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Abstract

We describe the asymptotic behavior of the conditional least squares estimator of the

offspring mean for subcritical strongly stationary Galton–Watson processes with regularly

varying immigration with tail index α ∈ (1, 2). The limit law is the ratio of two dependent

stable random variables with indices α/2 and 2α/3, respectively, and it has a continuously

differentiable density function. We use point process technique in the proofs.

1 Introduction

The theory and estimation of branching processes, especially Galton–Watson processes with-

out or with immigration has a long history, see, e.g., the survey paper by Winnicki [43]. In

this paper we will consider a Galton–Watson process with regularly varying immigration dis-

tribution, and we will study the Conditional Least Squares (CLS) estimation of the mean of
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the offspring distribution. Heavy-tailed Galton–Watson processes with immigration, especially

with regularly varying immigration distribution, have been in the focus of research for a long

time. We name only two papers here. Seneta [40] derived conditions under which there exists

a sequence of positive constants such that the logarithm of a Galton–Watson process having

offspring distribution with infinite mean and normalized by the sequence in question converges

in distribution to a non-degenerate distribution. Schuh and Barbour [39] derived necessary

and sufficient conditions for the almost sure convergence of some slowly varying function of a

Galton-Watson process having offspring distribution with infinite mean. Heavy-tailed branch-

ing processes are important not only from the theoretical point of view, but they are also used

in modeling of biological phenomena, e.g., for modeling the development of multi-focal tumors,

see Ernst et al. [15]. Concerning the estimation theory of heavy-tailed Galton–Watson pro-

cesses with immigration we are not aware of any results. Let us recall now a result on the

estimation of the offspring mean under finite third order moment assumptions.

Let Z and N denote the set of integers and positive integers, respectively. Every random

variable will be defined on a fixed probability space (Ω,A,P). For each i, j ∈ N, the number

of individuals in the ith generation will be denoted by Xi, the number of offspring produced by

the jth individual belonging to the (i−1)th generation will be denoted by A
(i)
j , and the number

of immigrants in the ith generation will be denoted by Bi. Further, X0 denotes the size of

the initial population. Then we have

Xi =

Xi−1∑

j=1

A
(i)
j + Bi, i ∈ N,

where {A,A(i)
j : i, j ∈ N} are independent, identically distributed (i.i.d.) nonnegative integer-

valued random variables independent of another i.i.d. sequence {B,Bi : i ∈ N} of nonnegative

integer-valued random variables. Assuming that X0 is independent of {A(i)
j , Bi : i, j ∈ N},

E[X0] < ∞, µA := E[A] < ∞, µB := E[B] ∈ (0,∞) and that µB is known, the CLS estimator

of µA based on the observations X0, X1, . . . , Xn has the form

µ̂A
(n) :=

∑n
i=1Xi−1(Xi − µB)∑n

i=1X
2
i−1

(1.1)

on the set
{∑n

i=1X
2
i−1 > 0

}
, see Klimko and Nelson [24]. We have P(

∑n
i=1X

2
i−1 > 0) → 1 as

n → ∞, since P(
∑n

i=1X
2
i−1 = 0) = P(X0 = 0, B1 = 0, . . . , Bn−1 = 0) ≤ P(B = 0)n−1 → 0 as

n → ∞ due to P(B = 0) ∈ [0, 1). If, in addition, µA ∈ (0, 1), then the Markov chain (Xi)i≥0

admits a unique stationary distribution, see, e.g., Quine [34]. If, in addition, E[X3
0 ] < ∞,

E[A3] < ∞ and E[B3] < ∞, then

n1/2(µ̂A
(n) − µA)

d−→ N
(

0,
σ2
AE[X̃3] + σ2

BE[X̃2]
(
E[X̃2]

)2
)

as n → ∞, (1.2)

where σ2
A := Var(A) and σ2

B := Var(B), the distribution of the random variable X̃ is the unique

stationary distribution of (Xi)i≥0, and
d−→ denotes convergence in distribution. The paper by
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Klimko and Nelson [24, Section 5] contains a similar result for the CLS estimator of (µA, µB),

and (1.2) can be derived by the method of that paper. Note that E[X̃2] and E[X̃3] can be

expressed in terms of the first three moments of A and B, see, e.g., Quine [34, formula (26)

and page 422] and Barczy et al. [2, formulae (14), (16) and (20)].

In contrast with those earlier results, we explore the case where the distribution of B is

regularly varying with tail index in (1, 2), thus having infinite variance. In the sequel, we will

always assume the following conditions:

(i) µA ∈ (0, 1),

(ii) σ2
A ∈ (0,∞),

(iii) B is regularly varying with tail index α ∈ (1, 2), i.e.,

lim
x→∞

P(B > qx)

P(B > x)
= q−α for all q ∈ (0,∞).

In particular, µB ∈ (0,∞), and there exists a strongly stationary process (Xi)i∈Z satisfying

Xi =

Xi−1∑

j=1

A
(i)
j + Bi, i ∈ Z, (1.3)

where {A,A(i)
j : j ∈ N , i ∈ Z} are i.i.d. nonnegative integer-valued random variables indepen-

dent of another i.i.d. sequence {B,Bi : i ∈ Z} of nonnegative integer-valued random variables.

Note that, for simplicity, in (1.3) we keep the same letter X to denote the strongly stationary

extension of the process indexed by Z. In this case, the distribution of X0 is also regularly

varying with the same tail index α having infinite variance, or more precisely,

P(X0 > x) ∼ 1

1 − µα
A

P(B > x) as x → ∞, (1.4)

see Basrak et al. [5, Theorem 2.1.1].

Our aim is to study the limiting behavior of µ̂A
(n) as n → ∞ for the strongly stationary

process (Xi)i∈Z given in (1.3). For each n ∈ N, by (1.1), we have

µ̂A
(n) − µA =

∑n
i=1Xi−1(Xi − µB)∑n

i=1X
2
i−1

− µA =

∑n
i=1Xi−1Mi∑n
i=1X

2
i−1

on the set
{∑n

i=1X
2
i−1 > 0

}
, where, by (1.3),

Mi := Xi − µAXi−1 − µB =

Xi−1∑

j=1

(A
(i)
j − µA) + (Bi − µB) =:

Xi−1∑

j=1

Ã
(i)
j + B̃i, i ∈ Z. (1.5)

Intuitively, by the central limit theorem, for large Xi−1, the distribution of Mi/
√
Xi−1 is approx-

imately normal, thus, in the spirit of Breiman’s lemma, MiXi−1 = X
3/2
i−1Mi/

√
Xi−1 is regularly

varying with tail index 2α/3. This argument is made precise in Proposition 2.1.
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Our analysis relies on the fact that one can determine the weak limit of the point processes

n∑∗

j=1

δ(Xj
an

,
Mj+1√

Xj

) :=
∑

{j∈{1,...,n} :Xj>0}
δ(Xj

an
,
Mj+1√

Xj

) (1.6)

as n → ∞ on a suitable space of point measures on (0,∞) × R and with a scaling sequence

(an)n∈N satisfying nP(X0 > an) → 1 as n → ∞ (see (3.1)), where δ(x,y) denotes the Dirac

measure concentrated on (x, y) ∈ (0,∞)×R, see Theorem 3.2. For a possible choice of a suitable

sequence (an)n∈N and its asymptotic behavior as n → ∞, see the beginning of Section 3. The

proof of Theorem 3.2 is based on general results of Kallenberg [21, Theorems 4.11 and 4.22]

for convergence in distribution of random measures with respect to the vague topology. Point

processes have been often applied to analyze regularly varying observations, see, for instance,

Resnick [35, 36] and Kulik and Soulier [27], however, our approach here is not standard since

we topologize the space of point measures on (0,∞)×R using vague topology with ”bounded”

Borel sets being those which are bounded away from the vertical line {0} ×R instead of being

bounded away from the point (0, 0). For a detailed discussion on our setup, see the beginning

of Section 3 and Appendix A. In the course of the proof of Theorem 3.2, the joint tail behavior

of (Xi)i∈Z and (Mi+1/
√

max(Xi, 1))i∈Z+ , especially the so-called tail process of (Xi)i∈Z, also

plays a crucial role, see Proposition 2.1 and (2.1).

Based on convergence of the point processes in (1.6), we obtain

√
an(µ̂A

(n) − µA)
d−→ V (2)

V (1)
as n → ∞,

where V (1) is an α/2-stable positive random variable, V (2) is a symmetric 2α/3-stable random

variable, and V (1) and V (2) are dependent with an explicitly given joint characteristic function,

see Theorem 5.1. Concerning the asymptotic behavior of (an)n∈N, note that if xαP(B > x) → 1

as x → ∞, i.e., the distribution of B is asymptotically equivalent to a Pareto distribution

with parameter α, then n−1/αan → (1 − µα
A)−1/α as n → ∞. Indeed, using (1.4) and that

nP(X0 > an) → 1 as n → ∞, we have

n−1/αan = (n−1aαn)1/α ∼ (aαnP(X0 > an))1/α ∼
(
aαn(1 − µα

A)−1P(B > an)
)1/α ∼ (1 − µα

A)−1/α

as n → ∞, as desired.

In Section 5, we collect several properties of (V (1), V (2)) and V (2)/V (1), including that the

distribution of (V (1), V (2)) is operator stable and V (2)/V (1) has a continuously differentiable

density function. In Appendix A, we collect some topological properties of (0,∞)×R. Appendix

B contains the proof of Lemma 3.1 describing vague convergence of point measures. In Appendix

C we show that the process
(
Xi1{Xi>0},

Mi+1√
Xi
1{Xi>0}

)
i≥0

satisfies a certain mixing condition.

Appendix D is devoted to a conditional Slutsky’s lemma and a conditional continuous mapping

theorem. In Appendix E, we show that the process (X
3/2
i , XiMi+1)i∈Z is regularly varying with

tail index 2α/3 with an explicitly given forward tail process.

We note that our proof technique does not work for the case α = 2. Formally, one can see

that the fact α < 2 is used many times in the proofs, and, for example, in case α = 2 the series

4



∑∞
i=1 P

2
i appearing as the weak limit of (1 − µ2

A)a−2
n

∑n
j=1X

2
j as n → ∞ in Theorem 4.1 is not

convergent almost surely by Campbell’s theorem (see, e.g., Kingman [23, Section 3.2]) due to∫∞
0

(y2 ∧ 1) d(−y−2) = ∞. In case of α = 2, X2
j , j ∈ N, is positive almost surely and regularly

varying with tail index 1, so in order to get some weak limit of
∑n

j=1X
2
j as n → ∞ one may

need to introduce an appropriate centering as well.

Our results can be compared with the results on AR(1) processes

ξi = φξi−1 + ǫi, i ∈ N,

where φ ∈ R and {ǫ, ǫi : i ∈ N} are i.i.d. random variables. Assuming that ξ0 is independent of

{ǫi : i ∈ N}, E[ǫ] = 0, the CLS estimator of φ based on the observations ξ0, ξ1, . . . , ξn has the

form

φ̂n :=

∑n
i=1 ξi−1ξi∑n
i=1 ξ

2
i−1

on the set
{∑n

i=1 ξ
2
i−1 > 0

}
. If, in addition, φ ∈ (−1, 1), then the Markov chain (ξi)i≥0 admits a

unique stationary distribution, and there exists a strongly stationary process (ξi)i∈Z satisfying

ξi = φξi−1 + ǫi, i ∈ Z,

where {ǫ, ǫi : i ∈ Z} are i.i.d. random variables. If, in addition, ǫ is symmetric and regularly

varying with tail index α ∈ (0, 2), then

φ̂n → φ as n → ∞ almost surely,

see Hannan and Kanter [18], and

bn(φ̂n − φ)
d−→ U (2)

U (1)
as n → ∞

under the additional assumption limx→∞
P(|ǫ0ǫ1|>x)
P(|ǫ0|>x)

= 2E[|ǫ|α] in case of E[|ǫ|α] < ∞, where

(bn)n∈N is a suitable scaling sequence, U (1) is an α/2-stable positive random variable and U (2)

is a symmetric α-stable random variable, see Davis and Resnick [12, Theorem 3.6] for the

case of E[|ǫ|α] < ∞ and Davis and Resnick [13, Theorem 4.4] for the case of E[|ǫ|α] = ∞.

This representation of the limit distribution is derived in Davis and Resnick [13, Example 5].

Further, U (1) and U (2) are claimed to be dependent in case of E[|ǫ|α] < ∞, while they are

independent in case of E[|ǫ|α] = ∞. In fact, if E[|ǫ|α] < ∞, then bn, n ≥ 2, is the 1 − 1
n

lower quantile of |ǫ|, and one can also write bn = n
1
αL1(n), n ∈ N, with some slowly varying

function L1 : (0,∞) → (0,∞). If E[|ǫ|α] = ∞, then bn = c̃−1
n c2n, n ≥ 2, where cn is the

1 − 1
n

lower quantile of |ǫ1|, and c̃n is the 1 − 1
n

lower quantile of |ǫ0ǫ1|, and in this case one

can also write bn = n
1
αL2(n), n ∈ N, with some slowly varying function L2 : (0,∞) → (0,∞).

Moreover, if xαP(|ǫ| > x) → 1 as x → ∞, i.e., the distribution of |ǫ| is asymptotically equivalent

to a Pareto distribution with parameter α, then E[|ǫ|α] = ∞ and n−1/α(log(n))1/αbn → 1 as

n → ∞, see Resnick [36, Problem 9.13]. We also emphasize that Galton–Watson processes

with immigration are quite different from AR(1) process due to the branching property of the
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process. As a consequence, for example, the unique stationary distribution of the process can

be represented in a more complicated way compared to that of an AR(1) process, see Lemma

E.2. So our point process technique for the proof is not a simple modification of the known one

for AR(1) processes.

Finally, we recall two results on the CLS estimator of some parameters for related heavy-

tailed continuous time processes.

Hu and Long [19] studied the asymptotic behavior of the least squares estimator of the

drift parameter for a generalized Ornstein-Uhlenbeck process driven by a symmetric α-stable

Lévy motion with α ∈ (0, 2) in the ergodic case based on discrete time infill-increasing (high

frequency) observations. Using some results of Davis and Resnick [13], Hu and Long [19]

proved strong consistency of the least squares estimator in question, and they also described

its asymptotic behavior with a limit distribution being the fraction of two independent stable

random variables.

Li and Ma [29], using a similar point process technique, described somewhat similar asymp-

totic behavior of the weighted and non-weighted CLS estimators of the drift parameters for

a stable Cox–Ingersoll–Ross model based on low frequency observations. This process can be

viewed as a special subcritical continuous state and continuous time branching process with

immigration.

Convergence in probability and in L2 will be denoted by
P−→ and

L2−→, respectively. Weak

convergence of finite measures will be denoted by
w−→, and convergence of finite dimensional

distributions is denoted by
fi.di.−→. The diagonal matrix with diagonal entries a1, . . . , an ∈ R is

denoted by diagn(a1, . . . , an). We write δh for the Dirac measure on a set H concentrated at

h ∈ H . For a random vector X and event A ∈ A such that P(A) > 0, L(X) and L(X |A)

denote the law of X and law of X conditionally on A, respectively.

2 Tail behavior of the process

In what follows, let us consider the strongly stationary process (Xi)i∈Z given in (1.3). For

determining the weak limit of the point processes given in (1.6), in the proof of Theorem 3.2

the joint tail behavior of (Xi)i∈Z and (Mi+1/
√

max(Xi, 1))i∈Z+ , especially the so-called tail

process of (Xi)i∈Z, plays a crucial role. First, we present the tail process of (Xi)i∈Z, and then

we formulate a result on the tail behavior of the above mentioned two stochastic processes.

The process (Xi)i∈Z is jointly regularly varying with tail index α and admits a tail process

(Yi)i∈Z, i.e. all the finite dimensional distributions of (Xi)i∈Z are regularly varying with tail

index α, and for all m ∈ N,

L(x−1X−m, . . . , x
−1Xm | X0 > x)

w−→ L(Y−m, . . . , Ym) ,

as x → ∞. Indeed, Basrak et al. [5, Lemma 3.1] showed the existence of the forward tail process

(Yi)i≥0 of the sequence (Xi)i∈Z, and, by Theorem 2.1 in Basrak and Segers [7], the existence

6



of the forward tail process is equivalent to the existence of the (whole) tail process and to the

joint regular variation of (Xi)i∈Z as well. We claim that

Y−K+i =





µ−K+i
A Y0, i ≥ 0,

0, i < 0,

yielding

Yi =





µi
AY0, i ≥ 0,

µi
A1{K≥|i|}Y0, i < 0,

(2.1)

where Y0 is a Pareto distributed random variable such that P(Y0 ≥ y) = y−α for y ≥ 1, and K

is a geometrically distributed random variable independent of Y0 such that

P(K = k) = µαk
A (1 − µα

A) , k = 0, 1, 2, . . .

Indeed, as shown in Basrak et al. [5, Lemma 3.1], (Yi)i≥0 is the forward tail process of the

sequence (Xi)i∈Z. On the other hand, by Janssen and Segers [20, Example 6.2], (Yi)i∈Z is the tail

process of the stationary solution (ξ̃i)i∈Z to the stochastic recurrence equation ξ̃i = µAξ̃i−1 +Bi,

i ∈ Z. Since the distribution of the forward tail process determines the distribution of the

(whole) tail process (see Basrak and Segers [7, Theorem 2.1]), it follows that (Yi)i∈Z represents

the tail process of (Xi)i∈Z.

For the ease of notation, denote

Wi :=
Mi+1√
µi
AX0

, W ′
i :=

Mi+1√
Xi ∨ 1

, i ≥ 0 ,

on the set {X0 > 0}, where a ∨ b := max{a, b}, a, b ∈ R. Note that P(X0 = 0) > 0 might

occur. For example, if P(B ≥ k) = ck−α for k ∈ N and P(B = 0) = 1 − c with some c ∈ (0, 1),

then µB = c
∑∞

k=1 k
−α, hence in case of c < 1−µA∑∞

k=1 k
−α , we have E(X0) = µB

1−µA
< 1, yielding

P(X0 = 0) > 0, since X0 is a nonnegative integer valued random variable.

Proposition 2.1. As x → ∞,

L(x−1X−m, . . . , x
−1Xm,W

′
0, . . . ,W

′
m | X0 > x)

w−→ L(Y−m, . . . , Ym, Z0, . . . , Zm) (2.2)

for all m ∈ N, where (Zi)i≥0 is an i.i.d. sequence of N (0, σ2
A)–distributed random variables

being independent of Y0 and K with σ2
A = Var(A) ∈ (0,∞).

Although one can prove that the two-dimensional process (X
3/2
i , XiMi+1)i∈Z admits a tail

process in the sense of Basrak and Segers [7], see Appendix E, and then use standard point

process convergence results for describing the asymptotic behavior of µ̂A
(n) as n → ∞, such

an approach turns out to be rather complicated. However, for the purpose of our analysis, the

statement of Proposition 2.1 turns out to be sufficient. Note that this approach is similar to the

so–called conditional extreme value approach, see Kulik and Soulier [26] and references therein.
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Proof of Proposition 2.1. Let m ∈ N be fixed. First, note that Y −1
0 Yi = µi

A, i ≥ 0, is the

forward spectral process of (Xk)k∈Z, so by part (ii) of Corollary 3.2 in Basrak and Segers [7],

L(X−1
0 X0, . . . , X

−1
0 Xm | X0 > x)

w−→ δ(1,µA,...,µm
A ) as x → ∞. (2.3)

In particular, for every i ≥ 0 and ǫ > 0, since convergence in distribution to a constant

implies convergence in probability (formally applying part (ii) of Lemma D.3 with the Borel

measurable function h : R → R, h(x) := 1{|µ−i
A x−1|>ǫ}, x ∈ R, satisfying Dh = {µi

A(1 ± ǫ)} and

P(µi
A ∈ Dh) = 0 with Dh being the set of discontinuities of h), we have

lim
x→∞

P(|(µi
AX0)

−1Xi − 1| > ǫ | X0 > x) = 0 . (2.4)

Moreover, it is enough to show (2.2) for W0, . . . , Wm instead of W ′
0, . . . , W ′

m. Indeed, one can

easily check that

L(X−1
0 | X0 > x)

w−→ δ0 as x → ∞,

hence, by (2.3) and Lemma D.4, we obtain

L(X−1
0 , X−1

0 X0, . . . , X
−1
0 Xm | X0 > x)

w−→ δ(0,1,µA,...,µm
A ) as x → ∞.

Then, identifying R(3m+2)×(3m+2) with R(3m+2)2 in a natural way, we can use a conditional

version of the continuous mapping theorem (see part (i) of Lemma D.3), and we get

L
(

diag3m+2

(
1, . . . , 1,

√
X0

X0 ∨ 1
, . . . ,

√
µm
AX0

Xm ∨ 1

) ∣∣∣∣X0 > x

)
w−→ δdiag3m+2(1,...,1)

as x → ∞. Consequently, (2.2) with W ′
i replaced by Wi and Lemma D.5 imply (2.2).

Define now for i ≥ 0 and n ≥ 1,

W ′′
i (n) := (µi

An)−1/2




⌊µi
An⌋∑

j=1

Ã
(i+1)
j + B̃i+1


 ,

where Ã
(i+1)
j and B̃i+1 are introduced in (1.5). Take arbitrary y ≥ 1, u−m, . . . , um ∈ R and

introduce the events

C(x) := {X−m ≤ xu−m, . . . , X−1 ≤ xu−1}, x ∈ (0,∞),

D(n) := {W ′′
0 (n) ≤ u0, . . . ,W

′′
m(n) ≤ um}, n ∈ N.

