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CANONICAL GRAPH CONTRACTIONS OF LINEAR

RELATIONS ON HILBERT SPACES

ZSIGMOND TARCSAY AND ZOLTÁN SEBESTYÉN

Dedicated to Henk de Snoo on the occasion of his 75th birthday

Abstract. Given a closed linear relation T between two Hilbert spaces H and
K, the corresponding first and second coordinate projections PT and QT are
both linear contractions from T to H, and to K, respectively. In this paper we
investigate the features of these graph contractions. We show among others
that P

T
P ∗

T
= (I + T ∗T )−1, and that Q

T
Q∗

T
= I − (I + TT ∗)−1. The ranges

ranP ∗

T
and ranQ∗

T
are proved to be closely related to the so called ‘regular

part’ of T . The connection of the graph projections to Stone’s decomposition
of a closed linear relation is also discussed.

1. Introduction

When dealing with (unbounded) operators, it is sometimes beneficial to identify
them with their graph, that is, to treat them as linear subspaces of the corresponding
product space. This approach is especially useful if the operator in question is
non-closable, that is, when the closure of its graph is not the graph of a ‘single-
valued’ operator anymore. Similarly, the adjoint of a linear transformation can be
interpreted as an operator only if it is densely defined.

The theory of linear relations (or ‘multi-valued’ linear operators in other words)
between Hilbert spaces goes back at least to the fundamental paper by R. Arens
[1]. By definition, a linear relation T between two Hilbert spaces H and K is just
a vector subspace of the product Hilbert space H × K. In this way, the only (but
significant) difference between operators and relations is that {0, k} ∈ T does not
necessarily imply k = 0. However, this generality greatly simplifies the handling of
operations such as taking closure, adjoint, or inverse.

A linear relation T consists of certain ordered pairs {x, y} of H×K, so one may
consider the first and second coordinate projections of T intoH and K, respectively:

PT {x, y} := x, QT {x, y} := y, {x, y} ∈ H.

Note that both PT and QT are continuous (with norm bound 1) if we endow T

with the inner product coming form that of H×K. We shall therefore call PT and
QT the canonical contractions of T . Assume in addition that T is a closed relation,
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then the domain of PT and QT becomes a Hilbert space and thus we may take the
adjoint operators P ∗

T : H → T and Q∗
T : K → T , and also the product operators

PTP
∗
T , PTQ

∗
T , QTP

∗
T and QTQ

∗
T are well defined contractions.

T

KH

PT

P ∗
T

QT

Q∗
T

Figure 1. The canonical graph contractions and their adjoint.

The present paper is devoted to the study of these canonical contractions and
their connection with the closed linear relation T . First we are going to show that
the range ranP ∗

T ⊆ T is always a regular relation (that is, the graph of a closable
operator). Namely, its closure is identical with the regular part of T . (Recall that
the regular part Ts of T is defined as Ts := (I − Pm)T where Pm is the orthogonal
projection of K onto mulT , see [6].) It will also turn out that ranP ∗

T is the graph
of the restriction of Ts to domT ∗T .

In [15] the authors established necessary and sufficient conditions for a pair S, T
of operators in order that they satisfy

(1.1) S∗ = T and T ∗ = S,

cf. also [10,13,14,16] and [11] for the relation case. Below we provide some further
characterizations for (1.1) by means of the corresponding graph contractions PT , QT

and PS , QS . As an application we offer a new proof of the self-adjointness of the
relations T ∗T ∗∗ and T ∗∗T ∗ by proving that (I + T ∗T ∗∗)−1 = PTP

∗
T and QTQ

∗
T =

I − (I + T ∗∗T ∗)−1. Finally, we show how Stone’s decomposition [17] of a closed
linear relation T can be obtain by applying the results of the paper.

2. Linear relations

Throughout the paper, H and K will denote real or complex Hilbert spaces. A
linear relation T between H and K is nothing but a linear subspace of the product
Hilbert space H×K. We shall call the relation T closed if it is a closed subspace of
H×K. Accordingly, the closure T of T is always a closed linear relation, and being
so, it becomes a Hilbert space with respect to the induced inner product

({x, y} | {u, v})T := (x |u)H + (y | v)K, {x, y}, {u, v} ∈ T .

