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ON ADDITIVE AND MULTIPLICATIVE
DECOMPOSITIONS OF SETS OF INTEGERS
WITH RESTRICTED PRIME FACTORS, II.
(SMOOTH NUMBERS AND GENERALIZATIONS.)

K. GYORY, L. HAJDU AND A. SARKOZY

ABSTRACT. In part I of this paper we studied additive decompos-
ability of the set F,, of th y-smooth numbers and the multiplicative
decomposability of the shifted set G, = F, + {1}. In this paper,
focusing on the case of ’large’ functions y, we continue the study
of these problems. Further, we also investigate a problem related
to the m-decomposability of k-term sumsets, for arbitrary k.

1. INTRODUCTION

First we recall some notation, definitions and results from part I of
this paper [6] which we all also need here.

A,B,C,...denote (usually infinite) sets of non-negative integers, and
their counting functions are denoted by A(X), B(X),C(X),... so that
e.g.

AX)=H{a:a < X, ae A}
The set of the positive integers is denoted by N, and we write NU{0} =

Ny. The set of rational numbers is denoted by Q.
We will need

Definition 1.1. Let G be an additive semigroup and A, B,C subsets
of G with

(1.1) B >2, |C|>2.
If
(1.2) A=B+C (={b+c:beB, ceC})
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then (IL2)) is called an additive decomposition or briefly a-decomposition
of A, while if a multiplication is defined in G and (1) and

(1.3) A=B-C (={bc:be B, ceC})

hold then (L3]) is called a multiplicative decomposition or briefly m-
decomposition of A.

Definition 1.2. A finite or infinite set A of non-negative integers is
said to be a-reducible if it has an additive decomposition
A=B+C with |B|>2, |C|>2

(where B C Ny, C C Ny ). If there are no sets B,C with these properties
then A is said to be a-primitive or a-irreducible.

Definition 1.3. Two sets A, B of non-negative integers are said to be
asymptotically equal if there is a number K such that AN [K,400) =
BN [K,+o0) and then we write A ~ B.

Definition 1.4. An infinite set A of non-negative integers is said to
be totally a-primitive if every A" with A" C Ny, A’ ~ A is a-primitive.
The multiplicative analogs of Definitions and [I.4] are:

Definition 1.5. If A is an infinite set of positive integers then it is
said to be m-reducible if it has a multiplicative decomposition

A=B-C with |B|>2,|C|>2
(where B C N, C C N). If there are no such sets B,C then A is said

to be m-primitive or m-irreducible.

Definition 1.6. An infinite set A C N is said to be totally m-primitive
if every A" C N with A" ~ A is m-primitive.

Definition 1.7. Denote the greatest prime factor of the positive integer
n by pt(n). Thenn is said to be smooth (or friable) if p™(n) is “small”
in terms of n. More precisely, if y = y(n) is a monotone increasing
function on N assuming positive values and n € N is such that p*(n) <

y(n), then we say that n is y-smooth, and we write F, (F for "friable”)
for the set of all y-smooth positive integers.

Starting out from a conjecture of the third author [11] and a related
partial result of Elsholtz and Harper [2], in [6] we proved the following
two theorems:

Theorem A. If y(n) is an increasing function with y(n) — oo and
(1.4) y(n) < 27*logn for large n,
then the set F, is totally a-primitive.
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(If y(n) is increasing then the set F, is m-reducible since F,, = F,-F,
and we also have F, ~ F, - {1,2}, thus if we want to prove an m-
primitivity theorem involving F, then we have to switch from F, to
the shifted set

(1.5) G, =F, +{1}.
See also [1].)

Theorem B. If y(n) is defined as in Theorem[I 1, then the set G, is
totally m-primitive.

Here our goal is to prove further related results. First we will prove
a theorem in the direction opposite to the one in Theorem A. Indeed,
we will show that if y(n) grows faster than n/2, then F, is not totally
a-primitive.

Theorem 1.1. Let y(n) be any monotone increasing function on N

with
n
5 <y(n) <n foralln eN.
Then F, is not totally a-primitive. In particular, in this case the set

Fy N9, +00)
15 a-reducible, namely, we have
FyN[9,+00)=A+B
with
A={neN:noneofn,n+1,n+3,n+5 is prime}, B=1{0,1,3,5}.

