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Abstract

Coupling of ‘t Hooft’s determinant term is investigated in the framework of the three flavor linear
sigma model as a function of the chiral condensate. Using perturbation theory around the minimum
point of the effective action, we calculate the renormalization group flow of the first field dependent
correction to the coupling of the conventional UA(1) breaking determinant term. It is found that at low
temperatures mesonic fluctuations make the anomaly increase when the chiral condensate decreases.
As an application, we analyze the effect at the zero temperature nuclear liquid–gas transition.

1 Introduction

The UA(1) subgroup of approximate UL(3)× UR(3) chiral symmetry is anomalously broken in quantum
chromodynamics (QCD). QCD is a strongly coupled theory, and as such, most accurate results can be
expected to emerge through lattice simulations. These, however, lack the ability to simulate the system
at finite density due to the notorius sign problem. To tackle this issue, it is common to build effective
models upon chiral symmetry, which are expected to capture essential features of QCD in the low energy
regime. Even at zero density, these models are known to provide reasonable results for temperatures
below that of the chiral transition [1].

In effective theories, such as the Nambu–Jona–Lasinio or linear sigma models this is taken into account
by ‘t Hooft’s determinant term. Coefficients of operators in the Lagrangian of field theories, including
the aforementioned determinant term, are considered to be (coupling) constants, without any field or
environment dependence. In the quantum version of the action, however, fluctuations introduce temper-
ature (T ), baryochemical potential (µB) and also field dependence as they become coefficient functions.
When talking about field dependence of a given coupling one has in mind the resummation of higher
dimensional operators that can reappear when Taylor expanding the coefficient functions in terms of the
field variable(s) around a conveniently chosen expansion point.

In QCD, it is well established that the anomalous breaking of UA(1) symmetry should gradually
disappear beyond the critical temperature, as at high T the instanton density causing the anomaly
exponentially vanishes [2, 3]. At lower temperatures, however, the situation is far from being understood
in a satisfactory fashion. One has also great interest in gaining results regarding the anomaly evolution
at finite µB due to the sign problem, as mentioned earlier.

1

http://arxiv.org/abs/2012.08706v2


The finite temperature and/or density behavior of the UA(1) anomaly represents an active direction
of research. More conservative results usually argue that the evaporation of the anomaly should follow
that of the chiral condensate and thus the UA(1) symmetry restores around the critical temperature (TC)
of the chiral transition[4, 5, 6, 7, 8]. There are also several arguments and results that indicate that it is
visible even beyond TC [9, 10, 11, 12, 13]. For example, earlier renormalization group studies indicate that
when considering a field dependent anomaly coefficient, it decreases as a function of the chiral condensate
[11, 14], and this profile function can also depend explicitly on the tempereture (though the former effect
is more dominant). Effective restoration of the anomaly has, e.g., a consequence regarding the order of
the chiral transition [15], the axion mass [16], and the fate of η′ meson, whose mass if substantially drops
[17, 18, 19, 20, 21, 22], in a nuclear medium could lead to the formation of an η′-nucleon bound state.

The goal of this paper is to calculate the first field dependent correction to the coupling of the ‘t Hooft
determinant in the effective action perturbatively, i.e., we determine the first Taylor coefficient of the
anomaly function. Determining this coefficient (at least qualitatively) allows for obtaining the behavior
of the anomaly strength as the function of the chiral condensate. This allows for providing answer for
the question whether the aforementioned results on anomaly strengthening [11, 14] can be reproduced
within a simple perturbative renormalizatrion group setting of the linear sigma model, or determining
a full functional dependence of the effective action is necessary. Fluctuations will be included using the
functional variant of the renormalization group (FRG) [23], in the so-called local potential approximation
(LPA). Even though renormalizable, we think of the model as an effective field theory, therefore, an ultra
violet (UV) cutoff is inherently part of the system, which we set to Λ = 1GeV (we expect the linear
sigma model to emerge from QCD around this scale). Our task is to integrate out all fluctuations below
Λ.

The paper is organized as follows. In Section 2, we introduce the model and the corresponding method
of the FRG. Section 3 is devoted for calculating the effective action and discussing the problem of the
expansion point of the Taylor series. After appropriate parametrization of the model, in Section 4, as
an application, we show how the anomaly strengthens at the zero temperature nuclear liquid–gas phase
transition. Section 5 contains the summary.

