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APPLICATIONS OF THE BIELECKI RENORMING TECHNIQUE

MIHÁLY BESSENYEI AND ZSOLT PÁLES

ABSTRACT. The renorming technique allows one to apply the Banach Contraction Principle for maps
which are not contractions with respect to the original metric. This method was invented by Bielecki and
manifested in an extremely elegant proof of the Global Existence and Uniqueness Theorem for ODEs. The
present paper provides further extensions and applications of Bielecki’s method to problems stemming
from the theory of functional analysis and functional equations.

1. INTRODUCTION

The Banach Contraction Principle [2] provides a sufficient condition for the fixed point property of a
self map of complete metric space in terms of contractivity. However, important situations occur when
contractivity cannot be guaranteed whereas fixed point property is still expected. In such situations,
the following idea may help: Find a metric in which the original space remains complete and in which
the original map becomes a contraction. Then, the Contraction Principle applies. On the other hand,
the fixed point property is a metric-independent, algebraic property. Thus our map must have a unique
fixed point.

Another standard trick is to verify that some iterate of the given map is a contraction and then the
unique fixed point property again follows from the Contraction Principle. In fact, this approach is less
general than the remetrization technique: If, for T : X → X there exists k ∈ N such that T k is a
q-contraction of the metric space (X, d), then T is a k

√
q-contraction of the metric space (X, dk), where

dk(x, y) := d(x, y) + q−
1

kd(Tx, Ty) + · · ·+ q−
k−1

k d(T k−1x, T k−1y) (x, y ∈ X).

Indeed, by the q-contractivity of T k, we have

dk(Tx, Ty) = d(Tx, Ty) + q−
1

kd(T 2x, T 2y) + · · ·+ q−
k−1

k d(T kx, T ky)

≤ d(Tx, Ty) + q−
1

kd(T 2x, T 2y) + · · ·+ q1−
k−1

k d(x, y) = q
1

kdk(x, y).

The remetrization idea appears in the paper of Bielecki [6], and manifests in an extremely elegant
proof of the Global Existence and Uniqueness Theorem for ODEs. In fact, this proof shows the unique
solvability of an integral equation which is equivalent to the original Cauchy problem. Comparing this
integral equation to that of Volterra, one can immediately discover their relationship. However, Volterra
equations are handled quite differently: The standard approach is to show that some iterates of the map
determined by the Volterra equation is a contraction in the original norm.

Therefore the question arises: Can we prove these results in the same way? In this paper, we give a
positive answer to this question by Bielecki’s method. We are going to investigate the nonlinear integral
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equation

x(t) = f(t) +

∫

H(t)

K
(

t, s, x(s)
)

dµ(s).

The unknown function x belongs to the space of continuous functions C (X,B), were B is a Banach
space and X is a locally compact topological space with Radon measure µ. The integral is meant in the
sense of Bochner. The domain of integration is given by a relation H ⊆ X2 whose properties will be
clarified later.

Our main results provide existence and uniqueness theorems for the solvability of the equation above.
The sufficient condition that we need, the most important feature of the theorem, is the solvability of
a homogeneous linear integral inequality which is connected to the Lipschitz property of the kernel
function K. The advantage of this assumption is obvious: Finding a solution to a homogeneous linear
integral inequality is much easier then finding the (unique) solution of an inhomogeneous nonlinear
integral equation. Although this is not the aim of the paper, let us point out that our assumption can
also be checked via standard numerical methods.

Let us point out, that several important particular cases of the above equation have been studied
intensively. The monographs of Corduneanu [8], of Gripenberg, Londen, and Staffans [11], and of
Guo, Lakshmikantham, and Liu [12] give an excellent overview of the topic. Corduneanu [8] presents
a nice issue on the prehistory and the evolution of the seminal works of Fredholm [10] and Volterra
[17].

Recent developments about integral equations basically extend the range of the functions beyond
Banach spaces to fuzzy spaces [16] and so-called L-spaces [1]. However, the unknown functions are
defined only on intervals. In our setup, the generalization concerns the domain, as well. This has an
immediate effect even to the classical cases: we can treat the Volterra- and Fredholm-type equations
with the Global Existence and Uniqueness Theorem simultaneously.

The paper is organized as follows. As preliminaries, we collect the most important tools from set
theory, measure theory and functional analysis. The most important results in this section are an ex-
tension lemma which allows to change local fixed point properties to a global one, and a regularity
lemma, which corresponds to the continuity of the classical integral function. An alternative approach
to the Bochner integrability of continuous maps on compact domains is also presented. Finally, we
introduce the spectral radius function and enlighten its connection to an integral equation. In the next
section, we present our main results with their proofs. Finally, in the last three sections, we give several
applications to Fredholm- and Volterra-type integral equations and to Presić-type functional equations.
Our method allows us to present the Global Existence and Uniqueness Theorem of ODEs and of a
Wawe-type Equation in a common, unique form.

2. PRELIMINARIES

Throughout in this paper, N and R+ stand for the set of positive integers and the set of positive reals,
respectively. The aim of this section is to give a brief overview of the needed theoretical background.
In the first well-known statement let us recall the basic fixed point theorem which was established by
Banach [2] in 1922.

Contraction Principle. If T is a self-map of a nonempty set S such that S can be equipped with a

complete metric in which T is a contraction, then T has a unique fixed point in S. Furthermore, for all

x1 ∈ S, the sequence (xn)n∈N defined by the Banach–Piccard iteration

xn+1 := Txn

converges to the unique fixed point of T .
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In the sequel, some set-theoretical tools are presented. As usual, BX stands for all maps acting on
X and having values in B. The restriction of x ∈ BX to a set H ⊆ X is denoted by x↾H . Let F be a
subset of BX and let T be a self-map of F . For a subset H of X , denote the set {x↾H : x ∈ F} by
FH . We say that T is restrictable to FH if

(Tx)↾H= (Ty)↾H whenever x↾H= y↾H .

In this case, TH(x ↾H) := (Tx) ↾H defines a function TH : FH → FH , which we call the natural

restriction of T to FH . Our first extension result gives a sufficient condition in order to local fixed
point properties be a global one.

Proposition 1. Let F ⊆ BX , let T : F → F , and let H ⊆ P(X). Assume that

(i) H is a cover for X;

(ii)
⋃{H ∈ H | H ⊂ H1 ∩H2} = H1 ∩H2 for all H1, H2 ∈ H ;

(iii) if x↾H∈ FH for all H ∈ H , then x ∈ F ;

(iv) T is restrictable to FH for all H ∈ H ;

(v) for all H ∈ H , the natural restriction TH has a unique fixed point xH ∈ FH .