Observe that the definition of the tail process (Yj)j∈Z of (Xj)j∈Z implies

lim
x→∞

P(X0 > xy, C(x) | X0 > x) = P(Y0 > y, Y−m ≤ u−m, . . . , Y−1 ≤ u−1) . (2.5)

Further, the central limit theorem, Slutsky’s lemma and independence of W ′′
0 (n), . . . ,W ′′

m(n)

imply that

lim
n→∞

P(D(n)) = lim
n→∞

(P(W ′′
0 (n) ≤ u0) · · ·P(W ′′

m(n) ≤ um))

= P(Z0 ≤ u0) · · ·P(Zm ≤ um) = P(Z0 ≤ u0, . . . , Zm ≤ um),
(2.6)

8



where, recall, Zi, i ≥ 0, are independent and N (0, σ2
A)–distributed random variables. Since

(Ã
(i+1)
j , B̃i+1 : i ≥ 0, j ≥ 1) are independent of X−m, . . . , X0, (2.5) and (2.6) imply that for

every ǫ > 0,

lim sup
x→∞

P(X0 > xy, C(x), D(X0) | X0 > x)

= lim sup
x→∞

P(X0 > x)−1
∑

n>xy, n∈N
P(X0 = n, C(x))P(D(n))

≤ lim sup
x→∞

P(X0 > x)−1
∑

n>xy, n∈N
P(X0 = n, C(x))(P(Z0 ≤ u0, . . . , Zm ≤ um) + ǫ)

= (P(Z0 ≤ u0, . . . , Zm ≤ um) + ǫ) lim sup
x→∞

P(X0 > xy, C(x) | X0 > x)

= (P(Z0 ≤ u0, . . . , Zm ≤ um) + ǫ)P(Y0 > y, Y−m ≤ u−m, . . . , Y−1 ≤ u−1) .

An analogous claim holds for the limit inferior, and now letting ǫ → 0 yields that

lim
x→∞

P(X0 > xy, C(x), D(X0) | X0 > x)

= P(Y0 > y, Y−m ≤ u−m, . . . , Y−1 ≤ u−1, Z0 ≤ u0, . . . , Zm ≤ um) ,

since (Zj)j≥0 is assumed to be independent of (Yj)j∈Z, hence

L(x−1X−m, . . . , x
−1X0,W

′′
0 (X0), . . . ,W

′′
m(X0) | X0 > x)

w−→ L(Y−m, . . . , Y0, Z0, . . . , Zm) as x → ∞.

Using (2.3) and part (ii) of Lemma D.4, we get

L(x−1X−m, . . . , x
−1X0, X

−1
0 X1, . . . , X

−1
0 Xm,W

′′
0 (X0), . . . ,W

′′
m(X0) | X0 > x)

w−→ L(Y−m, . . . , Y0, µA, . . . , µ
m
A , Z0, . . . , Zm) as x → ∞.

Hence, using x−1Xi = (X−1
0 Xi)(x

−1X0) and Yi = µi
AY0 for i = 1, . . . , m, together with Lemma

D.3, we obtain

L(x−1X−m, . . . , x
−1Xm,W

′′
0 (X0), . . . ,W

′′
m(X0) | X0 > x)

w−→ L(Y−m, . . . , Ym, Z0, . . . , Zm) as x → ∞. (2.7)

Next, we show that the above convergence holds with W ′′
i (X0) replaced by Wi, i = 1, . . . , m,

which yields (2.2) (as explained at the beginning of the proof). For this purpose, we prove that

L(∆0, . . . ,∆m | X0 > x)
w−→ δ(0,...,0) as x → ∞, (2.8)
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where, for i ≥ 0,

∆i := Wi −W ′′
i (X0) =

1√
µi
AX0




Xi∑

j=1

Ã
(i+1)
j −

⌊µi
AX0⌋∑

j=1

Ã
(i+1)
j




on the set {X0 > 0}. Note that ∆0 = 0. It is enough to check that for all ǫ ∈ (0, 1),

lim sup
x→∞

P(|∆i| > ǫ | X0 > x) ≤ 2ǫσ2
A, i = 0, . . . , m, (2.9)

since then, by part (i) of Lemma D.4, (2.8) follows. We will adapt the proof of Rényi’s version

of the Anscombe’s theorem in Gut [17, page 347]. For proving (2.9), let i ∈ {0, . . . , m} be fixed.

For all ǫ ∈ (0, 1) and ℓ ∈ N, let us introduce the notations

n0(ℓ) := ⌊µi
Aℓ⌋, n1(ℓ) := ⌊(1 − ǫ3)µi

Aℓ⌋ + 1, n2(ℓ) := ⌊(1 + ǫ3)µi
Aℓ⌋.

For all ǫ ∈ (0, 1) and k ∈ N, with the notation Sk :=
∑k

j=1 Ã
(i+1)
j , we have

P(|∆i| > ǫ | X0 > x) = P
(
|SXi

− Sn0(X0)| > ǫ
√

µi
AX0 | X0 > x

)

= P
(
|SXi

− Sn0(X0)| > ǫ
√

µi
AX0, Xi ∈ [n1(X0), n2(X0)] | X0 > x

)

+ P
(
|SXi

− Sn0(X0)| > ǫ
√

µi
AX0, Xi /∈ [n1(X0), n2(X0)] | X0 > x

)

≤ P

(
max

n1(X0)≤k≤n2(X0)
|Sk − Sn0(X0)| > ǫ

√
µi
AX0 | X0 > x

)

+ P(Xi /∈ [n1(X0), n2(X0)] | X0 > x).

Here, by Kolmogorov’s theorem (see, e.g., Gut [17, Theorem 3.1.6]) and the independence of

X0 and Ã
(i+1)
j , i ∈ {0, . . . , m}, j ∈ N, we have for x ≥ 2/(µi

Aǫ
3),

P
(

max
n1(X0)≤k≤n2(X0)

|Sk − Sn0(X0)| > ǫ
√

µi
AX0 | X0 > x

)

=
∑

ℓ>x, ℓ∈N

1

P(X0 > x)
P

(
max

n1(ℓ)≤k≤n2(ℓ)
|Sk − Sn0(ℓ)| > ǫ

√
µi
Aℓ,X0 = ℓ

)

≤
∑

ℓ>x, ℓ∈N

1

P(X0 > x)

(n2(ℓ) − n1(ℓ))σ
2
A

ǫ2µi
Aℓ

P(X0 = ℓ) ≤ 2ǫσ2
A.

(2.10)

Indeed, for x ≥ 2/(µi
Aǫ

3), we have n1(ℓ) ≤ n0(ℓ) ≤ n2(ℓ) for ℓ ≥ x, ℓ ∈ N, and

|Sk − Sn0(ℓ)| =





∣∣∣
∑k

j=n0(ℓ)+1 Ã
(i+1)
j

∣∣∣ if n0(ℓ) ≤ k ≤ n2(ℓ),∣∣∣
∑n0(ℓ)

j=k+1 Ã
(i+1)
j

∣∣∣ if n1(ℓ) ≤ k ≤ n0(ℓ) − 1,
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so using the independence of Ã
(i+1)
j , j ∈ N, by Kolmogorov’s theorem, we have

P

(
max

n1(ℓ)≤k≤n2(ℓ)
|Sk − Sn0(ℓ)| > ǫ

√
µi
Aℓ
)

= P


max


 max

n0(ℓ)≤k≤n2(ℓ)

∣∣∣∣∣∣

k∑

j=n0(ℓ)+1

Ã
(i+1)
j

∣∣∣∣∣∣
, max
n1(ℓ)≤k≤n0(ℓ)−1

∣∣∣∣∣∣

n0(ℓ)∑

j=k+1

Ã
(i+1)
j

∣∣∣∣∣∣


 > ǫ

√
µi
Aℓ




= 1 −


1 − P

(
max

n0(ℓ)≤k≤n2(ℓ)

∣∣∣∣∣∣

k∑

j=n0(ℓ)+1

Ã
(i+1)
j

∣∣∣∣∣∣
> ǫ
√

µi
Aℓ
)



×


1 − P

(
max

n1(ℓ)≤k≤n0(ℓ)−1

∣∣∣∣∣∣

n0(ℓ)∑

j=k+1

Ã
(i+1)
j

∣∣∣∣∣∣
> ǫ
√

µi
Aℓ
)



≤ 1 −
(

1 − (n2(ℓ) − n0(ℓ))σ
2
A

ǫ2µi
Aℓ

)(
1 − (n0(ℓ) − n1(ℓ))σ

2
A

ǫ2µi
Aℓ

)

=
(n2(ℓ) − n1(ℓ))σ

2
A

ǫ2µi
Aℓ

− (n2(ℓ) − n0(ℓ))(n0(ℓ) − n1(ℓ))σ
2
A

ǫ4µ2i
Aℓ

2

≤ (n2(ℓ) − n1(ℓ))σ
2
A

ǫ2µi
Aℓ

,

yielding the first inequality in (2.10). The second inequality in (2.10) follows by

n2(ℓ) − n1(ℓ)

ℓ
≤ (1 + ǫ3)µi

Aℓ− (1 − ǫ3)µi
Aℓ

ℓ
= 2µi

Aǫ
3.

Consequently, for all ǫ ∈ (0, 1),

P(|∆i| > ǫ | X0 > x) ≤ 2ǫσ2
A + P(Xi /∈ [n1(X0), n2(X0)] | X0 > x).

Here

P(Xi /∈ [n1(X0), n2(X0)] | X0 > x)

≤ P(Xi /∈ [(1 − ǫ3)µi
AX0 + 1, (1 + ǫ3)µi

AX0 − 1] | X0 > x)

= P((µi
AX0)

−1Xi − 1 /∈ [−ǫ3 + (µi
AX0)

−1, ǫ3 − (µi
AX0)

−1] | X0 > x)

≤ P((µi
AX0)

−1Xi − 1 /∈ [−ǫ3 + (µi
Ax)−1, ǫ3 − (µi

Ax)−1] | X0 > x)

≤ P((µi
AX0)

−1Xi − 1 /∈ [−ǫ3/2, ǫ3/2] | X0 > x)

if (µi
Ax)−1 ≤ ǫ3/2, i.e., for x ≥ 2/(µi

Aǫ
3), hence

P(Xi /∈ [n1(X0), n2(X0)] | X0 > x) → 0 as x → ∞,
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due to (2.4). Consequently, we have (2.9). By (2.8) and part (i) of Lemma D.4, we obtain

L(0, . . . , 0,∆0, . . . ,∆m | X0 > x)
w−→ δ(0,...,0,0,...,0) as x → ∞.

Hence, using (2.7) and Lemma D.5, we obtain (2.2) with W ′
i replaced by Wi, i ∈ {0, . . . , m},

as desired. �

3 Point process convergence

Let (an)n∈N be a sequence of positive real numbers satisfying limn→∞ an = ∞ and

lim
n→∞

nP(X0 > an) = 1. (3.1)

Note that for n ≥ 2, one can choose an to be the maximum of 1 and the 1− 1
n

lower quantile of X0.

In fact, an = n1/αL(n), n ∈ N, for some slowly varying continuous function L : (0,∞) → (0,∞),

see, e.g., Araujo and Giné [1, Exercise 6 on page 90]. In what follows we fix such a sequence

(an)n∈N satisfying (3.1). By the proof of Lemma 3.2 in Basrak et al. [5], for any sequence of

positive integers (rn)n≥1 such that limn→∞ rn = ∞ and limn→∞ n/rn = ∞, we have

lim
m→∞

lim sup
n→∞

P

(
max

m<|i|≤rn
Xi > anu

∣∣ X0 > anu

)
= 0 for all u > 0. (3.2)

Condition (3.2) is sometimes called the anticlustering condition or finite mean cluster size

condition for the strongly stationary process (Xi)i∈Z. Later, in the proof of Theorem 3.2 we

will choose a particular sequence (rn)n∈N satisfying a kind of mixing condition (3.6) as well.

For a possible choice of such a sequence (rn)n∈N, see the proof of Lemma C.2.

Consider the space S := (0,∞) × R with the usual topology and call a Borel set B ⊂ S

bounded if it is separated from the vertical line {(0, y) : y ∈ R}, i.e., there exists ǫ > 0 such

that B ⊂ {(x, y) ∈ (0,∞) × R : x > ǫ}. Using the terminology of Basrak and Planinić [6],

the collection of bounded sets is a boundedness (Borel subsets of bounded sets are bounded,

and finite union of bounded sets are bounded), which properly localizes S. Denote by B(S)

the Borel σ-algebra on S and by ĈS the class of bounded, continuous functions f : S → [0,∞)

with bounded support. Hence, if f ∈ ĈS, then there exists an ǫ > 0 such that f(x, y) = 0 for

all (x, y) ∈ S with x ≤ ǫ.

Let Mp(S) be the space of integer-valued measures (or point measures) on S which are

finite on bounded Borel sets (called locally finite measures), topologized by the so–called vague

topology. The associated notion of vague convergence of µn ∈ Mp(S) towards µ ∈ Mp(S) as

n → ∞, denoted by µn
v−→ µ as n → ∞, is defined by the condition µn(f) → µ(f) as n → ∞

for all f ∈ ĈS, where κ(f) :=
∫
S
f(x, y) κ(dx, dy) for each κ ∈ Mp(S). Alternatively, we

could have used the framework of so–called MO–convergence from Lindskog et al. [31], see also

Basrak and Planinić [6] for the discussion on vague convergence. Convergence in distribution

of random measures with respect to the vague topology will be denoted by
vd−→.
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In what follows, we use the theory of Kallenberg [21, Chapter 4]. To do so, one can equip

S with the metric d : S × S → [0,∞),

d((x, y), (x′, y′)) := min
(√

(x− x′)2 + (y − y′)2, 1
)

+

∣∣∣∣
1

x
− 1

x′

∣∣∣∣ (3.3)

for (x, y), (x′, y′) ∈ S. This metric is complete and induces the original topology of S, and

the family of d–bounded sets is precisely the family of bounded sets in S as defined above, see

Lemma A.1. In Kallenberg [21, page 125], one can find a similar metric. Note that Mp(S) is

a complete separable metric space with a metric inducing the vague topology, see Kallenberg

[21, Lemma 4.6].

The following well–known result (stated in our setting) describes vague convergence of point

measures and is crucial for the use of continuous mapping arguments (for a proof, based on

Lemma 3.13 in Resnick [35], see Appendix B), we will use it in the proof of Theorem 4.1.

Lemma 3.1. Let µ, µn ∈ Mp(S), n ∈ N. Then µn
v−→ µ as n → ∞ if and only if for each

ǫ > 0 satisfying µ({ǫ} ×R) = 0 there exist integers n0,M ≥ 0 and a labeling of the points of µ

and µn, n ≥ n0, in (ǫ,∞) × R such that

µn|(ǫ,∞)×R =
M∑

i=1

δ
(x

(n)
i , y

(n)
i )

, µ|(ǫ,∞)×R =
M∑

i=1

δ(xi,yi) ,

and x
(n)
i → xi and y

(n)
i → yi as n → ∞ for all i = 1, . . . ,M , where µ|B denotes the restriction

of µ to the set B ⊂ S.

Recall (2.1) and define

θ := P(sup
j<0

Yj ≤ 1) = P(K = 0) = 1 − µα
A. (3.4)

Indeed, {supj<0 Yj ≤ 1} = {K = 0}, since if K = 0, then, by (2.1), Yj = 0 for all j < 0 yielding

supj<0 Yj = 0 ≤ 1; and if K ≥ 1, then supj<0 Yj ≥ Y−1 = µ−1
A Y0 > 1 almost surely due to the

facts that P(Y0 ≥ 1) = 1 and µA ∈ (0, 1).

Theorem 3.2. In Mp(S),

Nn :=

n∑∗

j=1

δ(Xj
an

,
Mj+1√

Xj

) =
∑

{j∈{1,...,n} :Xj>0}
δ(Xj

an
,
Mj+1√

Xj

) vd−→ N :=

∞∑

i=1

∞∑

j=0

δ(Piµ
j
A,Zi,j)

(3.5)

as n → ∞, where
∑∞

i=1 δPi
denotes a Poisson point process on (0,∞) with intensity θ d(−y−α)

which is independent of an i.i.d. array of N (0, σ2
A)-distributed random variables {Zi,j : i ∈

N, j ≥ 0}.

Proof. First, we check that N is a locally finite measure almost surely, i.e., N(B) is finite

almost surely for each bounded Borel measurable subset B of S. Assume that B ∈ B(S) is

bounded. Then we have B ⊂ (ǫ,∞) × R for some ǫ > 0, and

N((ǫ,∞) × R) =

∞∑

i=1

∞∑

j=0

1{(Piµ
j
A,Zi,j)∈(ǫ,∞)×R} =

∞∑

j=0

∞∑

i=1

1{Pi>µ−j
A ǫ} < ∞
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almost surely, since, for each j ≥ 0, there are only finitely many Pi’s greater than µ−j
A ǫ almost

surely, and for sufficiently large j ≥ 0, the set {i ∈ N : Pi > µ−j
A ǫ} is empty, since µ−j

A ǫ ≥
maxi∈N Pi holds for sufficiently large j ≥ 0 due to µ−j

A → ∞ as j → ∞.

By Remark 3.1 in Basrak et al. [5] or Lemma F.1 in Barczy et al. [3], the strongly stationary

process (Xj)j∈Z is strongly mixing, and since Mj+1/
√
Xj ∈ σ(Xj, Xj+1) for every j ≥ 0 (under-

standing this ratio 0 when Xj = 0), a modification of Lemma 2.3.9 in Basrak [4] or the proof

of Proposition 1.34 in Krizmanić [25], shows that there exists a sequence of positive integers

(rn)n∈N satisfying rn → ∞ and rn/n → 0 as n → ∞, such that

E

[
exp

{
−

n∑∗

j=1

f

(
Xj

an
,
Mj+1√

Xj

)}]
−
(
E

[
exp

{
−

rn∑∗

j=1

f

(
Xj

an
,
Mj+1√

Xj

)}])kn

→ 0 (3.6)

as n → ∞ for all f ∈ ĈS, where kn := ⌊n/rn⌋, see Lemma C.2. This is similar to condition

(2.1) in Davis and Hsing [11]. Note that for this sequence (rn)n∈N, the anticlustering condition

(3.2) holds automatically, as explained before (3.2).

By Theorem 4.11 in Kallenberg [21] and (3.6), Nn
vd−→ N as n → ∞ if and only if Ñn :=∑kn

i=1 Ñn,i
vd−→ N as n → ∞, where for each n ∈ N, Ñn,i, i = 1, . . . , kn, are i.i.d. point processes

on S with common distribution equal to the distribution of

Nrn =

rn∑∗

j=1

δ(Xj
an

,
Mj+1√

Xj

) ,

since (3.6) takes the form

E[e−Nn(f)] − E[e−Ñn(f)] → 0

as n → ∞ for all f ∈ ĈS.

We will apply Theorem 4.22 in Kallenberg [21]. The array of point processes {Ñn,i, n ∈
N, i = 1, . . . , kn} forms a null array, since if B ⊂ S is a bounded Borel set, then there exists an

ǫ > 0 such that B ⊂ (ǫ,∞) × R, and then

sup
i∈{1,...,kn}

P(Ñn,i(B) > 0) = P(Ñn,1(B) > 0) = P

(
rn∑∗

j=1

δ
(Xj/an,Mj+1/

√
Xj)

(B) > 0

)

≤ P

(
rn⋃

j=1

{(
Xj

an
,
Mj+1√

Xj

)
∈ (ǫ,∞) × R

})
≤

rn∑

j=1

P

(
Xj

an
∈ (ǫ,∞)

)

= rnP

(
X1

an
∈ (ǫ,∞)

)
=

rn
n

· nP(X1 > an) · P(X1 > ǫan)

P(X1 > an)
→ 0 · 1 · ǫ−α = 0 as n → ∞,

where the last step follows by (3.1) and the fact that X1 is regularly varying with tail index

α. By Kallenberg [21, Theorem 4.22 and page 89], Ñn
vd−→ N as n → ∞ if there exists a

measure ν on Mp(S) \ {0} (furnished with the smallest σ-algebra making all the evaluation

maps Mp(S) ∋ m 7→ m(F ) measurable, where F ∈ B(S)) such that
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(i)
∫
Mp(S)\{0} min(κ(B), 1) ν(dκ) < ∞ for all bounded Borel subsets of S,

(ii) knE[1 − e−Nrn(f)] →
∫
Mp(S)\{0}(1 − e−κ(f)) ν(dκ) as n → ∞ for all f ∈ ĈS,

(iii) − logE[e−N(f)] =
∫
Mp(S)\{0}(1 − e−κ(f)) ν(dκ) for all f ∈ ĈS.

Here we note that, with the notations of Kallenberg [21], the non-random locally finite measure

α on S appearing in Theorem 4.22 in Kallenberg [21] is the null measure, by Theorem 3.20 in

Kallenberg [21].