2 Model and method

The model we are working with in this paper is the three flavor linear sigma model, which is defined via
the following Euclidean Lagrangian:

L = Tr (∂iM
†∂iM) +m2 Tr (M †M) + g1

(

Tr (M †M)
)2

+ g2Tr (M
†M − Tr (M †M) · 1)2

+a(detM + detM †)− (h0s0 + h8s8), (1)

where M contains the meson fields, M = (sa + iπa)Ta [Ta = λa/2 are generators of the U(3) group with
λa being the Gell-Mann matrices, a = 0, ..., 8], m2 is the mass parameter and g1, g2 refer to independent
quartic couplings. As discussed in the previous section, the determinant term and the corresponding
a parameter is responsible for the UA(1) anomaly. We also have explicit symmetry breaking terms
containing h0 and h8, which represent finite quark masses.

Our main goal is to calculate the quantum effective action, Γ, built upon the theory defined via (1).
As announced in the introduction, we think of (1) as an inherently effective model, which is only valid
up to the scale Λ = 1GeV , therefore, one needs to take into account fluctuations with a cutoff Λ. The
scale dependent quantum effective action, Γk, which includes fluctuations with momenta larger than k
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(i.e., they are integrated out) is defined as

Zk[J ] =

∫

DMDM † exp
{

−
∫

L −
∫

(JM + h.c.)−
∫ ∫

M †RkM
}

,

Γk[M ] = − logZk[J ]−
∫

(JM + h.c.)−
∫ ∫

M †RkM, (2)

where we omitted matrix indices, J is the conjugate source variable to M , and Rk is an appropriately
chosen (bilocal) regulator function freezing fluctuations with momenta smaller than k. We note that the
integrals can be considered either in direct or Fourier spaces. The Γk functional, for homogeneous field
configurations, obeys the following, so-called flow equation [23]:

∂kΓk[M ] =
1

2
Tr

∫

x

∫

q

(Γ
(2)
k +Rk)

−1(q)∂kRk(q), (3)

where Γ
(2)
k is the second functional derivative of Γk in a homogeneous background field M , thus the

x integral merely gives a spacetime volume factor. We also assumed that the regulator is diagonal in
momentum space.

Our aim is to calculate the scale dependent effective action, Γk, in an approximation that takes into
account the evolution of the anomaly at the next-to-leading order, i.e., we wish to determine in Γk the
coefficient of the operator Tr (M †M) · (detM + detM †). Our ansatz for Γk is as follows:

Γk =

∫

x

[

Tr (∂iM
†∂iM) +m2

k Tr (M
†M) + g1,k

(

Tr (M †M)
)2

+ g2,k Tr (M
†M − Tr (M †M) · 1)2

+ak(detM + detM †) + a1,k Tr (M
†M) · (detM + detM †)− (h0s0 + h8s8)

]

. (4)

This is sometimes called the Local Potential Approximation (LPA), where momentum dependence is
only introduced into the two point function, via the standard kinetic term in (4). Note that the LPA
can be considered as the leading order of the derivative expansion, and there is substantial evidence that
these kind of series do converge [23]. As seen in (4), instead of working with a completely general field
dependent potential, we are employing perturbation theory in terms of the small parameter 1/Λ. That
is, by gradually including higher dimensional operators, since their coefficients scale with inverse powers
of the scale, the ansatz (4) in the UV can be thought of as a power series in 1/Λ. We choose (4) to be
compatible with (1), but all couplings come with k–dependence. The only exceptions are h0 and h8, as
one point couplings do not flow with respect to the scale. Furthermore, notice the new term proportional
to a1,k, which is key for our purposes to determine the anomaly behavior at k = 0. First, our task is to

calculate Γ
(2)
k from (4), then plug it into (3), and identify the individual differential equations for m2

k,
g1,k, g2,k, ak, and a1,k. Finally, these equations need to be integrated from k = 1GeV to k = 0 to
obtain Γ ≡ Γk=0. In the ansatz (4), obviously the actual strength of the anomaly is not described by the
parameter a, but rather a+ a1 · Tr (M †M)|min, where we need to evaluate the chiral condensates in the
minimum point of the effective action. Therefore, what we are basically after is the relative sign of a1
to a at k = 0 to decide whether the anomaly strengthens or weakens as the chiral condensate gradually
evaporates.

