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Abstract

The linear complexity is an important and frequently used measure

of unpredictability and pseudorandomness of binary sequences. In this

paper our goal is to extend this notion to two dimensions. We will

define and study the linear complexity of binary lattices. The linear

complexity of a truly random binary lattice will be estimated. Finally,

we will analyze the connection between the linear complexity and the

correlation measures, and we will utilize the inequalities obtained in

this way for estimating the linear complexity of an important special

binary lattice. Finally, we will study the connection between the linear

complexity of binary lattices and of the associated binary sequences.

1 The linear complexity and other measures of

pseudorandomness of sequences

The linear complexity is an important and frequently used measure of

pseudorandomness of bit sequences which is closely related to cryptographic

applications.

Definition 1 The linear complexity L(SN) (over the field F2) of the finite

bit sequence

SN = (s0, s1, . . . , sN−1) ∈ {0, 1}N (1.1)

is the length L of a shortest linear recursion

sn+L = cL−1sn+L−1 +cL−2sn+L−2 + · · ·+c0sn, n = 0, 1, . . . , N −L−1 (1.2)

over F2 which is satisfied by the sequence SN , with the convention that

L(SN ) = 0 if s0 = s1 = · · · = sN−1 = 0 and L(SN ) = N if s0 = s1 =

· · · = sN−2 = 0 and sN−1 = 1.

(Note that one may also define the linear complexity of infinite binary

sequences but we will not need this definition here.)
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Definition 2 The linear complexity profile of the bit sequence SN =

(s0, s1, . . . , sN−1) is defined as the sequence of the numbers L(Si), i =

1, 2, . . . , N where Si is defined as Si = (s0, s1, . . . , si−1).

Surveys on the linear complexity are given in [16] and [18]. It is

known [17] that the linear complexity of a truly random bit sequence

SN = (s0, s1, . . . , sN−1) ∈ {0, 1}N is (1 + o(1))N
2
. It is easy to see that

the linear complexity is nondecreasing, i.e., using the notation in Definition

2 we have

L(Si) ≤ L(Si+1) for i = 1, 2, . . . , N − 1. (1.3)

In [15] Mauduit and Sárközy introduced other quantitative measures of

pseudorandomness of binary sequences. They considered binary sequences

of form

EN = (e1, . . . , eN) ∈ {−1, +1}N . (1.4)

(They switched from bit sequences to sequences consisting of -1 and +1 since

then the formulas are slightly simpler, and this change is just a matter of

notation.) Then the well-distribution measure of the sequence (1.4) is defined

by

W (EN) = max
a,b,t
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where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N ,

and the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
· · · en+dk

∣

∣

∣

∣

∣

where the maximum is taken over all D = (d1, . . . , dk) and M such that

0 ≤ d1 < · · · < dk ≤ N − M . The combined (well-distribution-correlation)

pseudorandom measure of order k was also introduced:

Qk(EN) = max
a,b,t,D
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where the maximum is taken over all a, b, t and D = (d1, . . . , dk) such that

all the subscripts a + jb + dℓ belong to {1, 2, . . . , N}. (Note that Q1(EN) =

W (EN) and clearly Ck(EN) ≤ Qk(EN).) Then the sequence EN is considered

a “good” pseudorandom sequence if both W (EN) and Ck(EN) (at least for

“small” k) are “small” in terms of N (in particular, both are o(N) as N →

∞). Indeed, later Cassaigne, Mauduit and Sárközy [4] showed that this

terminology is justified since for almost all EN ∈ {−1, +1}N both W (EN)

and Ck(EN ) are less than N1/2(log N)c. (See also [1] and [13].)

Although the linear complexity is defined for bit sequences of form (1.1)

while the other measures of pseudorandomness are defined for binary se-

quences of form (1.4), all these measures can be used in both cases since

there is a natural bijection ϕ : {0, 1}N → {−1, +1}N . Namely, if the se-

quence SN in (1.1) is given then ϕ(SN) can be defined by

ϕ(SN) = ϕ((s0, s1, . . . , sN−1)) = EN = (e1, e2, . . . , eN)

with ei+1 = (−1)si (= 1 − 2si) for i = 0, 1, . . . , N − 1, (1.5)

while the inverse mapping is given by

ϕ−1(EN ) = ϕ((e1, e2, . . . , eN)) = SN = (s0, s1, . . . , sN−1)

with si =
1 − ei+1

2
for i = 0, 1, . . . , N − 1.