Then T has a unique fixed point in F .

Proof. Assume that H0, H ∈ H and H ⊂ H0. If x ∈ FH0
, then there exists u ∈ F such that

x = u↾H0
. Since T is restrictable both to FH0

and FH ,

(TH0
x)↾H= ((Tu)↾H0

)↾H= (Tu)↾H= TH(u↾H) = TH(x↾H)

follows. In particular, if xH0
is the unique fixed point of TH0

, we arrive at

xH0
↾H= (TH0

(xH0
))↾H= TH(xH0

↾H).

Thus xH0
↾H is a fixed point of TH in FH . However, the fixed point of TH is unique, yielding xH0

↾H=
xH . This property enables us to define a function in the following way. If t ∈ X , then there exists
H0 ∈ H such that t ∈ H0. Then let x(t) := xH0

(t). The definition is correct: If H1 and H2 share these
properties, then there exists H ∈ H such that H ⊂ H1 ∩ H2 and t ∈ H . Hence, using the previous
observation,

xH1
(t) = xH1

↾H (t) = xH(t) = xH2
↾H (t) = xH2

(t).

Obviously, x↾H= xH holds for all H ∈ H , and hence x belongs to F . Moreover, we show that x is
a fixed point of T . Indeed, if t ∈ X and H ∈ H contains t, then

(Tx)(t) = (Tx)↾H (t) = TH(x↾H)(t) = TH(xH)(t) = xH(t) = x(t).

On the other hand, any fixed point x ∈ F of T possesses x↾H= xH . Therefore the uniqueness of xH

provides the uniqueness of x, as well. �

Using relations instead of covering families can be more convenient: It turns out that some well-
known properties of relations imply the first three properties of Proposition 1. We summarize these in
the next result. As usual, any subset H of X2 is termed a relation on X . Recall that any relation H
induces a set-valued map H(·) via the definition

H(t) := {s ∈ X | (t, s) ∈ H}.
A relation H on a topological space X is called strongly surjective, if the induced set-valued map
generates an open cover:

⋃

t∈X

H(t)◦ = X.

Proposition 2. Let H be a relation on a nonempty set X .

(i) If H is transitive, then H(s) ⊆ H(t) whenever s ∈ H(t).
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(ii) If H is reflexive and transitive, then, for all t1, t2 ∈ X ,
⋃

{H(t) | H(t) ⊂ H(t1) ∩H(t2)} = H(t1) ∩H(t2).

Assume that X, Y are topological spaces, and H is a strongly surjective relation on X . If a map

x : X → Y satisfies x↾H(t)∈ C (H(t), Y ) for all t ∈ X , then x ∈ C (X, Y ).

Proof. Assume that H is transitive. Fix s ∈ H(t) and choose u ∈ H(s). Then, (t, s) ∈ H and
(s, u) ∈ H . By transitivity, (t, u) ∈ H . Thus u ∈ H(t), and hence H(s) ⊆ H(t) follows.

Assume that H is reflexive. Then, t ∈ H(t) for all t ∈ X , in particular, for all t ∈ H(t1)∩H(t2). On
the other hand, the transitivity implies that H(t) ⊂ H(t1)∩H(t2) also holds for all t ∈ H(t1)∩H(t2).
Therefore,

H(t1) ∩H(t2) ⊆
⋃

{H(t) | H(t) ⊂ H(t1) ∩H(t2)}.
The reversed inclusion is trivial.

Assume that X, Y are topological spaces and H is strongly surjective on X . Consider a function
x : X → Y fulfilling our requirement. Fix t0 ∈ X and let V ⊂ Y be a neighborhood of x(t0). Since
H is strongly surjective, t0 ∈ H(t)◦ for some t ∈ X . The restriction x↾H(t) is continuous, thus there
exists a neighborhood W ⊆ H(t)◦ of t such that x(W ) = x↾H(t) (W ) ⊂ V . On the other hand, W can
be represented as W = U ∩ H(t)◦, where U is open (in the original topology) and contains t0. Thus
W ⊂ X is a neighborhood of t0 in the original topology, as well. Therefore, x ∈ C (X, Y ). �

Consider the space B(X,B) of all bounded maps from a nonempty set X to a metric space (B, d).
In what follows, we will equip this space by a family of equivalent norms parametrized by admissible
weight functions. A function p : X →]0,+∞[ is termed an admissible weight function on X if it
satisfies 0 < infX p ≤ supX p < +∞; the collection of such functions is denoted by W (X). For an
arbitrary p ∈ W (X) and x, y ∈ B(X,B), define

dp(x, y) := sup
t∈X

p(t)d
(

x(t), y(t)
)

.

The following result summarizes the properties of the function dp which will play a key role in the
renorming processes.

Proposition 3. Let X be a nonempty set and (B, d) be a metric space. Then {dp | p ∈ W (X)} is a

family of pairwise equivalent metrics on the space B(X,B). In addition, if (B, d) is complete, then

(B(X,B), dp) is also complete for all p ∈ W (X).
Furthermore, the space C (X,B) of all continuous maps from a compact topological space X to a

complete metric space (B, d) is a complete subspace of (B(X,B), dp) for all p ∈ W (X).

Proof. It is elementary to see that dp is a metric on B(X,B) for all p ∈ W (X). For simplicity, the
constant weight function p(t) = 1 on X will be denoted by 1. One can verify that

inf
X

p · d1 ≤ dp ≤ sup
X

p · d1,

which proves that dp is equivalent to d1 for all p ∈ W (X). Hence {dp | p ∈ W (X)} is a family of
pairwise equivalent metrics.

Let (B, d) be a complete metric space. In view of the equivalence of the metrics dp, it is sufficient to
show that (B(X,B), d1) is a complete metric space.

As previously, denote the set of all functions from X to B by BX . Then, the Cauchy criterion of
uniform convergence holds in BX : A sequence (xn) tends to x ∈ BX in the supremum distance d1 if
and only if, for all ε > 0 there exists δ > 0 such that

d
(

xn(t), xm(t)
)

< ε
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holds, whenever n,m > δ and t ∈ X .
Consider now a Cauchy sequence in (B(X,B), d1). This sequence fulfills the Cauchy criterion and

hence converges uniformly to some element of BX . The triangle inequality guarantees that this element
belongs to B(X,B), which then yields completeness.

