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Abstract

One of the simplest methods of generating a random graph with a given degree

sequence is provided by the Monte Carlo Markov Chain method using switches.

The switch Markov chain converges to the uniform distribution, but generally the

rate of convergence is not known. After a number of results concerning various

degree sequences, rapid mixing was established for so-called P -stable degree se-

quences (including that of directed graphs), which covers every previously known

rapidly mixing region of degree sequences.

In this paper we give a non-trivial family of degree sequences that are not P -

stable and the switch Markov chain is still rapidly mixing on them. This family has

an intimate connection to Tyshkevich-decompositions and strong stability as well.
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1 Introduction

1.1 Previous results on the rapid mixing of the switch Markov chain

An important problem in network science is to sample simple graphs with a given degree

sequence (almost) uniformly. In this paper we study a Markov Chain Monte Carlo

(MCMC) approach to this problem. The MCMC method can be successfully applied in

many special cases. A vague description of this approach is that we start from an arbitrary

graph with a given degree sequence and sequentially apply small random modifications

that preserve the degree sequence of the graph. This can be viewed as a random walk on

the space of realizations (graphs) of the given degree sequence. It is well-known that

after sufficiently many steps the distribution over the state space is close to the uniform

distribution. The goal is to prove that the necessary number of steps to take (formally,

the mixing time of the Markov chain) is at most a polynomial of the length of the degree

sequence.

In this paper we study the so-called switch Markov chain (also known as the swap

Markov chain). For clarity, we refer to the degree sequence of a simple graph as an

unconstrained degree sequence.

Throughout the paper, we work with finite graphs and finite degree sequences. For

two graphs G1, G2 on the same labelled vertex set, we define their symmetric difference

G1△G2 with V (G1△G2) = V (G1) = V (G2) and E(G1△G2) = E(G1)△E(G2).

Definition 1.1 (switch). For a bipartite or an unconstrained degree sequence d, we say

that two realizations G1, G2 ∈ G(d) are connected by a switch, if

|E(G1△G2)| = 4.

A widely used alternative name for switch is swap. A switch (swap) can be seen in

Figure 1; for the precise definition of the switch Markov chain, see Definition 3.1. Clearly,

if G1 and G2 are two simple graphs joined by a switch, then F = E(G1)△E(G2) is a cycle

of length four (a C4), and E(G2) = E(G1)∆F . Hence, the term switch is also used to

refer to the operation of taking the symmetric difference with a given C4. It should be

noted, though, that only a minority of C4’s define a (valid) switch. The majority of C4’s

do not preserve the degree sequence (if the C4 does not alternate between edges of G1 and

G2), or they introduce an edge which violates the constraints of the model (say, an edge

inside one of the color classes in the bipartite case).

The question whether the mixing time of the switch Markov chain is short enough is

interesting from both a practical and a theoretical point of view (although short enough

depends greatly on the context). The switch Markov chain is already used in applications,

hence rigorous upper bounds on its mixing time are much needed, even for special cases.

The switch Markov chain uses transitions which correspond to minimal perturbations.

There are many other instances where the Markov chain of the smallest perturbations have
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Figure 1: A switch (dashed lines emphasize missing edges)

polynomial mixing time, see [20]. However, it is unknown whether the mixing time of

the switch Markov chain is uniformly bounded by a polynomial for every (unconstrained)

degree sequence. Hence from a theoretical point of view, even an upper bound of O(n10)

on the mixing time of the switch Markov chain would be considered a great success, even

though in practice it is only slightly better than no upper bound at all.

The present paper is written from a theoretical point of view and should be considered

as a step towards answering the following question.

Question 1.2 (Kannan, Tetali, and Vempala [17]). Is the switch Markov chain rapidly

mixing on the realizations of all graphic degree sequences?

P -stability was introduced by Jerrum and Sinclair for the Jerrum-Sinclair chain, for

whose rapid mixing the notion presents a natural boundary [23]. Jerrum, Sinclair, and

McKay [15] already give an example for a non-P -stable degree sequences which has a

unique realization (trivially rapidly mixing): take

(2n− 1, 2n− 2, . . . , n+ 1, n, n, n− 1, . . . , 2, 1) ∈ N
2n. (1)

In its unique realization, the first n vertices form a clique, while the remaining vertices

form an independent set.

We will denote graphs with upper case letters (e.g. G), degree sequences (which are

non-negative integer vectors) with bold lower case letters (e.g. d). Classes of graphs and

classes of degree sequences are both denoted by upper case calligraphic letters (e.g. H).

We say that a graph G is a realization of a degree sequence d, if the degree sequence of

G is d. For a degree sequence d, we denote the set of all realizations of d by G(d). The

ℓ1-norm of a vector x is denoted by ‖x‖1.

Definition 1.3 (Greenhill and Gao [11]). Let D be a set of graphic degree sequences and

k ∈ 2N. We say that D is k-stable, if there exists a polynomial p ∈ R [x] such that for

any n ∈ N and any degree sequence d ∈ D on n vertices, any degree sequence d′ with

‖d′ − d‖1 ≤ k satisfies |G(d′)| ≤ p(n) · |G(d)|. The term P -stable is an alias for 2-stable,

which is the least restrictive non-trivial class defined here.
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There is a long line of results where the rapid mixing of the switch Markov chain

is proven for certain degree sequences, see [2, 18, 13, 6, 7, 12]. Some of these results

were unified, first by Amanatidis and Kleer [1], who established rapid mixing for so-called

strongly stable classes of degree sequences of simple and bipartite graphs (definition given

in Section 2.3).

The most general result at the time of writing is proved by Erdős, Greenhill, Mezei,

Miklós, Soltész, and Soukup:

Theorem 1.4 ([4]). The switch Markov chain is rapidly mixing on sets of unconstrained,

bipartite, and directed degree sequences that are P -stable (see Definition 1.3).

For the sake of being less redundant, the phrase “D is rapidly mixing” shall carry the

same meaning as “switch Markov chain is rapidly mixing on D”.

Recently, Greenhill and Gao [11] presented elegant conditions which when satisfied

ensure 8-stability of a class of degree sequences (8-stable degree sequence are by definition

P -stable). In particular, they show that for γ > 2, power-law distributed degree sequences

are 8-stable, hence rapidly mixing. They also give a proof that 8-stable sets of degree

sequence are rapidly mixing.

In this paper we try to extend the set of rapidly mixing bipartite degree sequences

beyond P -stability. The degree sequence (1) can naturally be turned into a bipartite one

by assigning the role of the two color classes to the clique and the independent set, and

then removing the edges of the clique.

Definition 1.5. Let us define a bipartite degree sequence:

h0(n) :=

(
1 2 3 · · · n− 2 n− 1 n

n n− 1 n− 2 · · · 3 2 1

)

H0 :=
{
h0(n)

∣
∣ n ∈ N

}

Let An = {a1, . . . , an} and Bn = {b1, . . . , bn}, often denoted simply A and B. We label the

vertices of h0(n) such that A is the first and B is the second color class, with degh0(n)(ai) =

n + 1 − i and degh0(n)(bi) = i for i ∈ [1, n]. The unique realization H0(n), also known as

the half-graph, is displayed on Figure 2.

a1 a2 ai an−1 an

bnbn−1bib2b1

Figure 2: The unique realization H0(n) of h0(n) is isomorphic to the half-graph.
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In this paper, we conduct a detailed study of h0(n) and its neighborhood. Before

presenting our main results, let us get familiar with two interesting properties of h0(n).