We finally note that there are various choices for the regulator function, Rk. In this paper we will stick
to Rk(q, p) ≡ Rk(q)(2π)

3δ(q+p) = (k2−q2)Θ(k2−q2)(2π)4δ(q+p), where Θ(x) is the step function. This
variant has been shown to be the optimal choice for the LPA [24], maximizing the radius of convergence
of an amplitude expansion.

3



3 Calculation of the effective action

The first step is to calculate Γ
(2)
k . In principle it is a 18× 18 matrix in the sa−πa space, and there is not

much hope that one can invert such a complicated expression analytically. Luckily, it is not necessary
at all, as in (4) we kept the field dependence up to the order of O(M5). By working with a restricted

background, Γ
(2)
k is easily invertable and by expanding the rhs of (3) in terms of the field variables it still

allows for identifying each operator that are being kept in (4).
A convenient choice is to work with M = s0T0 + s8T8. In such a background, the operators that need

to be identified are as follows:

ρ := Tr (M †M) =
1

2
(s20 + s28), (5a)

τ := Tr (M †M − Tr (M †M) · 1)2 =
1

24
s28(8s

2
0 − 4

√
2s0s8 + s28), (5b)

∆ := detM + detM † =
1

36
(2
√
6s30 − 3

√
6s0s

2
8 − 2

√
3s38). (5c)

The Γ
(2)
k matrix elements in the scalar sector read

Γ
(2)
k,s0s0

= q2 +m2
k + g1,k(3s

2
0 + s28) +

2

3
g2,ks

2
8 +

√

2

3
aks0 + ak,1

(5

3

√

2

3
s30 −

1

2
√
6
s0s

2
8 −

1

6
√
3
s38

)

, (6)

Γ
(2)
k,s0s8

= 2g1,ks0s8 + g2,k

(4

3
s0s8 −

1√
2
s28

)

− ak√
6
s8 − a1,k

( 1

2
√
6
s20s8 +

1

2
√
3
s0s

2
8 +

1√
6
s38

)

, (7)

Γ
(2)
k,s8s8

= q2 +m2
k + g1,k(s

2
0 + 3s28) + g2,k

(2

3
s20 −

√
2s0s8 +

1

2
s28

)

− ak

( 1√
6
s0 +

1√
3
s8

)

−a1,k
( 1

6
√
6
s30 +

1

2
√
3
s20s8 +

√

3

2
s0s

2
8 +

5

3
√
3
s38

)

, (8)

Γ
(2)
k,s1s1

= Γ
(2)
k,s2s2

= Γ
(2)
k,s3s3

= q2 +m2
k + g1,k(s

2
0 + s28) + g2,k

(2

3
s20 +

√
2s0s8 +

1

6
s28

)

+ak

(

− 1√
6
s0 +

1√
3
s8

)

+ a1,k

(

− 1

6
√
6
s30 +

1

2
√
3
s20s8 −

1√
6
s0s

2
8 +

1

3
√
3
s38

)

,

(9)

Γ
(2)
k,s4s4

= Γ
(2)
k,s5s5

= Γ
(2)
k,s6s6

= Γ
(2)
k,s7s7

= q2 +m2
k + g1,k(s

2
0 + s28) + g2,k

(2

3
s20 −

1√
2
s0s8 +

1

6
s28

)

−ak
( 1√

6
s0 +

1

2
√
3
s8

)

−a1,k
( 1

6
√
6
s30 +

1

4
√
3
s20s8 +

1√
6
s0s

2
8 +

5

12
√
3
s38

)

, (10)
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while the pseudoscalar components are

Γ
(2)
k,π0π0

= q2 +m2
k + g1,k(s

2
0 + s28)−

√

2

3
aks0 − a1,k

(1

3

√

2

3
s30 +

1

2

√

3

2
s0s

2
8 +

1

6
√
3
s38

)

, (11)

Γ
(2)
k,π0π8

= g2,k

(2

3
s0s8 −

1

3
√
2
s28

)

+
ak√
6
s8 + a1,k

( 1

2
√
6
s20s8 +

1

2
√
6
s38

)

, (12)