If X is a compact topological space, then C (X,B) is a linear subspace of B(X,B). Therefore any
Cauchy sequence (xn) of C (X,B) is a Cauchy sequence also in B(X,B). By the previous part, (xn)
tends to some element x ∈ B(X,B) in the supremum distance. Now fix t0 ∈ H arbitrarily. By the
triangle inequality,

d
(

x(t), x(t0)
)

≤ 2d1(x, xn) + d
(

xn(t), xn(t0)
)

holds for any t ∈ X . This estimation gives the continuity of x at t0. Therefore C (X,B) is complete.
�

In a part of the investigations, we will use the Bochner integral [7]. For convenience, we recall its
definition and its most important properties based on Yosida’s book [18]. Let (X,Σ, µ) be a measure
space and let (B, ‖ · ‖) be a Banach space. Consider a simple function x : X → B of the form

x(t) :=
n
∑

k=1

χEk
(t)bk,

where E1, . . . , En are pairwise disjoint members of the σ-algebra Σ, the elements b1, . . . , bn belong to
B, and χE is the characteristic function of E. If µ(Ek) is finite whenever bk 6= 0, then x is called
Bochner integrable, and its Bochner integral is defined by

∫

X

xdµ :=

n
∑

k=1

µ(Ek)bk.

A measurable function x : X → B is Bochner integrable, if there exists a sequence of integrable
simple functions (xn) such that

lim
n→∞

∫

X

‖x− xn‖dµ = 0,

where the integral on the left-hand side is the usual Lebesgue integral. In this case, the Bochner integral
of x is given by

∫

X

xdµ := lim
n→∞

∫

X

xndµ.

It can be shown that the definitions of Bochner integrability and the Bochner integral are independent
on the choice of the approximating sequence. The Bochner integral shares many properties with the
Lebesgue integral: It is linear, σ-additive and fulfills the triangle inequality.

Bochner’s majorant condition for integrability plays a distinguished role. A function f : X → B
is called Bochner-measurable if it is equal µ-almost everywhere to a function g taking values in a
separable subspace L of B, such that the inverse image g−1(V ) of every open set V in B belongs to Σ.
Bochner’s criterion states that a Bochner-measurable function x : X → B is Bochner integrable if and
only if

∫

X

‖x‖dµ < ∞.

The last proposition gives a sufficient condition under which continuous functions are Bochner inte-
grable. Its statement turns out to be crucial in our investigations.

Proposition 4. If X is a compact topological space with a finite Borel measure and B is a Banach

space, then C (X,B) consists of Bochner integrable maps.
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Proof. Let x ∈ C (X,B) be arbitrary. Since x is continuous and X is compact, x(X) is compact. In
particular, x(X) is completely bounded and thus contains a countable dense subset D. The linear hull
of D provides a separable subspace L: The rational linear combinations of D is a countable dense
subset in L. Hence the range of x is contained in a separable linear subspace of B. By the continuity
of x, the inverse image x−1(V ) of any open set V in B is open in X . That is, x−1(V ) belongs to the
underlying Borel σ-algebra. Therefore x is Borel-measurable.

Using the compactness of X , the continuity of x, and the finiteness of the Borel measure µ, we arrive
at

∫

X

‖x‖dµ ≤
∫

X

‖x‖∞dµ = ‖x‖∞µ(X) < ∞.

Thus the desired statement follows from Bochner’s majorant condition. �

Assume that X is a topological space with a Radon measure µ. A relation H ⊆ X2 is called µ-

continuous at a point t0 ∈ X if, for all ε > 0, there exists a neighborhood U of t0 such that

µ
(

(H(t) \H(t0)) ∪ (H(t0) \H(t))
)

< ε

whenever t ∈ U . If H is µ-continuous at each point of X , then we say that H is µ-continuous.
As it is well-known, the integral of an integrable function is continuous at its upper limit. The next

proposition extends this fact and, what is more important, will justify those integral equations which
we are going to study.

Proposition 5. Let X be a topological space with a Radon measure µ, and let H ⊂ X2 be a transitive,

compact valued, strongly surjective, and µ-continuous relation. If B is a Banach space and R : H → B
is continuous, then

Φ(t) :=

∫

H(t)

R(t, s)dµ(s)

defines a continuous map Φ: X → R.

Proof. Note that the definition of Φ makes sense in view of Proposition 4. Fix t0 ∈ X . The triangle
inequality for the Bochner integral guarantees that

∥

∥

∥

∥

∫

H(t)

R(t, s)dµ(s)−
∫

H(t0)

R(t0, s)dµ(s)

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

H(t)

R(t, s)dµ(s)−
∫

H(t)∩H(t0)

R(t, s)dµ(s)

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

H(t)∩H(t0)

R(t, s)dµ(s)−
∫

H(t)∩H(t0)

R(t0, s)dµ(s)

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

H(t)∩H(t0)

R(t0, s)dµ(s)−
∫

H(t0)

R(t0, s)dµ(s)

∥

∥

∥

∥

≤
∫

H(t)\H(t0)

‖R(t, s)‖ dµ(s)

+

∫

H(t)∩H(t0)

‖R(t, s)− R(t0, s)‖ dµ(s)

+

∫

H(t0)\H(t)

‖R(t0, s)‖ dµ(s).

Here the last term tends to zero as t → t0 by the absolute continuity of the integral and by the µ-
continuity of H at t0. Next we prove the same property of the first term by showing the boundedness of
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the integrand at a neighborhood of t0. Since H generates a strongly surjective map, there exists t∗ ∈ X
such that t0 ∈ H(t∗)◦. By transitivity, H(t) ⊆ H(t∗) if t ∈ H(t∗). Thus,

sup
s∈H(t)

‖R(t, s)‖ ≤ sup{‖R(t, s)‖ : t, s ∈ H(t∗)} < +∞,

since the right-hand side is the continuous image of a compact set. Using the µ-continuity, we arrive at
the desired statement.

Finally, we show that the middle term tends to zero as t → t0. Clearly, it is sufficient to prove that

lim
t→t0

sup
s∈H(t0)

‖R(t, s)− R(t0, s)‖ = 0.