1.2 Simple examples for rapidly mixing non-stable bipartite classes

Let 1x be the vector which takes 1 on x and zero everywhere else. As solving an easy

linear recursion in Corollary 6.2 shows, h0(n)− 1a1 − 1bn has

Θ

((

1 +
√
5

2

)n)

realizations, therefore H0 is not P -stable.

Although h0(n) seems very pathological as an example for a non-stable degree se-

quence, it is a source of more interesting examples. As pointed out to us by an anonymous

reviewer, one may replace aibi by a pair of independent edges simultaneously for all i: let

us define

g(n) :=

(
1 1 3 3 · · · 2n− 1 2n− 1

2n− 1 2n− 1 2n− 3 2n− 3 · · · 1 1

)

.

The number of realizations of g(n) is 2n, because the two independent edges replacing an

edge aibi can be switched with the two induced non-edges. In addition, every realization

of g(n) can be obtained this way, so for any realization of g(n) the previously mentioned

n switches are the complete set of switches. Because the random-walk on a hypercube is

rapidly mixing, the switch Markov chain is rapidly mixing on {g(n) | n ∈ N}. Moreover,

by solving yet another a linear recursion, one can verify that {g(n) | n ∈ N} is not

P -stable.

In Section 2.2, we will draw the curtain on the explanation behind the behavior of

h0(n) and g(n). In the meantime, we present the main results of the paper.

1.3 Results

If d is the degree sequence of the bipartite graph G[A,B], then d = (dA;dB) is split across

the bipartition as well, and it is called a splitted bipartite degree sequence. We say that

G[A,B] is the empty bipartite graph if both A = B = ∅.

Definition 1.6. For a set D of bipartite degree sequences, let

B2k(D) =
⋃

d∈D

{

e : Dom(d) → N

∣
∣
∣ ‖d− e‖1 ≤ 2k, ‖eA‖1 = ‖eB‖1

}

S2k(D) =
⋃

d∈D

{

e : Dom(d) → N

∣
∣
∣ ‖d− e‖1 = 2k, ‖eA‖1 = ‖eB‖1

}
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be the (closed) ball and sphere of radius 2k around D (w.l.o.g. k ∈ N). The requirement

that ‖eA‖1 = ‖eB‖1, i.e., that the sum of the degrees on the two sides be equal is necessary

for graphicality.

We will show in Section 5 that neighborhoods of H0 = {h0(n) | n ∈ N} are rapidly

mixing.

Theorem 1.7. For any fixed k, the switch Markov chain is rapidly mixing on the bipartite

degree sequences in B2k(H0).

Next, we show that even though balls of constant size around H0 are rapidly mixing,

S2k(H0) contains a degree sequence which is not P -stable.

Definition 1.8. For all k, n ∈ N where k < n let

hk(n) := h0(n)− k · 1a1 − k · 1bn

Hk :=
{
hk(n) | k ≤ n ∈ N

+
}

be a bipartite degree sequence and a class of bipartite degree sequences, respectively.

Theorem 1.9. The class of degree sequences Hk is not P -stable for any k ∈ N.

1.4 Outline

The rest of the paper is organized as follows.

• As promised at the end of Section 1.2, we introduce the Tyshkevich-decomposition

of bipartite graphs in Section 2. We also expose a connection to strong stability

which provides further motivation to studying h0(n).

• In Section 3 we introduce the switch Markov chains, some related definitions, and

Sinclair’s result on mixing time.

• Section 4 describes the structure of realizations of degree sequences from B2k(h0),

which is then used by Sections 5 and 6 to prove Theorems 1.7 and 1.9, respectively.

• Section 7 describes how h0(n) relates to previous research. Possible generalization

of Theorem 1.7 are conjectured.

2 Properties of Tyshkevich-decompositions

2.1 Tyshkevich-decomposition of bipartite graphs

Let G be a simple graph. It is a split graph if there is a partition V (G) = A ⊎ B (A 6= ∅
or B 6= ∅) such that A is a clique and B is an independent set in G. Split graph were first
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studied by Földes and Hammer [10], who determined that being split is a property of the

degree sequence d of G. Note, that the partition is not necessarily unique, but the size of

A is determined up to a +1 additive constant, see [14]. A split graph endowed with the

partition is called a splitted graph, denoted by (G,A,B). In addition to [10], Tyshkevich

and Chernyak [22] also determined that being split is a property of the degree sequence,

thus every realization of a split degree sequence is a split graph.

Tyshkevich and co-authors have extensively studied a composition operator ◦ on (split)

graphs; these results are nicely collected in [21]. The composition (G,A,B) ◦H takes the

disjoint union of split graph and a simple graph, and joins every vertex in A to every vertex

of H . A fundamental result on this operator is that any simple graph can be uniquely

decomposed into the composition of split graphs and possibly an indecomposable simple

graph as the last factor. During the writing of this paper, we were greatly saddened to

learn that Professor Tyshkevich passed away November, 2019

Let us slightly change the conventional notation G[A,B] to also signal that the color

classes A and B are ordered (2-colored); to emphasize this, we may refer to such graphs

as splitted bipartite graphs. Observe, that a function Ψ removing the edges of the clique

on A from (G,A,B) produces a splitted bipartite graph G[A,B]. Erdős, Miklós, and

Toroczkai [9] adapted the results about split graphs and the composition operator ◦ to

splitted bipartite graphs via the bijection given by Ψ.

Definition 2.1. Given two splitted bipartite graphs G[A,B] and H [C,D] with disjoint

vertex sets, we define their (Tyshkevich-) composition G[A,B] ◦ H [C,D] as the bipartite

graph

G[A,B] ◦H [C,D] := G[A,B] ∪H [C,D] + {ad | a ∈ A, d ∈ D}.
The ◦ operator is clearly associative, but not commutative. We say that a bipar-

tite graph is indecomposable if it cannot be written as a composition of two non-empty

bipartite graphs.

Lemma 2.2 ([9], adapted from Theorem 2(i) in [21]). Let G[A,B] be a bipartite graph with

degree sequence d = (dA, dB), where both dA and dB are in non-increasing order. Then

G[A,B] is decomposable if and only if there exists p, q ∈ N such that 0 < p+q < |A|+ |B|,
0 ≤ p ≤ |A|, 0 ≤ q ≤ |B|, and

p
∑

i=1

dAi = p(|B| − q) +

|B|
∑

|B|−q+1

dBi . (2)

Theorem 2.3 ([9], adapted from Corollaries 6 and 9 in [21]).

(i) Any splitted bipartite degree sequence d can be uniquely decomposed in the form

d = α1 ◦ · · · ◦ αk,

where αi is an indecomposable splitted bipartite degree sequence for i = 1, . . . , k.
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(ii) Any realization G of d can be represented in the form

G = G[A1, B1] ◦ · · · ◦G[Ak, Bk],

where G[Ai, Bi] is a realization of αi.

(iii) Any valid bipartite switch of G is a valid bipartite switch of G[Ai, Bi] for some i.