Thus, e.g., the correlation of order k of the bit sequence (1.1) can be defined

by

Ck(SN) = Ck(ϕ(SN)) = Ck(EN) = max
M,D

∣
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∣
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= max
M,D

∣

∣

∣

∣

∣

M−1
∑

n=0

(−1)sn+d1
+···+sn+dk

∣

∣

∣

∣

∣

. (1.6)

Moreover, we may define the linear complexity of the binary sequence EN in

(1.4) by

L(EN ) = L(ϕ−1(EN)). (1.7)
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Brandstätter and Winterhof [3] showed that the linear complexity of a bit

sequence SN can be estimated in terms of the correlations of the sequence

(defined by (1.4)):

Theorem A If N ≥ 2 and EN is a binary sequence, then we have

L(EN ) ≥ N − max
1≤k≤L(EN )+1

Ck(EN).

(They used a slightly different terminology but their result seems to be

equivalent with the theorem above.) Using this inequality they have been able

to give (in some cases quite strong) lower estimate for the linear complexity

of binary sequences occurring in certain constructions. (Later in [5] Theorem

A was generalized to m-ary sequences.) While this theorem may give quite

good estimate for the linear complexity, it has the disadvantage that it also

uses correlations of high order whose estimate can be very difficult. Thus

Andics [2] proved another inequality which uses the correlation of order 2

only:

Theorem B If N ∈ N and EN is a binary sequence, then we have

2L(EN ) ≥ N − C2(EN).

However, Theorem B can imply only lower bounds of logarithmic order of

magnitude.

2 The measures of pseudorandomness in n di-

mensions

In [12] Hubert, Mauduit and Sárközy extended the notion of binary se-

quences to n dimensions, and they defined the measures of pseudorandomness

in this situation:

Let In
N denote the set of n-dimensional vectors whose coordinates are

integers between 0 and N − 1:

In
N = {x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.
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This set is called an n-dimensional N-lattice or briefly an N-lattice. In [11]

this definition was extended to more general lattices in the following way: let

u1,u2, . . . ,un be n linearly independent n-dimensional vectors over the field

of the real numbers such that the i-th coordinate of ui is a positive integer and

the other coordinates of ui are 0, thus ui is of the form (0, . . . , 0, zi, 0, . . . , 0)

(with zi ∈ N). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N . Then

we call the set

Bn
N = {x = x1u1 + · · · + xnun : xi ∈ N ∪ {0}, 0 ≤ xi |ui| ≤ ti(< N)

for i = 1, . . . , n}

an n-dimensional box N-lattice or briefly a box N-lattice.

In [12] the definition of binary sequences was extended from one dimension

to n dimensions by considering functions of the following type:

Definition 3 A function of type η(x) : In
N → {−1, +1} is called binary

N-lattice.

(If x = (x1, . . . , xn) and η(x) = η((x1, . . . , xn)), then we will simplify the

notation slightly by writing η(x) = η(x1, . . . , xn).)

In [12] the following definition of measures of pseudorandomness of bi-

nary lattices was presented: if η : In
N → {−1, +1}, then the pseudorandom

measure of order k of η is defined by

Qk(η) = max
B,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) · · ·η(x + dk)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distinct d1, . . . ,dk ∈ In
N and all box

N -lattices B such that B + d1, . . . , B + dk ⊆ In
N . Note that in the one

dimensional special case the measure Qk(η) is the same as the combined

pseudorandom measure of order k described in Section 2.

The correlation measure of binary lattices was also introduced in [9]: The
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correlation measure of order k of the lattice η : In
N → {−1, +1} is defined by

Ck(η) = max
B′,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B′

η(x + d1) · · · η(x + dk)

∣

∣

∣

∣

∣

, (2.1)

where the maximum is taken over all distinct d1, . . . ,dk ∈ In
N and all box

lattices B′ of the special form

B′ = {x = (x1, . . . , xn) : xi ∈ N ∪ {0}, 0 ≤ x1 ≤ t1(< N), . . . ,

0 ≤ xn ≤ tn(< N)}

such that B′ + d1, . . . , B
′ + dk ⊆ In

N . (As in one dimension, clearly we have

Ck(η) ≤ Qk(η).)