Let ε > 0 be arbitrary. If s ∈ H(t0), then H(s) ⊆ H(t0). On the other hand, by the continuity of R,
there exists a neighborhood Us of t0 and a neighborhood Vs of s, such that

‖R(t, σ)− R(t0, s)‖ <
ε

2

whenever (t, σ) ∈ (Us × Vs) ∩H . The family of s-neighborhoods {Vs | s ∈ H(t0)} is an open cover
for the compact set H(t0). Thus H(t0) ⊆ Vs1 ∪ · · · ∪ Vsm holds with suitable s-neighborhoods. Define
U := Us1 ∩ · · · ∩ Usm . Then, U is a neighborhood of t0. For (t, σ) ∈ (U ×H(t0)) ∩H , there exists an
index j ∈ {1, . . . , m} such that σ ∈ Vsj . Hence

‖R(t, σ)− R(t0, σ)‖ ≤ ‖R(t, σ)−R(t0, sj)‖+ ‖R(t0, sj)−R(t0, σ)‖ <
ε

2
+

ε

2
= ε.

This completes the proof. �

Observe that the existence of a compact-valued strongly surjective relation H ⊆ X2 has a serious
consequence: the underlying topological space X must be locally compact. Although this fact will not
be stated explicitly, our results remain true in such spaces.

Let X be a topological space with a Radon measure µ and let H ⊆ X2 be a reflexive, transitive,
compact-valued, strongly surjective, and µ-continuous relation. Then, by Proposition 5, the map ΛH,µ

defined by
(

ΛH,µx
)

(t) :=

∫

H(t)

xdµ

is a linear selfmap of the space C (X,R). This we will be called the core map associated to the pair

(H, µ). In this context, it is also natural to introduce the spectral radius function of ΛH,µ by

ρH,µ(t) := lim sup
k→∞

((

Λk
H,µ1

)

(t)
)

1

k

= lim sup
k→∞

(

∫

H(t)

(
∫

H(s1)

. . .

(
∫

H(sk−1)

dµ(sk)

)

. . . dµ(s2)

)

dµ(s1)

)
1

k

.

The spectral radius function is monotonic in the following sense: If s ∈ H(t), then the transitivity of
H implies that H(s) ⊆ H(t), and hence, ρH,µ(s) ≤ ρH,µ(t).

Proposition 6. Let X be a topological space with a Radon measure µ, and let H ⊂ X2 be a reflexive,

transitive, compact valued, strongly surjective, and µ-continuous relation. Let L0 ≥ 0 and t0 ∈ X such

that

L0 · ρH,µ(t0) < 1.

Then, the integral equation

(1) ℓ(t) = 1 + L0

∫

H(t)

ℓ(s)dµ(s)
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has a positive solution ℓ in : H(t0) → R+.

Proof. Define the sequence of real valued functions (ℓn)∞n=0 on H(t0) by

ℓn(t) :=

n
∑

k=0

Lk
0 ·
(

Λk
H,µ1

)

(t).

Then, (ℓn) is a nondecreasing sequence whose members belong to the space C (H(t0),R) by Proposi-
tion 5. Moreover ℓ0 = 1, which implies that 1 = ℓ0 ≤ ℓn. It is also easy to see that, for all t ∈ H(t0)
and n ∈ N,

(2) ℓn(t) = 1 + L0 ·
(

ΛH,µℓn−1

)

(t) = 1 + L0

∫

H(t)

ℓn−1(s)dµ(s),

which shows that (ℓn) is a Banach–Piccard iteration sequence.
The Cauchy–Hadamard Theorem and the assumption L0 · ρH,µ(t0) < 1 guarantee that the series

∞
∑

k=0

Lk
0 ·
(

Λk
H,µ1

)

(t0)

is convergent. On the other hand, for t ∈ H(t0), the transitivity of H implies that H(t) ⊆ H(t0), hence,
for all k ∈ N,

(

Λk
H,µ1

)

(t) =

∫

H(t)

(

Λk−1
H,µ1

)

(s)dµ(s) ≤
∫

H(t0)

(

Λk−1
H,µ1

)

(s)dµ(s) =
(

Λk
H,µ1

)

(t0).

Therefore, the Weierstrass convergence theorem yields that

∞
∑

k=0

Lk
0 ·
(

Λk
H,µ1

)

(t)

is uniformly convergent for t ∈ H(t0). The members of (ℓn) are continuous, therefore the pointwise
limit function ℓ := limn→∞ ℓn is also continuous on H(t0). The inequality 1 ≤ ℓn implies that ℓ is
positive everywhere. Finally, upon taking the limit n → ∞ in (2), it follows that ℓ satisfies the integral
equation of the theorem. �

If the spectral radius function of the core map associated to (H, µ) is equal to zero at some t0 ∈ X ,
then as an immediate consequence of the Proposition 6, we get that the integral equation (1) has a
positive continuous solution on H(t0).

3. NONLINEAR INTEGRAL EQUATIONS

Our main results are presented in three theorems. The first one concludes the unique resolvability
of nonlinear integral equations provided that there exists a solution of the corresponding linear ho-
mogeneous integral inequality. This assumption makes possible to apply the renorming technique of
Bielecki. Moreover, it can easily be checked in practice via numerical methods.

Theorem 1. Let X be a topological space with a Radon measure µ, and let H ⊂ X2 be a reflexive,

transitive, compact valued, strongly surjective, and µ-continuous relation. Let B be a Banach space,

and assume that the continuous kernel K : H × B → B fulfills the Lipschitz condition

‖K
(

t, s, x
)

−K
(

t, s, y
)

‖ ≤ L(t, s)‖x− y‖
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for all (t, s) ∈ H and x, y ∈ B with a continuous function L : H → R+. If f ∈ C (X,B) and, for all

t0 ∈ X , the linear homogeneous integral inequality

(3)

∫

H(t)

L(t, s)ℓ(s)dµ(s) < ℓ(t)

has a positive solution ℓ in : H(t0) → R, then the nonlinear integral equation

(4) x(t) = f(t) +

∫

H(t)

K
(

t, s, x(s)
)

dµ(s)

has a unique solution x in C (X,B).

Proof. Note that the inequality (3) is correctly formulated by the transitivity of H , and that (4) makes
sense in view of Proposition 4. Now consider the map T defined by

(Tx)(t) := f(t) +

∫

H(t)

K(t, s, x(s))dµ(s).

By Proposition 5, the right-hand side above is a continuous function of t. Thus, T is a self-map of the
space C (X,B).