Next we will show that under a standard conjecture, the decomposi-
tion in Theorem [[Tlis best possible in the sense that no such decompo-
sition is possible with 2 < |B| < 3. For this, we need to formulate the
so-called prime k-tuple conjecture. A finite set A of integers is called
admissible, if for any prime p, no subset of A forms a complete residue
system modulo p.

Conjecture 1.1 (The prime k-tuple conjecture). Let {ay,...,ax} be
an admissible set of integers. Then there exist infinitely many positive
integers n such that n + aq,...,n+ ay are all primes.

Remark. By arecent, deep result of Maynard [§] we know that for each
k, the above conjecture holds for a positive proportion of admissible
k-tuples. We also mention that if the prime k-tuple conjecture is true,
then there exist infinitely many n such that n + aq,...,n + a, are
consecutive primes (see e.g. the proof of Theorem 2.4 of [7]).
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Theorem 1.2. Define y(n) as in Theorem [11] and suppose that the
prime k-tuple conjecture is true for k =2,3. Then for any C C N with
C ~ F, there is no decomposition of the form

C=A+EB
with
2< B/ <3
We propose the following problem, which is a shifted, multiplicative

analogue of the question studied in Theorems [T and 2
Problem. With the same y = y(n) as in Theorem [T}, write

G, =F,+{1}={m+1:meF,}

Is the set G, totally m-primitive?
Towards the above problem, we prove that no appropriate decompo-
sition is possible with |B| < +oc.

Theorem 1.3. Let y(n) be as in Theorem [L1. Then for any C C N
with C ~ G, there is no decomposition of the form

C=A-B
with
|B| < +o0.

Let
Ii={ny,...,ns}

be a set of pairwise coprime positive integers > 1, and let {I'} be the
multiplicative semigroup generated by I', with 1 € {I"}. If in particular,
ni,...,ns are distinct primes, then we use the notation I' = S, and
{I'} = {S} is just the set of positive integers composed of the primes
from S.

The next theorem shows that if I is finite, then the sets of k-term and
at most k-term sums of pairwise coprime elements of {I'} are totally
m-primitive. For the precise formulation of the statement, write H; :=
{T'}, and for k > 2 set

Hy ={uw+- 4w u €{l'}, ged(uj,u;) =1for 1 <i<j<k}

and

k
Hgk = U Hg.
=1
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Theorem 1.4. Let k > 2. Then both Hy and H<j are totally m-
primitive, apart from the only exception exception of the case I' = {2}
and k = 3, when we have

H§3 = {172}{26725_'_1 B> 0}
Remark. As we have
{ry=A{T}-{T'},

the assumption k > 2 is clearly necessary. Further, the coprimality
assumption in the definition of Hy cannot be dropped. Indeed, letting

H ={u+ - 4up: u, €{l'} for 1 <i <k}

and
k

L= H;
(=1

we clearly have

2. PROOF OF THEOREM [L.1]

By the choice of y(n) we see that F, is the set of all composite
integers. Put

C=F,N[9,+00).
We show that by the definition of A and B as in the theorem, we have
C=A+B.

To see this, first observe that by the assumptions on A and B, all the
elements of A + B are composite. So we only need to check that all
composite numbers n with n > 9 belong to A+ B. If n is an odd
composite number, then by n € A we have

(2.1) ne(A+B).

So assume that n is an even composite number with n > 10. Then one
of n—1,n—3,n—>5is not a prime. As this number is clearly in A, we
have (2.)) again and our claim follows. [
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3. PROOF OF THEOREM

Let C C N with C ~ F,. Then, as we noted in the proof of Theorem
[LIl with some positive integer ng we have

C N [ng,+o00) ={n € N:n > ng and n is composite}.

We handle the cases k = 2 and 3 separately.
Let first £ = 2, that is assume that contrary to the assertion of the
theorem the set C can be represented as

(3.1) C=A+B

with |B| = 2. Set B = {by,by}. Clearly, without loss of generality we
may assume that b; < by and also that b; = 0. Indeed, the first as-
sumption is trivial, and the second one can be made since (B.1) implies
that

C=A"+{0,b, — b}
with
A" =A+{b} ={a+b:a € A}.