Let ν be a measure on Mp(S) \ {0} given by

ν( · ) := θ

∫ ∞

0

P

( ∞∑

j=0

δ(yµj
A ,Zj)

∈ ·
)
αy−α−1 dy ,

where (Zj)j≥0 is an i.i.d. sequence of N (0, σ2
A)–distributed random variables being independent

of Y0 and K with σ2
A = Var(A). Note that we have

∫

Mp(S)\{0}
h(κ(g)) ν(dκ) = θ

∫ ∞

0

E

[
h

( ∞∑

j=0

g(yµj
A, Zj)

)]
αy−α−1 dy (3.7)

for any measurable functions h : R → [0,∞) and g : S → [0,∞) such that g has bounded

support, since this trivially holds for linear combinations of indicator functions, which extends

by monotone convergence to arbitrary nonnegative measurable functions. Consequently, ν

satisfies property (i) above, since if B is a bounded Borel subset of S, then there exists ǫ > 0

such that x > ǫ for all (x, z) ∈ B, and hence

∫

Mp(S)\{0}
min(κ(B), 1) ν(dκ) = θ

∫ ∞

0

E

[( ∞∑

j=0

1B(yµj
A, Zj)

)
∧ 1

]
αy−α−1 dy

= θ

∫ ∞

y>ǫ

E

[( ∞∑

j=0

1B(yµj
A, Zj)

)
∧ 1

]
αy−α−1 dy ≤ θ

∫ ∞

y>ǫ

αy−α−1 dy = θǫ−α < ∞,

where we used that if y ∈ (0, ǫ], then yµj
A ∈ (0, ǫ], j ≥ 0.

Next we turn to prove (iii). We check that N given in (3.5) satisfies

− logE[e−N(f)] = θ

∫ ∞

0

E[1 − e−
∑∞

j=0 f(yµ
j
A ,Zj)]αy−α−1 dy =

∫

Mp(S)\{0}
(1 − e−κ(f)) ν(dκ) (3.8)

for all f ∈ ĈS. The second equality follows from (3.7). For the first equality, we provide two

alternative proofs. The first equality in (3.8) can be derived using the representation

N(f) =
∞∑

i=1

∞∑

j=0

f(Piµ
j
A, Zi,j) =

∞∑

i=1

f ′(Pi, (Zi,j)j≥0) = N ′(f ′),
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where f ′(p, (zj)j≥0) :=
∑∞

j=0 f(pµj
A, zj) for p ∈ (0,∞), zj ∈ R, j ≥ 0, and N ′ :=

∑∞
i=1 δ(Pi, (Zi,j)j≥0)

is a Poisson point process on (0,∞)×RN∪{0} with intensity θ d(−y−α)×L(Z1,1)
N∪{0} (see, e.g.,

Kingman [23, Section 5.2]). Indeed, f ∈ ĈS implies that the sum
∑∞

j=0 f(pµj
A, zj) has only

finitely many non-zero terms, and one can use the expression for the Laplace functional of N ′

together with Fubini’s theorem. The second proof of the first equality in (3.8) is based on the

representation

E[e−N(f)] = E

[
E
[
e−

∑∞
i=1

∑∞
j=0 f(Piµ

j
A,Zi,j)

∣∣ (Pi)i∈N
]]

= E

[ ∞∏

i=1

∞∏

j=0

E
[
e−f(Piµ

j
A,Z)

∣∣ (Pi)i∈N
]
]

= E

[ ∞∏

i=1

h(Pi)

]
,

where Z is an N (0, σ2
A)-distributed random variable, independent of (Pi)i∈N, and h : (0,∞) → R

is defined by

h(x) :=

∞∏

j=0

E
[
e−f(xµj

A,Z)
]
, x ∈ (0,∞).

Consequently, using the Laplace functional of the Poisson point process
∑∞

i=1 δPi
, we obtain

E[e−N(f)] = E
[
e−

∑∞
i=1(− log(h(Pi)))

]
= exp

{
−
∫ ∞

0

(
1 − e−(− log(h(x)))

)
θαx−α−1 dx

}

= exp

{
−θ

∫ ∞

0

(1 − h(x))αx−α−1 dx

}

= exp

{
−θ

∫ ∞

0

(
1 −

∞∏

j=0

E
[
e−f(xµj

A,Z)
])

αx−α−1 dx

}

= exp

{
−θ

∫ ∞

0

(
1 − E

[
e−

∑∞
j=0 f(xµ

j
A,Zj)

])
αx−α−1 dx

}
,

as desired.

Now we prove (ii). By (3.8), we need to show that

knE[1 − e−Nrn (f)] → θ

∫ ∞

0

E[1 − e−
∑∞

j=0 f(yµ
j
A ,Zj)]αy−α−1dy (3.9)

as n → ∞ for all f ∈ ĈS. Take an arbitrary f ∈ ĈS and let ǫ > 0 be such that x ≤ ǫ

implies that f(x, y) = 0 for all y ∈ R. To show (3.9) we rely on the condition (3.2) and use

similar arguments as in the proof of Basrak and Segers [7, Theorem 4.3]. Note that, even

though condition (3.2) concerns only the process (Xj)j∈Z, it will be sufficient for (3.9), since

the bounded sets in S are separated from the vertical line (see Lemma A.1) by our choice of

bounded sets in S.

For n ∈ N and k, ℓ ∈ Z with k ≤ ℓ, write Mk,ℓ := maxk≤j≤ℓXj (if ℓ < k set Mk,ℓ := 0), and

cn(k, ℓ) := 1 − exp

{
−

ℓ∑∗

j=k

f

(
Xj

an
,
Mj+1√

Xj

)}
.
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In particular, cn(1, rn) = 1− exp{−Nrn(f)}, and since f(x, y) = 0 if (x, y) ∈ (0, ǫ]×R, we have

{M1,rn ≤ anǫ} ⊂ {cn(1, rn) = 0}, and then

E[cn(1, rn)] = E[cn(1, rn)1{M1,rn>anǫ}] =

rn∑

i=1

E[cn(1, rn)1{M1,i−1≤anǫ<Xi}] . (3.10)

Since kn ∼ (rnP(X0 > an))−1 as n → ∞, (3.9) will follow if we show that

E[cn(1, rn)]

rnP(X0 > an)
→ θ

∫ ∞

0

E[1 − e−
∑∞

j=0 f(yµ
j
A,Zj)]αy−α−1dy as n → ∞.

Fix now m ∈ N and assume that n is large enough so that rn ≥ 2m+1. The key observation now

is that, since f(x, y) = 0 if x ≤ ǫ, for all m+1 ≤ i ≤ rn−m, we have cn(1, rn) = cn(i−m, i+m)

if M1,i−m−1∨Mi+m+1,rn ≤ anǫ. Using the strong stationarity of (Xi)i∈Z and that cn(k, l) ∈ [0, 1],

n ∈ N, k, l ∈ Z, this implies that for all i ∈ {m + 1, . . . , rn −m},
∣∣∣E[cn(1, rn)1{M1,i−1≤anǫ<Xi}] − E[cn(i−m, i + m)1{Mi−m,i−1≤anǫ<Xi}]

∣∣∣

≤
∣∣∣E
[(

cn(1, rn)1{M1,i−1≤anǫ<Xi} − cn(i−m, i + m)1{Mi−m,i−1≤anǫ<Xi}

)
1{M1,i−m−1∨Mi+m+1,rn≤anǫ}

]∣∣∣

+
∣∣∣E
[(

cn(1, rn)1{M1,i−1≤anǫ<Xi} − cn(i−m, i + m)1{Mi−m,i−1≤anǫ<Xi}

)
1{M1,i−m−1∨Mi+m+1,rn>anǫ}

]∣∣∣

=
∣∣∣E
[(
cn(1, rn) − cn(i−m, i + m)

)
1{M1,i−1≤anǫ<Xi}1{M1,i−m−1∨Mi+m+1,rn≤anǫ}

]∣∣∣

+
∣∣∣E
[(

cn(1, rn)1{M1,i−1≤anǫ} − cn(i−m, i + m)1{Mi−m,i−1≤anǫ}

)
1{Xi>anǫ}1{M1,i−m−1∨Mi+m+1,rn>anǫ}

]∣∣∣

≤ P(M1,i−m−1 ∨Mi+m+1,rn > anǫ,Xi > anǫ)

= P(M1−i,−m−1 ∨Mm+1,rn−i > anǫ,X0 > anǫ)

≤ P(M−rn,−m−1 ∨Mm+1,rn > anǫ,X0 > anǫ),

where the last step follows by −rn ≤ 1 − i and rn − i ≤ rn. For i ∈ {1, . . . , m} ∪ {rn − m +

1, . . . , rn}, use the trivial bound
∣∣E[cn(1, rn)1{M1,i−1≤anǫ<Xi}] − E[cn(i−m, i + m)1{Mi−m,i−1≤anǫ<Xi}]

∣∣

≤ E[|cn(1, rn)1{M1,i−1≤anǫ} − cn(i−m, i + m)1{Mi−m,i−1≤anǫ}|1{anǫ<Xi}] ≤ P(X0 > anǫ).

Consequently, using again the strong stationarity of (Xi)i∈Z and (3.10), we have

∆n,m :=

∣∣∣∣
E[cn(1, rn)]

rnP(X0 > an)
− E[cn(−m,m)1{M−m,−1≤anǫ<X0}]

P(X0 > an)

∣∣∣∣

=
1

rnP(X0 > an)

∣∣∣∣∣
rn∑

i=1

E[cn(1, rn)1{M1,i−1≤anǫ<Xi}] − rnE[cn(−m,m)1{M−m,−1≤anǫ<X0}]

∣∣∣∣∣

=
1

rnP(X0 > an)

∣∣∣∣∣
rn∑

i=1

E[cn(1, rn)1{M1,i−1≤anǫ<Xi}] −
rn∑

i=1

E[cn(i−m, i + m)1{Mi−m,i−1≤anǫ<Xi}]

∣∣∣∣∣
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≤ 1

rnP(X0 > an)

( ∑

i∈{1,...,m}∪{rn−m+1,...,rn}
P(X0 > anǫ)

+

rn−m∑

i=m+1

P(M−rn,−m−1 ∨Mm+1,rn > anǫ,X0 > anǫ)

)

=
1

rnP(X0 > an)

(
2mP(X0 > anǫ) + (rn − 2m)P(M−rn,−m−1 ∨Mm+1,rn > anǫ,X0 > anǫ)

)

=
P(X0 > anǫ)

P(X0 > an)

(
2m

rn
+

(
1 − 2m

rn

)
P(M−rn,−m−1 ∨Mm+1,rn > anǫ | X0 > anǫ)

)
.

Note P(X0>anǫ)
P(X0>an)

∼ ǫ−α and rn → ∞ as n → ∞, hence, (3.2) implies that

lim
m→∞

lim sup
n→∞

∆n,m = 0.

Observe that on the event M−m,−1 ≤ anǫ, we have cn(−m,m) = cn(0, m), n ∈ N. Hence,

E[cn(−m,m)1{M−m,−1≤anǫ<X0}]

P(X0 > an)
=

P(X0 > anǫ)

P(X0 > an)
E[cn(0, m)1{M−m,−1≤anǫ} | X0 > anǫ]. (3.11)

The first term on the right hand side of (3.11) tends to ǫ−α as n → ∞. For each m ∈ N, we

have

cn(0, m) = 1 − exp

{
−

m∑∗

j=0

f

(
Xj

an
,
Mj+1√

Xj

)}
= 1 − exp

{
−

m∑∗

j=0

f

(
Xj

an
,W ′

j

)}
,

hence, by Proposition 2.1 and a consequence of the conditional continuous mapping theorem

(see part (ii) of Lemma D.3) with a bounded Borel measurable function h̃ : R3m+2 → R

satisfying

h̃(x−m, . . . , xm, w
′
0, . . . , w

′
m) =

(
1 − exp

{
−

m∑

j=0

f(ǫxj , w
′
j)1(0,∞)(xj)

})
1{max{x−m,...,x−1}≤1}

for x−m, . . . , xm ∈ [0,∞), w′
0, . . . , w

′
m ∈ R, we obtain

E(cn(0, m)1{M−m,−1≤anǫ} | X0 > anǫ)

→ E

((
1 − exp

{
−

m∑

j=0

f(ǫµj
AY0, Zj)

})
1{max{Y−m,...,Y−1}≤1}

)
as n → ∞,

since the absolute continuity of Y0 and the independence of Y0 and K imply

P((Y−m, . . . , Ym, Z0, . . . , Zm) ∈ Dh̃) = P(max{Y−m, . . . , Y−1} = 1)

= P(Y0 max{µ−m
A 1{K≥m}, . . . , µ

−1
A 1{K≥1}} = 1) = 0,
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where Dh̃ denotes the set of discontinuities of h̃. Consequently, by the dominated convergence

theorem, the second term on the right hand side of (3.11) as n → ∞ and then as m → ∞,

converges to

E

[(
1 − exp

{
−

∞∑

j=0

f(ǫµj
AY0, Zj)

})
1{supj<0 Yj≤1}

]

= E

[(
1 − exp

{
−

∞∑

j=0

f(ǫµj
AY0, Zj)

})
1{K=0}

]
= θE

[
1 − exp

{
−

∞∑

j=0

f(ǫµj
AY0, Zj)

}]
,

where the last step follows by the fact that K is independent of Y0 and (Zj)j≥0 and since

P(K = 0) = θ (see (3.4)). Altogether, using the fact that Y0 is Pareto distributed such that

P(Y0 ≥ y) = y−α, y ≥ 1, and independent of (Zj)j≥0,

lim
n→∞

E[cn(1, rn)]

rnP(X0 > an)
= lim

m→∞
lim
n→∞

E[cn(−m,m)1{M−m,−1≤anǫ<X0}]

P(X0 > an)

= ǫ−αθ

∫ ∞

1

E

[
1 − exp

{
−

∞∑

j=0

f(ǫyµj
A, Zj)

}]
αy−α−1 dy

= θ

∫ ∞

ǫ

E

[
1 − exp

{
−

∞∑

j=0

f(yµj
A, Zj)

}]
αy−α−1 dy

= θ

∫ ∞

0

E

[
1 − exp

{
−

∞∑

j=0

f(yµj
A, Zj)

}]
αy−α−1 dy,

where the last line follows since f(x, y) = 0 if x ≤ ǫ, y ∈ R, and µA ∈ (0, 1), and this concludes

the proof of (ii) yielding the statement. �

4 From point processes to sums

The key idea in handling the sums
∑n

j=1X
2
j and

∑n
j=1XjMj+1 (the building blocks of µ̂A

(n) −
µA) is to apply usual truncation argument and then summation to obtain the following result,

cf. Davis and Hsing [11, Theorem 3.1].

Theorem 4.1. We have

(V (1)
n , V (2)

n ) :=

(
1

a2n

n∑

j=1

X2
j ,

1

a
3/2
n

n∑

j=1

XjMj+1

)
d−→ (V (1), V (2)) (4.1)

as n → ∞ with

(V (1), V (2))
d
=

(
1

1 − µ2
A

∞∑

i=1

P 2
i ,

1

(1 − µ3
A)1/2

∞∑

i=1

P
3/2
i Zi

)
, (4.2)
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where
∑∞

i=1 δPi
is a Poisson point process on (0,∞) with intensity θd(−y−α) such that P1 ≥

P2 ≥ . . . almost surely, (Zi)i≥0 is an i.i.d. sequence of N (0, σ2
A)–distributed random variables

independent of
∑∞

i=1 δPi
with θ given in (3.4), and the series on the right hand side of (4.2)

are convergent almost surely.

The characteristic function of the vector (V (1), V (2)) has the form

E
[
ei(sV

(1)+tV (2))
]

= exp

{
θ

∫ ∞

0

(
exp

{
is

1 − µ2
A

y2 − σ2
At

2

2(1 − µ3
A)

y3
}
− 1

)
αy−α−1 dy

}

for s, t ∈ R. For the marginals, we have

E
[
eisV

(1)]
= exp

{
−C1|s|α/2

(
1 − i tan

(πα
4

)
sgn(s)

)}
, E

[
eitV

(2)]
= e−C2|t|2α/3

for s, t ∈ R with

C1 := θΓ
(

1 − α

2

) cos
(

πα
4

)

(1 − µ2
A)α/2

, C2 := θΓ
(

1 − α

3

)( σ2
A

2(1 − µ3
A)

)α/3

,

thus V (1) is an α/2-stable positive random variable and V (2) is a symmetric 2α/3-stable random

variable.

Proof. We divide the proof into four steps.

Step 1. Applying continuous mapping theorem to the convergence in (3.5) we show that

(V (1)
n,γ , V

(2)
n,γ ) :=

(
n∑

j=1

(Xj/an)21{Xj/an>γ},
n∑

j=1

XjMj+1/a
3/2
n 1{Xj/an>γ}

)

d−→ (V (1)
γ , V (2)

γ ) :=

( ∞∑

i=1

∞∑

j=0

(Piµ
j
A)21{Piµ

j
A>γ} ,

∞∑

i=1

∞∑

j=0

(Piµ
j
A)3/2Zi,j1{Piµ

j
A>γ}

)

as n → ∞ for all γ > 0, where Zi,j, i ∈ N, j ≥ 0, are given in Theorem 3.2. Fix γ > 0, and

consider the mapping Tγ : Mp(S) → R2,

Tγ(κ) :=

(∫

S

x2
1{x>γ} κ(dx, dy),

∫

S

x3/2y1{x>γ} κ(dx, dy)

)

=

(∑

k

x2
k1{xk>γ},

∑

k

x
3/2
k yk1{xk>γ}

)

for κ =
∑

k δ(xk,yk) ∈ Mp(S). Note that the sums in the definition of Tγ(κ) are sums with

finitely many terms, since the set (γ,∞)×R is bounded and κ is a locally finite measure on S.

By Lemma 3.1, Tγ is continuous on Cγ := {κ ∈ Mp(S) : κ({γ} × R) = 0}, i.e., for any κ ∈ Cγ

and any sequence (κn)n∈N in Mp(S) such that κn
v→ κ as n → ∞, we have Tγ(κn) → Tγ(κ) as
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n → ∞. Indeed, by Lemma 3.1, κn
v→ κ as n → ∞ yields that there exist integers n0,M ≥ 0

and a labeling of the points of κ and κn, n ≥ n0, in (γ,∞) × R such that

κn|(γ,∞)×R =

M∑

k=1

δ
(x

(n)
k , y

(n)
k )

, n ≥ n0, κ|(γ,∞)×R =

M∑

k=1

δ(xk ,yk),

and (x
(n)
k , y

(n)
k ) → (xk, yk) as n → ∞ for all k = 1, . . . ,M . Hence

Tγ(κn) =

(
M∑

k=1

(x
(n)
k )2,

M∑

k=1

(x
(n)
k )3/2y

(n)
k

)
, n ≥ n0,

Tγ(κ) =

(
M∑

k=1

x2
k,

M∑

k=1

x
3/2
k yk

)
,

yielding that Tγ(κn) → Tγ(κ) as n → ∞, as desired. Finally, (V
(1)
n,γ , V

(2)
n,γ )

d−→ (V
(1)
γ , V

(2)
γ ) as

n → ∞ follows by an application of the continuous mapping theorem (see, e.g., Resnick [36]).

Indeed, Mp(S) is a complete separable metric space with a metric inducing the vague topology

(see Kallenberg [21, Lemma 4.6]), (V
(1)
n,γ , V

(2)
n,γ ) = Tγ(Nn), n ∈ N, Tγ(N) = (V

(1)
γ , V

(2)
γ ), and we

check that P(N ∈ Cγ) = 1. At the beginning of the proof of Theorem 3.2, we already checked

that N is a locally finite measure almost surely, so it remains to verify that P(N({γ} × R) =

0) = 1. We have

N({γ} × R) =
∞∑

i=1

∞∑

j=0

1{Piµ
j
A=γ} =

( ∞∑

i=1

δPi

)
({γ, µ−1

A γ, µ−2
A γ, . . .}) = 0 a.s. ,

since the intensity measure of the point process
∑∞

i=1 δPi
is absolutely continuous.

Step 2. We check that (V
(1)
γ , V

(2)
γ )

P−→ (V (1), V (2)) as γ ↓ 0, where

V (1) := (1 − µ2
A)−1

∞∑

i=1

P 2
i , V (2) := (1 − µ3

A)−1/2
∞∑

i=1

P
3/2
i Zi

with

Zi := (1 − µ3
A)1/2

∞∑

j=0

(µj
A)3/2Zi,j, i ∈ N,

where (Pi)i∈N and {Zi,j : i ∈ N, j ≥ 0} are given in Theorem 3.2.

By monotonicity of V
(1)
γ in γ > 0,

V (1)
γ → (1 − µ2

A)−1

∞∑

i=1

P 2
i = V (1) as γ ↓ 0

almost surely. By Campbell’s theorem (see, e.g., Kingman [23, Section 3.2]), we have P(
∑∞

i=1 P
β
i <

∞) = 1 for any β ∈ (α,∞), and hence the series
∑∞

i=1 P
2
i is (absolutely) convergent almost
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surely, since α ∈ (1, 2). Indeed, condition (3.16) in Kingman [23] is satisfied, since

∫ ∞

0

(yβ ∧ 1)θ d(−y−α) = θα

∫ ∞

0

(yβ ∧ 1)y−α−1 dy = θα

∫ 1

0

yβ−α−1 dy + θα

∫ ∞

1

y−α−1 dy

= θα

(
1

β − α
+

1

α

)
< ∞.