Fix now t0 ∈ X . If x, y ∈ C (X,B) fulfill x↾H(t0)= y↾H(t0), then by the transitivity of H , for all
t ∈ H(t0), we obtain

(Tx)↾H(t0) (t) = f(t) +

∫

H(t)

K(t, s, x(s))dµ(s)

= f(t) +

∫

H(t)

K(t, s, x↾H(t0) (s))dµ(s)

= f(t) +

∫

H(t)

K(t, s, y↾H(t0) (s))dµ(s)

= f(t) +

∫

H(t)

K(t, s, y(s))dµ(s) = (Ty)↾H(t0) (t).

This shows that T is restrictable to C (H(t0), B). Next we prove that this restriction, denoted by T
as well, has a unique fixed point in C (H(t0), B). Let ℓ : H(t0) → R+ be a positive and continuous
solution of (3). By the compactness of H(t0) and by Proposition 5 again,

q := max
t∈H(t0)

1

ℓ(t)

∫

H(t)

L(t, s)ℓ(s)dµ(s) < 1.
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For x, y ∈ C (H(t0), B), we have Tx, Ty ∈ C (H(t0), B). Applying the Lipschitz-condition, with the
notation p := 1/ℓ, we get that, for all t ∈ H(t0),

p(t)‖(Tx)(t)− (Ty)(t)‖ ≤ p(t)

∫

H(t)

‖K(t, s, x(s))−K(t, s, y(s))‖dµ(s)

≤ p(t)

∫

H(t)

L(t, s)‖x(s)− y(s)‖dµ(s)

≤ p(t)

∫

H(t)

L(t, s)

p(s)
‖x(s)− y(s)‖p(s)dµ(s)

≤
(

p(t)

∫

H(t)

L(t, s)

p(s)
dµ(s)

)

· ‖x− y‖p

=

(

1

ℓ(t)

∫

H(t)

L(t, s)ℓ(s)dµ(s)

)

· ‖x− y‖p

≤ q‖x− y‖p.
Taking supremum in t ∈ H(t0) in the initial term, we arrive at ‖Tx− Ty‖p ≤ q‖x− y‖p. This means
that the restriction of T to C (H(t0), B) is a contraction in the p-norm. Thus T has a unique fixed point
in C (H(t0), B) by the Contraction Principle. Finally, Proposition 2 and Proposition 1 complete the
proof. �

It is important to observe that, under these assumptions, our theorem implies that the integral equation

(5) ℓ(t) = 1 +

∫

H(t)

L(t, s)ℓ(s)dµ(s)

has a solution x ∈ C (X,R). On the other hand, consider the sequence (ℓn) determined by the Banach–
Piccard iteration

ℓ0(t) = 1, ℓn(t) := 1 +

∫

H(t)

L(t, s)ℓn−1(s)dµ(s).

Then, (ℓn) is nondecreasing with respect to the pontwise ordering, it converges to ℓ, and the convergence
is uniform on H(t0) for all t0 ∈ X . Therefore, 1 = ℓ0 ≤ ℓ shows that ℓ is a positive continuous solution
of (5) and thus also of (3) over the entire set X .

The next result is a global existence and uniqueness theorem for the solvability of nonlinear integral
equations. The role of the inequality (3) is hidden: Instead, we use the spectral radius function.

Theorem 2. Let X be a topological space with a Radon measure µ, and let H ⊂ X2 be a reflexive,

transitive, compact valued, strongly surjective, and µ-continuous relation. Let B be a Banach space,

and assume that the continuous kernel K : H × B → B fulfills the Lipschitz condition

‖K
(

t, s, x
)

−K
(

t, s, y
)

‖ ≤ L(t)‖x− y‖
for all (t, s) ∈ H and x, y ∈ B with a continuous function L : X → R+. If f ∈ C (X,B) and the

spectral radius function ρH,µ is identically zero on X , then the nonlinear integral equation (4) has a

unique solution x in C (X,B).

Proof. Obviously, the Lipschitz condition of this theorem implies the weaker Lipschitz condition of
Theorem 1. In order to draw the conclusion of this theorem, it is enough to verify the existence of a
positive continuous solution of the integral inequality (3) for all t0 ∈ X . For this goal, it is sufficient to
prove the solvability of the integral inequality

L0

∫

H(t)

ℓ(s)dµ(s) < ℓ(t),
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where L0 = supt∈H(t0) L(t). This assertion, however, directly follows from ρH,µ(t0) = 0 and Proposi-
tion 6 because any solution of (1) is also a solution of the above inequality. �

Finally, we state a theorem which allows multivariable kernels. Let us emphasize that, due to this
property, it allows even retardations in the nonlinear integral equation.

Theorem 3. Let X be a topological space with a Radon measure µ, and let H ⊂ X2 be a reflexive,

transitive, compact valued, strongly surjective, and µ-continuous relation. Let B be a Banach space,

and assume that the continuous kernel K : H × Bn → B fulfills the Lipschitz condition

‖K
(

t, s, x1, . . . , xn

)

−K
(

t, s, y1, . . . , yn
)

‖ ≤
n
∑

k=1

Lk(t, s)‖xk − yk‖

for all (t, s) ∈ H and xk, yk ∈ B with continuous functions Lk : H → R+. If f ∈ C (X,B), the

functions ϕ1, . . . , ϕn ∈ C (X,X) satisfy ϕk ◦H ⊆ H for all k ∈ {1, . . . , n}, and, for all t0 ∈ X , the

linear homogeneous integral inequality

n
∑

k=1

∫

H(t)

Lk(t, s)ℓ(ϕk(s))dµ(s) < ℓ(t)

has a positive solution ℓ in : H(t0) → R, then the nonlinear retarded integral equation

x(t) = f(t) +

∫

H(t)

K
(

t, s, x(ϕ1(s)), . . . , x(ϕn(s))
)

dµ(s)

has a unique solution x in C (X,B).

Obviously, Theorem 3 implies Theorem 1. However, the proof of the above result is completely
similar to that of Theorem 1, therefore it is omitted.

4. APPLICATIONS TO FREDHOLM-TYPE EQUATIONS

If X is a compact topological space with a Radon measure µ, then H = X2 is a reflexive, transitive,
and µ-continuous relation on X . Using this easy observation, Theorem 1 reduces to the next Fredholm-
type result:

Theorem 4. Let X be a compact topological space with a Radon measure µ, and let B be a Banach

space. Assume that the continuous kernel K : X2 ×B → B fulfills the Lipschitz condition

‖K(t, s, x)−K(t, s, y)‖ ≤ L(t, s)‖x− y‖
for all t, s ∈ X and x, y ∈ B with a continuous function L : X2 → R+. If the linear homogeneous

integral inequality
∫

X

L(t, s)ℓ(s)dµ(s) < ℓ(t)

has a positive solution ℓ in : X → R+, then the nonlinear Fredholm-type equation

(6) x(t) = f(t) +

∫

X

K(t, s, x(s))dµ(s)

has a unique solution x in C (X,B).

