ON ADDITIVE AND MULTIPLICATIVE DECOMPOSITIONS OF SETS OF INTEGERS WITH RESTRICTED PRIME FACTORS, II. (SMOOTH NUMBERS AND GENERALIZATIONS.)

K. GYŐRY, L. HAJDU AND A. SÁRKÖZY

ABSTRACT. In part I of this paper we studied additive decomposability of the set \mathcal{F}_y of th y-smooth numbers and the multiplicative decomposability of the shifted set $\mathcal{G}_y = \mathcal{F}_y + \{1\}$. In this paper, focusing on the case of 'large' functions y, we continue the study of these problems. Further, we also investigate a problem related to the m-decomposability of k-term sumsets, for arbitrary k.

1. INTRODUCTION

First we recall some notation, definitions and results from part I of this paper [6] which we all also need here.

 $\mathcal{A}, \mathcal{B}, \mathcal{C}, \ldots$ denote (usually infinite) sets of non-negative integers, and their counting functions are denoted by $A(X), B(X), C(X), \ldots$ so that e.g.

$$A(X) = |\{a : a \le X, a \in \mathcal{A}\}|.$$

The set of the positive integers is denoted by \mathbb{N} , and we write $\mathbb{N} \cup \{0\} = \mathbb{N}_0$. The set of rational numbers is denoted by \mathbb{Q} .

We will need

Definition 1.1. Let G be an additive semigroup and $\mathcal{A}, \mathcal{B}, \mathcal{C}$ subsets of G with

- $(1.1) \qquad |\mathcal{B}| \ge 2, \quad |\mathcal{C}| \ge 2.$
- If

(1.2)
$$\mathcal{A} = \mathcal{B} + \mathcal{C} \ (= \{b + c : b \in \mathcal{B}, \ c \in \mathcal{C}\})$$

Date: November 30, 2020.

2010 Mathematics Subject Classification. 11P45, 11P70.

Key words and phrases. Additive decompositions, multiplicative decompositions, smooth (friable) numbers, *S*-unit equations.

Research supported in part by the NKFIH grants K115479, K119528, K128088, and K130909, and by the projects EFOP-3.6.1-16-2016-00022 and EFOP-3.6.2-16-2017-00015 of the European Union, co-financed by the European Social Fund.

then (1.2) is called an additive decomposition or briefly a-decomposition of \mathcal{A} , while if a multiplication is defined in G and (1.1) and

(1.3)
$$\mathcal{A} = \mathcal{B} \cdot \mathcal{C} \ (= \{ bc : b \in \mathcal{B}, \ c \in \mathcal{C} \})$$

hold then (1.3) is called a multiplicative decomposition or briefly mdecomposition of \mathcal{A} .

Definition 1.2. A finite or infinite set \mathcal{A} of non-negative integers is said to be a-reducible if it has an additive decomposition

 $\mathcal{A} = \mathcal{B} + \mathcal{C} \quad with \quad |\mathcal{B}| \ge 2, \ |\mathcal{C}| \ge 2$

(where $\mathcal{B} \subset \mathbb{N}_0$, $\mathcal{C} \subset \mathbb{N}_0$). If there are no sets \mathcal{B}, \mathcal{C} with these properties then \mathcal{A} is said to be a-primitive or a-irreducible.

Definition 1.3. Two sets \mathcal{A}, \mathcal{B} of non-negative integers are said to be asymptotically equal if there is a number K such that $\mathcal{A} \cap [K, +\infty) = \mathcal{B} \cap [K, +\infty)$ and then we write $\mathcal{A} \sim \mathcal{B}$.

Definition 1.4. An infinite set \mathcal{A} of non-negative integers is said to be totally a-primitive if every \mathcal{A}' with $\mathcal{A}' \subset \mathbb{N}_0$, $\mathcal{A}' \sim \mathcal{A}$ is a-primitive.

The multiplicative analogs of Definitions 1.2 and 1.4 are:

Definition 1.5. If \mathcal{A} is an infinite set of positive integers then it is said to be m-reducible if it has a multiplicative decomposition

$$\mathcal{A} = \mathcal{B} \cdot \mathcal{C} \quad with \quad |\mathcal{B}| \ge 2, \ |\mathcal{C}| \ge 2$$

(where $\mathcal{B} \subset \mathbb{N}$, $\mathcal{C} \subset \mathbb{N}$). If there are no such sets \mathcal{B}, \mathcal{C} then \mathcal{A} is said to be m-primitive or m-irreducible.

Definition 1.6. An infinite set $\mathcal{A} \subset \mathbb{N}$ is said to be totally m-primitive if every $\mathcal{A}' \subset \mathbb{N}$ with $\mathcal{A}' \sim \mathcal{A}$ is m-primitive.