Next, we show that the series
∑∞

j=0(µ
j
A)3/2Zi,j, i ∈ N, and

∑∞
i=1 P

3/2
i Zi are convergent

almost surely. Kolmogorov’s one series theorem yields that
∑∞

j=0(µ
j
A)3/2Zi,j converges almost

surely for each i ∈ N, and hence (Zi)i∈N is an i.i.d. sequence of N (0, σ2
A)-distributed random

variables independent of (Pi)i∈N. Let Ej , j ∈ N, be i.i.d. random variables with an exponential

distribution with parameter 1, independent of Zi, i ∈ N. Put Γi :=
∑i

j=1Ej , i ∈ N. By

the mapping theorem for Poisson random measures,
∑∞

i=1 δθ1/αΓ−1/α
i

is a Poisson random mea-

sure on (0,∞) with intensity θd(−y−α), hence we have (Pi)i∈N
d
= (θ1/αΓ

−1/α
i )i∈N, and hence,

(Pi, Zi)i∈N
d
= (θ1/αΓ

−1/α
i , Zi)i∈N. Consequently,

( n∑

i=1

P
3/2
i Zi

)

n∈N

d
=

( n∑

i=1

(
θ1/αΓ

−1/α
i

)3/2
Zi

)

n∈N
=

(
θ3/(2α)

n∑

i=1

Γ
−3/(2α)
i Zi

)

n∈N
,

thus the almost sure convergence of
∑∞

i=1 P
3/2
i Zi will follow from the almost sure convergence

of
∑∞

i=1 Γ
−3/(2α)
i Zi. Indeed, if

∑∞
i=1 Γ

−3/(2α)
i Zi is convergent almost surely, then for each ǫ ∈

(0,∞), by the continuity of probability, we have

P

[
sup
m∈N

∣∣∣∣
n+m∑

i=n

P
3/2
i Zi

∣∣∣∣ > ǫ

]
= P

[
θ3/(2α) sup

m∈N

∣∣∣∣
n+m∑

i=n

Γ
−3/(2α)
i Zi

∣∣∣∣ > ǫ

]
→ 0 as n → ∞,

implying the almost sure convergence of
∑∞

i=1 P
3/2
i Zi, see, e.g., Shiryaev [41, Chapter II, Section

3, Theorem 1]. The almost sure convergence of
∑∞

i=1 Γ
−3/(2α)
i Zi follows from Theorem 1.4.5 in

Samorodnitsky and Taqqu [37], since 2α
3

∈ (0, 2), E[|Z1|2α/3] < ∞, E
[
|Z1 log(|Z1|)|

]
< ∞,

E[Z1] = 0 and E
[
Z1

∫ |Z1|/(i−1)

|Z1|/i x−2 sin(x) dx
]

= 0 for all i ∈ N, where |Z1|/(i−1) := ∞ for i = 1

(due to the fact that Z1 is symmetric). Hence the series
∑∞

i=1 P
3/2
i Zi converges almost surely

and V (2) is well–defined.

Next, we show that V
(2)
γ

P−→ V (2) as γ ↓ 0. For every γ, ǫ ∈ (0,∞) define

V (2)
γ,ǫ :=

∞∑

i=1

∞∑

j=0

(Piµ
j
A)3/2Zi,j1{Pi>ǫ, Piµ

j
A>γ} .

Since for every ǫ ∈ (0,∞) there are almost surely only finitely many Pi’s greater that ǫ, for

every fixed ǫ ∈ (0,∞),

V (2)
γ,ǫ → V

(2)
0,ǫ := (1 − µ3

A)−1/2

∞∑

i=1

P
3/2
i Zi1{Pi>ǫ} as γ ↓ 0
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almost surely. Indeed, by the dominated convergence theorem, for every i ∈ N, we have∑∞
j=0 µ

3j/2
A Zi,j1{Piµ

j
A>γ} → (1 − µ3

A)−1/2Zi as γ ↓ 0 almost surely, since |µ3j/2
A Zi,j1{Piµ

j
A>γ}| ≤

µ
3j/2
A |Zi,j|, j ≥ 0, yielding that

∣∣∣∣∣
∞∑

j=0

µ
3j/2
A Zi,j1{Piµ

j
A>γ}

∣∣∣∣∣ ≤
∞∑

j=0

µ
3j/2
A |Zi,j|,

where E

[∑∞
j=0 µ

3j/2
A |Zi,j|

]
= E[|Z1,1|]/(1 − µ

3/2
A ) < ∞ (especially,

∑∞
j=0 µ

3j/2
A |Zi,j| converges

almost surely).

Now we check that V
(2)
0,ǫ → V (2) as ǫ ↓ 0 almost surely. For each ǫ ∈ (0,∞), we can write

V
(2)
0,ǫ = (1 − µ3

A)−1/2

Kǫ∑

i=1

P
3/2
i Zi

with Kǫ := max{i ∈ N : Pi > ǫ}. We have Kǫ → ∞ as ǫ ↓ 0 almost surely, since Pi ↓ 0 as

i → ∞ almost surely, thus the almost sure convergence of
∑∞

i=1 P
3/2
i Zi yields that V

(2)
0,ǫ → V (2)

as ǫ ↓ 0 almost surely.

For every γ, ǫ, η ∈ (0,∞), we have

P(|V (2)
γ − V (2)| > η) ≤ P(|V (2)

γ − V (2)
γ,ǫ | > η/3) + P(|V (2)

γ,ǫ − V
(2)
0,ǫ | > η/3) + P(|V (2)

0,ǫ − V (2)| > η/3).

The almost sure convergences V
(2)
γ,ǫ

a.s.−→ V
(2)
0,ǫ as γ ↓ 0 for all ǫ ∈ (0,∞) and V

(2)
0,ǫ

a.s.−→ V (2) as

ǫ ↓ 0 imply the corresponding convergences in probability, hence

lim sup
γ↓0

P(|V (2)
γ − V (2)| > η) ≤ lim sup

γ↓0
P(|V (2)

γ − V (2)
γ,ǫ | > η/3) + P(|V (2)

0,ǫ − V (2)| > η/3)

for every ǫ, η ∈ (0,∞), and hence

lim sup
γ↓0

P(|V (2)
γ − V (2)| > η) ≤ lim sup

ǫ↓0
lim sup

γ↓0
P(|V (2)

γ,ǫ − V (2)
γ | > η/3)

for every η ∈ (0,∞). Consequently, if we show that for all η ∈ (0,∞),

lim sup
ǫ↓0

lim sup
γ↓0

P(|V (2)
γ,ǫ − V (2)

γ | > η) = 0 , (4.3)

then we obtain V
(2)
γ

P−→ V (2) as γ ↓ 0, as desired. In order to check (4.3), observe

V (2)
γ − V (2)

γ,ǫ =
∞∑

i=1

∞∑

j=0

(Piµ
j
A)3/2Zi,j1{Pi≤ǫ, Piµ

j
A>γ} ,

since the sums defining V
(2)
γ,ǫ and V

(2)
γ are sums with finitely many terms almost surely (see Step
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1). Since E[V
(2)
γ,ǫ − V

(2)
γ ] = 0 for all γ, ǫ ∈ (0,∞), we have

Var(V (2)
γ,ǫ − V (2)

γ ) = E[(V (2)
γ,ǫ − V (2)

γ )2] = E[E[(V (2)
γ,ǫ − V (2)

γ )2 | (Pi)i∈N]]

= E

[ ∞∑

i=1

∞∑

j=0

(Piµ
j
A)3σ2

A1{Pi≤ǫ, Piµ
j
A>γ}

]
≤ E

[ ∞∑

i=1

∞∑

j=0

(Piµ
j
A)3σ2

A1{Pi≤ǫ}

]

≤ σ2
A

1 − µ3
A

E

[ ∞∑

i=1

P 3
i 1{Pi≤ǫ}

]
=

θσ2
A

1 − µ3
A

∫ ǫ

0

x3αx−α−1 dx =
θσ2

Aαǫ
3−α

(1 − µ3
A)(3 − α)

,

where the last but one step follows by Campbell’s theorem (see, e.g., Kingman [23, Section

3.2]). For all η ∈ (0,∞), Chebyshev’s inequality implies that

lim sup
ǫ↓0

lim sup
γ↓0

P(|V (2)
γ,ǫ − V (2)

γ | > η) ≤ lim sup
ǫ↓0

θσ2
Aαǫ

3−α

η2(1 − µ3
A)(3 − α)

= 0,

hence we conclude (4.3), as desired. Altogether,

(V (1)
γ , V (2)

γ )
P−→ (V (1), V (2)) as γ ↓ 0,

and hence in distribution as well.

Step 3. By Billingsley [8, Theorem 4.2] and Steps 1 and 2, using also that ‖(z1, z2)‖ ≤
|z1| + |z2|, (z1, z2) ∈ R2, to show (4.1), it suffices to prove that for all ǫ > 0,

lim
γ↓0

lim sup
n→∞

P(|V (k)
n − V (k)

n,γ | > ǫ) = 0, k = 1, 2.

In case of k = 1, by Markov’s inequality, (3.1) and Karamata’s theorem (see, Lemma E.1), we

have

lim
γ↓0

lim sup
n→∞

P(|V (1)
n − V (1)

n,γ | > ǫ) = lim
γ↓0

lim sup
n→∞

P

(
n∑

j=1

X2
j 1{Xj/an≤γ} > a2nǫ

)

≤ lim
γ↓0

lim sup
n→∞

γ2

ǫ

E[X2
11{X1≤anγ}]

γ2a2nP(X1 > anγ)

P(X1 > anγ)

P(X1 > an)
nP(X1 > an)

= lim
γ↓0

α

ǫ(2 − α)
γ2−α = 0,

as desired. In case of k = 2, we have to prove that

lim
γ↓0

lim sup
n→∞

P

(∣∣∣∣∣
n∑

j=1

XjMj+11{Xj/an≤γ}

∣∣∣∣∣ > a3/2n ǫ

)
= 0 (4.4)

for all ǫ > 0. Using the definition of Mj+1, we have

P

(∣∣∣∣∣
n∑

j=1

XjMj+11{Xj/an≤γ}

∣∣∣∣∣ > a3/2n ǫ

)
≤ P



∣∣∣∣∣∣

n∑

j=1

Xj

Xj∑

i=1

Ã
(j+1)
i 1{Xj/an≤γ}

∣∣∣∣∣∣
> a3/2n ǫ/2




+ P

(∣∣∣∣∣
n∑

j=1

Xj1{Xj/an≤γ}B̃j+1

∣∣∣∣∣ > a3/2n ǫ/2

)
.
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Recall that for each j = 1, . . . , n, {Ã(j+1)
i , i ∈ N} are i.i.d. random variables with E[Ã

(j+1)
1 ] = 0

and Var[Ã
(j+1)
1 ] = σ2

A, and independent of {Ã(k)
i , i ∈ N, k = 2, . . . , j} and X1, . . . , Xj . This

implies that the random variables Xj

∑Xj

i=1 Ã
(j+1)
i 1{Xj/an≤γ}, j ∈ {1, . . . , n}, are uncorrelated

and have zero expectation. Hence, using Markov’s inequality and the law of total variance, we

get for all ǫ > 0,

P



∣∣∣∣∣∣

n∑

j=1

Xj

Xj∑

i=1

Ã
(j+1)
i 1{Xj/an≤γ}

∣∣∣∣∣∣
> a3/2n ǫ


 ≤ 1

a3nǫ
2
E






n∑

j=1

Xj

Xj∑

i=1

Ã
(j+1)
i 1{Xj/an≤γ}




2


=
1

a3nǫ
2
E




n∑

j=1

X2
j




Xj∑

i=1

Ã
(j+1)
i




2

1{Xj/an≤γ}


 =

n

a3nǫ
2
E


X2

0

(
X0∑

i=1

Ã
(1)
i

)2

1{X0/an≤γ}




=
nVar

[
X0

(∑X0

i=1 Ã
(1)
i

)
1{X0/an≤γ}

]

a3nǫ
2

=
nσ2

AE[X3
01{X0≤anγ}]

a3nǫ
2

.

By Karamata’s theorem (see, Lemma E.1) and (3.1), since α < 3,

nσ2
AE[X3

01{X0≤anγ}]

a3nǫ
2

= σ2
Aǫ

−2 E[X3
01{X0≤anγ}]

a3nγ
3P(X0 > anγ)

γ3P(X0 > anγ)

P(X0 > an)
nP(X0 > an)

→ σ2
Aǫ

−2 α

3 − α
γ3−α as n → ∞,

which further goes to 0 as γ ↓ 0. Hence, (4.4) will follow if we show that

lim
γ↓0

lim sup
n→∞

P

(∣∣∣∣∣
n∑

j=1

Xj1{Xj/an≤γ}B̃j+1

∣∣∣∣∣ > a3/2n ǫ

)
= 0 (4.5)

for all ǫ > 0. With the notation cB,n := E[B̃j+11{|B̃j+1|/an≤1}] = E[B̃1{|B̃|/an≤1}], where B̃ :=

B − µB, we can write

n∑

j=1

Xj1{Xj/an≤γ}B̃j+1 =

n∑

j=1

Xj1{Xj/an≤γ}

(
B̃j+11{|B̃j+1|/an≤1} − cB,n

)
+ cB,n

n∑

j=1

Xj1{Xj/an≤γ}

+
n∑

j=1

Xj1{Xj/an≤γ}B̃j+11{|B̃j+1|/an>1} =: J (1)
n,γ + J (2)

n,γ + J (3)
n,γ.

Since

P(|J (1)
n,γ + J (2)

n,γ + J (3)
n,γ| > a3/2n ǫ)

≤ P(|J (1)
n,γ| > a3/2n ǫ/3) + P(|J (2)

n,γ| > a3/2n ǫ/3) + P(|J (3)
n,γ| > a3/2n ǫ/3), ǫ > 0,

to prove (4.5), it is enough to check that limγ↓0 lim supn→∞ P(|J (i)
n,γ| > a

3/2
n ǫ) = 0, i = 1, 2, 3, for

all ǫ > 0.
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In case of i = 1, using the independence of Xj and B̃j+1, Markov’s inequality, and the facts

that the summands in J
(1)
n,γ are uncorrelated and Var[B̃1{|B̃|≤an}] ≤ E[B̃2

1{|B̃|≤an}], we have

P
(
|J (1)

n,γ| > a3/2n ǫ
)
≤ n

ǫ2a3n
E[X2

01{X0/an≤γ}]E[B̃2
1{|B̃|≤an}]

=
1

ǫ2
E[X2

01{X0/an≤γ}]

a2nγ
2P(X0 > anγ)

E[B̃2
1{|B̃|≤an}]

a2nP(|B̃| > an)
γ2P(X0 > anγ)

P(X0 > an)
nP(X0 > an)anP(|B̃| > an).

Indeed, the summands in J
(1)
n,γ are uncorrelated, since for all i < j, i, j ∈ {1, . . . , n}, we have

E

[
Xi1{Xi/an≤γ}

(
B̃i+11{|B̃i+1|/an≤1} − cB,n

)
Xj1{Xj/an≤γ}

(
B̃j+11{|B̃j+1|/an≤1} − cB,n

)]

= E

[
XiXj1{Xi/an≤γ}1{Xj/an≤γ}

(
B̃i+11{|B̃i+1|/an≤1} − cB,n

)]
E

[(
B̃j+11{|B̃j+1|/an≤1} − cB,n

)]

= E

[
XiXj1{Xi/an≤γ}1{Xj/an≤γ}

(
B̃i+11{|B̃i+1|/an≤1} − cB,n

)]
· 0 = 0.

Note that, since B̃ is bounded from below and B is regularly varying with tail index α, we have

P(|B̃| > x) ∼ P(B̃ > x) ∼ P(B > x) as x → ∞,

where we used that for all ε > 0, P(B > x(1 + ε)) ≤ P(B̃ > x) ≤ P(B > x) for large enough x.

In particular, |B̃| is regularly varying with tail index α, and moreover, by (1.4),

P(|B̃| > x) ∼ (1 − µα
A)P(X0 > x) as x → ∞. (4.6)

Consequently, by Karamata’s theorem (see, Lemma E.1), Bingham et al. [9, Proposition 1.3.6.

(v)], (4.6) and (3.1), for all γ > 0,

lim sup
n→∞

P
(
|J (1)

n,γ| > a3/2n ǫ
)
≤ α2γ2−α

ǫ2(2 − α)2
lim sup
n→∞

(anP(|B̃| > an))

=
α2γ2−α(1 − µα

A)

ǫ2(2 − α)2
lim sup
n→∞

(anP(X0 > an)) =
α2γ2−α(1 − µα

A)

ǫ2(2 − α)2
lim sup
n→∞

an
n

=
α2γ2−α(1 − µα

A)

ǫ2(2 − α)2
lim sup
n→∞

(n
1
α
−1L(n)) → 0 as n → ∞.

In case of i = 2, since E[B̃] = 0, by Markov’s inequality, for all ǫ > 0,

P
(
|J (2)

n,γ| > a3/2n ǫ
)
≤ n

ǫa
3/2
n

E[X0]
∣∣∣E[B̃1{|B̃|/an≤1}]

∣∣∣ =
n

ǫa
1/2
n

E[X0]

∣∣∣E[B̃1{|B̃|/an>1}]
∣∣∣

anP(|B̃| > an)
P(|B̃| > an)

≤ E[X0]

ǫa
1/2
n

E[|B̃|1{|B̃|>an}]

anP(|B̃| > an)
nP(|B̃| > an) → 0 as n → ∞,
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since, by Karamata’s theorem (see, Lemma E.1),

lim
n→∞

E[|B̃|1{|B̃|>an}]

anP(|B̃| > an)
=

α

α− 1
,

and, by (4.6) and (3.1), nP(|B̃| > an) → 1 − µα
A ∈ (0, 1) as n → ∞.

In case of i = 3, similarly as in case of i = 2, using Markov’s inequality and the independence

of X0 and B1, for all ǫ, γ > 0, we have

P
(
|J (3)

n,γ| > a3/2n ǫ
)
≤

nE(X01{X0/an≤γ}|B̃1|1{|B̃1|>an})

a
3/2
n ǫ

≤ n

ǫa
1/2
n

E[X0]
E[|B̃|1{|B̃|>an}]

anP(|B̃| > an)
P(|B̃| > an) → 0 as n → ∞,

hence we conclude (4.1).

Step 4. Finally, we determine the characteristic function of the random vector (V (1), V (2)).

Using the continuity theorem, conditioning on (Pi)i∈N and applying the portmanteau lemma,

we have for s, t ∈ R

E
[
ei(sV

(1)+tV (2))
]

= E

[
exp

{
i

(
s

1 − µ2
A

∞∑

i=1

P 2
i +

t

(1 − µ3
A)1/2

∞∑

i=1

P
3/2
i Zi

)}]

= lim
n→∞

E

[
exp

{
i

(
s

1 − µ2
A

n∑

i=1

P 2
i +

t

(1 − µ3
A)1/2

n∑

i=1

P
3/2
i Zi

)}]

= lim
n→∞

E

[
E

[
exp

{
i

(
s

1 − µ2
A

n∑

i=1

P 2
i +

t

(1 − µ3
A)1/2

n∑

i=1

P
3/2
i Zi

)} ∣∣∣∣ (Pi)i∈N

]]

= lim
n→∞

E

[
exp

{
is

1 − µ2
A

n∑

i=1

P 2
i − σ2

At
2

2(1 − µ3
A)

n∑

i=1

P 3
i

}]

= E

[
exp

{
is

1 − µ2
A

∞∑

i=1

P 2
i − σ2

At
2

2(1 − µ3
A)

∞∑

i=1

P 3
i

}]
,

since the series
∑∞

i=1 P
β
i and

∑∞
i=1 P

3/2
i Zi are convergent almost surely for any β ∈ (α,∞) (see

Step 2). As in the proof of Campbell’s theorem (see, e.g., Kingman [23, Section 3.2]), one can

prove that

E

[
exp

{
u

∞∑

i=1

P 2
i + v

∞∑

i=1

P 3
i

}]
= exp

{∫ ∞

0

(
euy

2+vy3 − 1
)
θαy−α−1 dy

}
(4.7)

for any u, v ∈ C with ℜ(u) ≤ 0 and ℜ(v) ≤ 0, where ℜ(z) denotes the real part of z ∈ C. Indeed,

(4.7) holds for u, v ∈ (−∞, 0] by Campbell’s theorem with the function (0,∞) ∋ y 7→ uy2 + vy3

satisfying
∫∞
0

(|uy2 + vy3| ∧ 1) θαy−α−1 dy < ∞. Since for any given u ∈ C with ℜ(u) ≤ 0,
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both sides of (4.7) as functions of v are analytic functions on {v ∈ C : ℜ(v) < 0}, and for

any given v ∈ C with ℜ(v) ≤ 0, both sides of (4.7) as functions of u are analytic functions on

{u ∈ C : ℜ(u) < 0}, Hartogs’s theorem yields that both sides of (4.7) are analytic functions on

{(u, v) ∈ C2 : ℜ(u) < 0, ℜ(v) < 0}. So, by the identity theorem for analytic functions, (4.7)

holds on {(u, v) ∈ C2 : ℜ(u) < 0, ℜ(v) < 0}. Both sides of (4.7) are continuous functions on

{(u, v) ∈ C2 : ℜ(u) ≤ 0, ℜ(v) ≤ 0}, so (4.7) holds on {(u, v) ∈ C2 : ℜ(u) ≤ 0, ℜ(v) ≤ 0}.

Applying (4.7) for u = is/(1 − µ2
A) and v = −σ2

At
2/(2(1 − µ3

A)), we obtain the formula for

E
[
ei(sV

(1)+tV (2))
]
, s, t,∈ R.