Γ
(2)
k,π8π8

= q2 +m2
k + g1,k(s

2
0 + s28) + g2,k

(

−
√
2

3
s0s8 +

1

6
s28

)

+ ak

( 1√
6
s0 +

1√
3
s8

)

+a1,k

(5

6

√

1

6
s30 +

1

2
√
3
s20s8 +

1

3
√
3
s38

)

, (13)

Γ
(2)
k,π1π1

= Γ
(2)
k,π2π2

= Γ
(2)
k,π3π3

= q2 +m2
k + g1,k(s

2
0 + s28) + g2,k

(

√
2

3
s0s8 −

1

6
s28

)

+ak

( 1√
6
s0 −

1√
3
s8

)

+ a1,k

(5

6

√

1

6
s30 −

1

2
√
3
s20s8 −

2

3
√
3
s38

)

, (14)

Γ
(2)
k,π4π4

= Γ
(2)
k,π5π5

= Γ
(2)
k,π6π6

= Γ
(2)
k,π7π7

= q2 +m2
k + g1,k(s

2
0 + s28) + g2,k

(

− 1

3
√
2
s0s8 +

5

6
s28

)

+ak

( 1√
6
s0 +

1

2
√
3
s8

)

+ a1,k

(5

6

√

1

6
s30 +

1

4
√
3
s20s8 +

1

12
√
3
s38

)

.

(15)

Using that ∂kRk(q) = 2kΘ(k2 − q2) and Γ
(2)
k (q) +Rk(q) = Γ

(2)
k (k) for q < k, from (3) we get

∂kΓk =

∫

x

k5

32π2
Tr

(

Γ
(2)
k (k)

)−1
. (16)

Plugging in the matrix elements calculated in the M = s0T0 + s8T8 background, we can expand the rhs
of (16) in terms of s0 and s8. After this step, using (5) we identify the ρ, τ and ∆ operators as

∂kΓk =

∫

x

[

∂km
2
k · ρ+ ∂kg1,k · ρ2 + ∂kg2,k · τ + ∂kak ·∆+ ∂ka1,k · ρ∆+ ...

]

, (17)

where

∂km
2
k = − k5

32π2

8(15g1,k + 4g2,k)

3(k2 +m2
k)

2
, ∂kg1,k =

k5

32π2

8(117g21,k + 48g1,kg2,k + 16g22,k)

9(k2 +m2
k)

3
,

∂kg2,k =
k5

32π2

48g1,kg2,k + 32g22,k
(k2 +m2

k)
3

, ∂kak =
k5

32π2

(8ak(3g1,k − 4g2,k)

(k2 +m2
k)

3
− 24a1,k

(k2 +m2
k)

2

)

,

∂ka1,k =
k5

32π2

(

32ak(−9g21,k + 6g1,kg2,k + 2g22,k)

(k2 +m2
k)

4
+

16a1,k(33g1,k − 2g2,k)

3(k2 +m2
k)

3

)

. (18)

Note that we treated the anomaly as perturbation and dropped every term beyond O(ak, a1,k). Introduc-
ing scale independent variables, from (18) one easily reproduces the well known 1-loop β functions of the
couplings in the linear sigma model [25]. Our task now is to solve Eqs. (18) starting from k = Λ ≡ 1GeV
to k = 0.
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Solving (18) all the way down to k = 0 would require m2
k > 0 throughout the renormalization

group flow. Since we wish to obtain phenomenologically reasonable results, the potential has to show
spontaneous symmetry breaking. That is to say, when all fluctuations are integrated out, m2

k=0 has to
be negative. But then there exists a critical scale k crit > 0, for which all denominators in (18) blow up
and the flow equations lose their meaning. The way out is to realize is that one actually has the choice
to determine the flow equations in the minimum point of the effective action, Γk|s0,min,s8,min

, rather than
evaluating it in a vanishing background. That is, all renormalization group flows are to be extracted at
s0,min, s8,min. This way one always has a positive definite denominators and the flow equation is valid
for any k.