Definition 1.7. Denote the greatest prime factor of the positive integer n by $p^+(n)$. Then n is said to be smooth (or friable) if $p^+(n)$ is "small" in terms of n. More precisely, if y = y(n) is a monotone increasing function on \mathbb{N} assuming positive values and $n \in \mathbb{N}$ is such that $p^+(n) \leq y(n)$, then we say that n is y-smooth, and we write \mathcal{F}_y (\mathcal{F} for "friable") for the set of all y-smooth positive integers.

Starting out from a conjecture of the third author [11] and a related partial result of Elsholtz and Harper [2], in [6] we proved the following two theorems:

Theorem A. If y(n) is an increasing function with $y(n) \to \infty$ and

(1.4) $y(n) < 2^{-32} \log n$ for large n,

then the set \mathcal{F}_y is totally a-primitive.

(If y(n) is increasing then the set \mathcal{F}_y is m-reducible since $\mathcal{F}_y = \mathcal{F}_y \cdot \mathcal{F}_y$, and we also have $\mathcal{F}_y \sim \mathcal{F}_y \cdot \{1, 2\}$, thus if we want to prove an *m*primitivity theorem involving \mathcal{F}_y then we have to switch from \mathcal{F}_y to the shifted set

(1.5)
$$\mathcal{G}_y := \mathcal{F}_y + \{1\}.$$

See also [1].)

Theorem B. If y(n) is defined as in Theorem 1.1, then the set \mathcal{G}_y is totally m-primitive.

Here our goal is to prove further related results. First we will prove a theorem in the direction opposite to the one in Theorem A. Indeed, we will show that if y(n) grows faster than n/2, then \mathcal{F}_y is not totally a-primitive.

Theorem 1.1. Let y(n) be any monotone increasing function on \mathbb{N} with

$$\frac{n}{2} < y(n) < n \quad for \ all \ n \in \mathbb{N}.$$

Then \mathcal{F}_y is not totally a-primitive. In particular, in this case the set

$$\mathcal{F}_y \cap [9, +\infty)$$

is a-reducible, namely, we have

$$\mathcal{F}_y \cap [9, +\infty) = \mathcal{A} + \mathcal{B}$$

with

 $\mathcal{A} = \{ n \in \mathbb{N} : none \ of \ n, n+1, n+3, n+5 \ is \ prime \}, \ \mathcal{B} = \{ 0, 1, 3, 5 \}.$

Next we will show that under a standard conjecture, the decomposition in Theorem 1.1 is best possible in the sense that no such decomposition is possible with $2 \leq |\mathcal{B}| \leq 3$. For this, we need to formulate the so-called prime k-tuple conjecture. A finite set A of integers is called admissible, if for any prime p, no subset of A forms a complete residue system modulo p.

Conjecture 1.1 (The prime k-tuple conjecture). Let $\{a_1, \ldots, a_k\}$ be an admissible set of integers. Then there exist infinitely many positive integers n such that $n + a_1, \ldots, n + a_k$ are all primes.

Remark. By a recent, deep result of Maynard [8] we know that for each k, the above conjecture holds for a positive proportion of admissible k-tuples. We also mention that if the prime k-tuple conjecture is true, then there exist infinitely many n such that $n + a_1, \ldots, n + a_k$ are consecutive primes (see e.g. the proof of Theorem 2.4 of [7]).

Theorem 1.2. Define y(n) as in Theorem 1.1 and suppose that the prime k-tuple conjecture is true for k = 2, 3. Then for any $C \subset \mathbb{N}$ with $C \sim \mathcal{F}_y$ there is no decomposition of the form

$$\mathcal{C} = \mathcal{A} + \mathcal{B}$$

with

$$2 \le |\mathcal{B}| \le 3.$$

We propose the following problem, which is a shifted, multiplicative analogue of the question studied in Theorems 1.1 and 1.2.

Problem. With the same y = y(n) as in Theorem 1.1, write

$$\mathcal{G}_y = \mathcal{F}_y + \{1\} = \{m+1 : m \in \mathcal{F}_y\}.$$

Is the set \mathcal{G}_{y} totally m-primitive?

Towards the above problem, we prove that no appropriate decomposition is possible with $|\mathcal{B}| < +\infty$.

Theorem 1.3. Let y(n) be as in Theorem 1.1. Then for any $C \subset \mathbb{N}$ with $C \sim \mathcal{G}_y$ there is no decomposition of the form

$$\mathcal{C} = \mathcal{A} \cdot \mathcal{B}$$

with

$$|\mathcal{B}| < +\infty$$

Let

$$\Gamma := \{n_1, \ldots, n_s\}$$

be a set of pairwise coprime positive integers > 1, and let $\{\Gamma\}$ be the multiplicative semigroup generated by Γ , with $1 \in \{\Gamma\}$. If in particular, n_1, \ldots, n_s are distinct primes, then we use the notation $\Gamma = S$, and $\{\Gamma\} = \{S\}$ is just the set of positive integers composed of the primes from S.