It follows from the previous theorem that indecomposability is determined by the

degree sequence. Lemma 2.2 gives an explicit characterization of such splitted bipartite

degree sequences.

Definition 2.4. Let D◦ be the closure of D under the composition operator ◦.

The following theorem is a due to Erdős, Miklós, and Toroczkai.

Theorem 2.5 (Theorem 3.6 in [9]). If D is rapidly mixing, then so is D◦.

Theorem 2.5 is a simple consequence of [8, Theorem 5.1]. By Theorem 2.5, for a class

of degree sequences D to be rapidly mixing it is sufficient that indecomp(D) is rapidly

mixing, where

indecomp(D) := {α | α is an indecomposable component of some d ∈ D}.

Because the number of realizations is independent of the internal order of the biparti-

tion, we revert to using “bipartite degree sequence” instead of the cumbersome “splitted

bipartite degree sequence”. From now on, bipartite graphs and their degree sequences are

assumed to be splitted.

2.2 Non-stability of Tyshkevich-compositions

As promised, we now revisit the two examples in Section 1.2. Observe, that

h0(n) =

n
︷ ︸︸ ︷

(1; 1) ◦ . . . ◦ (1; 1)

H0(n) =

n
︷ ︸︸ ︷

K2 ◦ . . . ◦K2

Note, that (1; 1) = (0; ∅) ◦ (∅; 0), so the indecomposable decomposition of h0(n) has

2n components. Theorem 2.3 implies that H0(n) is the only realization of h0(n). This

innocent looking example leads to the following result:

Lemma 2.6. For any class D of bipartite degree sequences, D◦ is not P -stable (except if

αA = ∅ for all α ∈ D or βB = ∅ for all β ∈ D).
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Proof. Take α, β ∈ D such that αA 6= ∅ and βB 6= ∅. Let

d(r) =

r
︷ ︸︸ ︷

(α ◦ β) ◦ . . . ◦ (α ◦ β) .

From Theorem 2.3 it follows that

|G(d(r))| = |G(α)|r · |G(β)|r.

Let G = (G1◦G2)◦. . .◦(G2r−1◦G2r) be an arbitrary realization of d(r) where G2i−1 ∈ G(α)
and G2i ∈ G(β). Recall that h0(r) − 1a1 − 1br has exponentially many realizations

(Corollary 6.2).

Choose a vertex ai from the first class of G2i−1 and bi from the second class of G2i

(for i ∈ [1, r]). Observe, that G[{a1, . . . , ar}, {b1, . . . , br}] is an induced copy H0(r). By

replacing this subgraph with a realization of h0(r)− 1a1 − 1br , an exponential number of

realizations of d(r)− 1a1 − 1br are obtained; however, because the substitution does not

change the components G2i−1 and G2i for any i, G is recoverable from such realizations.

In other words, every realization of some d′ ∈ S2(d(r)) is obtained from at most one

realization of d(r), so D cannot be P -stable.

The degree sequence g(n) was obtained by replacing aibi with two independent edges.

Therefore Lemma 2.6 applies to {g(n) | n ∈ N}:

g(n) =

n
︷ ︸︸ ︷

(1, 1; 1, 1) ◦ . . . ◦ (1, 1; 1, 1)

Naturally,

n
︷ ︸︸ ︷

2K2 ◦ . . . ◦ 2K2 is a realization of g(n) and all 2n realizations of g(n) are iso-

morphic to it (Theorem 2.3).

Theorem 1.9 is not, however, a simple consequence of Lemma 2.6:

Lemma 2.7. The bipartite degree sequence hk(n) is indecomposable for 0 < k < n.

Proof. Via Lemma 2.2. Suppose hk(n) is decomposable. Substituting into (2), we get

(
n+ 1

2

)

− k −
(
n− p+ 1

2

)

+max{k − p, 0} =

= p(n− q) +

(
q + 1

2

)

−max{k − n + q, 0}

max{k − p, 0}+max{k − n+ q, 0} − k =

(
q − p+ 1

2

)

A short case analysis shows that the right hand side is larger than the left hand side.
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2.3 Strong stability and H0(ℓ)

Strong stability is defined by Amanatidis and Kleer [1]. In their definition, they measure

how stable a degree sequence is by measuring the maximum distance of a perturbed

realization from the closest realization.

Definition 2.8 (adapted from [1]). A degree sequence d is distance-ℓ strongly stable if for

any realization G′ of a degree sequence d′ for which ‖d′−d‖1 ≤ 2 there exists a realization

G such that |E(G△G′)| ≤ ℓ. A set of degree sequences is called strongly stable if there

exists an ℓ such that every degree sequence in the set is distance-ℓ strongly stable.

The distance function |E(G△G′)| used in Definition 2.8 differs from the function used

in [1] up-to a factor of 2. Indeed, in one step, the Jerrum-Sinclair chain changes the size

of the symmetric difference by at most 2. In the other direction, suppose G minimizes

|E(G△G′)|. Take a vertex v where d(v) = d′(v): E(G) and E(G′) evenly contribute to

the edges incident to v in G△G′. For the two vertices where d and d′ differ, there is an

extra edge from G or G′. For this reason, if G△G′ is not a path, then it contains a cycle

C whose edges alternate between G and G′, hence C is alternating (between edges and

non-edges) in G as well. However,

|E((G△C)△G′)| = |E(G△G′)| − |E(C)|,

which contradicts the minimality of G. If G△G′ is path, the Jerrum-Sinclair chain needs

at most ⌈1
2
|E(G△G′)|⌉ steps to transform G′ into G.

The way we define strong stability immediately shows that strongly stable sets of

degree sequences are also P -stable with p(n) = nℓ+1.

Definition 2.9. We say that a bipartite graph G[A,B] is covered by alternating cycles if

for any x ∈ A and y ∈ B there exists a cycle C which traverses (covers) xy and alternates

between the vertex sets A and B, and also alternates between edges and non-edges of

G[A,B].

Lemma 2.10. The following statements are equivalent for a bipartite degree sequence d.

1. d is indecomposable;

2. every G ∈ G(d) is covered by alternating cycles;

3. every d′ ∈ S2(d) is graphic.

Proof. Suppose d is decomposable; let G ∈ G(d) and say G = G1◦G2. Take x ∈ V (G1)∩A
and y ∈ V (G2) ∩B from distinct color classes, thus xy ∈ E(G). If ∃G′ ∈ G(d+ 1x + 1y),

then take G△G′: there x and y have one extra edge in G′ compared to G, therefore

there is an alternating path joining x to y in G starting on an non-edge, i.e., there is an

10



alternating cycle on xy in G. This means that there is a realization of d in which xy is

not an edge. Therefore d+ 1x + 1y is not graphic. The proof is similar if x ∈ V (G1) ∩B

and y ∈ V (G2) ∩A (take the complement).

In the other direction, suppose d is indecomposable. Let G ∈ G(d) and d′ ∈ S2(d) be

arbitrary. Suppose first, that d′ = d + 1x + 1y where x ∈ A and y ∈ B. If xy /∈ E(G),

then G+xy is a realization of d′. If xy ∈ E(G) and there is an alternating cycle C on xy

in G, then G△C + xy ∈ G(d′).