One, therefore, repeats the calculations starting from (16), but this time expands only in terms of s8
so that the ρ dependence of the parameters can be traced via s0. A long but straightforward calculation
leads once again to the possibility of identifying the invariants appear in (17), whose coefficients now read
as

∂km
2
k = − k5

32π2

[

18g1,k
(k2 +m2

k + 2g1,kρ0)2
+

6g1,k
(k2 +m2

k + 6g1,kρ0)2
+

16(3g1,k + 2g2,k)

3(k2 +m2
k + 2g1,kρ0 + 4g2,kρ0/3)2

+
72g21,kρ0

(k2 +m2
k + 2g1,kρ0)3

+
72g21,kρ0

(k2 +m2
k + 6g1,kρ0)3

+
64(3g1,k + 2g2,k)

2ρ0
9(k2 +m2

k + 2g1,kρ0 + 4g2,kρ0/3)3

]

,

∂kg1,k =
k5

32π2

[

36g21,k
(k2 +m2

k + 2g1,kρ0)3
+

36g21,k
(k2 +m2

k + 6g1,kρ0)3
+

32(3g1,k + 2g2,k)
2

9(k2 +m2
k + 2g1,kρ0 + 4g2,kρ0/3)3

]

,

∂kg2,k =
k5

32π2

[

6g22,k
(k2 +m2

k + 2g1,kρ0)3
− 9g2,k/2

ρ0(k2 +m2
k + 2g1,kρ0)2

+
3g2,k(6g1,k + g2,k)

ρ0(g2,k − 3g1,k)(k2 +m2
k + 6g1,kρ0)2

30g22,k
(k2 +m2

k + 2g1,kρ0 + 4g2,kρ0/3)3
+

3g2,k(g2,k − 21g1,k)/2

ρ0(g2,k − 3g1,k)(k2 +m2
k + 2g1,kρ0 + 4g2,kρ0/3)2

]

,

∂kak =
k5

32π2

[

− 36g1,k(ak + 2a1,kρ0)

(k2 +m2
k + 2g1,kρ0)3

− 18(ak + a1,kρ0)

ρ0(k2 +m2
k + 2g1,kρ0)2

− 12g1,k(3ak + 10a1,kρ0)

(k2 +m2
k + 6g1,kρ0)3

− 6ak + 10a1,kρ0
ρ0(k2 +m2

k + 6g1,kρ0)2
+

16(3g1,k + 2g2,k)(3ak + a1,kρ0)

3(k2 +m2
k + 2g1,kρ0 + 4g2,kρ0/3)3

+
4(6ak + a1,kρ0)

ρ0(k2 +m2
k + 2g1,kρ0 + 4g2,kρ0/3)2

]

,

∂ka1,k =
k5

32π2

[

36g1,k(ak + 2a1,kρ0)

ρ0(k2 +m2
k + 2g1,kρ0)3

+
9ak

ρ20(k
2 +m2

k + 2g1,kρ0)2
+

12g1,k(3ak + 10a1,kρ0)

ρ0(k2 +m2
k + 6g1,kρ0)3

− 16(3g1,k + 2g2,k)(3ak + a1,kρ0)

3ρ0(k2 +m2
k + 2g1,kρ0 + 4g2,kρ0/3)3

− 12ak
ρ20(k

2 +m2
k + 2g1,kρ0 + 4g2,kρ0/3)2

]

,(19)

where we have denoted the expansion point by ρ0, which is to be set to the value of ρ corresponding to
the minimum point of the effective action [note that ρ = Tr (M †M)/2]. As a side remark, one easily
checks that choosing ρ0 = 0 (19) would lead back to the earlier results, (18). Our task is to integrate the
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system of equations (19) from k = Λ ≡ 1GeV down to k = 0 with the boundary conditions m2
Λ = m2,

g1,Λ = g1, g2,Λ = g2, aΛ = a, a1,Λ = 0, where m2, g1, g2, a are such constants that reproduce as accurately
as possible the mesonic spectrum in the infrared. Here we used that at the UV scale the coefficient of
the operator ρ∆ can be set to zero due to perturbative renormalizability. This might be questionable if
the UV scale was not high enough, as being a dimension 5 operator, dimensional analyis suggests that
its coefficient, a1, is of O(1/Λ). Obviously if the linear sigma model was not an effective theory, and Λ
could be sent to infinity, the term in question would not be present. But, in principle the a1 coupling
could be included already in the UV action. Investigation of such a scenario is beyond the scope of this
paper.