In [7] and [8] we also introduced and studied measures of pseudorandom-

ness of families of binary lattices. On the other hand, as far as we know

the notion of linear complexity of binary lattices has not been defined yet.

(The only n dimensional extension of linear complexity that we know about

is the notion of joint linear complexity; see e.g., [6] and the references in it.

However, this notion cannot be used for studying binary lattices.) Indeed,

in this paper our goal is to define and study the linear complexity of binary

lattices.

3 The definition of linear complexity of two di-

mensional binary lattices.

In the rest of this paper we will restrict ourselves to two dimensional

binary lattices; the n dimensional binary lattices could be handled in the

same way just the formulas would be more complicated. On the other hand,

we will extend the notion of binary lattice slightly. Namely, in Definition 3

we defined binary lattices on squares I2
N = {0, 1, . . . , N −1}2 (recall that now

the dimension is n = 2). When we want to introduce the linear complexity
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in 2 dimensions then it seems to be more natural to start out from rectangles

IM,N = {0, 1, . . . , M − 1} × {0, 1, . . . , N − 1}.

(Since from now on the dimension is always 2, there is no need to include

the dimension in the notation.)

Definition 3’ A function of type η(x) : IM,N → {−1, +1} is called a binary

(M, N)-lattice.

Replacing the η values equal to +1 by 0 and the values equal to −1 by 1

we get a function of type δ(x) : IM,N → {1, 0}.

Definition 4 A function of type δ(x) : IM,N → {1, 0} is called a bit (M, N)-

lattice.

As in one dimension, there is a bijection µ between bit lattices and binary

lattices: if the bit (M, N)-lattice δ is given, then the binary (M, N)-lattice

η = µ(δ) is defined by

η(i, j) = µ(δ)(i, j) = (−1)δ(i,j)(= 1 − 2δ(i, j))

for i ∈ {0, 1, . . . , M − 1}, j ∈ {0, 1, . . . , N − 1},

while the inverse mapping is given by

µ−1(η)(i, j) = δ(i, j) =
1 − η(i, j)

2

for i ∈ {0, 1, . . . , M − 1}, j ∈ {0, 1, . . . , N − 1}.

Thus the correlation of order k of the bit (M, N)-lattice δ can be defined

by

Ck(δ) = Ck(µ(δ)) = Ck(η) = max
B′,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B′

η(x + d1) · · ·η(x + dk)

∣

∣

∣

∣

∣

= max
B′,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B′

(−1)δ(x+d1)+···+δ(x+dk)

∣

∣

∣

∣

∣
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(where B′,d1, . . . ,dk are defined as in (2.1)).

The most natural definition of the linear complexity of two dimensional

bit (M, N)-lattice seems to be to use double (two variable) linear recursions

instead of the linear recursions used in Definition 1:

Definition 5 Let δ be a bit (M, N)-lattice, and write δ(i, j) = si,j for i =

0, 1, . . . , M − 1, j = 0, 1, . . . , N − 1. Then the linear complexity L(δ) (over

the field F2) of the lattice δ is the smallest non-negative integer L that can

be written in the form L = (U + 1)(V + 1) − 1 where U, V are integers with

0 ≤ U < M , 0 ≤ V < N such that the M ×N matrix (si,j) satisfies a double

(two variable) linear recursion over F2 of form

sm+U,n+V =
∑

max{0,−m}≤i≤U
max{0,−n}≤j≤V

(i,j)6=(U,V )

ci,jsm+i,n+j (3.1)

for all integers m, n with

(m, n) ∈ {(m, n) : 0 < m < M − U, −V ≤ n < N − V }

∪ {(m, n) : 0 < n < N − V, −U ≤ m < M − U} ∪ {(0, 0)}

with the convention that L(δ) = 0 if si,j = 0 for all 0 ≤ i ≤ M − 1,

0 ≤ j ≤ N − 1, and L(δ) = MN if si,j = 0 for all 0 ≤ i ≤ M − 1,

0 ≤ j ≤ N − 1, (i, j) 6= (M − 1, N − 1) and sM−1,N−1 = 1.