If xy ∈ E(G) is not contained in an alternating cycle in G, then let A1 ⊂ A and

B1 ⊂ B be the set of vertices that are reachable from x on an alternating path starting on

a non-edge. Define A2 = A \A1 and B2 = B \B1. We must have y ∈ B2, otherwise there

is an alternating cycle on xy. Observe, that G = G[A1, B1] ◦G[A2, B2], a contradiction.

If d′ = d − 1x − 1y where x ∈ A and y ∈ B, take the complement to arrive in the

previous case.

Finally, we have d′ = d − 1x + 1y where x, y ∈ A or x, y ∈ B. Without loss of

generality, suppose that x, y ∈ A. Let G ∈ G(d) be arbitrary. If there is an alternating

path P starting on a edge from x to y in G, then G△P ∈ G(d′). If there is no such

alternating path, take a z in B such that xz ∈ E(G). Then yz ∈ E(G), too. As before,

there exists an alternating cycle C on yz in G, because d is indecomposable. Since C is

an alternating cycle, xz /∈ E(G), thus G△C − xz + yz ∈ G(d′).

Lemma 2.11. Suppose that the minimum length of an alternating cycle covering xy in

G is 2ℓ+ 2 and G ∈ G(d). Then a graphic element of S2(d) is not distance-(2ℓ) strongly

stable. Moreover, there is an induced copy of H0(⌈ℓ/3⌉) in G.

Proof. Notice that all of the conclusions are invariant on complementing G. By taking

the complement of G, we may suppose that xy /∈ E(G).

Take d′ := d + 1x + 1y. For any realization G′ ∈ G(d′) we have |E(G△G′)| > 2ℓ,

otherwise there is an alternating path of length at most 2ℓ − 1 in G which forms an

alternating cycle of length 2ℓ with xy.

Let C be an alternating cycle of length 2ℓ + 2 on xy. Let a1 := x and bℓ+1 := y. Let

ai and bi be the vertices at distance 2i− 2 and 2i− 1 from x on C − xy, respectively.

Notice, that aibj ∈ E(G) if i+ 1 ≥ j, and aibj /∈ E(G) if j ≤ i− 2, otherwise C is not

the shortest alternating cycle on xy. Let

A′ := {a3i−2 : i = 1, . . . , ⌈ℓ/3⌉},
B′ := {a3i−1 : i = 1, . . . , ⌈ℓ/3⌉}.

We have

G[A′, B′] = (a1, ∅) ◦ (∅, b2) ◦ (a4, ∅) ◦ · · · ◦ (∅, bk) ≃ H0(⌈ℓ/3⌉).
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3 The switch Markov chain

For the precise definition of Markov chains and an introduction to their theory, the reader

is referred to Durrett [3]. To define the unconstrained and bipartite switch Markov chains,

it is sufficient to define their transition matrices.

Definition 3.1 (unconstrained/bipartite switch Markov chain). Let d be an unconstrained

or bipartite degree sequence on n vertices. The state space of the switch Markov chain

M(d) is G(d). The transition probability between two different states of the chain is

nonzero if and only if the corresponding realizations are connected by a switch, and in this

case this probability is 1
6

(
n

4

)−1
. The probability that the chain stays at a given state is one

minus the probability of leaving the given state.

It is well-known that any two realizations of an unconstrained or bipartite degree

sequence can be transformed into one-another through a series of switches.

The switch Markov chains defined are irreducible (connected), symmetric, reversible,

and lazy. Their unique stationary distribution is the uniform distribution π ≡ |G(d)|−1.

Definition 3.2. The mixing time of a Markov chain M is

τM(ε) = min
{
t0 : ∀x ∀t ≥ t0 ‖P t(x, ·)− π‖1 ≤ 2ε

}
,

where P t(x, y) is the probability that when M is started from x, then the chain is in y

after t steps.

Definition 3.3. The switch Markov chain is said to be rapidly mixing on an infinite set

of degree sequences D if there exists a fixed polynomial poly(n, log ε−1) which bounds the

mixing time of the switch Markov chain on G(d) for any d ∈ D (where n is the length of

d).

Sinclair’s seminal paper describes a combinatorial method to bound the mixing time.

Definition 3.4 (Markov graph). Let G(M(d)) be the graph whose vertices are realizations

of d and two vertices are connected by an edge if the switch Markov chain on G(d) has a
positive transition probability between the two realizations.

Let Γ be a set of paths in M(d). We say that Γ is a canonical path system if for

any two realizations G,H ∈ G(d) there is a unique γG,H ∈ Γ which joins G to H in the

Markov graph. The load of Γ is defined as

ρ(Γ) = max
P (e)6=0

|{γ ∈ Γ : e ∈ E(γ)}|
|G(d)| · P (e)

, (3)

where P (e) is the transition probability assigned to the edge e of the Markov graph (this is

well-defined because the studied Markov chains are symmetric). The next lemma follows

from Proposition 1 and Corollary 4 of Sinclair [19].
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Lemma 3.5. If Γ is a canonical path system for M(d) then

τM(d)(ε) ≤ ρ(Γ) · ℓ(Γ) ·
(
log(|G(d)|) + log(ε−1)

)
,

where ℓ(Γ) is the length of the longest path in Γ.

Obviously, log(|G(d)|) ≤ n2, henceforth we focus on bounding ρ by a polynomial of n.

4 Flow representation

In this section we introduce a flow representation of realizations of bipartite degree se-

quences defined on An and Bn as their first and second color classes, respectively.

Let F = Fn = (An, Bn, ~E) be a directed bipartite graph such that

• aibj ∈ ~E(F ) if and only if i ≤ j,

• bjai ∈ ~E(F ) if and only if j < i.

Every edge in uv ∈ ~E(F ) has capacity 1 in the direction from u to v. We will only

consider integer flows, so any admissible flow in F is a subgraph of F . If the sum of the

flow injected at the sources is r ∈ N, then the flow is called an r-flow.

Definition 4.1. The flow representation ~∇(G) of a bipartite graph G[An, Bn] is the sub-

graph of Fn obtained as follows: take the symmetric difference ∇(G) = G[An, Bn]△H0(n),

then make ∇(G) directed such that each edge in ∇(G) matches its orientation in Fn.

Lemma 4.2. The flow representation ~∇(G) is an admissible flow in F . Moreover,

• every ai ∈ A is a source of (degG(ai)− degH0(n)(ai))
− commodity,

every bi ∈ B is a source of (degG(bi)− degH0(n)(bi))
+ commodity,

• every ai ∈ A is a sink of (degG(ai)− degH0(n)(ai))
+ commodity,

every bi ∈ B is a sink of (degG(bi)− degH0(n)(bi))
− commodity.

Conversely, such a flow is the flow representation of some G[An, Bn].

Proof. Observe the structure of H0(n) on Figure 2. We have

degG(ai)− dH0(n)(ai) = deg∇(G)(ai, {b1, . . . , bi−1})− deg∇(G)(ai, {bi, . . . , bn})
= ̺~∇(G)(ai)− δ~∇(G)(ai),

degG(bi)− dH0(n)(bi) = deg∇(G)(bi, {ai+1, . . . , an})− deg∇(G)(bi, {a1, . . . , ai})
= δ~∇(G)(ai)− ̺~∇(G)(ai).

In the other direction, remove the orientation from the flow and take its symmetric dif-

ference with H0(n) to obtain the appropriate G[An, Bn].