Not claiming completeness, we sketch two consequences of this result. The first corollary is a special
case of Theorem 4 if ℓ ≡ 1. In the second one, we assume that the Lipschitz modulus has a product
form.
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Corollary 1. Let X be a compact topological space with a Radon measure µ, and let B be a Banach

space. Assume that the continuous functions K : X2 ×B → B and L : X2 → R+ fulfill the conditions

‖K(t, s, x)−K(t, s, y)‖ ≤ L(t, s)‖x− y‖ and

∫

X

L(t, s)dµ(s) < 1

for all t, s ∈ X and x, y ∈ B. Then the nonlinear integral equation (6) has a unique continuous

solution x : X → B.

Corollary 2. Let X be a compact topological space with a Radon measure µ, and let B be a Banach

space. Assume that the continuous functions K : X2 × B → B and L1, L2 : X → R+ fulfill the

conditions

‖K(t, s, x)−K(t, s, y)‖ ≤ L1(t)L2(s)‖x− y‖ and

∫

X

L1(s)L2(s)dµ(s) < 1

for all t, s ∈ X and x, y ∈ B. Then the nonlinear integral equation (6) has a unique continuous

solution x : X → B.

Proof. First choose c > 0 so that
∫

H

(L1(s) + c)L2(s)dµ(s) < 1

be valid. Then, all conditions of Theorem 4 are satisfied with L(t, s) := (L1(t) + c)L2(s) and ℓ :=
L1 + c. Indeed,

∫

H

L(t, s)ℓ(s)dµ(s) =

∫

H

(L1(t) + c)L2(s)(L1(s) + c)dµ(s)

= (L1(t) + c)

∫

H

L2(s)(L1(s) + c)dµ(s)

< L1(t) + c = ℓ(t).

Thus the statement follows from Theorem 4. �

The particular cases of Corollary 1 and Corollary 2, when the kernel is the linear transform of the
unknown function, may also be mentioned:

Corollary 3. Let X be a compact topological space with a Radon measure µ. If f : X → R
m and

A : X2 → R
m×m are continuous and satisfy

∫

X

‖A(t, s)‖dµ(s) < 1,

then the inhomogeneous linear integral equation

x(t) = f(t) +

∫

X

A(t, s)x(s)dµ(s)

has a unique continuous solution x : X → R
m.

Corollary 4. Let X be a compact topological space with a Radon measure µ. If f : X → R
m, further

A1 : X → R
m×k and A2 : X → R

k×m are continuous such that
∫

X

‖A1(s)‖‖A2(s)‖dµ(s) < 1,

then the inhomogeneous linear integral equation

x(t) = f(t) +

∫

X

A1(t)A2(s)x(s)dµ(s)
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has a unique continuous solution x : X → R
m.

Observe that the original result of Fredholm follows from Corollary 3 in the special setting when X
is a compact interval, µ is the Lebesgue measure, and the kernel takes real values.

5. APPLICATIONS TO VOLTERRA-TYPE EQUATIONS

The standard exposition of Volterra’s result proves that a suitable iterate of the map defined via
Volterra’s equation is a contraction. Instead of the standard approach, we use the renorming tech-
nique and obtain a more general result. Now the solvability of the corresponding homogeneous linear
inequality (3) remains hidden.

Consider the standard partial order ≤ on R
n induced by the nonnegative orthant [0,∞[n: For a, b ∈

R
n, the inequality a ≤ b means that the coordinates of b − a are nonnegative. In this case, we define

the n-dimensional interval (rectangle) [a, b] ⊆ R
n by

[a, b] := {u ∈ R
n | a ≤ u ≤ b}.

We say that a set D ⊆ [0,∞[n is rectangular (with respect to the origin) if, for all u ∈ D, the rectangle
[0, u] is contained in D and the set [0,∞[n\D is closed in R

n.

Theorem 5. Let D ⊆ [0,∞[n be a rectangular set, let ∆(D) := {(t, s) | t ∈ D, s ∈ [0, t]}, and let

B be a Banach space. Assume that the continuous kernel K : ∆(D) × B → B fulfills the Lipschitz

condition

‖K
(

t, s, x
)

−K
(

t, s, y
)

‖ ≤ L(t)‖x− y‖
for all (t, s) ∈ ∆(D) and x, y ∈ B with a continuous function L : D → R+. If f : D → B is a

continuous function, then the nonlinear Volterra-type equation

(7) x(t) = f(t) +

∫

[0,t]

K
(

t, s, x(s)
)

ds

has a unique solution x in C (D,B).

Proof. Let X = D be equipped with the Euclidean subspace topology and set H := ∆(D). Then
H(t) = [0, t] for all t ∈ D, showing that the values of H are compact. Furthermore, H is reflexive,
transitive, strongly surjective, and continuous with respect to the n-dimensional Lebesgue measure λ.

In what follows, we show that the spectral radius function ρH,λ is identically zero on D. To accom-
plish this goal, first we prove by induction on k that, for all t ∈ D,

(8) (Λk
H,λ1)(t) =

λ([0, t])k

(k!)n
.

For k = 1, we have

(ΛH,λ1)(t) =

∫

[0,t]

1dλ(s) = λ([0, t]).

Now assume that (8) holds for some k, and let t = (t1, . . . , tn). Then, by Fubini’s theorem,

(Λk+1
H,λ1)(t) =

∫

[0,t]

(Λk
H,λ1)(s)dλ(s) =

∫

[0,t]

λ([0, s])k

(k!)n
dλ(s)

=
1

(k!)n

∫

[0,t]

(s1 · · · sn)kdλ(s1, . . . , sn) =
1

(k!)n

n
∏

i=1

∫ ti

0

ski dsi

=
1

(k!)n

n
∏

i=1

tk+1
i

k + 1
=

λ([0, t])k+1

((k + 1)!)n
.
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Finally, using the just have proved equality (8), for the spectral radius function ρH,λ, we obtain

ρH,λ(t) = lim sup
k→∞

(

(Λk
H,λ1)(t)

)
1

k = lim sup
k→∞

λ([0, t])
(

k
√
k!
)n = 0.