As the set {—by, by} is admissible, by our assumption on the validity of
Conjecture [LT] we get that there exist infinitely many integers n such
that n — by and n + by are both primes. In view of the Remark after
Conjecture [Tl we may assume that these primes are consecutive, that
is, in particular, n is composite. Observe that then, assuming that
n > ng + be, we have n — by ¢ A and n ¢ A. Indeed, otherwise by the
primality of n — by and n + by, respectively, we get a contradiction: in
case of n — by € A we have n — by € C, while n 4+ by € A implies that
n + by € C. But then we get n ¢ C, which is a contradiction.

Let now k = 3, that is assume that we have (3.1 with some B with
|B| = 3. Write B = {b1,by,b3}. As in the case k = 2, we may assume
that 0 = b; < by < b3. Now we construct an admissible triple related
to B. If by and b3 are of the same parity, then either

tl = {_b?n _b2a b3}
or
t2 = {_b37 _b27 b2}

is admissible, according as 3 | bg or 3 1 bs. Further, if by is odd and b3
is even, then either

ts = {—bs + by, b3 — ba, b}

or

t4 - {_b3 + an _b2a b2}
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is admissible, according as by = b3 (mod 3) or by # b3 (mod 3). Fi-
nally, if by is even and b3 is odd, then either

ts = {—bs + by, b3 — o, b}

or
te = {—b3, b3 — by, b3}

is admissible, according as by = b3 (mod 3) or by # b3 (mod 3). Let

1 <4 < 6 such that ¢; is admissible, and write t; = {uy, us, usz}. Ac-

cording to Conjecture [[LT] (see also the Remark after it) we get that

there exists an n with n > ng + bs such that n is composite, but

n+u;, nN+uU, N+ us

are all primes > ny. However, then a simple check shows that for any
value of 7, we have that none of n — b3, n — by, n is in A, since otherwise
C would contain a prime > ny. However, then we get n ¢ C. This is a
contradiction, and our claim follows. [

4. PROOF OF THEOREM [L.3]
Let ¢ C N with C ~ G,. Then with some positive integer n, we have
CN[ng,+o00) ={n+1:n>ng—1and n is composite}.
Assume to the contrary that we can write
(4.1) C=A-B

with |B| < 400. Put B = {by,...,b;} with £ > 2 and 1 < b; < by <
< bg.

Assume first that 1 ¢ B (that is, by > 1). Let n be an arbitrary
(composite) multiple of the product b; ...b, such that n > ng. Then
we immediately see that n + 1 is not divisible by any b; (i = 1,...,¢),
which shows that n + 1 ¢ C. However, this is a contradiction, and our
claim follows in this case.

Suppose now that 1 € B (that is, b = 1). For each of i = 2,...,¢
choose a prime divisor p; of b;, with the convention that p; = 4 if b;
is a power of 2, and let P be the set of these primes. Observe that P
is non-empty. Take two distinct primes ¢;, g2 not belonging to P, and
consider the following system of linear congruences:

=0 (modgq) fori=1,2,
x=1 (modp) ifpeP, p|b—1,
=0 (modp) ifpeP, pth—1.
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Let x5 be an arbitrary positive solution to the above system. Put

N = qq Hp

peEP

and consider the arithmetic progression

in ¢ > 0. Observe that here we have gcd(boN,by(zg + 1) — 1) = 1.
Indeed, ged (b, ba(z9+1)—1) = 1 trivially holds, and as by(xo+1)—1 =
boxg + by — 1, the relation ged(N, by(zg+ 1) — 1) = 1 follows from the
definition of xy. Thus by Dirichlet’s theorem there exist infinitely many
integers ¢ such that (A2]) is a prime. Let ¢ be such an integer with
t > ng, and put
n:=tN + xg.