13



Corollary 4.3. For any d ∈ S2k(H0), the function G 7→ ~∇(G) is a bijection between G(d)
and such k-flows on F where the sources and sinks prescribed according to Lemma 4.2.

For example: every flow representation of a realization of

h0(n)− 1a1 + 2 · 1b2 + 1a7 − 2 · 1b8

is a 3-flow with sources at a1 and b2, and sinks as at a7 and b8; see Figure 3.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

Figure 3: The flow representation of a realization of a degree sequence from B6(h0(8)).

5 Proof of Theorem 1.7: rapid mixing on B2k(H0)

5.1 Overview of the proof

Without loss of generality d ∈ S2k(H0). Let X, Y ∈ G(d) be two distinct realizations. We

will define a switch sequence

γX,Y : X = Z0, Z1, . . . , Zt = Y,

We will also define a set of corresponding encodings

L0(X, Y ), L1(X, Y ), . . . , Lt(X, Y ).

The canonical path system Γ := {γX,Y | X, Y ∈ G(d)} on G(M(d)) will satisfy the

following two properties:

• Reconstructible: there is an algorithm that for each i, takes Zi and Li(X, Y ) as

an input and outputs the realizations X and Y .

• Encodable in G(d): the total number of encodings on each vertex of G(M(d)) is

at most a polyk(n) factor larger than |G(d)|.

The “Reconstructible” property ensures that the number of canonical paths traversing a

vertex (and thus an edge) of the Markov graph M(d) is at most the size of the set of

all possible encodings. Subsequently, by substituting into Equation (3), the “Encodable
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in G(d)” property implies that ρ(Γ) = O(polyk(n)). According to Lemma 3.5, the last

bound means that the bipartite switch Markov chain is rapidly mixing.

Now we give a description of how the X = Z0, Z1, . . . , Zt+1 = Y canonical path is

constructed. The main idea is to morph X into Y “from left to right”: a region of

constant width called the buffer is moved peristaltically through An ∪Bn, consuming X

on its right and producing Y on its left; see Figure 4.

The encoding Li will contain a realization whose structure is similar to Zi, but the

roles of X and Y are reversed. Furthermore, Li will contain the position of the buffer and

some additional information about the vertices in the buffer.

The structure of a typical intermediate realization Zi

Buffer End of XBeginning of Y

b1 b2 · · · bi bnbn−1· · ·bi+z+1

a1 a2 · · · ai anan−1· · ·ai+z+1

Constant width

The realization in the corresponding Li

Buffer End of YBeginning of X

b1 b2 · · · bi bnbn−1· · ·bi+z+1

a1 a2 · · · ai anan−1· · ·ai+z+1

Constant width

Figure 4: A realization along γX,Y and the main part of the associated encoding.

Let Ai = An \ Ai and Bi = Bn \ Bi. Also, let Ui = Ai ∪ Bi and U i = Ai ∪ Bi. The

following lemma shows the existence of a suitable buffer which can be used to interface

two different realizations as displayed on Figure 4.

Lemma 5.1. If i, z ∈ N satisfy 0 ≤ i ≤ n − z and 2k +
√
2k + 1 ≤ z, then there is a

realization TX,Y [i+ 1, i+ z] ∈ G(d) with the following properties:

• Ui induces identical subgraphs in TX,Y [i+ 1, i+ z] and Y , and

• U i+z induces identical subgraphs in TX,Y [i+ 1, i+ z] and X.

For k = 1, even z = 1 is sufficient.
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Proof. We will work with the flow representation of X and Y . Since X and Y are the

realizations of the same degree sequence, the source-sink distribution in their correspond-

ing flow representation is identical. It is sufficient to design a flow which joins the flow
~∇(X) leaving Ui and redirects it to the vertices in U i+z with the same distribution as
~∇(Y ) flows into them from Ui+z.

The case k = z = 1 can be manually checked at this point.

To achieve the outlined goal for any k, we define an auxiliary network F ′ and prescribe

the flow corresponding to the buffer on it. Let eD(W,Z) be the number of edges of D

that are directed from W to Z.

AX := {aj ∈ Ai | e~∇(X)(aj , Bi) > 0}
BX := {bj ∈ Bi | e~∇(X)(bj , Ai) > 0}
AY := {aj ∈ Ai+z | e~∇(Y )(Bi+z, aj) > 0}
BY := {bj ∈ Bi+z | e~∇(Y )(Ai+z, bj) > 0}
A′ := AX ∪ (Ai+z \ Ai) ∪ AY

B′ := BX ∪ (Bi+z \Bi) ∪BY

The underlying network F ′ is a subgraph of F :

F ′ := F [A′, B′]−E(F [AX ∪AY , BX ∪ BY ]),

i.e., the flow cannot use edges between AX , BX , AY , BY . Note, that to prove the lemma

for k = z = 1, one has to use edges of F [AX , BY ] and F [AY , BX ].

The flow in the buffer will be a subgraph W ⊂ F ′. Let us define f : A′ ∪ B′ → Z:

f(aj) :=







e~∇(X)(aj , Bi), if aj ∈ AX

−e~∇(Y )(Bi+z, aj), if aj ∈ AY

degH0(n)(aj)− degd(aj), if aj ∈ Ai+z \ Ai

f(bj) :=







e~∇(X)(bj , Ai), if bj ∈ BX

−e~∇(Y )(Ai+z, bj), if bj ∈ BY

degd(bj)− degH0(n)(bj), if bj ∈ Bi+z \Bi

We prescribe sources and sinks in W as follows (recall Lemma 4.2):

δW (aj)− ̺W (aj) = f(aj) ∀aj ∈ A′

δW (bj)− ̺W (aj) = f(bj) ∀bj ∈ B′

If such a W exists, then ~∇(X)[Ai, Bi]+W + ~∇(Y )[Ai+z, Bi+z] is a k-flow which, according

to Corollary 4.3, corresponds to a graph whose degree sequence is d.
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The existence of W is proved using Menger’s theorem on the number of edge-disjoint

directed st-paths. It is sufficient to show that any S ⊆ A′ ∪B′ satisfies the cut-condition:

δF ′(S) ≥
∑

s∈S
f(s) (4)

Trivially, the right-hand side is at most k. Let us take an S for which δF ′(S)−∑s∈S f(s)

is minimal. We claim that the following four statements hold:

• If |S ∩ (Ai+z \ Ai)| > k, then BY ⊂ S.

• If |S ∩ (Bi+z \Bi)| > k, then AY ⊂ S.

• If |S ∩ (Ai+z \ Ai)| < z − k, then BX ∩ S = ∅.

• If |S ∩ (Bi+z \Bi)| < z − k, then AX ∩ S = ∅.
We only prove the first statement because the rest can be shown analogously. Suppose

|S ∩ (Ai+z \ Ai)| > k and bj ∈ BY , but bj /∈ S. Moving bj into S changes the difference

between the two sides of (4) by

−|S ∩ (Ai+z \ Ai)| − f(bj) < −k + e~∇(Y )(Ai+z, bj) ≤ 0,

which contradicts the minimality of S.

Finally, we have four cases. In each case we show that (4) holds.

