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ON ADDITIVE AND MULTIPLICATIVE
DECOMPOSITIONS OF SETS OF INTEGERS
WITH RESTRICTED PRIME FACTORS, I.

(SMOOTH NUMBERS.)

K. GYŐRY, L. HAJDU AND A. SÁRKÖZY

Abstract. In [10] the third author of this paper presented two
conjectures on the additive decomposability of the sequence of
”smooth” (or ”friable”) numbers. Elsholtz and Harper [4] proved
(by using sieve methods) the second (less demanding) conjecture.
The goal of this paper is to extend and sharpen their result in
three directions by using a different approach (based on the theory
of S-unit equations).

1. Introduction

A,B, C, . . . denote (usually infinite) sets of non-negative integers, and
their counting functions are denoted by A(X), B(X), C(X), . . . so that
e.g.

A(X) = |{a : a ≤ X, a ∈ A}|.

The set of the positive integers is denoted by N, and we write N∪{0} =
N0. The set of rational numbers is denoted by Q.
We will need

Definition 1.1. Let G be an additive semigroup and A,B, C subsets
of G with

(1.1) |B| ≥ 2, |C| ≥ 2.

If

(1.2) A = B + C (= {b+ c : b ∈ B, c ∈ C})
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then (1.2) is called an additive decomposition or briefly a-decomposition
of A, while if a multiplication is defined in G and (1.1) and

(1.3) A = B · C (= {bc : b ∈ B, c ∈ C})

hold then (1.3) is called a multiplicative decomposition or briefly m-
decomposition of A.

In [8] and [9] H.-H. Ostmann introduced some definitions concerning
additive properties of sequences of non-negative integers and studied
some related problems. The most interesting definitions are:

Definition 1.2. A finite or infinite set A of non-negative integers is
said to be a-reducible if it has an additive decomposition

A = B + C with |B| ≥ 2, |C| ≥ 2

(where B ⊂ N0, C ⊂ N0). If there are no sets B, C with these properties
then A is said to be a-primitive or a-irreducible.

(More precisely, Ostmann used the terminology ”reducible”, ”primi-
tive”, ”irreducible” without the prefix a-. However, since we will study
both additive properties and their multiplicative analogs thus to dis-
tinguish between them we will use a prefix a- in the additive case and
a prefix m- in the multiplicative case.)

Definition 1.3. Two sets A,B of non-negative integers are said to be
asymptotically equal if there is a number K such that A∩ [K,+∞) =
B ∩ [K,+∞) and then we write A ∼ B.

Definition 1.4. An infinite set A of non-negative integers is said to
be totally a-primitive if every A′ with A′ ⊂ N0, A

′ ∼ A is a-primitive.

The multiplicative analogs of Definitions 1.2 and 1.4 are:

Definition 1.5. If A is an infinite set of positive integers then it is
said to be m-reducible if it has a multiplicative decomposition

A = B · C with |B| ≥ 2, |C| ≥ 2

(where B ⊂ N, C ⊂ N). If there are no such sets B, C then A is said
to be m-primitive or m-irreducible.

Definition 1.6. An infinite set A ⊂ N is said to be totally m-primitive
if every A′ ⊂ N with A′ ∼ A is m-primitive.

Many papers have been written on the existence or non-existence
of a-decompositions and m-decompositions, resp., of certain special
sequences; surveys of results of this type are presented in [3, 4, 6, 7].
In [10] the third author of this paper presented two related conjectures
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(we adjust the original notation and terminology to match better to
the ones used by Elsholtz and Harper who have proved related results
in [4] later):

Definition 1.7. Denote the greatest prime factor of the positive integer
n by p+(n). Then n is said to be smooth (or friable) if p+(n) is ”small”
in terms of n. More precisely, if y = y(n) is a monotone increasing
function on N assuming positive values and n ∈ N is such that p+(n) ≤
y(n), then we say that n is y-smooth, and we write Fy (F for ”friable”)
for the set of all y-smooth positive integers.