If we refer to T as the above Hilbert space, we shall denote it by G(T ).
Recall that every linear operator T : H → K when identified with its graph is a

linear relation:
T ≡ {{x, Tx} : x ∈ domT }.

Nevertheless, the closure (of the graph) of a linear operator is no longer an operator
in general, namely, it may be that {0, k} ∈ T for some non-zero k. Accordingly, we
call T closable if its closure T is itself an operator.

The domain, range, kernel and multivalued part of a linear relation T are defined
to be the following linear subspaces, respectively:

domT :=
{
x ∈ H : {x, y} ∈ T

}
, ranT :=

{
y ∈ K : {x, y} ∈ T

}
,
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kerT :=
{
x ∈ H : {x, 0} ∈ T

}
, mulT :=

{
y ∈ K : {0, y} ∈ T

}
.

It is immediate that kerT and mulT are both closed subspaces whenever T itself
is closed. It goes also without saying that T is (the graph of) and operator if and
only if mulT = {0}, and that T is (the graph of) a closable operator if and only of
mulT = {0}.

The inverse of a linear relation T is defined as

T−1 :=
{
{y, x} : {x, y} ∈ T

}
.

If S and T are both linear relations then their product TS is given by

TS :=
{
{x, z} : {x, y} ∈ S and {y, z} ∈ T for some y

}
.

The operatorlike sum of S and T is

S + T :=
{
{x, y + z} : {x, y} ∈ S, {x, z} ∈ T

}
,

just like in the case of operators, while the componentwise (or Minkowski) sum is

S +̂T :=
{
{x+ v, y + z}+ : {x, y} ∈ S, {v, z} ∈ T

}
.

The adjoint of a linear relation T is defined by

T ∗ := W (T )⊥,

where W : H×K → K×H is the ‘flip’ operator

(2.1) W{h, k} := {k,−h}, {h, k} ∈ H ×K.

It is immediate that T ∗ is a closed linear relation between K and H and that
T ∗∗ = T . Note that the following orthogonal decomposition of K × H holds also
true:

(2.2) T ∗ ⊕̂W (T ∗∗) = K ×H.

Another equivalent definition of T ∗ might be given in terms of the inner product,
namely,

{k, h} ∈ T ∗ ⇐⇒ (y | k)K = (x |h)H, ∀{x, y} ∈ T.

Recall also the following identities:

kerT ∗ = (ranT )⊥, mulT ∗ = (domT )⊥.

For a given linear relation T , let us denote by Pm the orthogonal projection of
K onto mulT . The regular part of T is defined as the linear relation

(2.3) Ts :=
{
{x, (I − Pm)y} : {x, y} ∈ T

}
.

It can be shown that Ts is (the graph of) a closable operator. In contrast, the
singular part following linear relation

(2.4) Tsing :=
{
{x, Pmy} : {x, y} ∈ T

}

is a so called singular relation which means that Tsing is the product of two closed
subspaces. By means of the regular and singular parts, the linear relation T allows
the following canonical sum decomposition

T = Ts + Tsing,

see [6, Theorem 4.1]. Note also immediately that the regular and singular parts
may be written as

Ts = (I − Pm)T, Tsing = PmT.
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We shall also use the fact that “regular part” and “closure” operations commute
in the sense that

(2.5) (Ts)
∗∗ = (T ∗∗)s,

see [6, Proposition 4.5]. An important consequence of this result is that the regular
part of a closed linear relation is closed itself, and also that Ts ⊆ T , provided that
T is closed.

The interested reader is referred to the books [2, 12] and papers [1, 6, 7] where,
in addition to the proofs of the above statements, more information about linear
relations can be found.

3. Canonical graph contractions of a linear relation

Let T be a linear relation between the real or complex Hilbert spaces H and K.
The canonical graph contractions PT : T → H and QT : T → K of T are defined as
the mappings

PT {x, y} := x, QT {x, y} := y, {x, y} ∈ T .

Note that both of those mappings are linear contractions if we consider them as
operators from the Hilbert space G(T ) into H and K, respectively:

PT ∈ B(G(T );H), ‖PT ‖ ≤ 1 and QT ∈ B(G(T );K), ‖QT ‖ ≤ 1.

Therefore, their adjoint operators P ∗
T ∈ B(H;G(T )) and Q∗

T ∈ B(K;G(T )) are
themselves linear contractions, and their ranges ranP ∗

T and ranQ∗
T are linear rela-

tions.
Below we are going to examine the properties of the contractions PT and QT

and their connection with T in detail. First let us establish a few elementary facts.