• Case 1: |S ∩ (Ai+z \ Ai)| ≤ k and |S ∩ (Bi+z \Bi)| ≥ z − k. We have

δF ′(S) ≥ eF ′ (S ∩ (Bi+z \Bi), (Ai+z \ Ai) \ S) ≥
z−2k−1∑

r=1

r ≥
(
z − 2k

2

)

≥ k,

thus S satisfies (4).

• Case 2: |S ∩ (Ai+z \ Ai)| ≤ k and |S ∩ (Bi+z \ Bi)| ≥ z − k: as in Case 1, we get

that δF ′(S) ≥ k.

• Case 3: |S∩ (Ai+z \Ai)| > k and |S∩ (Bi+z \Bi)| > k. By our previous statements,

we have AY ∪ BY ⊆ S. Consequently,

δF ′(S) ≥ δ~∇(X)∩F ′(S) = δ~∇(X)(S ∪ U i+z)− δ~∇(X)∩F [Ai,Bi]
(S) =

=
∑

s∈S∪Ui+z

(

δ~∇(X)(s)− ̺~∇(X)(s)
)

− δ~∇(X)∩F [Ai,Bi]
(S) =

= −
∑

s∈Ui+z

e~∇(X)(Ui+z, s) +
∑

s∈S∩(Ui+z\Ui)

f(s) +
∑

s∈Ui

e~∇(X)(s, U i) =

= −
∑

s∈Ui+z

e~∇(Y )(Ui+z, s) +
∑

s∈S∩Ui+z

f(s) =
∑

s∈S
f(s),

which is what we wanted to show.
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• Case 4: |S ∩ (Ai+z \ Ai)| < z − k and |S ∩ (Bi+z \ Bi)| < z − k: by our previous

statements, we have S ∩ (AX ∪BX) = ∅. Since δF ′(S) = ̺F ′(A′ ∪B′ \ S), the proof

is practically the same as that of Case 3, we can use ~∇(Y ) to demonstrate that (4)

is satisfied by S.

5.2 Constructing the canonical path γX,Y .

We will explicitly construct 2(n− 3k − 3) + 1 intermediate realizations along the switch

sequence γX,Y . Let X and Y be the two different realizations which we intend to connect.

The switch sequence includes TX,Y [i+1, i+3k+1], TX,Y [i+1, i+3k+2], TX,Y [i+2, i+3k+2]

for each i = 1, . . . , n−3k−3 in increasing order. These realizations are called milestones.

A roadmap is shown on Figure 5.

X

TX,Y [2, 3k + 2]

TX,Y [2, 3k + 3]

TX,Y [3, 3k + 3]

TX,Y [3, 3k + 4]

· · ·

TX,Y [n− 3k − 2, n− 1]

TX,Y [n− 3k − 1, n− 1]

Y

Figure 5: Roadmap of the switch sequence between X and Y . The existence of a short

switch sequence between milestones of the sequence is guaranteed by Lemma 5.2.

Lemma 5.2. There is a switch sequence of length O(k2) that connects TX,Y [i+ 1, i+ z]

to TX,Y [i+ 1, i+ z + 1] and TX,Y [i+ 2, i+ z] to TX,Y [i+ 1, i+ z + 1].

Proof. According to [5], there is a switch sequence of length at most

|E(TX,Y [i+ 1, i+ z])△E(TX,Y [i+ 1, i+ z + 1])|
2

≤ 1

2
(z + 1 + 2k)2 ≤ 1

2
(5k + 2)2,

between TX,Y [i+ 1, i+ z] and TX,Y [i+ 1, i+ z + 1], since they induce identical graphs on

Ui and U i+z+1, and the at most k − k edges entering Ui+1 and leaving Ui+z+1 in the flow

representations are incident on the same set of vertices in the two flows.

Note that in Lemma 5.1, X satisfies the role of TX,Y [1, 3k+2] and Y satisfies the role

of TX,Y [n− 3k− 1, n]. By applying Lemma 5.2, the arrows in Figure 5 can be substituted

with switch sequences of constant length. Concatenating these short switch sequences

and pruning the circuits from the resulting trail (so that any realization is visited at most

once by the canonical path) produces the switch sequence γX,Y connecting X to Y in the

Markov graph.
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5.3 Assigning the encodings.

Each realization visited by γX,Y receives an encoding that will be an ordered 4-tuple

consisting of another realization, two graphs of constant size, and an integer in {1, . . . , n}.
The closed neighborhood of a subset of vertices U ⊆ V (G) in a graph G is denoted by

NG[U ] ⊇ U . For the two graphs of constant size, we need the following definition.

Definition 5.3 (left-compressed induced subgraph). Let X be a realization and let R ⊂
A∪B. Let us group the vertices A∪B into pairs: {(ai, bi)}ni=1. Remove the pairs that do

not intersect R, and let the remaining pairs be {(aij , bij)}rj=1
for some i1 < · · · < ir. For

each edge of E(X [R]), map aij 7→ aj and bij 7→ bj for all j simultaneously. This changes

the embedding of the vertices of X [R], and we call this new graph the left-compressed copy

of X [R].

To any realization on the canonical path γX,Y we will assign an encoding

Li(X, Y ) :=
(

TY,X [i+ 1, i+ 3k + 1], GX [i], GY [i], i
)

for some 0 ≤ i ≤ n− 3k − 1, where GX [i] is the left-compressed subgraph of X induced

by N~∇(X)[Ui+3k+1 \ Ui] and GY [i] is the left-compressed copy of subgraph of Y induced

N~∇(Y )[Ui+3k+1 \Ui]. An encoding is assigned to each realization along the switch sequence

γX,Y as follows:

• The encoding L0(X, Y ) (where TY,X [1, 3k + 1] := Y ) is used from the beginning X

of the switch sequence until it arrives at TX,Y [2, 3k + 3] (including this realization).

• For 1 ≤ i ≤ n− 3k − 1, the encoding Li is used between TX,Y [i+ 1, i+ 3k + 2] (not

included) and TX,Y [i+ 2, i+ 3k + 2] (included).

• The encoding Ln−3k−1 (where TY,X [n− 3k, n] := X is chosen) is used from TX,Y [n−
3k − 2, n− 1] (not included) to Y .

5.4 Estimating the load ρ(Γ)

The total number of possible encodings is at most

Ok(|G(d)| · n)

(where the index k warns that this expression may depend on k), since the number of

left-compressed graphs on at most 5k + 2 vertices is a constant depending only on k.

Lemma 5.4 (Reconstructability). Given d, there is an algorithm that takes Zi ∈ γX,Y

and Li(X, Y ) as an input and outputs the realizations X and Y (for any i).
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Proof. The first coordinate of Li is an realization, of the form TY,X [i + 1, i + 3k + 1] for

an unknown X, Y . The index i is known, because it is the last component of Li. W.l.o.g.

we show how to recover X . From TY,X [i + 1, i + 3k + 1] and i, we know the induced

subgraph of X on the vertices Ui. Similarly, the induced subgraph of Zi on the vertices

U i+3k+1 is identical to the induced subgraph of X on the same vertices. Hence the only

unknown part of X is its induced subgraph on NX [Ui+3k+1 \ Ui]. The subgraph in the

second component of Li(X, Y ) is the left-compressed copy of X [NX [Ui+3k+1 \ Ui]]. Since

left-compression preserves the order of the indices of aj ∈ A and bj ∈ B, X can be fully

recovered.