We claim that n is composite with n > ng, but n + 1 ¢ C. This will
clearly imply the statement. It is obvious that n > ng, and as ¢1q2 | N
and q1q2 | xo, we also have that n is composite. Further, we have that
n+1¢ A. Indeed, otherwise we would also have by(n + 1) € C, that
is, by(n 4+ 1) — 1 should be composite - however,

ba(n+1) — 1 = (boN)t + (ba(wg + 1) — 1)

is a prime. (The importance of this fact is that we cannot have n+1 € C
by the relation n+1= (n+1)-1 withn+1 € Aand 1 € B.) Further,
since n +1 = 1,2 (mod p) for p € P as p; > 3 and p; | b; we have
bitn+1fori=3,...,¢. We need to check the case i = 2 separately.
If by > 2, then we have p, > 3 and p, | by, and we have by 1 n+ 1 again.
On the other hand, if b, = 2 then as b — 1 = 1 and py = 4, we have
4| n, so by tn+ 1 once again. So in any case, b;fn+1 (i =2,...,70).
Hence n + 1 cannot be of the form ab; with a € Aand i =1,... (.
Thus our claim follows also in this case. [J

5. PROOF OF THEOREM [1.4]

The proof of Theorem [[.4] is based on the following deep theorem.
Recall that {I'} denotes the multiplicative semigroup generated by I'.
Consider the equation

(5.1) ary + -+ apTy, =0 in oz, ...z, € {T'},

where aq,...,a,, are non-zero elements of Q. If m > 3, a solution of
(B.1)) is called non-degenerate if the left hand side of (5.]) has no vanish-
ing subsums. Two solutions z1, ...,z and 2/, ..., 2/ are proportional
if

(2, 2) = Ny, . )
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with some A € {I'} \ {1}.

Theorem C. Equation (51l) has only finitely many non-proportional,
non-degenerate solutions.

This theorem was proved independently by van der Poorten and
Schlickewei [9] and Evertse [3] in a more general form. Later Ev-
ertse and Gy6ry [4] showed that the number of non-proportional, non-
degenerate solutions of (5.]) can be estimated from above by a constant
which depends only on I'. For related results, see the paper [10] and
the book [5].

We shall use the following consequence of Theorem C.

Corollary 5.1. There exists a finite set L such that if xy,...,z, are

pairwise coprime elements of {I'}, y1,...,yn are also pairwise coprime
elements of {I'} such that {,h <k, {4+ h >3 and
(5.2) e(xr+-4x)—nlyr+---+yn) =0

with some €,n € {I'} and without vanishing subsum on the left hand
side, then

T1yees oy Yly--- Y € L.
Further, L is independent of €, 1.

Proof. Without loss of generality we may assume that ¢ > 2. Then
Theorem C implies that

(exq,...,exy) = v(z1,. .., 20),

where v, z1,...,2 € {I'}, and z1, ...,z belong to a finite set. Hence,
as
(1, ..., 20) =V (21, .., 20)

with v* = v/e, in view of that z1,...,z, € {I'} are pairwise coprime,
we conclude that xy, ..., x, belong to a finite set (which is independent
of €,m). If we have h = 1, then expressing y; from (5.2), the state-
ment immediately follows. On the other hand, if h > 2, then applying
the above argument for (nyi,...,nys) in place of (exy,...,exy), the
statement also follows. O

Now we can prove our Theorem [[L4. Our argument will give the
proof of our statement concerning both Hj, and H<j. First note that
there is a constant C} such that if in Hy (resp. in H<;) we have

U1+"'+ut>C1
with ¢ = k (resp. with 2 < ¢ < k) and ged(u;,u;) =1 for 1 < i <
j < t, then this sum is not contained in {I'}. This is an immediate
consequence of Theorem C.
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Assume that contrary that contrary to the statement of the theorem
for some R which is asymptotically equal to one of Hy and H<j we
have

R=A-B
with
ABCN, |A]|B| =2
Since both Hj and H<j are infinite, so is R, whence at least one of A

and B, say B is infinite.
We prove that

(5.3) A= {agt:t €T}

with some positive integer ag and T° C {I'}, such that |T'| > 2. Indeed,
take distinct elements aq,as € A. Then for all sufficiently large b € B
we have

and
(55) To = a2b:1)1_|_..._|_/uh

with some 71,79 € R, {,h < k, and with uy, ..., ug,vq,...,v, € {I'}
such that
(5.6)

gcd(uil,ui2) = ng(UjNsz) =1 (1 <11 <19 < 6,1 <N <j2 < h)

We infer from (54) and (5.5) that
(5.7) as(uy + -+ +ug) —ag(vy +---+vy) =0.