We quote [10] (using a slightly different notation):

”Conjecture A. If 0 < ε < 1,

y(n) = nε,

the set Fy ⊂ N is defined by

Fy = {n : n ∈ N, p+(n) ≤ y(n) = nε}

and F ′

y ⊂ N is a set such that

F ′

y ∼ Fy,

then there are no sets A,B ⊂ N with |A|, |B| ≥ 2 and

A+ B = F ′

y.

(...) this seems to be very difficult, but, perhaps, the ternary version
of the problem can be settled:

Conjecture B. If Fy and F ′

y are defined as in Conjecture A, then

there are no A,B, C ∈ N with |A|, |B|, |C| ≥ 2 and

A+ B + C = F ′

y.
′′

Elsholtz and Harper (see Corollary 2.2 in [4]) proved Conjecture B
for all small ε > 0:

Theorem A. There exists a large absolute constant D > 0, and a

small absolute constant κ > 0, such that the following is true. Suppose

y(n) is an increasing function such that

(1.4) (log n)D ≤ y(n) ≤ nκ for large n,

and such that

y(2n) ≤ y(n)(1 + (100 log y(n))/ logn).
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Then a ternary decomposition

A+ B + C ∼ F ′

y,

where A,B and C contain at least two elements each, does not exist.

(This proves Conjecture B for 0 < ε ≤ κ.)
In [4] first they proved ”an additive irreducibility theorem for sets

that need not be well controlled by the sieve” and then they deduced
Theorem A from this theorem. In this paper our goal is to extend and
sharpen their result in three directions: we will consider the decom-
posability of sets F ′

y ∼ Fy with y(n) smaller than the lower bound in
(1.4); in this case we will be able to also attack the more difficult prob-
lem of binary decomposition considered in Conjecture A; we will also
study the multiplicative analog of the problem. While in [4] mostly
sieve methods are used, here we will apply a completely different ap-
proach, namely, the crucial tool used by us will be the theory of S-unit
equations.
Here we will prove the following two theorems:

Theorem 1.1. If y(n) is an increasing function with y(n) → ∞ and

(1.5) y(n) < 2−32 logn for large n,

then the set Fy is totally a-primitive.

(If y(n) is increasing then the set Fy is m-reducible since Fy = Fy ·Fy,
and we also have Fy ∼ Fy · {1, 2}, thus if we want to prove an m-

primitivity theorem involving Fy then we have to switch from Fy to
the shifted set

(1.6) Gy := Fy + {1}.

See also [3].)

Theorem 1.2. If y(n) is defined as in Theorem 1.1, then the set Gy is
totally m-primitive.

(While in part II of this paper we will present further closely related
results.)

2. Proof of Theorem 1.1

Assume that contrary to the statement of the theorem, the function
y = y(n) satisfies the assumptions in Theorem 1.1, however, the set Fy

is not totally a-primitive. Then there are F ′
y ⊂ N0, n0 ∈ N, A ⊂ N0,

B ⊂ N0 such that

(2.1) F ′

y ∩ [n0,+∞) = Fy ∩ [n0,+∞),
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(2.2) |A| ≥ 2, |B| ≥ 2

and

(2.3) F ′

y = A+ B.

Let N denote a positive integer with

(2.4) N → +∞.

It follows from (2.1) and (2.3) that

Fy∩[n0, N ] = F ′

y∩[n0, N ] = (A+B)∩[n0, N ] ⊂ (A∩[0, N ])+(B∩[0, N ])

whence

(2.5) |Fy ∩ [n0, N ]| ≤ |(A∩ [0, N ]) + (B ∩ [0, N ])| ≤

≤ |(A∩ [0, N ])| · |(B ∩ [0, N ])| = A(N)B(N).

On the other hand, using the standard notation

Ψ(x, y) = |{n : n ≤ x, p+(n) ≤ y}|,

for N → +∞ we have

(2.6) |Fy ∩ [n0, N ]| = |Fy ∩ (0, N ]| − |Fy ∩ (0, n0)| ≥

≥ Ψ(N, y(N))− n0 = (1 + o(1))Ψ(N, y(N))

since clearly

(2.7) Ψ(x, y) → +∞ for 2 ≤ y ≤ x, x → +∞.

By (2.5) and (2.6), for large enough N we have

max(A(N), B(N)) >
1

2
(Ψ(N, y(N)))1/2.