For each β ∈ (0, 1) and z ∈ R, we have

∫ ∞

0

(eizr − 1)r−1−β dr = Γ(−β) cos
(πβ

2

)
|z|β
(

1 − i tan
(πβ

2

)
sgn(z)

)
, (4.8)

see, e.g., the proof of Theorem 14.10 in Sato [38]. Applying (4.8) for β = α/2 and z = s/(1−µ2
A),

we obtain for s ∈ R

E
[
eisV

(1)]
= exp

{
θ

∫ ∞

0

(
exp

{
is

1 − µ2
A

y2
}
− 1

)
αy−α−1 dy

}

= exp

{
θ

∫ ∞

0

(
exp

{
is

1 − µ2
A

r

}
− 1

)
α

2
r−

α
2
−1 dr

}

= exp

{
θ
α

2
Γ
(
−α

2

)
cos
(πα

4

)∣∣∣ s

1 − µ2
A

∣∣∣
α/2(

1 − i tan
(πα

4

)
sgn
( s

1 − µ2
A

))}

= exp

{
− θ

(1 − µ2
A)α/2

Γ
(

1 − α

2

)
cos
(πα

4

)
|s|α/2

(
1 − i tan

(πα
4

)
sgn(s)

)}
,

hence we obtain the characteristic function of V (1).

For each β ∈ (0, 1) and z ∈ [0,∞), we have

∫ ∞

0

(1 − e−zr)βr−1−β dr = Γ(1 − β)zβ, (4.9)

see, e.g., Example 1.4 in Li [28] or the method of the proof of Example 8.11 in Sato [38].

Applying (4.9) for β = α/3 and z = σ2
At

2/(2(1 − µ3
A)), we obtain for t ∈ R

E
[
eitV

(2)]
= exp

{
θ

∫ ∞

0

(
exp

{
− σ2

At
2

2(1 − µ3
A)

y3
}
− 1

)
αy−α−1 dy

}

= exp

{
θ

∫ ∞

0

(
exp

{
− σ2

At
2

2(1 − µ3
A)

r

}
− 1

)
α

3
r−

α
3
−1 dr

}

= exp

{
−θΓ

(
1 − α

3

)( σ2
At

2

2(1 − µ3
A)

)α/3}
,

hence we obtain the characteristic function of V (2), and this finishes the proof. �
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Remark 4.2. Note that the law of (V (1), V (2)) in (4.1) does not depend on the choice of the

scaling sequence of (an)n∈N satisfying (3.1), which can be seen from the form of the characteristic

function of (V (1), V (2)) given in Theorem 4.1. �

Remark 4.3. One can check that if α ∈ (1, 3/2), then the series in the definition of V (2) in

Theorem 4.1 is absolutely convergent almost surely. By the mapping and marking theorems

(see, e.g., Kingman [23, Sections 2.3 and 5.2]), we have
∑∞

i=1 δ(P 3/2
i ,|Zi|) is a Poisson random

measure on (0,∞)×(0,∞) with intensity measure θd(−y−2α/3)×f|Z1|(z) dz, where f|Z1| denotes

the density function of |Z1|. Using again the mapping theorem,
∑∞

i=1 δP 3/2
i |Zi| is a Poisson

random measure on (0,∞) with intensity measure θE[|Z1|2α/3]d(−y−2α/3), since for any t > 0,

∫

{(y,z)∈(0,∞)2 : yz>t}
θf|Z1|(z) d(−y−2α/3) dz =

∫ ∞

t

∫ ∞

0

2αθ

3

(u
z

)− 2α
3
−1

f|Z1|(z)
1

z
du dz

=
2αθ

3
E[|Z1|2α/3]

∫ ∞

t

u− 2α
3
−1 du = θE[|Z1|2α/3]

∫ ∞

t

1 d(−u−2α/3).

Hence, by Campbell’s theorem, we have
∑∞

i=1 P
3/2
i |Zi| is convergent almost surely, since now

0 < 2α/3 < 1 and then

∫ ∞

0

(y ∧ 1)θE[|Z1|2α/3] d(−y−2α/3) =
2αθ

3
E[|Z1|2α/3]

(∫ 1

0

y−2α/3 dy +

∫ ∞

1

y−2α/3−1 dy

)
< ∞.

Further, since
∫∞
0

yθE[|Z1|2α/3] d(−y−2α/3) = ∞, by Kingman [23, formula (3.18)], we have

E[
∑∞

i=1 P
3/2
i |Zi|] = ∞. �

5 On the limit behavior of the CLS estimator

Now we can formulate our main result.

Theorem 5.1. We have

√
an(µ̂A

(n) − µA)
d−→ V (2)

V (1)
as n → ∞,

where the sequence (an)n∈N and the joint characteristic function of (V (1), V (2)) is given in (3.1)

and in Theorem 4.1, respectively.

Proof. By Theorem 4.1, V (1) is an α/2-stable positive random variable, thus it is absolutely

continuous and P(V (1) > 0) = P(V (1) 6= 0) = 1. For each n ∈ N, by the strong stationarity of

(Xi)i∈Z, we have

√
an(µ̂A

(n) − µA)
d
=

∑n
j=1XjMj+1/a

3/2
n∑n

j=1(Xj/an)2
.

Consequently, by Theorem 4.1 and the continuous mapping theorem (see, e.g., Billingsley [8,

Theorem 5.1]), we conclude the statement. �
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Remark 5.2. The limit law V (2)/V (1) in Theorem 5.1 can be written in the form

V (2)

V (1)

d
=

(1 − µ2
A)σA

(1 − µ3
A)1/2(1 − µα

A)
1
2α

∞∑

i=1

(P̃i)
3
2 Z̃i

∞∑

i=1

(P̃i)
2

,

where
∑∞

i=1 δP̃i
is a Poisson random measure on (0,∞) with intensity measure d(−y−α) being

independent of an i.i.d. sequence of N (0, 1)-distributed random variables (Z̃i)i∈N. Indeed, using

the mapping theorem for Poisson random measures, one can check that
∑∞

i=1 δθ− 1
α Pi

is a Poisson

random measure on (0,∞) with intensity measure d(−y−α). Consequently, we have

(V (1), V (2))
d
=

(
1

1 − µ2
A

θ
2
α

∞∑

i=1

(θ−
1
αPi)

2,
1

(1 − µ3
A)1/2

θ
3
2α

∞∑

i=1

(θ−
1
αPi)

3
2Zi

)

d
=

(
(1 − µα

A)
2
α

1 − µ2
A

∞∑

i=1

(P̃i)
2,

(1 − µα
A)

3
2ασA

(1 − µ3
A)1/2

∞∑

i=1

(P̃i)
3
2 Z̃i

)
,

yielding the statement.

Note that
∑∞

i=1(P̃i)
3
2 Z̃i/

∑∞
i=1(P̃i)

2 does not depend on the parameter µA to be estimated

nor on σA. This gives the possibility for formulating a version of Theorem 5.1 with a random

normalization such that the limit law does not depend on µA and σA. �

In what follows, we collect several interesting properties of (V (1), V (2)) and V (2)/V (1). The

characteristic function of a random vector X will be denoted by ϕX .

Proposition 5.3. The distribution of (V (1), V (2)) is operator stable, and the matrix diag2

(
2
α
, 3
2α

)

is an exponent of it. Particularly, the distribution of (V (1), V (2)) is full and infinitely divisible,

and has an infinitely differentiable density function, and the partial derivatives of this density

function tend to 0 at infinity.

Proof. First, observe that for each a ∈ (0,∞) and s, t ∈ R, by the substitution a1/αy = x, we

obtain
ϕa2/αV (1), a3/(2α)V (2)(s, t)

= exp

{
θ

∫ ∞

0

(
exp

{
ia2/αs

1 − µ2
A

y2 − σ2
A(a3/(2α)t)2

2(1 − µ3
A)

y3
}
− 1

)
αy−α−1 dy

}

= exp

{
aθ

∫ ∞

0

(
exp

{
is

1 − µ2
A

x2 − σ2
At

2

2(1 − µ3
A)

x3

}
− 1

)
αx−α−1 dx

}

= (ϕV (1), V (2)(s, t))a,

(5.1)

hence Equation (7.8) in Meerschaert and Scheffler [33] is satisfied with exponent diag2

(
2
α
, 3
2α

)

and without shifts.
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Particularly, with a = n−1, n ∈ N, we get

ϕV (1), V (2)(s, t) =
(
ϕn−2/αV (1), n−3/(2α)V (2)(s, t)

)n

for all s, t ∈ R and n ∈ N, hence the distribution of (V (1), V (2)) is infinitely divisible.

In order to prove that the distribution of (V (1), V (2)) is full, we have to show that for each

(v1, v2) ∈ R2\{(0, 0)}, the random variable v1V
(1)+v2V

(2) is nondegenerate. If we suppose that,

on the contrary, there exist (v1, v2) ∈ R2 \ {(0, 0)} and x0 ∈ R such that v1V
(1) + v2V

(2) = x0

almost surely, then for each t ∈ R, we would have

eitx0 = ϕv1V (1)+v2V (2)(t) = ϕV (1), V (2)(v1t, v2t)

= exp

{
θ

∫ ∞

0

(
exp

{
iv1t

1 − µ2
A

y2 − σ2
A(v2t)

2

2(1 − µ3
A)

y3
}
− 1

)
αy−α−1 dy

}
.

We have ϕV (1), V (2)(v1t, v2t) 6= 0 for any t ∈ R, since the distribution of (V (1), V (2)) is infinitely

divisible. Applying Lemma 7.6 in Sato [38], we would obtain

itx0 = θ

∫ ∞

0

(
exp

{
iv1t

1 − µ2
A

y2 − σ2
Av

2
2t

2

2(1 − µ3
A)

y3
}
− 1

)
αy−α−1 dy, t ∈ R.

Taking the real parts of both sides, we would get

0 = θ

∫ ∞

0

(
exp

{
− σ2

Av
2
2t

2

2(1 − µ3
A)

y3
}

cos

(
v1t

1 − µ2
A

y2
)
− 1

)
αy−α−1 dy, t ∈ R.

Since the integrand is continuous and nonpositive, we would conclude that it is identically zero,

yielding that

cos

(
v1t

1 − µ2
A

y2
)

= exp

{
σ2
Av

2
2t

2

2(1 − µ3
A)

y3
}
, y ∈ [0,∞), t ∈ R,

which is a contradiction due to (v1, v2) 6= (0, 0), hence the distribution of (V (1), V (2)) is full. By

Theorem 7.2.1 in Meerschaert and Scheffler [33], taking into account (5.1), we obtain that the

distribution of (V (1), V (2)) is operator stable and the matrix diag2

(
2
α
, 3
2α

)
is an exponent of it.

For the facts that (V (1), V (2)) has an infinitely differentiable density function, and the partial

derivatives of this density function tend to 0 at infinity, see  Luczak [32, Corollary 2.1] and Kern

and Wedrich [22, page 387]. �

Proposition 5.4. The random variables V (1) and V (2) are dependent.

Proof. If we suppose that, on the contrary, V (1) and V (2) are independent, then we would have

ϕV (1), V (2)(s, t) = ϕV (1)(s)ϕV (2)(t) for all s, t ∈ R, hence

exp

{
θ

∫ ∞

0

(
exp

{
is

1 − µ2
A

y2 − σ2
At

2

2(1 − µ3
A)

y3
}
− 1

)
αy−α−1 dy

}

31



= exp

{
θ

∫ ∞

0

(
exp

{
is

1 − µ2
A

y2
}
− 1

)
αy−α−1 dy

}

× exp

{
θ

∫ ∞

0

(
exp

{
− σ2

At
2

2(1 − µ3
A)

y3
}
− 1

)
αy−α−1 dy

}

= exp

{
θ

∫ ∞

0

(
exp

{
is

1 − µ2
A

y2
}

+ exp

{
− σ2

At
2

2(1 − µ3
A)

y3
}
− 2

)
αy−α−1 dy

}

for all s, t ∈ R. We have ϕV (1), V (2)(s, t) 6= 0, ϕV (1)(s) 6= 0 and ϕV (2)(t) 6= 0 for any s, t ∈ R, since

the distributions of (V (1), V (2)), V (1) and V (2) are infinitely divisible. Applying Lemma 7.6 in

Sato [38], we would obtain

θ

∫ ∞

0

(
exp

{
is

1 − µ2
A

y2 − σ2
At

2

2(1 − µ3
A)

y3
}
− 1

)
αy−α−1 dy

= θ

∫ ∞

0

(
exp

{
is

1 − µ2
A

y2
}

+ exp

{
− σ2

At
2

2(1 − µ3
A)

y3
}
− 2

)
αy−α−1 dy

for all s, t ∈ R, hence

∫ ∞

0

(
exp

{
is

1 − µ2
A

y2
}
− 1

)(
exp

{
− σ2

At
2

2(1 − µ3
A)

y3
}
− 1

)
αy−α−1 dy = 0

for all s, t ∈ R. Taking the real parts of both sides, we would get

∫ ∞

0

(
cos

(
s

1 − µ2
A

y2
)
− 1

)(
exp

{
− σ2

At
2

2(1 − µ3
A)

y3
}
− 1

)
αy−α−1 dy = 0

for all s, t ∈ R. Since the integrand is continuous and nonnegative, we would conclude that it

is identically zero, yielding a contradiction unless s = t = 0, hence the random variables V (1)

and V (2) are dependent. �

Note that, by Theorem 4.1, E[V (1)] = ∞ for all α ∈ (1, 2), and E[V (2)] does not exist if

α ∈
(
1, 3

2

]
and E[V (2)] = 0 if α ∈

(
3
2
, 2
)
. In what follows we show that all the exponential

moments of V (2)/V (1) are finite.

Proposition 5.5. For each t ∈ R, we have

E

[
exp

{
t
V (2)

V (1)

}]
< ∞.

Proof. Let t ∈ R be fixed. Using that the series
∑∞

i=1 P
β
i and

∑∞
i=1 P

3/2
i Zi are convergent

almost surely for any β ∈ (α,∞) (see Step 2 of the proof of Theorem 4.1), conditioning on

(Pi)i∈N, by the continuity theorem, we have

E

[
exp

{
t
V (2)

V (1)

}]
= E

[
exp

{
t2σ2

A(1 − µ2
A)2

2(1 − µ3
A)

∑∞
i=1 P

3
i

(
∑∞

i=1 P
2
i )

2

}]
.
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So we need to check that all the exponential moments of

U := θ1/α
∑∞

i=1 P
3
i

(
∑∞

i=1 P
2
i )

2 (5.2)

are finite. Then P(U ∈ (0,∞)) = 1, since the series
∑∞

i=1 P
2
i and

∑∞
i=1 P

3
i are absolutely

convergent with positive sums almost surely. Recall that the Poisson point process (Pi)i∈N in

Theorem 4.1 can be represented as

(Pi)i∈N
d
=
(
θ1/αΓ

−1/α
i

)
i∈N

with Γi = E1 + . . .+Ei, i ∈ N, where Ej , j ∈ N, are i.i.d. random variables with an exponential

distribution with parameter 1 independent of (Zi)i∈N. Hence

U
d
=

∑∞
i=1 Γ

−3/α
i(∑∞

i=1 Γ
−2/α
i

)2 .

Since ( ∞∑

i=1

Γ
−2/α
i

)2

≥
∞∑

i=1

Γ
−4/α
i + Γ

−2/α
1

∞∑

i=2

Γ
−2/α
i ,

we see that U > x with x > 0, implies that

Γ
−3/α
1 > Γ

−4/α
1 x or Γ

−3/α
i >

(
Γ
−4/α
i + Γ

−2/α
1 Γ

−2/α
i

)
x for some i ≥ 2.

In both cases we have Γ1 > xα. Indeed, if Γ
−3/α
i >

(
Γ
−4/α
i +Γ

−2/α
1 Γ

−2/α
i

)
x with some i ≥ 2, then

Γ
−3/α
i > Γ

−2/α
1 Γ

−2/α
i x yielding that Γ

2/α
1 Γ

−1/α
i > x, and then, since Γ1 ≤ Γi, we have x < Γ

1/α
1 ,

as desired. Summarizing, we have shown that

P(U > x) ≤ P(Γ1 > xα) = e−xα

, x > 0,

which yields the statement. Indeed, if s ≤ 0, then E[esU ] ≤ 1 < ∞, since P(U ∈ (0,∞)) = 1,

and if s > 0, then

E[esU ] =

∫ ∞

0

P(esU > x) dx =

∫ ∞

0

P(U > ln(x)/s) dx ≤
∫ es

0

1 dx +

∫ ∞

es
e−(ln(x)/s)α dx

= es +

∫ ∞

s

ey−(y/s)α dy < ∞,

since α ∈ (1, 2), and y − (y/s)α < −1/(2sα)y for large enough y > s. �

Proposition 5.6. The random variable V (2)/V (1) has a continuously differentiable density

function.

Proof. Using that the series
∑∞

i=1 P
β
i and

∑∞
i=1 P

3/2
i Zi are convergent almost surely for any

β ∈ (α,∞) (see Step 2 of the proof of Theorem 4.1), conditioning on (Pi)i∈N, by the continuity

theorem, for any t ∈ R, we have

E

[
exp

{
it
V (2)

V (1)

}]
= E

[
exp

{
−t2σ2

A(1 − µ2
A)2

2(1 − µ3
A)

∑∞
i=1 P

3
i

(
∑∞

i=1 P
2
i )

2

}]
.
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To prove the existence of a uniformly continuous and continuously differentiable density func-

tion, it is enough to check that

∫ ∞

−∞
|t|E[e−CU t2U/2] dt = C−1

U

∫ ∞

−∞
|t|E[e−t2U/2] dt < ∞,

where U is given in (5.2) and

CU :=
θ−1/ασ2

A(1 − µ2
A)2

1 − µ3
A

,

see, e.g., Sato [38, Proposition 28.1]. Here, using Fubini’s theorem,

∫ ∞

−∞
|t|E[e−t2U/2]dt =

√
2πE

[
U−1/2

∫ ∞

−∞
|t| 1√

2πU−1
e−t2/(2U−1)dt

]

=
√

2πE[U−1/2E[U−1/2|Z| | U ]]

=
√

2πE[U−1|Z|] =
√

2πE[U−1]E[|Z|],

where Z is a standard normally distributed random variable independent of U . Thus we only

have to show that E[U−1] < ∞, i.e., by (5.2),

E




(∑∞
i=1 Γ

−2/α
i

)2

∑∞
i=1 Γ

−3/α
i


 < ∞.

In what follows we will use the following facts:

• (Γi)i≥2
d
= (Γ1 + Γ′

i−1)i≥2, where (Γ′
i)i≥1 has the same distribution as (Γi)i∈N and indepen-

dent of it,

• by Campbell’s theorem,

E

[ ∞∑

i=1

h(Γi)

]
= E

[( ∞∑

i=1

δΓi

)
(h)

]
=

∫ ∞

0

h(y) dy

for any Borel measurable function h : (0,∞) → R in the sense that the expectations exist

on the left hand side if and only if the integral on the right hand side converges and then

they are equal,

• if
∫∞
0

h(x)dx converges, then

E



( ∞∑

i=1

h(Γi)

)2

 =

∫ ∞

0

h2(y) dy +

(∫ ∞

0

h(y) dy

)2

,

where the right hand side can be finite or infinite as well.
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So, by conditioning on Γ1 having an exponential distribution with parameter 1, we obtain

E




(∑∞
i=1 Γ

−2/α
i

)2

∑∞
i=1 Γ

−3/α
i


 ≤ E



( ∞∑

i=1

Γ
−2/α
i

)2

Γ
3/α
1




=

∫ ∞

0

x3/αe−xE



(
x−2/α +

∞∑

i=1

(x + Γ′
i)
−2/α

)2

 dx

=

∫ ∞

0

x3/αe−x


x−4/α + 2x−2/αE

[ ∞∑

i=1

(x + Γ′
i)
−2/α

]
+ E



( ∞∑

i=1

(x + Γ′
i)
−2/α

)2



 dx

=

∫ ∞

0

x3/αe−x

(
x−4/α + 2x−2/α

∫ ∞

x

y−2/α dy +

∫ ∞

x

y−4/α dy +

(∫ ∞

x

y−2/α dy

)2
)

dx

=

∫ ∞

0

e−x

(
x−1/α +

(
2α

2 − α
+

α

4 − α

)
x1−1/α +

α2

(2 − α)2
x2−1/α

)
dx < ∞,

as desired, since
∫∞
0

xn− 1
α e−x dx = Γ(n + 1 − 1

α
) < ∞, n ≥ 0. �

Proposition 5.7. For each x ∈ R, we have

P

(
V (2)

V (1)
≤ x

)
=

1

2
− 1

2πi

∫ ∞

−∞

ϕV (1),V (2)(−ux, u)

u
du,

where ϕV (1),V (2) denotes the joint characteristic function of (V (1), V (2)) given in Theorem 4.1,

and
∫∞
−∞ is meant in the sense of Cauchy principal value, i.e.,

∫∞
−∞ := limT→∞ limh→0

(∫ T

h
+
∫ −h

−T

)
.