(Note that the number (U + 1)(V + 1) − 1 defining L is the number of

terms on the right hand side of (3.1) for m ≥ 0, n ≥ 0.)

To understand this definition better, observe that Definition 1 can be

rewritten in the following equivalent form:

Definition 1’ Consider the bit sequence SN in (1.1), and assign the polyno-

mial

f(x) =

N−1
∑

n=0

snx
n ∈ F2[x]
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to it. Then the linear complexity of SN is defined as the smallest positive

integer L such that there is a polynomial of form

g(x) =
L

∑

i=1

cL−ix
i ∈ F2[x] (3.2)

with the property that the coefficient of xn in the polynomial f(x)g(x) is sn

for n < N except for the terms xn with 0 ≤ n < L.

Using this approach, Definition 5 can be rewritten in the following equiv-

alent form:

Definition 5’ Define the bit lattice δ as in Definition 5, and assign the

polynomial

f(x, y) =
M−1
∑

m=0

N−1
∑

n=0

sm,nx
myn ∈ F2[x, y]

to it. Then the linear complexity of δ is defined as the smallest positive integer

L that can be written in the form L = (U + 1)(V + 1) − 1 with non-negative

integers U, V such that there is a polynomial

g(x, y) =
∑

0≤i≤U
0≤j≤V

(i,j)6=(0,0)

cU−i,V −jx
iyj ∈ F2[x, y] (3.3)

with the property that the coefficient of xmyn in the polynomial f(x, y)g(x, y)

is sm,n for 0 ≤ m < N , 0 ≤ n < N except for the terms xmyn with 0 ≤ m ≤

U , 0 ≤ n ≤ V , (m, n) 6= (U, V ).

Note that while in (3.2) L is the number of the terms of the polynomial

g(x) (containing also the terms with 0 coefficient), in Definition 5’ L =

(U + 1)(V + 1) − 1 is the number of the terms of the polynomial g(x, y)

in (3.3). This shows that, indeed, Definition 5 is the natural extension of

Definition 1 to two dimensions.

Now consider that special case of Definition 5 when δ is an (N, 1) bit

lattice:

δ(x) : IN,1 → {1, 0}. (3.4)
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Then the matrix (δ(i, j)) = (si,j) becomes a bit sequence of length N :

SN
def
= (δ(0, 0), δ(1, 0), . . . , δ(N − 1, 0)) = (s0,0, s1,0, . . . , sN−1,0). (3.5)

On the other hand, specifying Definition 5 to the case (3.4) we get that

now L is defined as the smallest non-negative integer L that can be written

in the form L = (U +1)(V +1)−1 where U, V are integers with 0 ≤ U < N ,

0 ≤ V < 1 so that the N × 1 matrix (si,j), i.e., the sequence (3.5) satisfies

the recursion (3.1) for all integers m, n satisfying one of the conditions

0 < m < N − U, −V ≤ n < 1 − V, (3.6)

0 < n < 1 − V, −U ≤ m < N − U, (3.7)

m = n = 0. (3.8)

It follows from the condition 0 ≤ V < 1 that

V = 0. (3.9)

Then clearly, there is no integer satisfying the first inequality in (3.7), while

the second inequality in (3.6) becomes 0 ≤ n < 1 whence

n = 0. (3.10)

The second and third condition of the summation in (3.1) becomes

j = V = 0 (3.11)

and

i 6= U, (3.12)

respectively. By the first inequality in (3.6), (3.8), (3.9), (3.10), (3.11) and

(3.12), now (3.1) is of the form

sm+U,0 =
U−1
∑

i=0

ci,0sm+i,0 for m = 0, 1, . . . , N − U − 1. (3.13)
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Since now V = 0 is fixed, we are looking for the smallest non-negative integer

U in (L(η) =)(U +1)(V +1)−1 such that (3.13) holds. Comparing this with

equation (1.2) in Definition 1 we see immediately that this U is the linear

complexity of the bit sequence Sn in (3.3): U = L(SN ). It follows that the

linear complexity of the bit lattice δ is

L(δ) = (U + 1)(V + 1) − 1 = (L(SN ) + 1)(0 + 1) − 1 = L(SN)

thus L(δ) and L(SN ) coincide (and this is also so when L(δ) and L(SN)

are given by the convention at the end of Definition 1 and 5, respectively;

we leave the details to the reader). This means that the two dimensional

definition (Definition 5) includes the one dimensional definition (Definition

1) as a special case thus, indeed, the former is an extension of the latter.