The next theorem shows that if Γ is finite, then the sets of k-term and at most k-term sums of pairwise coprime elements of $\{\Gamma\}$ are totally m-primitive. For the precise formulation of the statement, write $H_1 :=$ $\{\Gamma\}$, and for $k \geq 2$ set

$$H_k := \{ u_1 + \dots + u_k : u_i \in \{\Gamma\}, \ \gcd(u_i, u_j) = 1 \ \text{for} \ 1 \le i < j \le k \}$$

and

$$H_{\leq k} := \bigcup_{\ell=1}^{k} H_{\ell}$$

Theorem 1.4. Let $k \geq 2$. Then both H_k and $H_{\leq k}$ are totally *m*-primitive, apart from the only exception exception of the case $\Gamma = \{2\}$ and k = 3, when we have

$$H_{\leq 3} = \{1, 2\} \cdot \{2^{\beta}, 2^{\beta} + 1 : \beta \ge 0\}.$$

Remark. As we have

$$\{\Gamma\} = \{\Gamma\} \cdot \{\Gamma\},\$$

the assumption $k \geq 2$ is clearly necessary. Further, the coprimality assumption in the definition of H_k cannot be dropped. Indeed, letting

$$H_k^* := \{u_1 + \dots + u_k : u_i \in \{\Gamma\} \text{ for } 1 \le i \le k\}$$

and

$$H^*_{\leq k} := \bigcup_{\ell=1}^k H^*_\ell$$

we clearly have

$$H_k^* = \{\Gamma\} \cdot H_k^* \text{ and } H_{\leq k}^* = \{\Gamma\} \cdot H_{\leq k}^*$$

2. Proof of Theorem 1.1

By the choice of y(n) we see that \mathcal{F}_y is the set of all composite integers. Put

$$\mathcal{C} = \mathcal{F}_y \cap [9, +\infty).$$

We show that by the definition of \mathcal{A} and \mathcal{B} as in the theorem, we have

$$\mathcal{C} = \mathcal{A} + \mathcal{B}.$$

To see this, first observe that by the assumptions on \mathcal{A} and \mathcal{B} , all the elements of $\mathcal{A} + \mathcal{B}$ are composite. So we only need to check that all composite numbers n with $n \geq 9$ belong to $\mathcal{A} + \mathcal{B}$. If n is an odd composite number, then by $n \in \mathcal{A}$ we have

$$(2.1) n \in (\mathcal{A} + \mathcal{B}).$$

So assume that n is an even composite number with $n \ge 10$. Then one of n-1, n-3, n-5 is not a prime. As this number is clearly in \mathcal{A} , we have (2.1) again and our claim follows. \Box

3. Proof of Theorem 1.2

Let $\mathcal{C} \subset \mathbb{N}$ with $\mathcal{C} \sim \mathcal{F}_y$. Then, as we noted in the proof of Theorem 1.1, with some positive integer n_0 we have

$$\mathcal{C} \cap [n_0, +\infty) = \{n \in \mathbb{N} : n \ge n_0 \text{ and } n \text{ is composite}\}.$$

We handle the cases k = 2 and 3 separately.

Let first k = 2, that is assume that contrary to the assertion of the theorem the set C can be represented as

$$(3.1) \qquad \qquad \mathcal{C} = \mathcal{A} + \mathcal{B}$$

with $|\mathcal{B}| = 2$. Set $B = \{b_1, b_2\}$. Clearly, without loss of generality we may assume that $b_1 < b_2$ and also that $b_1 = 0$. Indeed, the first assumption is trivial, and the second one can be made since (3.1) implies that

$$C = A^* + \{0, b_2 - b_1\}$$

with

$$\mathcal{A}^* = \mathcal{A} + \{b_1\} = \{a + b_1 : a \in \mathcal{A}\}$$

As the set $\{-b_2, b_2\}$ is admissible, by our assumption on the validity of Conjecture 1.1 we get that there exist infinitely many integers n such that $n - b_2$ and $n + b_2$ are both primes. In view of the Remark after Conjecture 1.1, we may assume that these primes are consecutive, that is, in particular, n is composite. Observe that then, assuming that $n \ge n_0 + b_2$, we have $n - b_2 \notin \mathcal{A}$ and $n \notin \mathcal{A}$. Indeed, otherwise by the primality of $n - b_2$ and $n + b_2$, respectively, we get a contradiction: in case of $n - b_2 \in \mathcal{A}$ we have $n - b_2 \in \mathcal{C}$, while $n + b_2 \in \mathcal{A}$ implies that $n + b_2 \in \mathcal{C}$. But then we get $n \notin \mathcal{C}$, which is a contradiction.

