Nakata,
Francesca Scarabel and Ph. G., the positive equilibrium is stable upon emer-
gence in the neighborhood of a transcritical bifurcation point and destabilizes
by a pair of eigenvalues crossing into the right half plane. Based on this anal-
ysis and on unpublished numerical simulations with DDE-biftool [18] (by Jan
Sieber) and pseudo-spectral methods [3] (by F. Scarabel) there is evidence
for a Hopf bifurcation and the emergence of a limit cycle. This motivates the
idea of a future analysis of Hopf bifurcations and periodic solutions.

We refer to [12] for Hopf bifurcation analysis for related equations. To es-
tablish periodicity for a general class of equations, in [14] the authors include
the assumption that the initial function should be at equilibrium value at
time zero. If for our model this assumption is included, one can investigate
convex and compact sets that are invariant under the original untransformed
system (1.1-1.4), i.e., sets that are invariant for both components of the
state. Motivated by the fact that periodicity for infinite times often can be
concluded from behavior in a finite time interval, we also have some hope
that the here established invariance for finite time may be sufficient.
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Ph.G. thanks Stefan Siegmund und Reinhard Stahn at Technische Univer-
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[2] J. Appell, M. Väth, Elemente der Funktionalanalysis. Vieweg, 2005.

[3] D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel, R. Vermiglio, Pseu-
dospectral discretization of nonlinear delay equations: new prospects for
numerical bifurcation analysis, SIAM J. Appl. Dyn. Syst. 15 (1) (2016)
1–23.

[4] O. Diekmann, S. van Gils, S.M. Verduyn Lunel, H.-O. Walther, De-
lay Equations, Functional-, Complex-, and Nonlinear Analysis, Springer
Verlag, New York, 1995.

[5] M. Doumic, A. Marciniak-Czochra, B. Perthame, J. P. Zubelli, A struc-
tured population model of cell differentiation, SIAM J. Appl. Math. 71
(2011) 1918–1940.

[6] Ph. Getto, A. Marciniak-Czochra, Mathematical modelling as a tool
to understand cell self-renewal and differentiation, in M dM. Vivanco
(Ed.), Mammary stem cells - Methods in Molecular Biology, Springer
protocols, Humana press 247–266.

[7] Ph. Getto, M. Waurick, A differential equation with state-dependent
delay from cell population biology, J. Differential Equations 260 (2016)
6176–6200.

[8] J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential
Equations, Springer Verlag, New York, 1991.

[9] Ph. Hartman, Ordinary Differential Equations, John Wiley & Sons, New
York, London, Sydney, 1964.

[10] F. Hartung, Differentiability of solutions with respect to the initial data
in differential equations with state-dependent delays, J. Dynam. Differ-
ential Equations 23 (4) (2011) 843–884.

[11] F. Hartung, J. Turi, On differentiability of solutions with respect to pa-
rameters in state-dependent delay equations, J. Differential Equations,
135 (2) (1997) 192–237.

[12] Q. Hu, J. Wu, Global Hopf bifurcation for differential equations with
state-dependent delay, J. Differential Equations 248 (2010) 2801–2840.

34



[13] F. Hartung, T. Krisztin, H.-O. Walther, J. Wu, Functional Differen-
tial Equations with state dependent delays: Theory and Applications,
Chapter V in Handbook of Differential Equations: Ordinary Differential
Equations, Volume 4, Elsevier.

[14] J. Mallet-Paret, R. D. Nussbaum, Boundary Layer Phenomena for
Differential-Delay Equations with State-Dependent Time Lags I, Arch.
Rational Mech. Anal. 120 (1992) 99–146.

[15] J. Mallet-Paret, R.D. Nussbaum, P. Paraskevopoulos, Periodic Solutions
for Functional Differential Equations with Multiple State-Dependent
Time Lags, Topol. Meth. Nonl. Anal. 3 (1994) 101–162.

[16] A. Marciniak-Czochra, T. Stiehl, A. D. Ho, W. Jaeger, W. Wagner,
Modeling of asymmetric cell division in hematopoietic stem cells: Reg-
ulation of self-renewal is essential for efficient repopulation, Stem Cells
Dev. 17 (2008) 1–10.

[17] J. Nishiguchi, A necessary and sufficient condition for well-posedness
of initial value problems of retarded functional differential equations, J.
Differential Equations 263 (2017) 3491–3532.

[18] J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey, D. Roose, DDE-
BIFTOOL Manual - Bifurcation analysis of delay differential equations,
https://arxiv.org/abs/1406.7144 last accessed May 1, 2018.

[19] H.L. Smith, H.R. Thieme, Dynamical Systems and Population Persis-
tence, Graduate Studies in Mathematics Vol. 118, American Mathemat-
ical Society, Providence, Rhode Island, 2010.

[20] E. Stumpf, Local stability analysis of differential equations with state-
dependent delay, Discr. Cont. Dyn. Sys. a 6 (2016) 3445–3461.

[21] M dM. Vivanco (Ed.), Mammary stem cells - Methods in Molecular
Biology, Springer protocols, Humana press.

[22] H.-O. Walther, The solution manifold and C1-smoothness for differen-
tial equations with state-dependent delay, J. Differential Equations 195
(2003) 46–65.

35


	1 Introduction
	2 Solving DDE on a state space of Lipschitz functions
	2.1 Initial value problem
	2.2 Domain of the functional is C
	2.2.1 Noncontinuable and global solutions
	2.2.2 Uniqueness
	2.2.3 Continuous dependence on initial values

	2.3 Retraction onto a specific domain
	2.3.1 A specific retraction for a specific domain
	2.3.2 Noncontinuable and global solutions and uniqueness
	2.3.3 Continuous dependence on initial values
	2.3.4 A continuous semiflow on a state-space of Lipschitz functions


	3 Invariant compact sets
	3.1 Assumptions, main results and discussion
	3.2 Proofs

	4 The stem cell model formulated as a SD-DDE
	4.1 Assumptions and main results
	4.2 Proofs

	5 Examples of model ingredients
	6 Discussion and outlook