As in the one dimensional case in (1.7), we may define the linear com-

plexity of the binary (M, N)-lattice η by

L(η) = L(µ−1(η)).

Clearly, the maximal value of the linear complexity of bit (resp. binary)

(M, N)-lattices is MN , and by Rueppel’s theorem [17] on the linear complex-

ity of a truly random binary sequence one may guess that there is a c > 0

such that the linear complexity of a truly random bit (or binary) (M, N)-

lattice is greater than cMN ; if this is true, then a “good” pseudorandom bit

(M, N) − lattice must have large linear complexity, and the lattices of small

linear complexity are useless in the applications. Indeed, we conjecture the

following:

Conjecture 1 The linear complexity of a truly random bit (M, N)-lattice

δ : IM,N → {1, 0} and binary (M, N)-lattice η : IM,N → {−1, +1} is
(

1
2

+ o(1)
)

MN .

We can prove the lower bound part of this conjecture and also a slightly

weaker upper bound. However, the proofs are lengthy and complicated, thus

we will present these results only in Part II of this paper.
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4 The linear complexity of a bit lattice and of

the associated bit sequence

In [10] we showed that the study of two dimensional binary lattices cannot

be reduced to the one dimensional case in a certain sense. We will show that

in the case of the linear complexity the situation is the same.

To any bit (M, N)-lattice

δ(x) : IM,N → {1, 0} (4.1)

we may assign a unique bit sequence SMN = SMN(δ) = (s0, s1, . . . , sMN−1) ∈

{0, 1}MN by taking the first (from the bottom) row of the lattice (4.1) then

we continue the bit sequence by taking the second row of the lattice, then

the third row follows, etc; in general, we set

siM+j = δ(j, i) for i = 0, 1, . . . , N − 1, j = 0, 1, . . . , M − 1.

It is a natural question to ask: is it true that if L(SMN) is large, then the

δ bit (M, N)-lattice also has large linear complexity? Namely, then “good”

binary bit sequences would generate “good” bit lattices automatically, thus

it would be sufficient to study bit sequences, there would be no need for

developing a theory of linear complexity of bit lattices. The answer to this

question is negative.

Theorem 1 For every M and N ≥ 3 there is a bit lattice δ(x) : IM,N →

{0, 1} such that L(SMN(δ)) is “large”:

L(SMN (δ)) = M(N − 1) + 2, (4.2)

however, L(δ) is “small”:

L(δ) ≤ 3N − 1. (4.3)
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Proof of Theorem 1. Define δ(x) : IM,N → {0, 1} by

δ(i, j) =















0 if j ≤ N − 2,

0 if j = N − 1, i = 0,

1 if j = N − 1, 0 < i.

Then SMN(δ) = (s0, s1, . . . , sMN−1) where

si =







0 if i ≤ M(N − 1),

1 if i > M(N − 1).

By definition, let St
MN(δ) be the sequence formed by the first t elements of

SMN(δ), thus St
MN(δ) = (s0, s1, . . . , st−1). Then S

M(N−1)+2
MN = (0, 0, . . . , 0, 1),

thus by Definition 1

L(S
M(N−1)+2
MN ) = M(N − 1) + 2. (4.4)

By the sharper version of Lemma 1 in Massey’s paper [14] if L(St
MN ) 6=

L(St+1
MN ), then there is a linear recursion of form (1.2) which is of length

L(St
MN ) and it generates s0, s1, . . . , st−1 but not s0, s1, . . . , st, and then

L(St+1
MN ) = max{L(St

MN ), t + 1 − L(St
MN)}. (4.5)