Before solving the coupled system of equations (19), we need to fix the explicit symmetry breaking
terms, i.e., the values for h0, h8. Instead of h0 and h8, we will work in the nonstrange–strange basis, i.e.,

h ns =
√

2
3h0 +

1√
3
h8, hs =

1√
3
h0 −

√

2
3h8. The partially conserved axialvector current (PCAC) relations

give

m2
πfπ = h ns , m2

KfK =
h ns

2
+
hs√
2
, (20)

where m2
π = δ2Γ/δπ2

i (q = 0) [i = 1, 2, 3] and m2
K = δ2Γ/δπ2

i (q = 0) [j = 4, 5, 6, 7]. Using physical
pion and kaon masses, ∼ 140MeV , ∼ 494MeV , respectively, and decay constants, fπ = 93MeV , fK =
113MeV, one gets

h ns = m2
πfπ ≈ (122MeV)3, h s =

1√
2
(2m2

KfK −m2
πfπ) ≈ (335MeV)3, (21)

which is equivalent to

h0 =

√

2

3

(

m2
πfπ/2 +m2

KfK) ≈ (285MeV)3, h8 =
2√
3

(

m2
πfπ −m2

KfK) ≈ −(310MeV)3. (22)

Now we use that Ward identities of chiral symmetry lead to

δΓ

δs ns
(q = 0) = m2

πs ns − h ns ,
δΓ

δs s
(q = 0) =

m2
K −m2

π√
2

s ns +m2
Ks s − h s . (23)

Combined with (21), this shows that no matter how we choose the remaining parameters m2, g1, g2, a, in
the minimum point of the effective action

s ns ,min = fπ, s s ,min =
√
2(fK − fπ/2). (24)

That leads to ρ0 = (s2ns ,min + s2s ,min)/2, and thus we are ready to fix the aforementioned parameters.

Solving (19), the values {m2, g1, g2, a} ≈ {0.6835GeV 2, 29.7, 91.5,−4.4GeV} lead to the masses of the
pion, kaon, η, η′ asmπ ≈ 133MeV , mK ≈ 494MeV , mη ≈ 537MeV , mη′ ≈ 957MeV , respectively. Note
that the strength of the axial anomaly, a, is negative, and it remains so throughout the renormalization
group flow. However, after solving (19), one concludes that at k = 0 the coefficient a1,k=0 is positive.
That is to say, since the actual strength of the determinant term is A := ak=0+a1,k=0 ·ρ0, when the chiral
condensate evaporates, the absolute value of A becomes larger. This shows that at low temperatures T ,
where the T dependence of the anomaly parameters is negligible, the anomaly is actually strengthening
as chiral symmetry gradually restores. That is one of the main results of the paper.

In what follows, we provide a rough estimate how the anomaly behaves at the zero temperature
nuclear liquid–gas transition.
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4 Anomaly strengthening at the nuclear liquid–gas transition

In this section we apply our results to the zero temperature nuclear liquid–gas transition. We assume
that the nucleon field couples to the mesons via Yukawa interaction, L int = gψ̄M5ψ, ψ

T = (p, n),
M5 =

∑

a=ns ,1,2,3(s
a + iπaγ5)T

a, where the nonstrange generator is T ns =
√

2/3T 0+1/
√
3T 8, while γ5

is the fifth Dirac matrix. In principle one would also need to include the dynamics of an ω vector particle
into the system [26, 27] that models the repulsive interaction between nucleons, but as we will see in a
moment, for our purposes it plays no role.

First, we exploit some of the zero temperature properties of nuclear matter. Note that, in the current
model, the nucleon mass entirely originates from the spontaneous breaking of chiral symmetry,

mN (s ns ) = gY s ns /2, (25)

and since mN (fπ) ≈ 939MeV in the vacuum, we arrive at gY ≈ 20.19. Normal nuclear density, nN ≈
0.17 fm−3 ≈ (109.131MeV)3 leads to the Fermi momentum, pF , of the nucleons, since at the mean field
level, for T = 0 we have

nN = 4

∫

p

nF

(
√

p2 +m2
N − pF

)∣

∣

∣

T=0
≡ 2

3π2
p3F , (26)

therefore, pF ≈ 267.9MeV ≈ 1.36 fm−1. This leads to the nonstrange condensate in the liquid phase,
s ns, liq , because the Landau mass, which is defined as