Proposition 3.1. Let T be a linear relation between H and K. Then

(a) PT = PT and QT = QT ,
(b) T is (the graph of) a closable operator if and only if kerPT is trivial.

Proof. The proof of (a) is straightforward from the definition of PT . Statement (b)
is obtained by noticing that kerPT = {0} ×mulT . �

In view of part (a) of the preceding proposition, there is no loss of generality in
assuming that the linear relation T is closed. In light of this, with a few exceptions,
we will do so.

We start out by analysing the first coordinate projection PT .

Lemma 3.2. Let T be a linear relation between H and K, then for every h ∈ H
we have QTP

∗
Th ∈ domT ∗, that is,

(3.1) ranQTP
∗
T ⊆ domT ∗.

Proof. Consider h ∈ H and let P ∗
Th := {z, w} ∈ ranP ∗

T , then we have

(x | z)H + (y |w)K =
(
{x, y}

∣∣P ∗
Th

)
T
= (x |h)H,

for every {x, y} ∈ T . Hence we get

(y |w)K = (x |h− z)H,

which implies that {w, h− z} ∈ T ∗ and therefore w = QTP
∗
Th ∈ domT ∗. �
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Proposition 3.3. Let T be a linear relation between H and K, then

domT ∗T = PT (T ∩ ranP ∗
T ).

Proof. Assume first that {x, y} ∈ T ∩ ranP ∗, then k ∈ ranQTP
∗
T ⊆ domT ∗ by

Lemma 3.2, and therefore there exists z ∈ H such that {y, z} ∈ T ∗. This means
that {x, z} ∈ T ∗T and therefore x ∈ domT ∗T .

Suppose on the converse that x ∈ domT ∗T , then {x, y} ∈ T and {y, z} ∈ T ∗ for
some y and z. It suffices to show that {x, y} ∈ ranP ∗. Let therefore {u, v} ∈ T ,
then we have

(
{x, y}

∣∣ {u, v}
)
T
= (x |u)H + (y | v)K = (x |u)H + (z |u)H

=
(
x+ z

∣∣PT {u, v}
)
H

=
(
P ∗
T (x+ z)

∣∣ {u, v}
)
T
,

whence it follows that {x, y} = P ∗
T (x+ z) ∈ ranP ∗

T . �

From the above lemma we get the following two straightforward corollaries:

Corollary 3.4. If T is (the graph of) an operator, then

T |domT∗T = T ∩ ranP ∗
T .

If T is closed in addition, then

T |domT∗T = ranP ∗
T .

Corollary 3.5. If T is a closed linear relation then

domT ∗T = dom(ranP ∗
T ).

Next we deal with the linear relation ranP ∗
T ⊆ T . As it will turn out from the

ensuing result, it is closely related to the regular part of T :

Theorem 3.6. Let T be a linear relation between H and K, then

ranP ∗
T = Ts.

In particular, ranP ∗
T is always (the graph of) a closable operator.

Proof. First of all note that if {x, (I − Pm)y} ∈ T for some {x, y} ∈ H × K, then
necessarily {x, y} ∈ T . Indeed,

{x, y} = {x, (I − Pm)y}+ {0, Pmy} ∈ T +̂ ({0} ×mul(T )) ⊆ T + T = T .

Consequently,
{
{x, y} ∈ T : y ∈ ranP⊥

m

}
=

{
{x, (I − Pm)y} : {x, y} ∈ H ×K, {x, (I − Pm)y} ∈ T

}

=
{
{x, (I − Pm)y} : {x, y} ∈ T , {x, (I − Pm)y} ∈ T

}
.

Since we have kerPT = {0} ×mulT , it follows that

ranP ∗
T =

(
{0} ×mulT

)⊥

=
{
{x, y} ∈ T : y ∈ (mulT )⊥

}

=
{
{x, y} ∈ T : y ∈ ran(I − Pm)

}

=
{
{x, (I − Pm)y} : y ∈ K, {x, (I − Pm)y} ∈ T

}

=
{
{x, (I − Pm)y} : {x, y} ∈ T

}

= (T )s = Ts,

as it is claimed. �



6 ZS. TARCSAY AND Z. SEBESTYÉN

We continue by describing the kernel and range spaces of the contractions PT

and P ∗
T :

Theorem 3.7. For every linear relation T between H and K we have

(a) kerPT = {0} ×mulT ,
(b) ranPT = domT ,
(c) kerP ∗

T = mulT ∗,

(d) ranP ∗
T = (Ts)|domT∗T .