Thus, the assertion directly follows from Theorem 2. �

As the most important applications to Theorem 5, we present here two Corollaries. The first one
extends the classical result of Volterra. In this extension, the Lipschitz property of the kernel can be
checked directly, therefore we omit the details of the proof.

Corollary 5. Let D ⊆ [0,∞[n be a rectangular set and let ∆(D) := {(t, s) | t ∈ D, s ∈ [0, t]}.

If f : D → R
m and A : ∆(D) → R

m×m are continuous functions, then the inhomogeneous linear

Volterra equation

x(t) = f(t) +

∫

[0,t]

A(t, s)x(s)ds

has a unique continuous solution x : D → R
m.

The second application of Theorem 5 is an existence and uniqueness result for a boundary value
problem for a special kind of partial differential equation. In the particular case when n = 1, it reduces
to the Global Existence and Uniqueness Theorem, while for n = 2, it extends the one-dimensional
Wave Equation.

Corollary 6. Let D ⊆ [0,∞[n be a rectangular set and denote

D0 := {(t1, . . . , tn) ∈ D | t1 · · · tn = 0}.
Let F : D × R

m → R
m be a continuous map which fulfills the Lipschitz condition

‖F (t, x)− F (t, y)‖ ≤ L(t)‖x− y‖
for all t ∈ D and x, y ∈ R

m with a continuous function L : D → R+ and let ϕ : D0 → R
m be a

continuous function such that partial derivatives ∂nϕ, ∂n−1∂nϕ, . . . , ∂2 · · ·∂nϕ exist on D0. Then there

exists precisely one continuous solution x : D → R
m of the Cauchy problem

(9) ∂1 · · ·∂nx(t) = F
(

t, x(t)
)

on D, x(t) = ϕ(t) on D0.

Proof. Denote the set of singular and diagonal n × n matrices with entries in {0, 1} by Πn. First we
show that (9) is equivalent to the integral equation

(10) x(t) = f(t) +

∫

[0,t]

F
(

s, x(s)
)

ds,

where f : D → R
m is defined by

f(t) =
∑

P∈Πn

(−1)n−1−rank(P )ϕ(Pt).

For a fixed τ ∈ [0,∞[ and k ∈ {1, . . . , n} such that D ∩ (D − τek) 6= ∅, introduce the difference
operator ∆k;τ : C (D,Rm) → C (D ∩ (D − τek),R

m) by

(∆k;τx)(t) = x(t+ τek)− x(t),

where ek stands for the kth member of the standard base of Rn.
Assume that x : D → R

m is a continuous solution of the Cauchy problem (9). Then x is partially
differentiable with respect to its nth variable on D. Similarly, ∂nx is partially differentiable with respect
to its (n−1)st variable on D. Finally, ∂2 · · ·∂nx is partially differentiable with respect to its first variable
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on D and (9) hold on the indicated domains. The first equality shows that ∂1 · · ·∂nx is continuous on
D.

Let t = (t1, . . . , tn) ∈ D be fixed. Integrating the first equality in (9) side by side with respect to
the first variable on the interval [0, t1] and using the Newton–Leibniz formula in the first variable, we
obtain

(∆1;t1∂2 · · ·∂nx)(0, t2, . . . , tn) =
∫ t1

0

F (s1, t2, . . . , tn, x(s1, t2, . . . , tn))ds1.

Applying the same process on the forthcoming variables, finally we arrive at

(∆1;t1 · · ·∆n;tnx)(0, . . . , 0) =

∫ tn

0

· · ·
∫ t1

0

F (s1, . . . , sn, x(s1, . . . , sn))ds1 · · · dsn

=

∫

[0,t]

F (s, x(s))dλ(s).

On the other hand, using the boundary condition of (9), one can see that

(∆1;t1 · · ·∆n;tnx)(0, . . . , 0) = x(t) +
∑

P∈Πn

(−1)n−rank(P )ϕ(Pt) = x(t)− f(t).

For the converse statement, observe that the partial derivatives ∂nf , ∂n−1∂nf , . . . , ∂2 · · ·∂nf exist on
D by the similar properties of ϕ. Furthermore, each term in the definition of f is independent of one of
the variables, thus ∂1 · · ·∂nf = 0 on D. On the other hand, by Fubini Theorem,

x(t) = f(t) +

∫ tn

0

· · ·
∫ t1

0

F (s1, . . . , sn, x(s1, . . . , sn))ds1 · · · dsn

holds for any continuous solution x : D → R
m of (10) and for all t = (t1, . . . , tn) ∈ D. Differentiating

both sides with respect to tn, . . . , t1, we obtain the first equality in (9). For the second equality, let
t = (t1, . . . , tn) ∈ D0 be fixed. Then there exists k ∈ {1, . . . , n} such that tk = 0. In this case, the
above equation yields x(t) = f(t). Thus it remains to show that f(t) = ϕ(t) holds.

Let Ek ∈ Πn be that matrix whose entries are zero, except for the kth member of its diagonal. Let
Pk := E − Ek, where E is the n× n unit matrix. Consider the transformation T : Πn → Πn given by
T (P ) := P

.

+ Ek, where
.

+ stands for the addition in the set {0, 1} modulo 2. Clearly, T is a bijection
on Πn \ {Pk}, and tk = 0 ensures T (P )t = Pt. Furthermore, the parity of the ranks of P and T (P ) are
the opposite, and Pkt = t. Thus,

f(t) =
∑

P∈Πn

(−1)n−1−rank(P )ϕ(Pt)

= ϕ(Pkt) +
1

2

∑

P∈Πn\{Pk}

(

(−1)n−1−rank(P )ϕ(Pt) + (−1)n−1−rank(T (P ))ϕ(T (P )t)
)

= ϕ(Pkt) +
1

2

∑

P∈Πn\{Pk}

(

(−1)n−1−rank(P ) + (−1)n−1−rank(T (P ))
)

ϕ(Pt)

= ϕ(Pkt) = ϕ(t).