Proof. By Proposition 5.6, V (2)/V (1) is absolutely continuous, so the inversion formula for

characteristic functions due to Gurland [16] yields that for each x ∈ R,

P

(
V (2)

V (1)
≤ x

)
= P(V (2) − xV (1) ≤ 0) =

1

2
− 1

2πi

∫ ∞

−∞
e−iu0 ϕV (2)−xV (1)(u)

u
du,

yielding the statement, where ϕV (2)−xV (1) denotes the characteristic function of V (2) −xV (1). �

A On topological properties of S

Lemma A.1. The set S = (0,∞)×R furnished with the metric d given in (3.3) is a complete

separable metric space, and B ⊂ S is bounded with respect to the metric d if and only if B

is separated from the vertical line {(0, y) : y ∈ R}, i.e., there exists ǫ > 0 such that B ⊂
{(x, y) ∈ S : x > ǫ}. Moreover, the topology and the Borel σ-algebra B(S) on S induced by the

metric d coincides with the topology and the Borel σ-algebra on S induced by the usual metric

ρ((x, x′), (y, y′)) :=
√

(x− x′)2 + (y − y′)2, (x, x′), (y, y′) ∈ S, respectively.
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Proof. First, we check that S is a complete separable metric space. If (xn, yn)n∈N is a Cauchy

sequence in S, then for all ǫ ∈ (0, 1), there exists an Nǫ ∈ N such that d((xn, yn), (xm, ym)) < ǫ

for n,m ≥ Nǫ. Hence ρ((xn, yn), (xm, ym)) < ǫ and
∣∣∣ 1
xn

− 1
xm

∣∣∣ < ǫ for n,m ≥ Nǫ, i.e., (xn, yn)n∈N

and (1/xn)n∈N are Cauchy sequences in R2 and in R, respectively. Consequently, there exists

an (x, y) ∈ [0,∞) × R such that limn→∞(xn, yn) = (x, y) and 1
xn

being convergent as n → ∞,

yielding that x > 0, and so (x, y) ∈ (0,∞) × R. By continuity, limn→∞ d((xn, yn), (x, y)) = 0,

as desired. The separability of S readily follows, since S ∩Q2 is a countable everywhere dense

subset of S.

Next, we check that B ⊂ S is bounded with respect to the metric d if and only if there exists

ǫ > 0 such that B ⊂ {(x, y) ∈ S : x > ǫ}. If B ⊂ S is bounded, then there exists r > 0 such

that d((x, y), (1, 0)) < r, (x, y) ∈ B, yielding that | 1
x
− 1| < r, (x, y) ∈ B, and then x > 1

1+r
,

(x, y) ∈ B, so one can choose ǫ = 1
1+r

. If there exists ǫ > 0 such that B ⊂ {(x, y) ∈ S : x > ǫ},

then d((x, y), (1, 0)) = min(
√

(x− 1)2 + y2, 1) + | 1
x
− 1| ≤ 1 + 1

ǫ
+ 1, (x, y) ∈ B. �

Since S is locally compact, second countable and Hausdorff, one could choose a metric such

that the relatively compact sets are precisely the bounded ones, see Kallenberg [21, page 18].

The metric d does not have this property, but we do not need it. For historical fidelity, we note

that originally the vague convergence of point measures in Mp(S) is defined by the convergence

of integrals of some compactly supported functions (see, e.g., Resnick [36, Section 3.3.5]), but

recently instead of compactly supported functions one uses functions with bounded support

(see, e.g., Kallenberg [21]). We also follow the latter approach.

B Vague convergence of point measures

Proof of Lemma 3.1. First, let us suppose that µn
v−→ µ as n → ∞, and let ǫ > 0 be such

that µ({ǫ} × R) = 0. Since µ is locally finite and (ǫ,∞) × R is bounded, there exist integers

K ≥ 0 and c1, . . . , cK ∈ N such that

µ|(ǫ,∞)×R =
K∑

j=1

cjδ(uj ,vj),

where (u1, v1), . . . , (uK, vK) are the atoms of µ in (ǫ,∞) × R and c1, . . . , cK are their multi-

plicities. Let s0 := 0, sj := c1 + · · · + cj for j ∈ {1, . . . , K} and M := sK , and let us label

the points of µ|(ǫ,∞)×R such that for each j ∈ {1, . . . , K} we have (uj, vj) = (xk, yk) for all

k ∈ {sj−1 + 1, . . . , sj}, yielding that µ|(ǫ,∞)×R =
∑M

i=1 δ(xi,yi). Since (ǫ,∞)×R is open in S (see

Lemma A.1), one can choose pairwise disjoint open sets G1, . . . , GK ⊂ (ǫ,∞) × R such that

(uj, vj) ∈ Gj, j = 1, . . .K. Especially, we have µ(∂Gj) = 0, j ∈ {1, . . . , K}, where ∂Gj denotes

the boundary of Gj in S (since µ|(ǫ,∞)×R puts zero mass outside the points (u1, v1), . . . , (uK, vK)).

Hence, since µn
v−→ µ as n → ∞, using the equivalence of (i) and (iv) in Lemma 4.1 in Kallen-

berg [21], we have µn(Gj) → µ(Gj) = cj as n → ∞ for each j ∈ {1, . . . , K}. Similarly,

µn(((ǫ,∞) × R) \ (G1 ∪ · · · ∪GK)) → µ(((ǫ,∞) × R) \ (G1 ∪ · · · ∪GK)) = 0 as n → ∞,
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since ((ǫ,∞)×R) \ (G1 ∪ · · ·∪GK) is a bounded (with respect to metric d given in (3.3)) Borel

subset of S and µ(∂(((ǫ,∞)×R)\(G1∪· · ·∪GK))) = 0 (using also the assumption µ({ǫ}×R) =

0). Consequently, since µn, n ∈ N, and µ are integer-valued measures, there exists an integer

n0 ≥ 0 such that µn(Gj) = cj, j ∈ {1, . . . , K}, and µn(((ǫ,∞) × R) \ (G1 ∪ · · · ∪GK)) = 0 for

all n ≥ n0, yielding that µn((ǫ,∞) × R) = µ((ǫ,∞) × R) = c1 + · · · + cK = M for all n ≥ n0.

So for each n ≥ n0, one can label the points of µn|(ǫ,∞)×R such that for each j ∈ {1, . . . , K} we

have (x
(n)
k , y

(n)
k ) ∈ Gj for all k ∈ {sj−1 + 1, . . . , sj}, yielding that µn|(ǫ,∞)×R =

∑M
i=1 δ(x(n)

i ,y
(n)
i )

.

Shrinking the open sets G1, . . . , GK onto (u1, v1), . . . , (uK, vK), respectively, we have x
(n)
i → xi

and y
(n)
i → yi as n → ∞ for all i = 1, . . . ,M .

Now, let us prove the reverse direction. Let us suppose that f : S → [0,∞) is a bounded,

continuous function with bounded support. Then, using Lemma A.1, there exists ǫ0 ∈ (0,∞)

such that f(x, y) = 0 for all (x, y) ∈ (0, ǫ0]×R. Since the function (0, ǫ0) ∋ ǫ 7→ µ((ǫ,∞)×R) ∈
[0,∞) is decreasing, there exists ǫ ∈ (0, ǫ0) such that µ({ǫ} ×R) = 0. Due to our assumptions,

there exist integers n0,M ≥ 0 and a labeling of the points of µ and µn, n ≥ n0, in (ǫ,∞) × R

such that

µn|(ǫ,∞)×R =

M∑

i=1

δ
(x

(n)
i , y

(n)
i )

, µ|(ǫ,∞)×R =

M∑

i=1

δ(xi,yi) ,

and x
(n)
i → xi and y

(n)
i → yi as n → ∞ for all i = 1, . . . ,M . Consequently,

µn(f) =

∫∫

(ǫ0,∞)×R

f(x, y)µn(dx, dy) =

∫∫

(ǫ,∞)×R

f(x, y)µn(dx, dy) =

M∑

i=1

f(x
(n)
i , y

(n)
i )

→
M∑

i=1

f(xi, yi) =

∫∫

(ǫ,∞)×R

f(x, y)µ(dx, dy) =

∫∫

(ǫ0,∞)×R

f(x, y)µ(dx, dy) = µ(f)

as n → ∞, hence we have µn
v−→ µ as n → ∞, as desired. �

C Approximation of Laplace functionals

First, we recall an auxiliary lemma stating that (Xi)i≥0 is strongly mixing with a geometric

rate from Basrak et al. [5, Remark 3.1] and Barczy et al. [3, Lemma F.1].

A strongly stationary sequence (Yk)k≥0 is called strongly mixing with a rate function (αh)h∈N
if its strongly stationary extensions (Yk)k∈Z admit this property, namely,

αh := sup
A∈FY

−∞,0, B∈FY
h,∞

|P(A ∩B) − P(A)P(B)| → 0 as h → ∞, (C.1)

where FY
−∞,0 := σ(. . . , Y−1, Y0), FY

h,∞ := σ(Yh, Yh+1, . . .), h ∈ N.

Lemma C.1. The strongly stationary Markov chain (Xi)i≥0 is strongly mixing with a geometric

rate, i.e., there exists a constant q ∈ (0, 1) such that αℓ = O(qℓ) as ℓ → ∞.
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Note that in this paper we need only that (Xi)i≥0 is strongly mixing, and we will not use

that the mixing rate is geometric, however, for completeness, we decided to recall it in Lemma

C.1 as well.

Next, we show that the process (Xi1{Xi>0},
Mi+1√

Xi
1{Xi>0})i≥0 satisfies a certain mixing con-

dition (for the definition of Mi+1, i ≥ 0, see the Introduction).

Lemma C.2. There exists a sequence of positive integers (rn)n∈N with rn → ∞ and rn/n → 0

as n → ∞ such that for each bounded, continuous function f : S → [0,∞) having the property

f(x, y) = 0 for all (x, y) ∈ (0, ǫ] × R for some ǫ > 0, we have

E

[
exp

{
−

n∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}]
−
(
E

[
exp

{
−

rn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}])kn

→ 0

as n → ∞ with kn := ⌊n/rn⌋, where we recall that S = (0,∞) × R and

m∑∗

i=1

=
∑

{j∈{1,...,m}:Xj>0}
, m ∈ N.

Proof. We follow the proof of Proposition 1.34 in Krizmanić [25] (see also Basrak [4, Lemma

2.3.9]). Let (ℓn)n∈N be a sequence of positive integers with ℓn → ∞ and ℓn/n
1/8 → 0 as n → ∞.

We will show that the sequence

rn := ⌊max{n√αℓn, n
2/3}⌋ + 1, n ∈ N,

is a good choice with αℓ, ℓ ∈ N, given in (C.1). Clearly, rn → ∞ as n → ∞. By Lemma

C.1, the strongly stationary Markov chain (Xi)i≥0 is strongly mixing, i.e., αℓn → 0 as n → ∞,

yielding rn/n → 0 as n → ∞ and

kn → ∞, knαℓn → 0,
knℓn
n

→ 0 (C.2)

as n → ∞.

Fix a bounded, continuous function f : S → [0,∞) having the property f(x, y) = 0 for all

(x, y) ∈ (0, ǫ] × R for some ǫ > 0. Put M := sup(x,y)∈S f(x, y) < ∞. We have to show that

I(n) → 0 as n → ∞ with

I(n) :=

∣∣∣∣E
[
exp

{
−

n∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}]
−
(
E

[
exp

{
−

rn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}])kn
∣∣∣∣.

We have

I(n) ≤ I1(n) + I2(n) + I3(n) + I4(n), n ∈ N,
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with

I1(n) :=

∣∣∣∣E
[
exp

{
−

n∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}]
− E

[
exp

{
−

knrn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}]∣∣∣∣,

I2(n) :=

∣∣∣∣E
[
exp

{
−

knrn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}]
− E

[
exp

{
−

kn∑

k=1

krn−ℓn∑∗

i=(k−1)rn+1

f

(
Xi

an
,
Mi+1√
Xi

)}]∣∣∣∣,

I3(n) :=

∣∣∣∣E
[
exp

{
−

kn∑

k=1

krn−ℓn∑∗

i=(k−1)rn+1

f

(
Xi

an
,
Mi+1√
Xi

)}]
−
(
E

[
exp

{
−
rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}])kn
∣∣∣∣,

I4(n) :=

∣∣∣∣
(
E

[
exp

{
−
rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}])kn

−
(
E

[
exp

{
−

rn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}])kn
∣∣∣∣,

where, by (C.2), krn−ℓn → ∞ as n → ∞ for each k ∈ N. By the strong stationarity of (Xk)k≥0

and using the inequality 1 − e−x ≤ x for any x ∈ (0,∞), we obtain

I1(n) ≤ E

[
exp

{
−

knrn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}∣∣∣∣1 − exp

{
−

n∑∗

i=knrn+1

f

(
Xi

an
,
Mi+1√
Xi

)}∣∣∣∣
]

≤ E

[ n∑∗

i=knrn+1

f

(
Xi

an
,
Mi+1√
Xi

)]
=

n∑∗

i=knrn+1

E

[
f

(
Xi

an
,
Mi+1√
Xi

)
1

{
Xi
an

>ǫ
}
]

≤
n∑

i=knrn+1

MP(Xi > ǫan) = (n− knrn)MP(X0 > ǫan).

In a similar manner we obtain

I2(n) ≤ E

[
exp

{
−

kn∑

k=1

krn−ℓn∑∗

i=(k−1)rn+1

f

(
Xi

an
,
Mi+1√
Xi

)}∣∣∣∣1 − exp

{
−

kn∑

k=1

krn∑∗

i=krn−ℓn+1

f

(
Xi

an
,
Mi+1√
Xi

)}∣∣∣∣
]

≤ E

[ kn∑

k=1

krn∑∗

i=krn−ℓn+1

f

(
Xi

an
,
Mi+1√
Xi

)]
=

kn∑

k=1

krn∑∗

i=krn−ℓn+1

E

[
f

(
Xi

an
,
Mi+1√
Xi

)
1{Xi

an
>ǫ}

]

≤
kn∑

k=1

krn∑

i=krn−ℓn+1

MP(Xi > ǫan) = knℓnMP(X0 > ǫan).

We have

I3(n) ≤ I5(n) + I6(n), n ∈ N,
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with

I5(n) :=

∣∣∣∣E
[
exp

{
−

kn∑

k=1

krn−ℓn∑∗

i=(k−1)rn+1

f

(
Xi

an
,
Mi+1√
Xi

)}]

− E

[
exp

{
−
rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}]
E

[
exp

{
−

kn∑

k=2

krn−ℓn∑∗

i=(k−1)rn+1

f

(
Xi

an
,
Mi+1√
Xi

)}]∣∣∣∣,

I6(n) :=

∣∣∣∣E
[
exp

{
−
rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}]
E

[
exp

{
−

kn∑

k=2

krn−ℓn∑∗

i=(k−1)rn+1

f

(
Xi

an
,
Mi+1√
Xi

)}]

−
(
E

[
exp

{
−
rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}])kn
∣∣∣∣.

Since (Xi)i≥0 is strongly mixing, we have

|E[ξη] − E[ξ]E[η]| ≤ 4C1C2αm

for any FX
0,j-measurable random variable ξ and any FX

j+m,∞-measurable random variable η with

j,m ∈ N, |ξ| ≤ C1 and |η| ≤ C2 (see, e.g., Lemma 1.2.1 in Lin and Lu [30]). Hence, using that

the random variables

rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)
and

kn∑

k=2

krn−ℓn∑∗

i=(k−1)rn+1

f

(
Xi

an
,
Mi+1√
Xi

)

are FX
0,rn−ℓn+1-measurable and FX

rn+1,∞-measurable, respectively, we have

I5(n) ≤ 4αℓn , n ∈ N.

It is easy to obtain that

I6(n) = E

[
exp

{
−
rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}]

×
∣∣∣∣E
[
exp

{
−

kn∑

k=2

krn−ℓn∑∗

i=(k−1)rn+1

f

(
Xi

an
,
Mi+1√
Xi

)}]
−
(
E

[
exp

{
−
rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}])kn−1∣∣∣∣

≤
∣∣∣∣E
[
exp

{
−

kn∑

k=2

krn−ℓn∑∗

i=(k−1)rn+1

f

(
Xi

an
,
Mi+1√
Xi

)}]
−
(
E

[
exp

{
−
rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}])kn−1∣∣∣∣,

hence we recursively obtain (we repeat the same procedure for the above estimation of I6(n)

as we did for I3(n) and so on)

I3(n) ≤ 4knαℓn .
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Strong stationarity of (Xi)i≥0 and Lemma 4.3 in Chapter 2 in Durrett [14] imply

I4(n) ≤ kn

∣∣∣∣E
[
exp

{
−
rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}]
− E

[
exp

{
−

rn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}]∣∣∣∣

≤ knE

[
exp

{
−
rn−ℓn∑∗

i=1

f

(
Xi

an
,
Mi+1√
Xi

)}∣∣∣∣1 − exp

{
−

rn∑∗

i=rn−ℓn+1

f

(
Xi

an
,
Mi+1√
Xi

)}∣∣∣∣
]

≤ knE

[ rn∑∗

i=rn−ℓn+1

f

(
Xi

an
,
Mi+1√
Xi

)]
= kn

rn∑∗

i=rn−ℓn+1

E

[
f

(
Xi

an
,
Mi+1√
Xi

)
1{Xi

an
>ǫ}

]

≤ kn

rn∑

i=rn−ℓn+1

MP(Xi > ǫan) = knℓnMP(X0 > ǫan).

Since X0 is regularly varying with tail index α, by (3.1) and (C.2), we obtain

I(n) ≤ (n− knrn + 2knℓn)MP(X0 > ǫan) + 4knαℓn

=
(n− knrn + 2knℓn)M

n
· nP(X0 > an) · P(X0 > ǫan)

P(X0 > an)
+ 4knαℓn → 0

as n → ∞, since

n− knrn
n

≤
n−

(
n
rn

− 1
)
rn

n
=

rn
n

→ 0 as n → ∞,

as desired. �

D Conditional Slutsky’s lemma, conditional continuous

mapping theorem

First, we prove the analogues of parts (iv) and (v) of Theorem 2.7 in van der Vaart [42] for

probability measures instead of random vectors.

Lemma D.1. Let µn, n ∈ N, be probability measures on (R2k,B(R2k)) with some k ∈ N. For

each n ∈ N, consider the marginal probability measures µ
(1)
n and µ

(2)
n on (Rk,B(Rk)) defined by

µ
(1)
n (B) := µn(B × Rk) and µ

(2)
n (B) := µn(Rk × B) for B ∈ B(Rk). If µ

(1)
n

w−→ µ(1) as n → ∞
with some probability measure µ(1) on (Rk,B(Rk)) and µn({(x,y) ∈ Rk×Rk : ‖x−y‖ > ǫ}) → 0

as n → ∞ for all ǫ ∈ (0,∞), then µ
(2)
n

w−→ µ(1) as n → ∞.

Proof. For each bounded Lipschitz function g : Rk → R and for each n ∈ N, we have

∆(g)
n :=

∣∣∣∣
∫

Rk

g(y)µ(2)
n (dy) −

∫

Rk

g(x)µ(1)(dx)

∣∣∣∣ ≤ I(g)n + J (g)
n ,
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where

I(g)n :=

∣∣∣∣
∫

Rk

g(y)µ(2)
n (dy) −

∫

Rk

g(x)µ(1)
n (dx)

∣∣∣∣,

J (g)
n :=

∣∣∣∣
∫

Rk

g(x)µ(1)
n (dx) −

∫

Rk

g(x)µ(1)(dx)

∣∣∣∣.

By the portmanteau lemma (see, e.g., van der Vaart [42, Lemma 2.2]), the convergence µ
(1)
n

w−→
µ(1) as n → ∞ implies J

(g)
n → 0 as n → ∞. Moreover, for each ǫ ∈ (0,∞), by Fubini’s theorem,

we have

I(g)n =

∣∣∣∣
∫

R2k

g(y)µn(dx, dy) −
∫

R2k

g(x)µn(dx, dy)

∣∣∣∣

≤
∫

R2k

|g(y) − g(x)|µn(dx, dy)

=

∫

‖x−y‖≤ǫ

|g(x) − g(y)|µn(dx, dy) +

∫

‖x−y‖>ǫ

|g(x) − g(y)|µn(dx, dy)

≤ ǫ sup
x,y∈Rk,x6=y

|g(x) − g(y)|
‖x− y‖ + 2µn({(x,y) ∈ Rk × Rk : ‖x− y‖ > ǫ}) sup

x∈Rk

|g(x)|.

By the assumptions, for each ǫ ∈ (0,∞), we get

lim sup
n→∞

I(g)n ≤ ǫ sup
x,y∈Rk ,x6=y

|g(x) − g(y)|
‖x− y‖ ,

thus lim supn→∞ I
(g)
n = 0, and hence limn→∞ I

(g)
n = 0. Consequently, for each bounded Lipschitz

function g : Rk → R, we obtain ∆
(g)
n → 0 as n → ∞. By the portmanteau lemma (see, e.g.,

van der Vaart [42, Lemma 2.2]), we conclude µ
(2)
n

w−→ µ(1) as n → ∞. �

Lemma D.2. Let µn, n ∈ N, be probability measures on (Rk+ℓ,B(Rk+ℓ)) with some k, ℓ ∈ N.