Proof. Statements (a)-(c) are all straightforward, only point (d) needs some expla-
nation. Note that we have identity PT = PT for every linear relation. On the other

hand, Ts = (T )s according to (2.5). Therefore, without loss of generality we may
assume that T is closed, in which case (d) reduces to

(3.2) ranP ∗
T = (Ts)|domT∗T .

By Theorem 3.6 we have ranP ∗
T ⊆ Ts and by Corollary 3.5, dom(ranP ∗

T ) =
domT ∗T whenever T is closed. Since Ts is the graph of an operator, we obtain
(3.2). �

4. Linear relations adjoint to each other

Let T and S be linear relations between H and K, respectively, K and H. We
say that T and S are adjoint to each other (or that T, S form an adjoint pair), if
they satisfy

(4.1) T ⊂ S∗ and S ⊂ T ∗,

or equivalently, if

(4.2) (y | v)K = (x |u)H, ∀{x, y} ∈ T, ∀{v, u} ∈ S.

An important and natural question is under what conditions are the equations
T = S∗ and S = T ∗. Below we provide some necessary and sufficient conditions on
the pair S, T by means of the corresponding graph contractions PT , QT and PS , QS

in order that they satisfy the weaker identities T ∗∗ = S∗ and S∗∗ = T ∗

Theorem 4.1. Let S, T be linear relations between H and K, respectively, K and H,
that are adjoint to each other in the sense of (4.1). Then the following statements
are equivalent:

(i) S∗ = T ∗∗ and T ∗ = S∗∗,
(ii) (a) PTP

∗
T +QSQ

∗
S = IH,

(b) PSP
∗
S +QTQ

∗
T = IK,

(c) QTP
∗
T = PSQ

∗
S.

Proof. Before proving the corresponding equivalences, let us introduce the following
operator matrix

(4.3) UT,S :=

[
PT −QS

QT PS

]
: G(T )× G(S) → H×K,

which acts between T × S and H×K by the correspondence

UT,S

[
{x, y}
{v, u}

]
:= {x− u, y + v}, {x, y} ∈ T, {v, u} ∈ S.
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As T and S are adjoint to each other, one concludes that UT,S is an isometry: for
let {x, y} ∈ T and {v, u} ∈ S, then by (4.2)

∥∥∥∥UT,S

[
{x, y}
{v, u}

]∥∥∥∥
2

= ‖x− u‖2 + ‖y + v‖2

= ‖x‖2 + ‖y‖2 + ‖v‖2 + ‖u‖2 + 2Re[(y | v)K − (x |u)H]

=

∥∥∥∥
[
{x, y}
{v, u}

]∥∥∥∥
2

.

Assume now (i). Since the corresponding canonical contractions of T and T

(resp., of S and S) are identical, we may assume without loss of generality that
both S and T are closed. Denote by W the ‘flip’ operator (2.1). If we have S∗ = T

and T ∗ = S, then the orthogonal decomposition

H×K = T ⊕̂W (S)

implies that for every pair {h, k} ∈ H × K there exists {x, y} ∈ T and {v, u} ∈ S

such that

{h, k} = {x, y}+ {−u, v} = UT,S

[
{x, y}
{v, u}

]
,

which means that US,T is surjective, and hence a unitary operator. As a consequence
we get UT,SU

∗
T,S = IH×K, that is,

[
IH 0
0 IK

]
=

[
PTP

∗
T +QSQ

∗
S PTQ

∗
T −QSP

∗
S

QTP
∗
T − PSQ

∗
S PSP

∗
S +QTQ

∗
T

]
,

that clearly implies (ii).
For the converse, assume (ii) and also that S, T are closed. Since S and T are

adjoint to each other, it suffices to show that T ∗ ⊂ S and S∗ ⊂ T . Consider a pair
{w, z} ∈ T ∗. By (ii) (a)-(c), we infer that UT,S is unitary and therefore we can find
{x, y} ∈ T and {v, u} ∈ S such that

{−z, w} = UT,S

[
{x, y}
{v, u}

]
= {x− u, y + v}.