Thus either

A(N) >
1

2
(Ψ(N, y(N)))1/2

or

(2.8) B(N) >
1

2
(Ψ(N, y(N)))1/2

holds for infinitely many N ; since A and B play symmetric roles thus
we may assume that (2.8) does.
Write A = {a1, a2, . . . } with (0 ≤)a1 < a2 < . . . and

(2.9) B̃N = {b : b ∈ B, n0 − a1 ≤ b ≤ N − a2}.
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Then by (2.7), for all large enough N satisfying (2.8) we have

(2.10)

|B̃N | = |(B ∩ [0, N ]) \ ((B ∩ [0, n0 − a1)) ∪ (B ∩ (N − a2, N ])) | ≥

≥ |B ∩ [0, N ]| − |B ∩ [0, n0 − a1)| − |B ∩ (N − a2, N ]| ≥

≥ B(N)− n0 − a2 >
1

3
(Ψ(N, y(N)))1/2.

We will need the notion of S-unit equations and a result on the
number of solutions of them. For their formulation, we introduce some
notation. Let (0 <)p1 < p2 < · · · < ps be prime numbers, write
S = {p1, p2, . . . , ps} and let

ZS =
{a

b
: a, b ∈ Z, b 6= 0, (a, b) = 1, p | b =⇒ p ∈ S

}

be the set of S-integers. Then the units of the ring ZS , that is the set
of S-units is given by

(2.11) Z∗

S =
{a

b
: a, b ∈ Z, ab 6= 0, (a, b) = 1, p | ab =⇒ p ∈ S

}

.

Lemma 2.1. If U ∈ Q, V ∈ Q and UV 6= 0 then the S-unit equation

(2.12) UX + V Y = 1, X, Y ∈ Z∗

S

has at most 28(2s+2) solutions.

Proof. This assertion is a consequence of a theorem of Beukers and
Schlickewei [1]; see Corollary 6.1.5 of Evertse and Győry [5], p.133. �

We will apply this lemma later with

(2.13) S = {p : p prime, p ≤ y} = {p1, p2, . . . , pπ(y)}

(where p1 < p2 < · · · < pπ(y) are the first π(y) primes) so that now

(2.14) s = |S| = π(y) = π(y(N)).

Consider now any

(2.15) b ∈ B̃N ,

and write

(2.16) Xb = a2 + b, Yb = a1 + b.

Then we have
Xb − Yb = a2 − a1

whence

(2.17)
1

a2 − a1
Xb −

1

a2 − a1
Yb = 1.



DECOMPOSITIONS OF SETS OF INTEGERS 7

By (2.15) and (2.16) for all b ∈ B̃N we have

(2.18) n0 = a1 + (n− a1) ≤ a1 + b = Yb <

< a2 + b = Xb ≤ a2 + (N − a2) = N,

and by (2.3) we also have

(2.19) a1 + b = Yb ∈ F ′

y and a2 + b = Xb ∈ F ′

y.

It follows from (2.1), (2.18) and (2.19) that

Xb, Yb ∈ [n0, N ] ∩ F ′

y = [n0, N ] ∩ Fy,

thus Xb, Yb are composed from the primes not exceeding y = y(N), i.e.
from the set S defined in (2.13), so that

(2.20) Xb, Yb ∈ Z∗

S

(for the Z∗

S
defined in (2.11)). Writing U = 1

a2−a1
, V = − 1

a2−a1
, we

have U, V ∈ Q, thus

(2.21) UX + V Y = 1, X, Y ∈ Z∗

S

is an S-unit equation, and by (2.17) and (2.20) for every b satisfying
(2.15), X = Xb, Y = Yb is a solution of this equation. It follows by
(2.10) that the number M of solutions of this equation satisfies

(2.22) M ≥ |B̃N | >
1

3
(Ψ(N, y(N)))1/2.

On the other hand, by Lemma 2.1 and (2.14) we have

(2.23) M ≤ 28(2s+2) = 28(2π(y)+2).

By (2.22) and (2.23) we have

(2.24)
1

3
(Ψ(N, y(N)))1/2 < 28(2π(y)+2).