For each n ∈ N, consider the marginal probability measures µ
(1)
n and µ

(2)
n on (Rk,B(Rk)) and

(Rℓ,B(Rℓ)), respectively, defined by µ
(1)
n (B1) := µn(B1 × Rℓ) for B1 ∈ B(Rk) and µ

(2)
n (B2) :=

µn(Rk × B2) for B2 ∈ B(Rℓ). If µ
(1)
n

w−→ µ(1) as n → ∞ with some probability measure µ(1) on

(Rk,B(Rk)) and µ
(2)
n

w−→ δc as n → ∞ with some c ∈ Rℓ, then µn
w−→ µ(1) × δc as n → ∞.

Proof. For each n ∈ N, consider the probability measure µ̃n on (Rk+ℓ ×Rk+ℓ,B(Rk+ℓ ×Rk+ℓ))

defined by

µ̃n(H) := µn({(x,y) ∈ Rk × Rℓ : (x,y,x, c) ∈ H}), H ∈ B(Rk+ℓ × Rk+ℓ).

For each n ∈ N, consider the marginal probability measures µ̃
(1)
n and µ̃

(2)
n on (Rk+ℓ,B(Rk+ℓ))

defined by µ̃
(1)
n (A) := µ̃n(A× Rk+ℓ) and µ̃

(2)
n (A) := µ̃n(Rk+ℓ × A) for A ∈ B(Rk+ℓ). Note that

for each n ∈ N and A ∈ B(Rk+ℓ), we have

µ̃(1)
n (A) = µn({(x,y) ∈ Rk × Rℓ : (x,y) ∈ A}) = µn(A),
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hence µ̃
(1)
n = µn. Moreover, for each n ∈ N and A ∈ B(Rk+ℓ), we have

µ̃(2)
n (A) = µn({(x,y) ∈ Rk × Rℓ : (x, c) ∈ A})

= µn({x ∈ Rk : (x, c) ∈ A} × Rℓ)

=

∫

Rℓ

µn({x ∈ Rk : (x,y) ∈ A} × Rℓ) δc(dy)

=

∫

Rℓ

µ(1)
n ({x ∈ Rk : (x,y) ∈ A}) δc(dy)

=

∫

Rℓ

(∫

Rk

1A(x,y)µ(1)
n (dx)

)
δc(dy) = (µ(1)

n × δc)(A),

hence µ̃
(2)
n = µ

(1)
n × δc. Further, for each ǫ ∈ (0,∞), we have

µ̃n({((x,y), (u, v)) ∈ Rk+ℓ × Rk+ℓ : ‖(x,y) − (u, v)‖ > ǫ})

= µn({(x,y) ∈ Rk × Rℓ : ‖(x,y) − (x, c)‖ > ǫ})

= µn({(x,y) ∈ Rk × Rℓ : ‖y − c‖ > ǫ})

= µ(2)
n ({y ∈ Rℓ : ‖y − c‖ > ǫ}) → 0 as n → ∞,

since µ
(2)
n

w−→ δc as n → ∞. Thus, according to Lemma D.1, to prove the statement it suffices

to show that µ
(1)
n × δc

w−→ µ(1) × δc as n → ∞. For every continuous, bounded function

g : Rk+ℓ × Rk+ℓ → R, by the portmanteau lemma (see, e.g., van der Vaart [42, Lemma 2.2]),

we have
∫

Rk+ℓ

g(x, z) (µ(1)
n × δc)(dx, dz) =

∫

Rk

g(x, c)µ(1)
n (dx)

→
∫

Rk

g(x, c)µ(1)(dx) =

∫

Rk+ℓ

g(x, z) (µ(1) × δc)(dx, dz)

as n → ∞, since µ
(1)
n

w−→ µ(1) as n → ∞, and the function Rk ∋ x 7→ g(x, c) ∈ R is a

continuous, bounded function. Again by the portmanteau lemma, we conclude µ
(1)
n × δc

w−→
µ(1) × δc as n → ∞, as desired. �

We will use the following conditional continuous mapping theorem and a consequence of it.

Recall that for a random vector X and an event A ∈ A such that P(A) > 0, the conditional

law of X with respect to A is denoted by L(X|A).

Lemma D.3. For each n ∈ N, let An ∈ A such that P(An) > 0. Let X and Xn, n ∈ N,

be Rk-valued random vectors and let h : Rk → Rℓ be a Borel measurable function with some

k, ℓ ∈ N. Suppose that L(Xn|An)
w−→ L(X) as n → ∞ and P(X ∈ Dh) = 0, where Dh denotes

the set of discontinuities of h.

(i) Then L(h(Xn)|An)
w−→ L(h(X)) as n → ∞.
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(ii) If, in addition, h is bounded, then E[h(Xn)|An] → E[h(X)] as n → ∞.

Proof. (i). For each B ∈ B(Rk), let µ(B) := P(X ∈ B) and µn(B) := P(Xn ∈ B|An),

n ∈ N. By the assumption, µn
w−→ µ as n → ∞. By Billingsley [8, Lemma 5.1], we obtain

νn
w−→ ν as n → ∞, where the probability measures νn, n ∈ N, and ν on (Rℓ,B(Rℓ)) are

defined by νn(B) := µn(h−1(B)) = P(Xn ∈ h−1(B)|An) = P(h(Xn) ∈ B|An), n ∈ N, and

ν(B) := µ(h−1(B)) = P(X ∈ h−1(B)) = P(h(X) ∈ B) for B ∈ B(Rℓ). Consequently, we

obtain L(h(Xn)|An)
w−→ L(h(X)) as n → ∞, as desired.

(ii). By Billingsley [8, part (iii) of Lemma 5.2], we obtain
∫
Rk h(x)µn(dx) →

∫
Rk h(x)µ(dx)

as n → ∞. Consequently, we obtain E[h(Xn)|An] → E[h(X)] as n → ∞, as desired. �

Next, we prove a conditional analogue of part (v) of Theorem 2.7 in van der Vaart [42]

together with one of its useful consequences.

Lemma D.4. For each n ∈ N, let An ∈ A such that P(An) > 0. Let X and Xn, n ∈ N, be

Rk-valued random vectors and let Y n, n ∈ N, be Rℓ-valued random vectors with some k, ℓ ∈ N.

Suppose that L(Xn|An)
w−→ L(X) and L(Y n|An)

w−→ δc as n → ∞ with some c ∈ Rℓ.

(i) Then L((Xn,Y n)|An)
w−→ L(X) × δc = L((X, c)) as n → ∞.

(ii) If, in addition, h : Rk+ℓ → Rm is a Borel measurable function with some m ∈ N such

that h is continuous at every (x0, c), x0 ∈ Rk, then L(h(Xn,Y n)|An)
w−→ L(h(X, c)) as

n → ∞.

Proof. (i). We apply Lemma D.2 for the probability measures µn := L((Xn,Y n)|An), n ∈ N,

on (Rk+ℓ,B(Rk+ℓ)). Then we have µ
(1)
n = L(Xn|An)

w−→ L(X) and µ
(2)
n = L(Y n|An)

w−→ δc as

n → ∞, hence we obtain L((Xn,Y n)|An) = µn
w−→ L(X) × δc = L((X, c)) as n → ∞.

(ii). By the assumption, Dh ⊂ Rk × (Rℓ \ {c}), hence P((X, c) ∈ Dh) = 0. Consequently,

part (i) of Lemma D.3 implies L(h(Xn,Y n)|An)
w−→ L(h(X, c)) as n → ∞. �

Finally, we provide a conditional Slutsky’s lemma.

Lemma D.5. For each n ∈ N, let An ∈ A such that P(An) > 0. Let X and Xn, n ∈ N, be

Rk×ℓ-valued random matrices such that L(Xn|An)
w−→ L(X) as n → ∞ with some k, ℓ ∈ N.

(i) If Y n, n ∈ N, are Rk×ℓ-valued random matrices such that L(Y n|An)
w−→ δC as n → ∞

with some C ∈ Rk×ℓ, then L(Xn + Y n|An)
w−→ L(X + C) as n → ∞.

(ii) If Y n, n ∈ N, are Rm×k-valued random matrices such that L(Y n|An)
w−→ δC as n → ∞

with some C ∈ Rm×k and m ∈ N, then L(Y nXn|An)
w−→ L(CX) as n → ∞.

(iii) If Y n, n ∈ N, are Rk×k-valued random matrices such that L(Y n|An)
w−→ δC as n → ∞

with some invertible C ∈ Rk×k, then L(Y −1
n Xn|An)

w−→ L(C−1X) as n → ∞.
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Proof. Identifying Rk×ℓ, Rm×k and Rm×ℓ with Rkℓ, Rmk and Rmℓ, respectively, in a natural

way, we can apply part (ii) of Lemma D.4 for the Borel measurable functions

Rk×ℓ × Rk×ℓ ∋ (U ,V ) 7→ U + V ∈ Rk×ℓ, Rk×ℓ × Rm×k ∋ (U ,V ) 7→ V U ∈ Rm×ℓ,

Rk×ℓ × Rk×k ∋ (U ,V ) 7→
{
V −1U ∈ Rk×ℓ, if U is invertible,

0 ∈ Rk×ℓ, otherwise,

and we obtain the statements. �

E Regular variation of a related process

First, we recall Karamata’s theorem for truncated moments, see, e.g., Bingham et al. [9, pages

26-27] or Buraczewski et al. [10, Appendix B.4].

Lemma E.1 (Karamata’s theorem for truncated moments). Consider a non-negative regularly

varying random variable X with tail index α > 0. Then

lim
x→∞

xβP(X > x)

E(Xβ
1{X≤x})

=
β − α

α
, if β ∈ [α,∞),

lim
x→∞

xβP(X > x)

E(Xβ
1{X>x})

=
α− β

α
, if β ∈ (−∞, α).

Now, we give a representation of the strongly stationary Markov chain (Xi)i∈Z.

Lemma E.2. We have

(Xk)k∈Z
d
=

(
Bk +

∞∑

i=1

θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k−i+1 ◦Bk−i

)

k∈Z
, (E.1)

where {Bk : k ∈ Z} are independent random variables with the same distribution as B, and

θ
(ℓ)
k , k, ℓ ∈ Z, are given by

θ
(ℓ)
k ◦ i :=

{∑i
j=1A

(ℓ)
k,j, if i ∈ N,

0, if i = 0,

where A
(ℓ)
k,j, j ∈ N, k, ℓ ∈ Z, have the same distribution as A, and {Bk : k ∈ Z} and θ

(ℓ)
k ,

k, ℓ ∈ Z, are independent in the sense that the families {Bk : k ∈ Z} and {A(ℓ)
k,j : j ∈ N},

k, ℓ ∈ Z, occurring in θ
(ℓ)
k , k, ℓ ∈ Z, are independent families of independent random variables,

and the series in the representation (E.1) converge with probability one.
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Proof. Due to Basrak et al. [5, Lemma 2.2.1], the series in the representation (E.1) converge

with probability one. Clearly, for each k ∈ Z and ℓ ∈ N, we have
(
Bk +

∞∑

i=1

θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k−i+1 ◦Bk−i, . . . , Bk+ℓ +
∞∑

i=1

θ
(k+ℓ−i)
k+ℓ ◦ · · · ◦ θ(k+ℓ−i)

k+ℓ−i+1 ◦Bk+ℓ−i

)

d
=

(
B0 +

∞∑

i=1

θ
(−i)
0 ◦ · · · ◦ θ(−i)

−i+1 ◦B−i, . . . , Bℓ +

∞∑

i=1

θ
(ℓ−i)
ℓ ◦ · · · ◦ θ(ℓ−i)

ℓ−i+1 ◦Bℓ−i

)
.

(E.2)

Indeed, since {Bi : i ∈ Z} are identically distributed, independent of {θ(j)i : i, j ∈ Z}, and for

each N ∈ N and i1, . . . , iN ≥ 0, the distribution of the random vector
(
θ
(k−1)
k ◦ i1, . . . , θ(k−N)

k ◦
· · · ◦ θ(k−N)

k−N+1 ◦ iN
)

is invariant with respect to a shift of k ∈ Z, we have
(
Bk +

n∑

i=1

θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k−i+1 ◦Bk−i, . . . , Bk+ℓ +
n∑

i=1

θ
(k+ℓ−i)
k+ℓ ◦ · · · ◦ θ(k+ℓ−i)

k+ℓ−i+1 ◦Bk+ℓ−i

)

n∈N

d
=

(
B0 +

n∑

i=1

θ
(−i)
0 ◦ · · · ◦ θ(−i)

−i+1 ◦B−i, . . . , Bℓ +

n∑

i=1

θ
(ℓ−i)
ℓ ◦ · · · ◦ θ(ℓ−i)

ℓ−i+1 ◦Bℓ−i

)

n∈N
.

Thus using that for a sequence of random variables ξi, i ∈ N, the series
∑∞

i=1 ξi is convergent

almost surely if and only if P(supm∈N

∣∣∣
∑n+m

i=n ξi

∣∣∣ > ǫ) → 0 as n → ∞ for each ǫ > 0, the almost

sure convergence of the series on the left and right hand sides of (E.2) yields (E.2) (for a similar

argument, see Step 2 of the proof of Theorem 4.1). Hence the right hand side of (E.1) defines

a strongly stationary process. Moreover, for each k ∈ Z, we have

Bk +
∞∑

i=1

θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k−i+1 ◦Bk−i

= Bk + θ
(k−1)
k ◦Bk−1 + θ

(k−2)
k ◦ θ(k−2)

k−1 ◦Bk−2 + θ
(k−3)
k ◦ θ(k−3)

k−1 ◦ θ(k−3)
k−2 ◦Bk−2 + · · ·

d
= Bk + θ

(k−1)
k ◦

(
Bk−1 + θ

(k−2)
k−1 ◦Bk−2 + θ

(k−3)
k−1 ◦ θ(k−3)

k−2 ◦Bk−3 + · · ·
)

= Bk + θ
(k−1)
k ◦

(
Bk−1 +

∞∑

i=1

θ
(k−i−1)
k−1 ◦ · · · ◦ θ(k−i−1)

k−i ◦Bk−1−i

)
,

since θ
(k−i)
k , i ∈ N, are independent, and independent of {Bk−i : i ≥ 0} ∪ {θ(k−i−1)

k−ℓ : i, ℓ ∈ N}.

Consequently, the stochastic process given on the right hand side of (E.1) is a time homogeneous

Markov process with the same transition probabilities as the Galton–Watson process (Xk)k∈Z
with immigration satisfying (1.3) such that the distribution of X0 is the unique stationary

distribution of (Xk)k∈Z. �

It turns out that the process (X
3/2
i , XiMi+1)i∈Z is regularly varying with tail index 2α

3
with

an explicitly given forward tail process.

Theorem E.3. As x → ∞,

L
((

1

x
(X

3/2
k , XkMk+1)

)

k≥0

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
fi.di.−→ L

(
(µ

3k/2
A Ỹ , µ

3k/2
A Ỹ Z̃k)k≥0

)
,
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where Z̃k, k ∈ N, is an i.i.d. sequence of N (0, σ2
A)-distributed random variables, the distribution

of (Ỹ , Z̃0) is given by

P(Ỹ > y, Z̃0 > v0) =
E
((
y ∨ (1 ∨ |Z0|)−1

)−2α/3
1(v0,∞)(Z0)

)

E
(
(1 ∨ |Z0|)2α/3

) (E.3)

for y, v0 ∈ R, where Z0
d
= N (0, σ2

A), and the random vector (Ỹ , Z̃0) is independent from the

variables Z̃k, k ∈ N. Consequently, the strongly stationary process (X
3/2
k , XkMk+1)k∈Z is jointly

regularly varying with tail index 2α
3
, i.e., all its finite dimensional distributions are regularly

varying with tail index 2α
3
. The process

(
µ
3k/2
A Ỹ , µ

3k/2
A Ỹ Z̃k

)
k≥0

is the forward tail process of (X
3/2
k , XkMk+1)k∈Z. Moreover, there exists a (whole) tail process

of (X
3/2
k , XkMk+1)k∈Z as well.

Proof. By Lemma E.2, we may and do suppose that (Xk)k≥0 is the right hand side of (E.1).

First, we give a useful representation of the random vectors (X0, X1, . . . , Xn,M1, . . . ,Mn+1),

n ∈ N. For each k ∈ N, we obtain

Xk = Bk +

∞∑

i=1

θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k−i+1 ◦Bk−i

= Bk +

k−1∑

i=1

θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k−i+1 ◦Bk−i

+ θ
(0)
k ◦ · · · ◦ θ(0)1 ◦B0 +

∞∑

i=k+1

θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k−i+1 ◦Bk−i

d
= κk + θ

(0)
k ◦ · · · ◦ θ(0)1 ◦

(
B0 +

∞∑

j=1

θ
(−j)
0 ◦ · · · ◦ θ(−j)

−j+1 ◦B−j

)

= κk + θ
(0)
k ◦ · · · ◦ θ(0)1 ◦X0,

where κk := Bk +
∑k−1

i=1 θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k−i+1 ◦Bk−i, since for each k ∈ N, θ
(0)
k ◦ · · · ◦ θ(0)1 ◦ θ(−j)

0 ◦
· · · ◦ θ(−j)

−j+1 ◦B−j, j ≥ 1, has the same distribution as θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k−i+1 ◦Bk−i, i ≥ k + 1, and

θ
(0)
k ◦ · · · ◦ θ

(0)
1 ◦ B0, θ

(0)
k ◦ · · · ◦ θ

(0)
1 ◦ θ

(−j)
0 ◦ · · · ◦ θ

(−j)
−j+1 ◦ B−j, j ≥ 1, and κk are independent.

Note also that κk, θ
(0)
k ◦ · · · ◦ θ(0)1 and X0 are independent for any k ∈ N (in the sense given in

Lemma E.2). In the same way, we get

(X0, X1, . . . , Xk)
d
= (X0, κ1 + θ

(0)
1 ◦X0, . . . , κk + θ

(0)
k ◦ · · · ◦ θ(0)1 ◦X0). (E.4)
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Moreover, for each k ∈ N, using (E.4) for (X0, X1, . . . , Xk+1), we obtain

Mk+1 = Xk+1 − µAXk − µB

d
= κk+1 + θ

(0)
k+1 ◦ · · · ◦ θ

(0)
1 ◦X0 − µA(κk + θ

(0)
k ◦ · · · ◦ θ(0)1 ◦X0) − µB

= Bk+1 +

k∑

i=1

θ
(k+1−i)
k+1 ◦ · · · ◦ θ(k+1−i)

k+2−i ◦Bk+1−i + θ
(0)
k+1 ◦ · · · ◦ θ

(0)
1 ◦X0

− µA

(
Bk +

k−1∑

i=1

θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k+1−i ◦Bk−i

)
− µA

(
θ
(0)
k ◦ · · · ◦ θ(0)1 ◦X0

)
− µB

= Bk+1 − µB + θ
(k)
k+1 ◦Bk − µABk

+

k∑

i=2

θ
(k+1−i)
k+1 ◦ · · · ◦ θ(k+1−i)

k+2−i ◦Bk+1−i − µA

k−1∑

i=1

θ
(k−i)
k ◦ · · · ◦ θ(k−i)

k+1−i ◦Bk−i

+ θ
(0)
k+1 ◦ · · · ◦ θ

(0)
1 ◦X0 − µA

(
θ
(0)
k ◦ · · · ◦ θ(0)1 ◦X0

)

= Bk+1 − µB +
k−1∑

i=0

θ̃
(k−i)
k+1 ◦ θ(k−i)

k ◦ · · · ◦ θ(k−i)
k+1−i ◦Bk−i + θ̃

(0)
k+1 ◦ θ

(0)
k ◦ · · · ◦ θ(0)1 ◦X0

= κ̃k+1 + θ̃
(0)
k+1 ◦ θ

(0)
k ◦ · · · ◦ θ(0)1 ◦X0,

where θ̃
(ℓ)
k , k, ℓ ∈ Z, are given by

θ̃
(ℓ)
k ◦ i :=

{
θ
(ℓ)
k ◦ i− iµA =

∑i
j=1(A

(ℓ)
k,j − µA), for i ∈ N,

0, for i = 0,

and κ̃k+1 := Bk+1 − µB +
∑k−1

i=0 θ̃
(k−i)
k+1 ◦ θ(k−i)

k ◦ · · · ◦ θ(k−i)
k+1−i ◦Bk−i. Note that

κ̃k+1 = Bk+1 − µB + θ̃
(k)
k+1 ◦Bk +

k−1∑

i=1

θ̃
(k−i)
k+1 ◦ θ(k−i)

k ◦ · · · ◦ θ(k−i)
k+1−i ◦Bk−i

d
= Bk+1 − µB + θ̃

(k)
k+1 ◦ κk,

since θ̃
(k−i)
k+1 ◦ j, i ∈ {0, . . . , k − 1}, j ≥ 0, are independent having the same distribution as

θ̃
(k)
k+1 ◦ j, j ≥ 0, and θ̃

(k)
k+1 is independent of Bk+1. Further, κ̃k+1, θ̃

(0)
k+1 ◦ θ

(0)
k ◦ · · · ◦ θ(0)1 and X0 are

independent (in the sense given in Lemma E.2 ). Moreover, we have M1 = θ̃
(0)
1 ◦X0+B1−µB =

κ̃1 + θ̃
(0)
1 ◦X0 with κ̃1 := B1 − µB. In the same way, we get

(X0, X1, . . . , Xn,M1, . . . ,Mn+1)

d
= (X0, κ1 + θ

(0)
1 ◦X0, . . . , κn + θ(0)n ◦ · · · ◦ θ(0)1 ◦X0,

κ̃1 + θ̃
(0)
1 ◦X0, . . . , κ̃n+1 + θ̃

(0)
n+1 ◦ θ(0)n ◦ · · · ◦ θ(0)1 ◦X0), n ≥ 0.