Here, (
{x, y}

∣∣{−u, v}
)
= 0 =

(
{x, y}

∣∣ {−z, w}
)
,

and hence,

‖{x, y}‖2 =
(
{x, y}

∣∣{x− u, y + v}
)
=

(
{x, y}

∣∣{−z, w}
)
.

This entails that {x, y} = {0, 0}, and hence that {w, z} = {v, u} ∈ S. An analogous
argument shows that S∗ ⊂ T . �

Remark 4.2. Some characterizations of those linear operators S, T which satisfy
identities S∗ = T and T ∗ = S where given in [15] by means of the operator matrix

MT,S :=

[
IH −S

T IK

]
,

cf. also [10,14]. The general case of linear relations was discussed in [11] in the same
spirit. For an exact interpretation of matrices with linear relation entries the reader
is referred to [8].
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5. Products of graph contractions

Let T be linear relation between the Hilbert spaces H and K and consider its
canonical graph contractions PT : G(T ) → H and QT : G(T ) → K. Then the
following four operators PTP

∗
T , PTQ

∗
T , QTP

∗
T and QTQ

∗
T are all well defined linear

contractions between the appropriate Hilbert spaces. In this section we clarify their
role and connection with the relations T and T ∗.

Lemma 5.1. Let T be a closed linear relation between H and K, then

(a) mul(TT ∗) = mulT ,
(b) T ∗T = (Ts)

∗Ts,

(c) (TT ∗)s = Ts(T
∗)s.

Proof. (a) Let k ∈ mulT , then {0, 0} ∈ T ∗ and {0, k} ∈ T implies that k ∈ mulTT ∗.
Assume on the converse that k ∈ mulTT ∗, then there exists u such that {0, u} ∈ T ∗

and {u, k} ∈ T ∗. Since we have u ∈ domT ∗∩mulT = {0}, it follows that {0, k} ∈ T

and therefore that k ∈ mulT .
(b) First we show inclusion T ∗T ⊂ (Ts)

∗Ts. Take {x, z} ∈ T ∗T , then there exists
y such that {x, y} ∈ T and {y, z} ∈ T ∗. In particular we have y ∈ domT ∗ ⊆ mulT⊥,
thus {x, y} = {x, (I − Pm)y} ∈ Ts. On the other hand, we have inclusion Ts ⊂ T

by closedness, so T ∗ ⊂ (Ts)
∗. Consequently, {x, z} ∈ (Ts)

∗Ts, indeed. Let now
{x, z} ∈ (Ts)

∗Ts, then there exists y such that {x, y} ∈ Ts and {y, z} ∈ (Ts)
∗. Here

we have {x, y} ∈ T as Ts ⊆ T . Furhtermore, (Ts)
∗ can be written as

(Ts)
∗ = T ∗ ⊕̂ (mulT × {0}),

where ⊕̂ denotes Minkowski direct sum. This yields us {k, h} ∈ T ∗ and w ∈ mulT
such that {y, z} = {k, h} + {w, 0}. Since y, k ∈ mulT⊥, we get w = 0 and y = k,
consequently {y, z} ∈ T ∗ and {x, z} ∈ T ∗T .

(c) By (a) we have mulT = mul(TT ∗), hence

(TT ∗)s = (I − Pm)TT ∗ = TsT
∗ ⊃ Ts(T

∗)s,

because (T ∗)s ⊂ T ∗. To see the converse inclusion take {v, (I − Pm)w} ∈ (TT ∗)s,
and let {v, u} ∈ T ∗ and {u,w} ∈ T for some u, then {u, (I −Pm)w} ∈ Ts and from
u ∈ domT we get that u ∈ (mul T )⊥, hence {v, u} ∈ (T ∗)s. Thus {v, (I −Pm)w} ∈
Ts(T

∗)s. �

In the next theorem we are going to deal with the contractions PTP
∗
T , QTQ

∗
T , PTQ

∗
T

and QTP
∗
T .

Theorem 5.2. Let T be a closed linear relation between H and K. Then

(a) PTP
∗
T = (I + T ∗T )−1,

(b) QTP
∗
T = Ts(I + T ∗T )−1,

(c) PTQ
∗
T = (T ∗)s(I + TT ∗)−1,

(d) QTQ
∗
T = I − (I + TT ∗)−1 = Pm + (TT ∗)s(I + TT ∗)−1.