Proof of Theorem 1.7. We have shown that ρ(Γ) = O(n · n4) and ℓ(Γ) = O(n), thus

τ(ε) ≤ O(n8 log ε−1), verifying that the switch Markov chain is rapidly mixing on S2k(H0)

and B2k(H0).

6 Proof of Theorem 1.9: non-stability of Hk

In this section we show that it is relatively straightforward to get the asymptotic growth

rate of the number of realizations of hk(n) when k is a constant and n tends to infinity.

We first illustrate this for k = 1. Recall Corollary 4.3 and that h1(n) = h0(n)−1a1 −1b1.

Lemma 6.1. The number of all directed paths (integer 1-flows) from a1 to bn in Fn is

[
1

1

]T [
2 1

1 1

]n−1 [
0

1

]

.

Proof. Let S1(ℓ) be the number of paths in Fn that start at a1 and end in Bℓ. Similarly,

let S2(ℓ) be the number of paths in Fn that start at a1 and end in one of the vertices in

Aℓ. We have
S1(ℓ+ 1) = 2S1(ℓ) + S2(ℓ),

S2(ℓ+ 1) = S1(ℓ) + S2(ℓ).
(5)

Observe that a1 → bn paths in Fn are in bijection with paths starting at a1 and ending in

An: the corresponding paths are obtained by deleting the last edge incident to bn. Since

S1(1) = S2(1) = 1, from (5) we get that S2(n) is the quantity in the statement of the

Lemma and the proof is complete.

Corollary 6.2. The number of realizations of h1(n) is Θ
((

3+
√
5

2

)n)

Proof. Neither [1, 1] nor [0, 1]T is perpendicular to the eigenvector that belongs to the

largest eigenvalue 3+
√
5

2
of the matrix

[
2 1

1 1

]

.
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The proof of Lemma 6.1 can be interpreted as follows. We count a1 → bn paths by

looking at their induced subgraphs on the vertices in Uℓ (the number of these is precisely

S1(ℓ) +S2(ℓ)). The main observation is that the number of ways an a1 → Uℓ path can be

extended to an a1 → Uℓ+1 path only depends on whether the path’s endpoint lies in Aℓ

or in Bℓ.

Again, according to Corollary 4.3, realizations of hk(n) are in a 1-to-1 correspondence

with integer k-flows from a1 to bn. We shall mimic the argument of Lemma 6.1 with k-flows.

The recursion will consider the beginning of a k-flow on Uℓ and its “termination-type”.

Definition 6.3 (set of types). Let Pk be the set of partitions of k (the set of multisets

of positive integers whose sum of elements is exactly k) and P0 := {∅}. For all positive

integers k, we define the set of types:

Tk := {(R,Q) | ∃ 0 ≤ m ≤ k : R ∈ Pm, Q ∈ Pk−m}.

Definition 6.4 (type of a flow). Let X be k-flow in Fn[Uℓ] from a single source a1, and

the sinks are arbitrarily distributed in Uℓ. We say that the type of X is T = (R,Q) ∈ Tk

if there is an injective function f : R → Aℓ such that for every ai ∈ f(R) we have

̺X(ai)− δX(ai) = f−1(ai),

and for all ai ∈ Aℓ \ f(R) we have ̺X(ai) = δX(ai). Similarly, there is an injective

function g : Q → Bℓ such that for every bi ∈ g(Q)

̺X(bi)− δX(bi) = g−1(bi),

and for all bi ∈ Bℓ \ g(Q) we have ̺X(bi) = δX(bi).

Informally, the type of X describes the multiplicities of the incidences of the endpoints

of the k-flow on Uℓ.

In the proof of Lemma 6.1, the functions S1(ℓ), S2(ℓ) were actually the number of 1-

flows on Uℓ of type (∅, {1}) and ({1}, ∅), respectively. The next definition is the analogue

of the matrix in the proof of Corollary 6.2 for large k.

Definition 6.5 (type matrix). For all k, let us fix an ordering of the types: Tk =

(T1, . . . , T|Tk|). Let ℓ and n be so large, that there exists a k-flow which has type Ti on

Uℓ. We define pi,j to be the number possible ways a k-flow on Uℓ from the single source

a1 can be extended to a k-flow of type Tj on Uℓ+1. We define the type-matrix Pk to be the

|Tk| × |Tk| matrix whose element in the i-th row and j-th column is pi,j.

It is not hard to see that pi,j is well-defined, in other words, pi,j does not depend on

either ℓ, n, or the k-flow.
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In the proof of Corollary 6.2, the type matrix

P1 =

[
2 1

1 1

]

corresponds to the ordering T1 =
(
(∅, {1}) , ({1}, ∅)

)
. Now we are ready to prove the

analogue of Lemma 6.1 for k-flows where k > 1.

Lemma 6.6. For every k ≥ 1, the number of k-flows on Fn from the single source a1 to

the single sink bn is

vTPn−1
k w

where:

• v is the vector of length |Tk| which contains 1 at the coordinates which correspond

to the types ({k − 1}, {1}), ({k}, ∅) ∈ Tk, and zero everywhere else,

• Pk is the type-matrix,

• w is the vector of length |Tk| that contains 1 at the coordinate that corresponds to

the type

(

k
︷ ︸︸ ︷

{1, 1, . . . , 1}, ∅) ∈ Tk

and zero everywhere else.

Proof. With the appropriate substitutions, the proof is identical to the proof of Lemma 6.1.

The type of a k-flow on U1 emanating from a1 is either ({1}, {k − 1}) or (∅, {k}). By

the definition of Pk, the vector v
TPn−1 contains the number of graphs on the vertices Un

with a given type. Of these, the k-flows from a1 → bn correspond to graphs with type

(∅, {1, 1, . . . , 1}) (deleting bn and the incident edges results in a k-flow of this type). Hence

the statement of the lemma follows.

The following simple property of the type matrix will be used.

Definition 6.7. A matrix P is primitive, if ∃m for which every entry of Pm is positive.

Lemma 6.8. The type matrix Pk is primitive for any k.

Proof. For every type t ∈ Tk it is easy to design a k-flow X such that the type of X [Uℓ]

(for some ℓ) is t and the type of X [Uℓ+k] is ({1, 1, . . . , 1}, ∅). Hence in Pk
k the row and

column that correspond to the type ({1, 1, . . . , 1}, ∅) are strictly positive. Since Pk is

non-negative, it also follows that P2k
k is positive.

Now we are ready to prove the key lemma to refute the P -stability of the class of

degree sequences Hk.
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Lemma 6.9. For every k, the largest eigenvalue of the type-matrix Pk is smaller than

the largest eigenvalue of the type matrix Pk+1.

Proof. By Lemma 6.8, both Pk and Pk+1 are primitive. By the Perron-Frobenius theory,

they both have a real positive eigenvalue rk and rk+1, respectively, that is larger in absolute

value than all of their other eigenvalues. Moreover, both limits

lim
n→∞

Pn
k

rnk
and lim

n→∞

Pn
k+1

rnk+1

exist and are one dimensional projections. Let the set of types S ⊂ Tk+1 be defined as

follows:

S := {(R,Q) ∈ Tk+1 : 1 ∈ R}.
Let M (n) be the principal minor of Pn

k+1 that is obtained by taking those rows and columns

which correspond to types in S. Without loss of generality, we may assume that if the i-th

row of M (1) corresponds to a type (R,Q), then the i-th row of Pk corresponds to the type

(R \ {1}, Q). Moreover, we may assume that the ordering of Tk and Tk+1 is compatible in

the following sense: if T = {R,Q} and T ′ = (R′, Q′) are types in S and T < T ′ according

to the ordering on Tk+1, then (R \ {1}, Q) < (R′ \ {1}, Q′) according to the ordering on

Tk.