Now we have to distinguish two cases.
CASE 1. Assume first that

(2.25) 2 ≤ y = y(N) ≤ log logN.

Then clearly we have

Ψ(N, y(N)) ≥ Ψ(N, 2) = |{k ∈ N0, 2k ≤ N}| =

=

[

logN

log 2

]

+ 1 >
logN

log 2
> logN

whence

(2.26)
1

3
(Ψ(N, y(N)))1/2 >

1

3
(logN)1/2.
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On the other hand, by (2.25) we have

(2.27) 28(2π(y)+2) ≤ 28(2π(log logN)+2) = 2o(log logN) = (logN)o(1).

(2.26) and (2.27) contradict (2.24).
CASE 2. Assume now that

(2.28) log logN < y(N) < 2−32 logN.

We will need the following lemma:

Lemma 2.2. Write

Z =
log x

log y
log

(

1 +
y

log x

)

+
y

log y
log

(

1 +
log x

y

)

.

Then we have, uniformly for x ≥ y ≥ 2,

log Ψ(x, y) = Z

(

1 +O

(

1

log y
+

1

log log 2x

))

.

Proof. This is de Bruijn’s theorem [2] (see also [11] for the proof, back-
ground, and analysis of this formula). �

By (2.28) and Lemma 2.2, for N large enough we have

(2.29) logΨ(N, y(N)) = Z

(

1 +O

(

1

log y(N)

))

=

(

logN

log y(N)
log

(

1 +
y(N)

logN

)

+
y(N)

log y(N)
log

(

1 +
logN

y(N)

))

(1+o(1)) >

> (1 + o(1))

(

y(N)

log y(N)
log(1 + 232)

)

.

On the other hand, by (2.24), (2.28) and the prime number theorem,
for N → +∞ we have

log Ψ(N, y(N)) < 2
(

log 3 + log 28(2π(y)+2)
)

=

= log 9 + 2(2π(y) + 2) log 28 = (1 + o(1)) log 232
y(N)

log y(N)
.

For N large enough this contradicts (2.29) which completes the proof
of Theorem 1.1.

3. Proof of Theorem 1.2

There are some similarities between the proofs of Theorems 1.1 and
1.2, thus we will omit some details.



DECOMPOSITIONS OF SETS OF INTEGERS 9

Assume that the conditions of Theorem 1.2 hold, however, contrary
to the statement of the theorem there are G ′

y ⊂ N, n0 ∈ N, A ⊂ N,
B ⊂ N such that

(3.1) G ′

y ∩ [n0,+∞) = Gy ∩ [n0,+∞),

(2.2) holds, and

(3.2) G ′

y = A · B.

Assume that N ∈ N satisfies (2.4). Then it follows from (3.1) and (3.2)
that

Gy ∩ [n0, N ] = G ′

y ∩ [n0, N ] ⊂ (A∩ [0, N ]) · (B ∩ [0, N ])

whence, by (1.6),

(3.3) |Fy ∩ [n0 − 1, N − 1]| = |Gy ∩ [n0, N ]| ≤ A(N)B(N).

On the other hand, as in (2.6), for N → +∞ we have

(3.4) |Fy∩[n0−1, N−1]| = (1+o(1))Fy(0, N) = (1+o(1))Ψ(N, y(N)).

By (3.3) and (3.4), for every N large enough we have

(3.5) A(N)B(N) >
1

2
Ψ(N, y(N)).

Now write A = {a1, a2, . . . } with (0 <)a1 < a2 < . . . and B =
{b1, b2, . . . } with (0 <)b1 < b2 < . . . , and define m by m = max(a2, b2)
(so that m ≥ 1). We will show that there are infinitely many positive
integers D such that

(3.6) A(mD)B(mD) < (m2 + 1)A(D)B(D).

Indeed, assume that contrary to this assertion there are only finitely
many positive integers D with this property. Then there exists a posi-
tive integer D0 with

(3.7) A(D0)B(D0) > 0

such that for D ∈ N, D ≥ D0 we have

A(mD)B(mD) ≥ (m2 + 1)A(D)B(D).