ML =
√

p2F +m2
N(s ns, liq ) (27)

is known to be ML ≈ 0.8mN(fπ) ≈ 751.2MeV , and thus s ns,liq ≈ 69.52MeV [26, 27]. This shows
that as we increase the chemical potential, the nonstrange chiral condensate, s ns , jumps: fπ → s ns, liq .
This will definitely be accompanied by a jump in the strange condensate, but it has been shown to be
significantly smaller [14]. Neglecting the change in s s , the ρ chiral invariant jumps as (f2

π + s2s,min)/2 →
(s2ns, liq + s2s ,min)/2. As discussed in the previous section, the anomaly strength is A = ak=0 + a1,k=0 · ρ,
which also jumps accordingly, and the change in A becomes

∆A = a1,k=0 ·∆ρ, (28)

where ∆ρ = (s2ns , liq − f2
π)/2. Solving (19) one gets ak=0 ≈ −9.05GeV and a1,k=0 ≈ 494.5GeV−1,

therefore, the relative change in the anomaly at the liquid–gas transition is

∆A

A
=

a1,k=0 ·∆ρ
ak=0 + a1,k=0 · ρ0

≈ 0.2 = 20%, (29)

which is in the ballpark of the result of [14]. One can now check how robust this result is with respect
to changing the cutoff Λ. A thorough investigation reveals that in a cutoff interval of 0.8–1.5GeV , while
the mass spectrum can be maintained within a few percent error after reparametrization, the ∆A/A ratio
is less stable. One finds that the latter is is a monotonically decreasing function of the cutoff and varies
roughly between 15–40% in the above interval. Results show that when going below 1GeV the cutoff
dependence gets stronger, which is understandable, since non-renormalizable operators are absent at the
UV scale. That is, if the latter is chosen to be too small, the model cannot provide robust results (more
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operators would be needed). Going beyond 1.5–2 GeV, in turn, would be physically inappropriate as at
those scales quark degrees of freedom would definitely play a crucial role. From these findings it is safe
to say is that the relative change of the anomaly strength is of O(10%) at the transition point.

At this point we once again wish to emphasize that we have neglected the drop in the strange conden-
sate, and also, the present analysis is based on perturbation theory. In principle higher order operators
that break the UA(1) subgroup should also be resummed, e.g., terms such as ∼

(

Tr (M †M)
)n
(detM +

detM †) could be of huge importance. The lesson we wish to point out here is that the present, rather
simple perturbative calculation can also capture the phenomenon of strengthening anomaly as the chiral
condensate (partially) evaporates.

5 Conclusions

In this paper we investigated how the UA(1) anomaly behaves as a function of the chiral condensate. We
worked with the three flavor linear sigma model, and calculated the leading correction in a 1/Λ expansion
to the conventional anomaly term caused by quantum fluctuations. We have found that the coefficient of
the aforementioned operator, ∼ Tr (M †M) · (detM +detM †), causes the actual strength of the anomaly
to become larger once the chiral condensate evaporates. For the sake of an example, we demonstrated
that at the zero temperature nuclear liquid–gas transition, where (on top of a jump in the nuclear density)
the chiral condensate partially restores, the actual strength of the anomaly increases. This could also
happen toward the full restoration of chiral symmetry, where quark dynamics also play a significant role.
Note that our findings are based solely on calculating mesonic fluctuations, and no instanton effects have
been taken into account.

The linear sigma model, being an effective field theory, cannot accommodate instantons as the fun-
damental model of QCD. Still, there are at least two directions worth exploring in the effective model
framework. Recently it has been shown [28] that 3Q-point interactions are generated by instantons with
Q topological charge, which can be embedded into the linear sigma model via ∼ [(detM †)Q + (detM)Q]
operators. Another important direction could be to assign environment dependence even to the bare
anomaly coefficient(s) from QCD data and see how these compete against thermal effects caused by
mesonic fluctuations.

Finally, we wish to point out that our study calls for an extension via a non-perturbative treatment,
where fluctuations are taken into account beyond the O(a) order, and the coefficient function of the
determinant term is obtained in a functional fashion, rather than at the lowest order of its Taylor series.
The aforementioned directions are under progress and will be reported in a separate study.
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