First, we prove the following two properties of M (1).

1. The matrix M (1) is element-wise larger than or equal to Pk.

2. The matrix M (1) is not equal to Pk.

Since |S| = |Tk|, the matrix M (1) is a |Tk| × |Tk| matrix. We start with proving

the second statement. The entry of Pk in the intersection of the row and column that

correspond to the type ({1, . . . , 1}, ∅) ∈ Tk and (∅, {k}) ∈ Tk, respectively, is clearly 1.

On the other hand, the value of M (1) in this row and column corresponds to the number

of transitions from ({1, . . . , 1}, ∅) ∈ Tk+1 to ({1}, {k}) which is k+1 (the number of ways

one can choose one of the k + 1 paths which will not be extended). Therefore M (1) 6= Pk.

For the first statement, for any two types (R,Q), (R′, Q′) ∈ Tk, if a type (R,Q) sub-

graph of a k-flow on the vertices Uℓ can be extended to an another type (R′, Q′) subgraph

on the vertices Uℓ+1 in p ways, then clearly a type (R ∪ {1}, Q) subgraph of a k + 1-flow

on the vertices Uℓ can be extended to a type (R′ ∪ {1}, Q′) subgraph on the vertices Uℓ+1

in at least p ways. Therefore the first property is also proven.

Suppose to the contrary that rk+1 ≤ rk. Since the limit

lim
n→∞

Pn
k+1

rnk+1
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exists and is finite, both the limits

lim
n→∞

Pn
k+1

rnk
and lim

n→∞

M (n)

rnk

exist and are finite. Since M (1) is a principal minor of Pk+1, and every element of Pk+1

is non-negative, for all k the matrix M (k) is element-wise larger than or equal to (M (1))
k
.

Hence the sequence
{
(M (1))

n

rnk

}∞

n=1

is bounded. By the two properties of M (1) and the fact that Pk is primitive, it follows that

there is an integer m such that (M (1))
m

is element-wise strictly larger than Pm
k . Thus

there is a positive ε such that (M (1))
m

is element-wise strictly larger than (1 + ε)Pm
k .

Therefore the sequence

{
((1 + ε)Pm

k )n

rmn
k

}∞

n=1

=

{

(1 + ε)n
Pmn

k

rmn
k

}∞

n=1

is bounded, but this clearly contradicts the fact that the limit

lim
n→∞

Pn
k+1

rnk+1

is a one dimensional projection.

Proof of Theorem 1.9. Observe, that ‖hk+1(n) − hk(n)‖1 = 2. However, according to

Lemma 6.9
|G(hk+1(n))|
|G(hk(n))|

= Θ

((
rk+1

rk

)n)

,

which grows exponentially as n → ∞, so Hk is not P -stable.

7 Concluding remarks

7.1 Relationship to prior results

Although the sets of degree sequences B2k(H0) (for some k) are certainly not diverse

compared to the class of P -stable degree sequences, they are more numerous than, say,

the regular degree sequences, for which rapid mixing of the switch Markov chain were

first proven in [2, 18, 13]. Because B2k(H0) is not P -stable, the Jerrum-Sinclair chain [16]

cannot produce a sample in polynomial expected time. Although in principle, the proof

of rapid mixing on P -stable degree sequences [4] may be applicable to B2k(H0), we do not

expect that it can be easily tweaked to accommodate it, for the following reasoning:
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Let T be the set of (X, Y ) pairs of realizations of h1(n) such that the paths ~∇(X) and
~∇(Y ) are edge disjoint. It is simple to show that |T | ≥ exp(cn) · |G(h1(n))|, because for

almost every realization X we have |E(~∇(X))| ≈ 2n√
5
. For a pair (X, Y ) ∈ T , the edges

E(X)△E(Y ) form a cycle which traverses both a1 and bn. From this structure it follows

that the multicommodity flow Γ described in [4] between a pair of realizations (X, Y ) ∈ T
is a single switch sequence that passes through H0(n) − a1bn ∈ G(h1(n)). Consequently,

the load ρ(Γ) ≥ |T |/|G(h1(n))| ≥ exp(cn) is exponential in n.

7.2 Unconstrained (simple) graphs

As mentioned in Section 2.1, Ψ−1 embeds splitted bipartite graphs into the space of simple

graphs. The map Ψ−1 preserves switches, since the symmetric difference of the edge sets

of two realizations does not change by adding a clique to both graphs. Consequently, Ψ−1

induces an isomorphism between the Markov-graphs M(d) and M(d)(Ψ−1(d)).

Furthermore, through Ψ−1, a set of canonical paths Γ on G(M(d)) are mapped to a

set of canonical paths Ψ−1(Γ) on G(M(Ψ−1(d))) satisfying

ρ(Ψ−1(Γ)) ≤ ρ(Γ).

In summary, Theorem 1.7 can be pulled back to simple graphs: the switch Markov

chain is rapidly mixing on Ψ−1(B2k(H0)). Note, however, that

Ψ−1(B2k(H0)) ⊂ B2k(Ψ
−1(H0)),

because the right hand side contains graphs that are not split.

7.3 Possible generalizations

The proof of Theorem 1.7 presented in Section 5 works verbatim up to k = Θ(
√
log n),

one just has to check the dependence on k in Section 5.4. In other words, the switch

Markov chain is rapidly mixing on

∞⋃

n=1

Bc·
√
logn(h0(n))

for some c > 0. We have not proved nor refuted P -stability of
⋃∞

n=1 S2k(h0(n)) when

k = Θ(
√
log n).

We hope that the proof of Theorem 1.7 can be generalized to even broader classes. A

defining property of hk(n) is that for any realization G ∈ G(hk(n)) and i ∈ [1, n], we have

δ~∇(G)(Ai ∪ Bi) = δ~∇(G)(Ai ∪ Bi \ {bi}) = k.

Relax these constraints to requiring only that ≤ k edges leave Ai ∪Bi and Ai ∪Bi \ {bi}
for every i ∈ [1, n]: the set of graph satisfying these is the set of realizations of a set of
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degree sequences we will call H≤k. Naturally, B2k(H0) ⊆ H≤k, because a k-flow needs at

most k edges in any cut.

Conjecture 7.1. For any fixed k, the switch Markov chain is rapidly mixing on H≤k.

We also put forward a conjecture inspired by the work Greenhill and Gao [11]. Recall

Definition 1.3.

Conjecture 7.2. Suppose D is (2k + 2)-stable for some k ∈ N. Then the switch Markov

chain is rapidly mixing on B2k(D◦).
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[7] Erdős, P. L., Mezei, T. R., Miklós, I., and Soltész, D. Efficiently sampling the
realizations of bounded, irregular degree sequences of bipartite and directed graphs. PLOS
ONE 13, 8 (Aug. 2018), e0201995.
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