Applying Theorem 5 to the equivalent integral form of our Cauchy problem, we get the statement of
the Corollary. �

As we have pointed out, the Global Existence and Uniqueness Theorem of ODEs is a direct conse-
quence of Corollary 6. However, it is also worth mentioning that the original approach of Bielecki to
this result manifests in the proof of Theorem 1. Indeed, let H ⊆ R

2 be defined by H(t) := [τ, t] for
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τ < t, and let f ≡ ξ ∈ R
n be fixed initial value. Assume that the Lipschitz-modulus depends only on

the second variable of the kernel. If

ℓ(t) := exp

(
∫ t

τ

L(s)ds

)

,

then
∫ t

τ

L(s)ℓ(s)ds =

∫ t

τ

L(s) exp

(
∫ s

τ

L(u)du

)

ds =

∫ t

τ

d

ds
exp

(
∫ s

τ

L(u)du

)

ds

= exp

(
∫ t

τ

L(u)du

)

− 1 = ℓ(t)− 1 < ℓ(t).

Thus ℓ solves the corresponding inequality of (3) in this particular setting. Observe also, that the for-
mula (8) in Theorem 2 shows a tight analogue with the standard approach to Volterra’s result. However,
this standard approach proves that a suitable iterate of the map defined by the original integral equation
is a contraction in the original supremum norm.

6. APPLICATIONS TO PRESIĆ-TYPE EQUATIONS

Finally we investigate a class of single valued functional equations introduced by Presić in [15]
and [14]. An excellent English exposition of his results can be found in [13]. The interaction of
algebraic and analytic aspects of this topic is elaborated in [3] and [4]. The pure algebraic feature of
the linear Presić-type equation is completely described in [5]. The next result is a sufficient condition
for the unique solvability of the Presić-type equation, with no algebraic restrictions on the substituting
functions. Let us emphasize, that both its philosophy and idea of proof are the same as in Theorem 4.

Theorem 6. Let H be a reflexive, compact valued, strongly surjective relation on a topological space

X , and let (B, d) be a complete metric space. Assume that ϕ1, . . . , ϕn ∈ C (X,X) are such that

ϕk ◦H ⊆ H for all k ∈ {1, . . . , n}, and F ∈ C (X × Bn, B) satisfies the Lipschitz condition

d
(

F (t, x1, . . . , xn), F (t, y1, . . . , yn)
)

≤
n
∑

k=1

Lk(t)d(xk, yk)

for all t ∈ X and xk, yk ∈ B with continuous functions Lk : X →]0,+∞[. If there exists a positive

function ℓ in C (X,R) satisfying
n
∑

k=1

Lk(t)ℓ
(

ϕk(t)
)

< ℓ(t)

for all t ∈ X , then there exists a unique solution f in C (X,B) of the Presić-type functional equation

(11) f(t) = F
(

t, f(ϕ1(t)), . . . , f(ϕn(t))
)

.

Proof. For f ∈ C (X,B), consider the map T defined by

(Tf)(t) := F
(

t, f(ϕ1(t)), . . . , f(ϕn(t))
)

.

Clearly, T : C (X,B) → C (X,B). Fix t ∈ X and assume that two continuous functions f, g fulfill
f↾H(t)= g↾H(t). The inclusion ϕk

(

H(t)
)

⊆ H(t) then implies

f↾H(t) (ϕk(s)) = g↾H(t) (ϕk(s))

for all s ∈ H(t) and k = 1, . . . , n. Therefore,

Tf↾H(t) (s) = F
(

s, f↾H(t) (ϕ1(s)), . . . , f↾H(t) (ϕn(s))
)

= F
(

s, g↾H(t) (ϕ1(s)), . . . , g↾H(t) (ϕn(s))
)

= Tg↾H(t) (s).
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Thus T is restrictable to C (H(t), B). Now we prove that every natural restriction, denoted by T as
well, has a unique fixed point. The compactness of H(t), the continuity of Lk and ℓ, furthermore our
assumption imply

q := max
s∈H(t)

1

ℓ(s)

n
∑

k=1

Lk(s)ℓ
(

ϕk(s)
)

< 1.

We claim that T is a q-contraction in the complete metric space (C (H(t), B), dp), where the weight
function is given by p := 1/ℓ. Let f, g ∈ C (H(t), B) be arbitrary. Applying the Lipschitz-condition
and the definitions of q and p,

p(s)d
(

(Tf)(s), (Tg)(s)
)

=
1

ℓ(s)
d
(

F
(

s, f(ϕ1(s)), . . . , f(ϕn(s))
)

, F
(

s, g(ϕ1(s)), . . . , g(ϕn(s))
))

≤ 1

ℓ(s)

n
∑

k=1

Lk(s)d
(

f(ϕk(s)), g(ϕk(s))
)

=
1

ℓ(s)

n
∑

k=1

Lk(s)ℓ(ϕk(s))
d
(

f(ϕk(s)), g(ϕk(s)
)

ℓ(ϕk(s)
)

≤ 1

ℓ(s)

n
∑

k=1

Lk(s)ℓ(ϕk(s))dp(f, g)

≤ qdp(f, g).

Taking supremum for s ∈ H(t) in the left-hand-side term, we arrive at the desired contractivity prop-
erty. Therefore, T has a unique fixed point in C (H(t), B) by the Contraction Principle. Finally, Propo-
sition 2 and Proposition 1 show that T has a unique fixed point in C (X,B). This fixed point is the
unique continuous solution of the Presić-equation. �

The following result is an immediate consequence of the previous theorem.

Corollary 7. Let H be a reflexive, compact valued, strongly surjective relation on a topological space

X , and let B be a Banach space. Assume that ϕ1, . . . , ϕn ∈ C (X,X) fulfill ϕk(H(t)) ⊆ H(t) for all

k ∈ {1, . . . , n} and t ∈ X , and F ∈ C (X × Bn, B) satisfies the Lipschitz condition

‖F (t, x1, . . . , xn)− F (t, y1, . . . , yn)‖ ≤
n
∑

k=1

Lk(t)‖xk − yk‖ with

n
∑

k=1

Lk(t) < 1

for all t ∈ H and xk, yk ∈ B with continuous functions Lk : X →]0,+∞[. Then, there exists a unique

continuous solution f : X → B of the Presić-type functional equation (11).

The Presić equation was thoroughly treated and discussed in the monograph [9] by Czerwik. Our
results are parallel to those in [9], however, our assumptions are less technical and our theorems are
more general in many aspects, but these results are not comparable in general.

Acknowledgement. We wish to express our gratitude to professor KAROL BARON, who called
our attention to Czerwik’s monograph and sent us its hard copy, and to professor ÁRPÁD SZÁZ, who
suggested to use the relation terminology for the formulation of our main results.
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