We will prove by induction on t that for M(N − 1) + 2 ≤ t ≤ MN we have

L(St
MN) = M(N − 1) + 2. (4.6)

Indeed, for t = M(N − 1) + 2 the statement is true by (4.4). Suppose that

for t = k (where M(N − 1) + 2 ≤ k ≤ MN − 1) (4.4) holds; then we will

prove that for t = k + 1 (4.5) is also true. By the induction hypothesis

L(Sk
MN) = M(N − 1) + 2. (4.7)

Thus

max{L(Sk
MN), k + 1 − L(Sk

MN)} = max{M(N − 1) + 2, k − M(N − 1) − 1}

= M(N − 1) + 2 = L(Sk
MN). (4.8)
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(Indeed (4.8) is equivalent with

M(N − 1) + 2 ≥ k − M(N − 1) − 1,

2M(N − 1) + 3 ≥ k

which follows from

2M(N − 1) + 3 ≥ MN − 1

MN − 2M + 4 ≥ 0.

Since N ≥ 3 this last inequality holds.) Thus (4.8) holds. We will prove

L(Sk+1
MN) = L(Sk

MN ). (4.9)

Indeed, if L(Sk+1
MN) 6= L(Sk

MN ), then by (4.5) we have

L(Sk+1
MN) = max{L(Sk

MN), k + 1 − L(Sk
MN)}.

But by (4.8) we have L(Sk+1
MN) = L(Sk

MN ) which is a contradiction. By (4.7)

and (4.9) we have

L(Sk+1
MN ) = M(N − 1) + 2

which proves (4.2).

Next we prove (4.3). Let U = 2, V = N−1 and for 0 ≤ i ≤ U , 0 ≤ j ≤ V ,

(i, j) 6= (U, V ) define the constants ci,j by

ci,j =







1 if (i, j) = (1, N − 1)

0 otherwise.

Then it is easy to see that

sm+U,n+V =
∑

max{0,−m}≤i≤U
max{0,−n}≤j≤V

(i,j)6=(u,v)

ci,jsm+i,n+j = sm+U−1,N+V

for all integers m, n with

(m, n) ∈{(m, n) : 0 < m < M − U, −V ≤ n < N − V }∪

{(m, n) : 0 < n < N − V, −U ≤ m < M − U} ∪ {(0, 0)}.

14



Thus by Definition 5

L(δ) ≤ 3N − 1

which proves (4.3).

5 Large linear complexity is not enough

By Theorem 1 a “pseudorandom type” bit lattice must have large linear

complexity. On the other hand, large linear complexity is only one of the

pseudorandom properties, it is not enough to guarantee the pseudorandom

nature of the lattice. We will illustrate this by an example:

Example 1 Let M, K ∈ N, N = 2K. Define the δ(x) : IM.N → {0, 1} bit

(M, N)-lattice by

δ(i, j) =







0 for (i, j) 6= (M − 1, K − 1), (i, j) 6= (M − 1, 2K − 1)

1 for (i, j) = (M − 1, K − 1) and (i, j) = (M − 1, 2K − 1).

Then by restricting δ to IM,K , by the last convention in Definition 5 the

linear complexity of this restricted bit lattice is MK. It is easy to see that

extending a bit lattice, the linear complexity of the extended one is at least as

large as of the original one, thus considering δ on IM,N , the linear complexity

of this extended lattice is also at least MK = MN
2

, thus it is optimally large.

On the other hand, writing B′ = IM,K , d = (0, K), the correlation of

order 2 of δ is large:

C2(δ) ≥

∣

∣

∣

∣

∣

∑

x∈B′

(−1)δ(x)+δ(x+d)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

x∈B′

(−1)2δ(x)

∣

∣

∣

∣

∣

=
∑

x∈B′

1 = MK =
MN

2

thus δ cannot be considered a “good” pseudorandom lattice, it certainly pos-

sesses a very special, not random type structure.
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6 Estimate of the linear complexity in terms of

the correlation

As Theorems A and B show, in one dimension, i.e., in case of binary

sequences the linear complexity can be estimated in terms of the correlation.