(E.5)
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Step 1. First, we check that

L
(
X

3/2
0

x

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
w−→ L(Ỹ ) as x → ∞. (E.6)

For each x, y ∈ (0,∞), we have

P

(
X

3/2
0

x
> y

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
=

P1(x, y)

Q1(x)

with

P1(x, y) :=
P(X

3/2
0 > xy, (X

3/2
0 ∨X0|M1|) > x)

P(X
3/2
0 > x)

, Q1(x) :=
P((X

3/2
0 ∨X0|M1|) > x)

P(X
3/2
0 > x)

.

For each x ∈ (0,∞) and c ∈ (0, 1), we can write Q1(x) = Q1,1(x, c) + Q1,2(x, c) with

Q1,1(x, c) :=
P((X

3/2
0 ∨X0|M1|) > x, X

3/2
0 > cx)

P(X
3/2
0 > x)

,

Q1,2(x, c) :=
P((X

3/2
0 ∨X0|M1|) > x, X

3/2
0 ≤ cx)

P(X
3/2
0 > x)

,

where Q1,1(x, c) = Q1,1,1(x, c)Q1,1,2(x, c) with

Q1,1,1(x, c) :=
P((X

3/2
0 ∨X0|M1|) > x, X

3/2
0 > cx)

P(X
3/2
0 > cx)

, Q1,1,2(x, c) :=
P(X

3/2
0 > cx)

P(X
3/2
0 > x)

.

For each c ∈ (0, 1), we have

lim
x→∞

Q1,1,2(x, c) = lim
x→∞

P(X0 > c2/3x2/3)

P(X0 > x2/3)
= c−2α/3, (E.7)

since X0 is regularly varying with tail index α. For each c ∈ (0, 1), using X
3/2
0 ∨ X0|M1| =

X
3/2
0

(
1 ∨ |M1|√

X0

)
, if X0 > 0, and that (2.2) yields L(x−1X0,

M1√
X0

| X0 > x)
w−→ L(Y0, Z0) as

x → ∞ (since X0 ∨ 1 = X0 if X0 > 1), by Lemma D.3, we obtain

Q1,1,1(x, c) = P((X
3/2
0 ∨X0|M1|) > x | X3/2

0 > cx)

= P

((
X0

(cx)2/3

)3/2(
1 ∨ |M1|√

X0

)
>

1

c

∣∣∣∣X0 > (cx)2/3
)

→ P(Y
3/2
0 (1 ∨ |Z0|) > c−1) as x → ∞,

where Y0 is a Pareto distributed random variable such that P(Y0 ≥ y) = y−α, y ≥ 1. Conse-

quently, for each c ∈ (0, 1), we have

Q1,1(x, c) → c−2α/3P(Y
3/2
0 (1 ∨ |Z0|) > c−1) as x → ∞.
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For each c ∈ (0, 1), by the tower rule and using P(Y0 > y) = y−α ∧ 1, y ∈ (0,∞), we have

c−2α/3P(Y
3/2
0 (1 ∨ |Z0|) > c−1)

= c−2α/3E(P(Y
3/2
0 (1 ∨ |Z0|) > c−1 | Z0))

= c−2α/3E(P(Y0 > c−2/3(1 ∨ |Z0|)−2/3 | Z0))

= c−2α/3E
((
c−2/3(1 ∨ |Z0|)−2/3

)−α ∧ 1
)

= E
(
(1 ∨ |Z0|)2α/3 ∧ c−2α/3

)
,

(E.8)

hence we have limc↓0 limx→∞Q1,1(x, c) = E
(
(1 ∨ |Z0|)2α/3

)
. Moreover, for each x ∈ (0,∞) and

c ∈ (0, 1), we have Q1,2(x, c) = Q1,2,1(x, c)Q1,1,2(x, c) with

Q1,2,1(x, c) :=
P((X

3/2
0 ∨X0|M1|) > x, X

3/2
0 ≤ cx)

P(X
3/2
0 > cx)

=
P(X0|M1| > x, X

3/2
0 ≤ cx)

P(X
3/2
0 > cx)

=
P(|M1|X01{X3/2

0 ≤cx} > x)

P(X
3/2
0 > cx)

.

By (E.5), we have (X0,M1)
d
= (X0, κ̃1 + θ̃

(0)
1 ◦X0). Hence, for each x ∈ (0,∞), c ∈ (0, 1) and

δ ∈
(
0, α

3

)
, by Markov’s inequality and the independence of κ̃1 and X0,

P
(
|M1|X01{X3/2

0 ≤cx} > x
)

≤ P

(
|κ̃1|X01{X3/2

0 ≤cx} >
x

2

)
+ P

(
|θ̃(0)1 ◦X0|X01{X3/2

0 ≤cx} >
x

2

)

≤
(

2

x

)α−δ

E(|κ̃1|α−δ)E
(
Xα−δ

0 1{X3/2
0 ≤cx}

)
+

(
2

x

)2

E
(
(θ̃

(0)
1 ◦X0)

2X2
01{X3/2

0 ≤cx}
)
.

We have E(|κ̃1|α−δ) = E(|B − µB|α−δ) < ∞, since |B − µB| is regularly varying with tail index

α, see (4.6). Moreover, E
(
Xα−δ

0 1{X3/2
0 ≤cx}

)
≤ E(Xα−δ

0 ) < ∞, since X0 is regularly varying with

tail index α. Further,

E
(
(θ̃

(0)
1 ◦X0)

2X2
01{X3/2

0 ≤cx}
)

= E
(
E
(
(θ̃

(0)
1 ◦X0)

2X2
01{X3/2

0 ≤cx}
∣∣X0

))
= σ2

AE
(
X3

01{X3/2
0 ≤cx}

)
.

Consequently, for each x ∈ (0,∞), c ∈ (0, 1) and δ ∈
(
0, α

3

)
,

Q1,2,1(x, c) ≤
2α−δE(|B − µB|α−δ)E(Xα−δ

0 )

xα−δP(X
3/2
0 > cx)

+ 4σ2
A

E(X3
01{X3/2

0 ≤cx})

x2P(X
3/2
0 > cx)

.

The random variable X
3/2
0 is regularly varying with tail index 2α

3
, since X0 is regularly varying

with tail index α. Hence α − δ > 2α
3

yields xα−δP(X
3/2
0 > cx) → ∞ as x → ∞ (see, e.g.,

Bingham et al. [9, Proposition 1.3.6. (v)]). Applying Karamata’s theorem (see, Lemma E.1),

we obtain
E(X3

01{X3/2
0 ≤cx})

x2P(X
3/2
0 > cx)

= c2
E((X

3/2
0 )21{X3/2

0 ≤cx})

(cx)2P(X
3/2
0 > cx)

→ c2
2α
3

2 − 2α
3

=
c2α

3 − α
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as x → ∞. Consequently, by (E.7), for each c ∈ (0, 1), we obtain

lim sup
x→∞

Q1,2(x, c) ≤ 4c−2α/3σ2
A

c2α

3 − α
=

4ασ2
A

3 − α
c2(3−α)/3,

hence

lim
c↓0

lim inf
x→∞

Q1,2(x, c) = lim
c↓0

lim sup
x→∞

Q1,2(x, c) = 0. (E.9)

Summarizing, we get

Q1(x) → E
(
(1 ∨ |Z0|)2α/3

)
as x → ∞. (E.10)

Now we consider the term P1(x, y), x, y ∈ (0,∞). For each x, y ∈ (0,∞), we have P1(x, y) =

P1,1(x, y)P1,2(x, y), where

P1,1(x, y) :=
P(X

3/2
0 > xy)

P(X
3/2
0 > x)

,

P1,2(x, y) :=
P(X

3/2
0 > xy, (X

3/2
0 ∨X0|M1|) > x)

P(X
3/2
0 > xy)

.

Since X0 is regularly varying with tail index α, for each y ∈ (0,∞), we have limx→∞ P1,1(x, y) =

y−2α/3. Further, for each y ∈ (0,∞), using that (2.2) yields L(x−1X0,
M1√
X0

| X0 > x)
w−→

L(Y0, Z0) as x → ∞ (since X0 ∨ 1 = X0 if X0 > 1), by Lemma D.3, we have

P1,2(x, y) = P((X
3/2
0 ∨X0|M1|) > x | X3/2

0 > xy)

= P

((
X0

(xy)2/3

)3/2(
1 ∨ |M1|√

X0

)
>

1

y

∣∣∣∣X0 > (xy)2/3
)

→ P(Y
3/2
0 (1 ∨ |Z0|) > y−1) as x → ∞.

Consequently, for each y ∈ (0,∞), by the tower rule and using P(Y0 > y) = y−α∧1, y ∈ (0,∞),

we have

P1(x, y) → y−2α/3P(Y
3/2
0 (1 ∨ |Z0|) > y−1) = y−2α/3P(Y0 > (y(1 ∨ |Z0|))−2/3)

= y−2α/3E[P(Y0 > (y(1 ∨ |Z0|))−2/3 | Z0)] = y−2α/3E[(y2α/3(1 ∨ |Z0|)2α/3) ∧ 1]

= E[(1 ∨ |Z0|)2α/3 ∧ y−2α/3] = E[(y ∨ (1 ∨ |Z0|)−1)−2α/3] as x → ∞.

By (E.10), for each y ∈ (0,∞), we obtain

P

(
X

3/2
0

x
> y

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
→ E

(
(y ∨ (1 ∨ |Z0|)−1)−2α/3

)

E
(
(1 ∨ |Z0|)2α/3

)

as x → ∞, thus we conclude (E.6).
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Step 2. We check that for each k ∈ N,

L
((

Xk

X0

)3/2 ∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
w−→ δ

µ
3k/2
A

as x → ∞. (E.11)

For each k ∈ N, x, y ∈ (0,∞), we have

P

((
Xk

X0

)3/2

> y

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
=

P2(x, y)

Q1(x)

with

P2(x, y) :=
P
((

Xk

X0

)3/2
> y, (X

3/2
0 ∨X0|M1|) > x

)

P(X
3/2
0 > x)

.

For each k ∈ N, x, y ∈ (0,∞), and c ∈ (0, 1), we can write P2(x, y) = P2,1(x, y, c) + P2,2(x, y, c)

with

P2,1(x, y, c) :=
P
((

Xk

X0

)3/2
> y, (X

3/2
0 ∨X0|M1|) > x, X

3/2
0 > cx

)

P(X
3/2
0 > x)

,

P2,2(x, y, c) :=
P
((

Xk

X0

)3/2
> y, (X

3/2
0 ∨X0|M1|) > x, X

3/2
0 ≤ cx

)

P(X
3/2
0 > x)

,

where P2,1(x, y, c) = P2,1,1(x, y, c)Q1,1,2(x, c) with

P2,1,1(x, y, c) :=
P
((

Xk

X0

)3/2
> y, (X

3/2
0 ∨X0|M1|) > x, X

3/2
0 > cx

)

P(X
3/2
0 > cx)

.

For each k ∈ N, y ∈ (0,∞) \ {µ3k/2
A } and c ∈ (0, 1), using (2.1), (2.2) and Lemma D.3, we

obtain

P2,1,1(x, y, c) = P

((
Xk

X0

)3/2

> y, (X
3/2
0 ∨X0|M1|) > x

∣∣∣∣X
3/2
0 > cx

)

= P

((
(cx)−2/3Xk

(cx)−2/3X0

)3/2

> y,

(
X0

(cx)2/3

)3/2(
1 ∨ |M1|√

X0

)
>

1

c

∣∣∣∣X0 > (cx)2/3
)

→ P(µ
3k/2
A > y, Y

3/2
0 (1 ∨ |Z0|) > c−1) as x → ∞.

Consequently, by (E.7) and (E.8), for each k ∈ N, y ∈ (0,∞) \ {µ3k/2
A } and c ∈ (0, 1), we have

P2,1(x, y, c) → c−2α/3
1(y,∞)(µ

3k/2
A )P(Y

3/2
0 (1 ∨ |Z0|) > c−1)

= 1(y,∞)(µ
3k/2
A )E

(
(1 ∨ |Z0|)2α/3 ∧ c−2α/3

)
as x → ∞,

hence, for each k ∈ N and y ∈ (0,∞) \ {µ3k/2
A }, we have

lim
c↓0

lim
x→∞

P2,1(x, y, c) = 1(y,∞)(µ
3k/2
A )E

(
(1 ∨ |Z0|)2α/3

)
.
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Moreover, for each x, y ∈ (0,∞) and c ∈ (0, 1), we have P2,2(x, y, c) ≤ Q1,2(x, c), hence, by

(E.9), limc↓0 lim infx→∞ P2,2(x, y, c) = limc↓0 lim supx→∞ P2,2(x, y, c) = 0. Summarizing, for each

k ∈ N and y ∈ (0,∞) \ {µ3k/2
A }, we get

P2(x, y) → 1(y,∞)(µ
3k/2
A )E

(
(1 ∨ |Z0|)2α/3

)
as x → ∞.

By (E.10), for each k ∈ N and y ∈ (0,∞) \ {µ3k/2
A }, we obtain

P

((
Xk

X0

)3/2

> y

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
→ 1(y,∞)(µ

3k/2
A ) as x → ∞,

thus we conclude (E.11).

Step 3. We check that for each n ≥ 0,

L
(
X

3/2
0

x
,

M1√
X0

, . . . ,
Mn+1√
X0

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
d−→ L(Ỹ , Z̃0, µ

1/2
A Z̃1, . . . , µ

n/2
A Z̃n) (E.12)

as x → ∞. For each n ≥ 0, x, y ∈ (0,∞) and v0, . . . , vn ∈ R, we have

P

(
X

3/2
0

x
> y,

M1√
X0

> v0, . . . ,
Mn+1√
X0

> vn

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
=

P3(x, y, v0, . . . , vn)

Q1(x)

with

P3(x, y, v0, . . . , vn) :=
P
(X3/2

0

x
> y, M1√

X0
> v0, . . . ,

Mn+1√
X0

> vn, (X
3/2
0 ∨X0|M1|) > x

)

P(X
3/2
0 > x)

.

For each n ≥ 0, x, y ∈ (0,∞), and v0, . . . , vn ∈ R, we can write P3(x, y, v0, . . . , vn) =

P3,1(x, y, v0, . . . , vn)P3,2(x, y) with

P3,1(x, y, v0, . . . , vn) :=
P

(
X

3/2
0

x
> y, M1√

X0
> v0, . . . ,

Mn+1√
X0

> vn, (X
3/2
0 ∨X0|M1|) > x

)

P(X
3/2
0 > yx)

= P

(
(X

3/2
0 ∨X0|M1|) > x,

M1√
X0

> v0, . . . ,
Mn+1√
X0

> vn | X3/2
0 > yx

)
,

P3,2(x, y) :=
P(X

3/2
0 > yx)

P(X
3/2
0 > x)

.

Since X
3/2
0 is regularly varying with tail index 2α/3, we have for each y ∈ (0,∞),

lim
x→∞

P3,2(x, y) = y−2α/3.

Further, using that (2.2) holds with W ′
i replaced by Wi (see the proof of Proposition 2.1), by
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Lemma D.3, we have

P3,1(x, y, v0, . . . , vn)

= P

((
X0

(yx)2/3

)3/2(
1 ∨ |M1|√

X0

)
>

1

y
,

M1√
X0

> v0,
M2√
X0µA

>
v1√
µA

, . . . ,
Mn+1√
X0µn

A

>
vn√
µn
A

∣∣∣∣X0 > (yx)2/3
)

→ P(Y
3/2
0 (1 ∨ |Z0|) > y−1, Z0 > v0, Z1 > µ

−1/2
A v1, . . . , Zn > µ

−n/2
A vn)

= P(Y
3/2
0 (1 ∨ |Z0|) > y−1, Z0 > v0)P(Z1 > µ

−1/2
A v1, . . . , Zn > µ

−n/2
A vn)

as x → ∞. Consequently, for each n ≥ 0, y ∈ (0,∞) and v0, . . . , vn ∈ R, we get

lim
x→∞

P3(x, y, v0, . . . , vn)

= y−2α/3P(Y
3/2
0 (1 ∨ |Z0|) > y−1, Z0 > v0)P(Z1 > µ

−1/2
A v1, . . . , Zn > µ

−n/2
A vn)

= y−2α/3E
[
P(Y

3/2
0 (1 ∨ |Z0|) > y−1, Z0 > v0 | Z0)

]
P(Z1 > µ

−1/2
A v1, . . . , Zn > µ

−n/2
A vn)

= y−2α/3E
[
1{Z0>v0}P(Y0 > (y(1 ∨ |Z0|))−2/3 | Z0)

]
P(Z1 > µ

−1/2
A v1, . . . , Zn > µ

−n/2
A vn)

= y−2α/3E
[
1{Z0>v0}((y(1 ∨ |Z0|))2α/3 ∧ 1)

]
P(Z1 > µ

−1/2
A v1, . . . , Zn > µ

−n/2
A vn)

= E
[
1{Z0>v0}((1 ∨ |Z0|)2α/3 ∧ y−2α/3)

]
P(Z1 > µ

−1/2
A v1, . . . , Zn > µ

−n/2
A vn)

= E
((
y ∨ (1 ∨ |Z0|)−1

)−2α/3
1(v0,∞)(Z0)

)
P(µ

1/2
A Z1 > v1, . . . , µ

n/2
A Zn > vn).

By (E.10), for each n ≥ 0, y ∈ (0,∞) and v0, . . . , vn ∈ R, we obtain

P

(
X

3/2
0

x
> y,

M1√
X0

> v0, . . . ,
Mn+1√
X0

> vn

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)

→ E
((
y ∨ (1 ∨ |Z0|)−1

)−2α/3
1(v0,∞)(Z0)

)

E
(
(1 ∨ |Z0|)2α/3

) P(µ
1/2
A Z1 > v1, . . . , µ

n/2
A Zn > vn)

= P(Ỹ > y, Z̃0 > v0)P
(
µ
1/2
A Z̃1 > v1, . . . , µ

n/2
A Z̃n > vn

)

= P
(
Ỹ > y, Z̃0 > v0, µ

1/2
A Z̃1 > v1, . . . , µ

n/2
A Z̃n > vn

)

as x → ∞, thus we conclude (E.12).

Step 4. For all n ≥ 0, we have

L
((

1

x
(X

3/2
k , XkMk+1)

)

k∈{0,1,...,n}

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)

= L
((

X
3/2
0

x

(
Xk

X0

)3/2

,
X

3/2
0

x

Xk

X0

Mk+1√
X0

))

k∈{0,1,...,n}

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
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d−→ L
(
(Ỹ µ

3k/2
A , Ỹ µk

Aµ
k/2
A Z̃k)k∈{0,1,...,n}

)
as x → ∞.

Indeed, (E.11), Lemmas D.3 and D.4 yield

L
((

Xk

X0

)

k∈{0,1,...,n}

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)
w−→ δ(1,µA,...,µn

A) as x → ∞,

and then, identifying R(2n+2)×(2n+2) with R(2n+2)2 in a natural way, we can use again Lemma

D.3 to obtain

L
(

diag2n+2

(
1, 1,

(
X1

X0

)3/2

,
X1

X0
, . . . ,

(
Xn

X0

)3/2

,
Xn

X0

) ∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)

w−→ δ
diag2n+2(1,1,µ

3/2
A ,µA,...,µ

3n/2
A ,µn

A)
as x → ∞.

Next, (E.12) and the conditional version of the continuous mapping theorem (see Lemma D.3)

imply

L
(((

X0

x2/3

)3/2

,

(
X0

x2/3

)3/2
Mk+1√
X0

))

k∈{0,1,...,n}

∣∣∣∣ (X
3/2
0 ∨X0|M1|) > x

)

w−→ L
(
(Ỹ 3/2, Ỹ 3/2µ

k/2
A Z̃k)k∈{0,1,...,n}

)
as x → ∞.

Finally, identifying Rn+1 × Rn+1 and R2(n+1) in a natural way and applying Lemma D.5, we

obtain the convergence statement of the theorem.

The jointly regularly varying property of (X
3/2
k , XkMk+1)k∈Z follows by Theorem 2.1 in

Basrak and Segers [7]. The existence of a (whole) tail process of (X
3/2
k , XkMk+1)k∈Z follows by

Basrak and Segers [7, Theorem 2.1]. �

In the next remark we point out that Ỹ given in Theorem E.3 is not a Pareto-distributed

random variable.

Remark E.4. Note that (E.3) readily yields that

P(Ỹ > y) =
E
((
y ∨ (1 ∨ |Z0|)−1

)−2α/3)

E
(
(1 ∨ |Z0|)2α/3

) , y ∈ R.

Consequently, P(Ỹ ∈ (0,∞)) = 1 and

P(Ỹ > y) ≤ 1

E
(
(1 ∨ |Z0|)2α/3

)y−2α/3 for y ∈ (0,∞),

and equality holds for y ∈ [1,∞). Indeed, for each y ∈ (0,∞), we have y∨(1∨|Z0|)−1 ≥ y almost

surely, thus
(
y ∨ (1 ∨ |Z0|)−1

)−2α/3 ≤ y−2α/3 almost surely, hence E
((
y ∨ (1 ∨ |Z0|)−1

)−2α/3) ≤
y−2α/3, and for y ∈ [1,∞), we have y ∨ (1 ∨ |Z0|)−1 = y almost surely. �
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