It follows from this by induction on k that

(3.8) A(mkD0)B(mkD0) ≥ (m2+1)kA(D0)B(D0) for k = 0, 1, 2, . . . .

Clearly, we have

(3.9) A(mkD0)B(mkD0) ≤ mkD0 ·m
kD0 = m2kD2

0.

We obtain from (3.8) and (3.9) that

(m2 + 1)kA(D0)B(D0) ≤ m2kD2
0
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whence
(

1 +
1

m2

)k

A(D0)B(D0) ≤ D2
0 (for k = 0, 1, 2, . . . ).

However, by (3.7), this inequality cannot hold for k large enough, and
this contradiction proves the existence of infinitely many D ∈ N satis-
fying (3.6).
Let D be a positive integer satisfying (3.6) and large enough, and

write N = mD. So far the sets A and B play symmetric roles thus we
may assume that

(3.10) B(D) ≥ A(D).

It follows from (3.5),(3.6) and (3.10) that

1

2
Ψ(N, y(N)) < A(N)B(N) = A(mD)B(mD) <

< (m2 + 1)A(D)B(D) ≤ (m2 + 1)(B(D))2

whence, by m ≥ 1,
(3.11)

B(D) ≥ (2(m2 + 1))−1/2 (Ψ(N, y(N)))1/2 ≥
1

2m
(Ψ(N, y(N)))1/2 .

Now write

(3.12) B̃N = {b : b ∈ B, n0/a1 < b ≤ N/a2}

(note that a1 ≥ 1 by A ⊂ N). Then by A ⊂ N, N = mD, the definition
of m, and (3.11), we have

(3.13) |B̃N | = |{b : b ∈ B, n0/a1 < b ≤ N/a2}| =

= |{b : b ∈ B, b ≤ N/a2}| − |{b : b ∈ B, b ≤ n0/a1}| ≥

≥ |{b : b ∈ B, b ≤ N/m}| − |{b : b ∈ B, b ≤ n0}| =

= B(D)−B(n0) ≥
1

2m
(Ψ(N, y(N)))1/2−n0 >

1

3m
(Ψ(N, y(N)))1/2

for N large enough.
Consider now any

(3.14) b ∈ B̃N

and write

(3.15) Xb = a1b− 1, Yb = a2b− 1.

Then we have

a2Xb − a1Yb = a2(a1b− 1)− a1(a2b− 1) = a1 − a2,
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so that X = Xb, Y = Yb is a solution of the equation

(3.16)
a2

a1 − a2
X −

a1
a1 − a2

Y = 1.

Moreover, by (3.12), (3.14) and (3.15) we have

(3.17) n0 ≤ Xb = a1b− 1 < Yb = a2b− 1 ≤ N − 1.

It follows from (3.1) that

a1b ∈ G ′

y and a2b ∈ G ′

y,

thus by (3.2) and (3.17) we also have

a1b ∈ Gy and a2b ∈ Gy,

so that by (1.6),

Xb = a1b− 1 ∈ Fy and Yb = a2b− 1 ∈ Fy.

Thus Xb and Yb satisfy (2.20) for the sets S and Z∗

S
defined by (2.13)

and (2.11), respectively. Then for every b satisfying (3.14), X = Xb,
Y = Yb is a solution of the S-unit equation formed by (3.16) and
X, Y ∈ Z∗

S
with this S,Z∗

S
, and clearly, if we start out from different b

values satisfying (3.14), then we get different solutions X = Xb, Y = Yb

of this equation. Thus by (3.13) the number M of the solutions of this
S-unit equation satisfies

(3.18) M ≥ |B̃N | >
1

3m
(Ψ(N, y(N)))1/2 .

On the other hand, by Lemma 2.1 the number of solutions must satisfy

(3.19) M ≤ 28(2s+2) = 28(2π(y)+2).

It follows from (3.18) and (3.19) that

1

3m
(Ψ(N, y(N)))1/2 < 28(2π(y)+2).

This is almost identical with inequality (2.24), the only difference is
that the constant factor 1

3
on the left hand side of (2.24) is replaced

here by 1
3m

which is also independent of N , and thus it is easy to see
that it leads to a contradiction in the same way as (2.24) did in Section
2.
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