Since there are infinitely many b € B, and we arrive at (5.7) when-
ever b is large enough, this equation has infinitely many solutions
ULy ..oy Up, U1, ..., v € {T'} with the property (5.6). However, by The-
orem C this can hold only if, after changing the indices if necessary,

(58) aoU1 = A1V7.

Let dy,ds be the maximal positive divisors of a1, ay from {I'}, respec-
tively. Write

(5.9) a; = ajd; and ay = ayds,

and observe that by the pairwise coprimality of the elements of I' both
dy,dy and af, a), are uniquely determined. In particular, none of a/, a),
is divisible by any element of I'. Equations (5.9) together with (5.8)
imply

a'zdgul = a’ldlvl,
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where dyuy, djv; € {I'}. We know infer that
ap == ay = aj
and
ay; = agly, a9 = aglo with ti,t9 € {F}
It is important to note that ag is the greatest positive divisor of a;
(and of ay) which is not divisible by any element of I'. Considering
now ap,a; instead of ay,as for any other a; € A, we get in the same
way that
a; = aoti with tl c {F}

This proves (B.3)).

Write I' = {ny,...,ns} and put m := min(s, k). Denote by R° the
subset of R consisting of sums u; + - - - + ug with ug, ..., u,, € {T}\ L
such that

(5.10) {nf‘l with o; > 1 for i < m,
. U; =

1 fors<i<k(if s<k).

Clearly, R° is an infinite set. Take r; € R° of the form
rp=up A+ U

with uy, ..., ux satisfying (5.10). By what we have already proved, we

can write

r = aotlb

with some t; € T and b € B. Put ry = agtob with some ty € T, t5 # 1
such that ro € R. Writing

ro=v1+:-+v,
with pairwise coprime vy, ..., v, € {I'}, we get
(5.11) to(uy + - +up) —ty(vy + -+ +vy) = 0.

Recall that by assumption, w; € {I'} \ £ for i = 1,...,m. Hence
we must have h > m, and repeatedly applying Corollary .11 (after
changing the indices if necessary) we get

tgui—tl’Ui:O (Zzl,,m)

whence
U1 Um

v U

that is

U1V; = V11U (2 S 7 S m)
If m > 1, then this by the coprimality of uq,...,u; and vy,..., v
gives u; = v; (i = 1,...,m). This is a contradiction, which proves the
theorem whenever m > 1.
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So we are left with the only possibility m = 1, that is, s = 1. Then,
letting I' = {n}, equation (G5.I1]) reduces to

(512) tgnal - tlna2 =C,

where ¢ = tjw —ty(k—1) with some 0 < w < k—1. For any fixed ¢ # 0
the above equation has only finitely many solutions in non-negative
integers vy, s. Indeed, we may easily bound min(ay, as) first, and
then also max(aq, a2). Hence we may assume that ¢ = 0 in (5.12).
Observe, that in the case of the set H; we have w = k — 1, whence we
get t; = t9, a contradiction.

So in what follows, we may assume that we deal with the set H<y.
Observe that for any large /3, both n” and n® + 1 belong to R. Hence,
in view of (B.3]) we get ag = 1, and all elements of A are powers of n.
This implies that 1 € A: indeed, since all elements of A are powers of
n, we can have n” +1 € R only if 1 € A (and n” +1 € B). Recall that
|A| > 2; let n* € A with some a > 0, and assume that « is minimal
with this property. Obviously, for all large 3 we must have n® 41 € B,
for all 0 <7 < k. One of k — 2,k — 1 is not divisible by n; write j for
this number. (Note that for £ = 2 we have j = 1.) Then, for all large
3, we must have n® + j € B. Consequently, we have

n®tf £ n% e R.
However, this implies that
n%j <k-—1.

Hence, in view of j € {k — 2,k — 1} (with j = 1 for £k = 2) we easily
get that the only possibility is given by

n=2, a=1, k= 3.
Thus the theorem follows. O
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