Proof. (a) Let us introduce the linear operator

P
†
T : domT → H×K, P

†
Tu := {u, Tsu}.

Observe that P †
Tu ∈ Ts ⊆ T for every u ∈ domT , and that

(5.1) P
†
TPT {u, Tsu} = {u, Tsu}.

Since ranP ∗
T ⊂ Ts by Theorem 3.6, from (5.1) it follows that P †

TPTP
∗
T = P ∗

T .
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Let now x ∈ domT and h ∈ H, then

(x |h)H = (PTP
†
Tx |h)H = (P †

Tx |P
∗
Th)T = (P †

Tx |P
†
TPTP

∗
Th)T

=
(
{x, Tsx}

∣∣ {PTP
∗
Th, TsPTP

∗
Th}

)
T

= (x |PTP
∗
Th)H + (Tsx |TsPTP

∗
Th)K,

consequently,

(Tsx |TsPTP
∗
Th)K = (x |h− PTP

∗
Th)H.

This implies that

PTP
∗
Th ∈ dom(Ts)

∗Ts and h = (I + (Ts)
∗Ts)PTP

∗
Th,

that is, PTP
∗
T = (I +(T ∗)sTs)

−1. Since we have identity T ∗T = (T ∗)sTs by Lemma
5.1, the proof of part (a) is complete.

(b) Take any vector h ∈ H. From (a) and equality P
†
TPTP

∗
T = P ∗

T we conclude
that

QTP
∗
Th = QTP

†
TPTP

∗
Th = QTP

†
T (I + T ∗T )−1h

= QT {(I + T ∗T )−1h, Ts(I + T ∗T )−1h}

= Ts(I + T ∗T )−1h,

whence we get identity (b).
(c) Replacing T by T ∗ in (b), we obtain that

QT∗P
∗
T∗ = (T ∗)s(I + TT ∗)−1.

On the other hand, it follows from Theorem 3.6 (ii) (c) that PTQ
∗
T = QT∗P ∗

T∗ ,
hence the desired identity follows.

(d) First we note that

(I − Pm)QT = TsPT ,

because for {x, y} ∈ T ,

(I − Pm)QT {x, y} = (I − Pm)y = Tsx = TsPT {x, y}.

From this and (c) we get that

(I − Pm)QTQ
∗
T = TsPTQ

∗
T = Ts(T

∗)s(I + TT ∗)−1

= (TT ∗)s(I + TT ∗)−1.

On the other hand, we have

QTQ
∗
T = I − PT∗P

∗
T∗ ,

by Theorem 4.1 (ii) (b). Since ranPT∗ = domT ∗ ⊂ (mulT )⊥, we get

PmQTQ
∗
T = Pm − PmPT∗P

∗
T∗ = Pm.

From the above identities we get

QTQ
∗
T = PmQTQ

∗
T + (I − Pm)QTQ

∗
T = Pm + (TT ∗)s(I + TT ∗)−1,

which completes the proof. �

Remark 5.3. We notice that P †
T appearing in the proof of the preceding theorem is

identical with the Moore-Penrose inverse of PT , cf. [3] or [4]. We also remark that
the proof might be slightly simplified when T is a closed operator. Namely, in that

case we have T = Ts and P
†
T = P−1

T .
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Corollary 5.4. Let T be a densely defined closed linear operator between two Hilbert
spaces. Then

(a) PTP
∗
T = (I + T ∗T )−1,

(b) QTP
∗
T = T (I + T ∗T )−1,

(c) PTQ
∗
T = T ∗(I + TT ∗)−1,

(d) QTQ
∗
T = TT ∗(I + TT ∗)−1.

Proof. The proof is straightforward from Theorem 5.2 by noticing that Pm = 0
whenever T is a densely defined closed operator. �

In the next proposition we describe the kernel and range spaces of the contrac-
tions QT and Q∗

T .

Proposition 5.5. For every linear relation T between H and K we have

(a) kerQT = (H× {0}) ∩ T ,
(b) ranQT = ranT ,
(c) kerQ∗

T = (ranT )⊥,

(d) ranQ∗
T = (Ts)|ran T∗∩domT ⊕̂({0} ×mulT ).