Now we will show that in two dimensions the situation is the same, and we

will be able to adapt the methods of the proofs of both Theorems A and B

for proving theorems of this type, although here we have to formulate the

results in a slightly different way. (Note that as Example 1 in the previous

section shows nothing can be proved in the opposite direction, i.e., one cannot

give upper bound for the correlation in terms of the linear complexity.) To

simplify the discussion we will restrict ourselves to the case M = N , i.e., to

bit (N, N)-lattices.

Theorem 2 Let N ∈ N, and let δ be a bit (N, N)-lattice. Then either the

linear complexity L = L(δ) of δ satisfies L > N/2 or we have

N2

4
≤ max

k≤L+1
Ck(δ). (6.1)

Proof of Theorem 2. We have to show that assuming

L ≤ N/2 (6.2)

(6.1) must hold. Define U, V as in Definition 5 thus

L = (U + 1)(V + 1) − 1 (6.3)

and (3.1) holds with some ci,j ∈ F2, 0 ≤ i ≤ U , 0 ≤ j ≤ V , (i, j) 6= (U, V )

and with si,j = δ(i, j) for all 0 ≤ i, j < N . Since V ≥ 0 it follows from (6.3)

that

L + 1 ≥ U + 1

whence, by (6.2)

U ≤ L ≤ N/2 (6.4)
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and in the same way

V ≤ N/2. (6.5)

Now set cU,V = 1. Then (3.1) can be rewritten (in F2) as

0 =
∑

i,j

ci,jsm+i,n+j (6.6)

where i, j run over the same integers as in (3.1) but also including (i, j) =

(U, V ), and this holds for every (m, n) belonging to the union of the 3 sets

presented after (3.1). It follows form (6.6) that

(−1)
P

i,j ci,jsm+i,n+j = 1 (6.7)

for every (m, n) belonging to the union of the 3 sets described above. Observe

that every pair (m, n) with

0 ≤ m < M − U(= N − U), 0 ≤ n < N − V (6.8)

belongs to this union, and for these pairs the summation
∑

i,j simplifies to
∑

0≤i≤U
0≤j≤V

(independently of m, n). Adding (6.7) for every (m, n) satisfying

(6.8), by (6.4) and (6.5) we get

∑

0≤m<N−U
0≤n<N−V

(−1)
P

i,j ci,jsm+i,n+j = (N − U)(N − V ) ≥
N2

4
. (6.9)

Writing B′ = {(m, n) : 0 ≤ m < M − U, 0 ≤ n < N − V } and D =

{d1, . . . ,dk} = {(i, j) : 0 ≤ i ≤ U, 0 ≤ j ≤ V, ci,j = 1} the left hand side of

(6.9) can be rewritten as

∑

x∈B′

(−1)δ(x+d1)+···+δ(x+dk).

By the definition of Ck(δ) this is not greater than Ck(δ) with

k = |D| ≤ |{(i, j) : 0 ≤ i ≤ U, 0 ≤ j ≤ V }| = (U + 1)(V + 1) = L + 1

and this completes the proof of the theorem.
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In [3] Brandstätter and Winterhof presented several applications of their

Theorem A. Among others, they estimated the linear complexity profile of

the Legendre symbol sequence Ep−1 =
((

1
p

)

,
(

2
p

)

, . . . ,
(

p−1
p

))

by using also

the estimates for the correlation of order k of this sequence given by Mauduit

and Sárközy in [15]. Here in two dimensions the situation is similar: one can

use our Theorem 2 for estimating the linear complexity of a two dimen-

sional extension of this Legendre symbol construction presented by Hubert,

Mauduit and Sárközy in [12] by applying their estimates for the correlation

of the lattice.