Proof. Throughout the proof we shall assume, for sake of simplicity, that T is closed.
Statement (a) follows immediatly from

kerQT =
{
{x, y} ∈ T : y = 0

}
=

{
{x, 0} : {x, 0} ∈ T

}
.

Statements (b) and (c) are straightforward form the very definition of QT . Finally,
let us prove assertion (d). According to Theorem 5.2 (c) and (d) we have

ranQ∗
T =

{
{PTQ

∗
Tk,QTQ

∗
Tk} : k ∈ K

}

=
{
{(T ∗)s(I + TT ∗)−1k, Ts(T

∗)s(I + TT ∗)−1k + Pmk : k ∈ K
}

=
{
{(T ∗)s(I + TT ∗)−1k, (TT ∗)s(I + TT ∗)−1k} : k ∈ K

}
+̂({0} ×mulT ),

where in the last equality we used that

ker(I + TT ∗)−1 = mulTT ∗ = mulT = ranPm.

We have on the other hand
{
{(T ∗)s(I + TT ∗)−1k, (TT ∗)s(I + TT ∗)−1k} : k ∈ K

}
=

=
{
{(T ∗)sz, Ts(T

∗)sz} : z ∈ domTs(T
∗)s

}

= Ts|ran(T∗)s∩ domTs
.

Finally we note that domTs = domT and that mulT ∗ = domT and therefore

ran(T ∗)s ∩ domTs = ranT ∗ ∩ domT.

This together with the above observations yields identity (d). �

Corollary 5.6. Let T be a closed linear operator between H and K, then

ranQ∗
T = T |ranT∗∩ domT .

Corollary 5.7. Let T be a closed linear relation between H and K, then

Ts = Ts|domT∗T +̂Ts|ranT∗∩ domT .

If T is a closed operator, then

T = T |domT∗T +̂T |ranT∗∩ domT .
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Proof. Recall that the operator matrix UT,T∗ defined by (4.3) with S := T ∗ is an
isometry hence, in particular one has P ∗

TPT + Q∗
TQT = IG(T ). As a consequence,

we have by [5, Theorem 2.2] that

T = ran(P ∗
TPT +Q∗

TQT )
1/2 = ranP ∗

T +̂ ranQ∗
T

= Ts|domT∗T +̂Ts|ranT∗∩ domT +̂ ({0} ×mulT ).

Now the desired identity follows since Ts = T ⊖̂ ({0} ×mulT ). �

We conclude the paper with an application of the results. Let T be a closed
linear relation between the Hilbert spacesH andK and denote by ET the orthogonal
projection of H×K onto T . Then ET admits a matrix representation as an operator
in H×K:

ET =

[
E11 E12

E21 E22

]
,

where the components Eij are bounded operators between the appropriate Hilbert
spaces. Recall that ET is was called the characteristic projection of T by Stone, who
proved that the entries Eij may be expressed in terms of T and T ∗, provided that
T is a densely defined and closed operator (see [17, Theorem 4], cf. also [9, Theorem
3]):

ET =

[
(T ∗T + I)−1 T ∗(TT ∗ + I)−1

T (T ∗T + I)−1 TT ∗(TT ∗ + I)−1

]
.

In [6, Lemma 6.4], the above result of Stone was extended to closed linear relations.
In the ensuing theorem we are going we restate this general result as a straightfor-
ward consequence of Theorem 5.2:

Theorem 5.8. Let T be a closed linear relation between the Hilbert spaces H and
K. Then the characteristic projection ET of T can be written as

ET =

[
PTP

∗
T PTQ

∗
T

QTP
∗
T QTQ

∗
T

]
=

[
(T ∗T + I)−1 (T ∗)s(TT

∗ + I)−1

Ts(T
∗T + I)−1 I − (TT ∗ + I)−1

]

Proof. Consider the canonical embedding operator VT : G(T ) → H×K, given by

VT :=

[
PT

QT

]
{x, y} := {x, y}, {x, y} ∈ T.

Clearly, VT is a linear isometry with range T and therefore VTV
∗
T is identical with

ET , i.e.,

ET =

[
PT

QT

] [
P ∗
T Q∗

T

]
=

[
PTP

∗
T PTQ

∗
T

QTP
∗
T QTQ

∗
T

]
.

Theorem 5.2 completes now the proof. �
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