Theorem 3 Let p be a prime, let γ denote the quadratic character of Fp2,

and let v1, v2 be a basis of Fp2 as a vector space over Fp. Then define the

(2-dimensional) binary (p, p)-lattice η : I2
p → {−1, +1} by

η(x) = η(x1, x2) =







γ(x1v1 + x2v2) for (x1, x2) 6= (0, 0),

1 for (x1, x2) = (0, 0)

for any x1, x2 ∈ Fp, and let δ = µ−1(η) denote the bit lattice associated with

the binary lattice η in the sense described in Section 3. Then for p large

enough we have

L(δ) >
p

5(log p)2
. (6.10)

Proof of Theorem 3. We have

Ck(δ) = Ck(η) ≤ Qk(η) for every k ∈ N, (6.11)

and by Theorem 2 in [12] we have

Qk(η) < kp(1 + log p)2 for every k ∈ N. (6.12)

If L > p/2, then (6.10) holds for p large enough. Thus it suffices to show

that (6.10) also follows from (6.1) (with p in place of N), i.e., from

p2

4
≤ max

k≤L+1
Ck(δ). (6.13)
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By (6.11) and (6.12) we have

max
k≤L+1

Ck(δ) < max
k≤L+1

kp(1 + log p)2 ≤ (L + 1)p(1 + log p)2. (6.14)

It follows from (6.13) and (6.14) that

L + 1 >
p

4(1 + log p)2

whence

L >
p

4(1 + log p)2
− 1 >

p

5(log p)2

for p large enough thus, indeed, (6.10) holds.

Theorem 4 Let N ∈ N, and let δ be a bit (N, N)-lattice. If N is large

enough, then we have

2L(δ) >
N2

16
− C2(δ). (6.15)

We remark that by using this theorem one cannot get better lower bound

for L(δ) than c log N . However, using only the correlation of order 2 one can-

not expect a better bound; the computational evidence presented by Andics

[2] seems to indicate that there are (N, N)-lattices δ with L(δ) = O(log N)

and small C2(δ).

Proof of Theorem 4. If L = L(δ) ≥ 2
log 2

log N − 4, then we have

2L ≥
N2

16

thus (6.15) holds trivially. Thus we may assume that

L ≤
2

log 2
log N − 4. (6.16)

Define U, V as in Definition 5 thus again (6.3) holds and

max(U, V ) ≤ L ≤
2

log 2
log N − 4, (6.17)
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and assume that (3.1) holds with some ci,j ∈ F2, 0 ≤ i ≤ U , 0 ≤ j ≤ V ,

(i, j) 6= (U, V ) and with si,j = δ(i, j) for all 0 ≤ i, j < N . For every

(x, y) ∈

{

0, 1, . . . ,

[

N

4

]}2

, (6.18)

consider the values of the bits

sx+i,y+j with 0 ≤ i ≤ U, 0 ≤ j ≤ V, (i, j) 6= (U, V ). (6.19)

The number of these bits is (U + 1)(V + 1) − 1 = L, thus by (6.17) their

values can be chosen in at most

2L ≤ 2
2

log 2
log N−4 =

N2

16

ways. On the other hand, the number of points (x, y) in (6.18) is

([

N

4

]

+ 1

)2

>

(

N

4

)2

=
N2

16
,

thus by the pigeon hole principle there are two pints (x1, y1) 6= (x2, y2) with

0 ≤ x1, y1, x2, y2 ≤

[

N

4

]

(6.20)

thus replacing (x, y) in (6.19) first by (x1, y1) and then by (x2, y2) we get the

same bits:

sx1+i,y1+j = sx2+i,y2+j for 0 ≤ i ≤ U, 0 ≤ j ≤ V, (i, j) 6= (U, V ).

By the recursion (3.1) it follows that we have

δ(x1 + i, y1 + j) = sx1+i,y1+j = sx2+i,y2+j = δ(x2 + i, y2 + j)

for every 0 ≤ i ≤ N − 1 − max(x1, x2), 0 ≤ j ≤ N − 1 − max(y1, y2).

Write

B′ = {(i, j) : i ∈ 0, 1, . . . , N − 1 − max(x1, x2),

j ∈ 0, 1, . . . , N − 1 − max(y1, y2)}
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and

d1 = (x1, y1), d2 = (x2, y2).

Thus by the definition of Ck and (6.20) we have

C2(δ) ≥

∣

∣

∣

∣

∣

∑

x∈B′

(−1)δ(x+d1)+δ(x+d2)

∣

∣

∣

∣

∣

=
∑

x∈B′

1 = |B′|

= (N − max(x1, x2))(N − max(y1, y2)) ≥

(

N −

[

N

4

])2

>

(

N

2

)2

=
N2

4
>

N2

16
− 2L

which proves (6.15).
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