Let now k = 3, that is assume that we have (3.1) with some \mathcal{B} with $|\mathcal{B}| = 3$. Write $\mathcal{B} = \{b_1, b_2, b_3\}$. As in the case k = 2, we may assume that $0 = b_1 < b_2 < b_3$. Now we construct an admissible triple related to \mathcal{B} . If b_2 and b_3 are of the same parity, then either

$$t_1 = \{-b_3, -b_2, b_3\}$$

or

$$t_2 = \{-b_3, -b_2, b_2\}$$

is admissible, according as $3 \mid b_3$ or $3 \nmid b_3$. Further, if b_2 is odd and b_3 is even, then either

$$t_3 = \{-b_3 + b_2, b_3 - b_2, b_2\}$$

or

$$t_4 = \{-b_3 + b_2, -b_2, b_2\}$$

is admissible, according as $b_2 \equiv b_3 \pmod{3}$ or $b_2 \not\equiv b_3 \pmod{3}$. Finally, if b_2 is even and b_3 is odd, then either

$$t_5 = \{-b_3 + b_2, b_3 - b_2, b_3\}$$

or

$$t_6 = \{-b_3, b_3 - b_2, b_3\}$$

is admissible, according as $b_2 \equiv b_3 \pmod{3}$ or $b_2 \not\equiv b_3 \pmod{3}$. Let $1 \leq i \leq 6$ such that t_i is admissible, and write $t_i = \{u_1, u_2, u_3\}$. According to Conjecture 1.1 (see also the Remark after it) we get that there exists an n with $n \geq n_0 + b_3$ such that n is composite, but

$$n+u_1$$
, $n+u_2$, $n+u_3$

are all primes $\geq n_0$. However, then a simple check shows that for any value of *i*, we have that none of $n - b_3$, $n - b_2$, *n* is in \mathcal{A} , since otherwise \mathcal{C} would contain a prime $\geq n_0$. However, then we get $n \notin \mathcal{C}$. This is a contradiction, and our claim follows. \Box

4. Proof of Theorem 1.3

Let $\mathcal{C} \subset \mathbb{N}$ with $\mathcal{C} \sim \mathcal{G}_y$. Then with some positive integer n_0 we have

 $\mathcal{C} \cap [n_0, +\infty) = \{n+1 : n \ge n_0 - 1 \text{ and } n \text{ is composite}\}.$

Assume to the contrary that we can write

$$(4.1) \qquad \qquad \mathcal{C} = \mathcal{A} \cdot \mathcal{B}$$

with $|\mathcal{B}| < +\infty$. Put $B = \{b_1, \ldots, b_\ell\}$ with $\ell \ge 2$ and $1 \le b_1 < b_2 < \cdots < b_\ell$.

Assume first that $1 \notin \mathcal{B}$ (that is, $b_1 > 1$). Let n be an arbitrary (composite) multiple of the product $b_1 \dots b_\ell$ such that $n \ge n_0$. Then we immediately see that n + 1 is not divisible by any b_i $(i = 1, \dots, \ell)$, which shows that $n + 1 \notin \mathcal{C}$. However, this is a contradiction, and our claim follows in this case.

Suppose now that $1 \in \mathcal{B}$ (that is, $b_1 = 1$). For each of $i = 2, \ldots, \ell$ choose a prime divisor p_i of b_i , with the convention that $p_i = 4$ if b_i is a power of 2, and let P be the set of these primes. Observe that P is non-empty. Take two distinct primes q_1, q_2 not belonging to P, and consider the following system of linear congruences:

$$x \equiv 0 \pmod{q_i} \text{ for } i = 1, 2,$$

$$x \equiv 1 \pmod{p} \text{ if } p \in P, \ p \mid b_2 - 1$$

$$x \equiv 0 \pmod{p} \text{ if } p \in P, \ p \nmid b_2 - 1$$

Let x_0 be an arbitrary positive solution to the above system. Put

$$N := q_1 q_2 \prod_{p \in P} p$$

and consider the arithmetic progression

$$(4.2) (b_2N)t + (b_2(x_0+1)-1)$$

in $t \ge 0$. Observe that here we have $gcd(b_2N, b_2(x_0 + 1) - 1) = 1$. Indeed, $gcd(b_2, b_2(x_0+1)-1) = 1$ trivially holds, and as $b_2(x_0+1)-1 = b_2x_0 + b_2 - 1$, the relation $gcd(N, b_2(x_0 + 1) - 1) = 1$ follows from the definition of x_0 . Thus by Dirichlet's theorem there exist infinitely many integers t such that (4.2) is a prime. Let t be such an integer with $t > n_0$, and put

$$n := tN + x_0$$

We claim that n is composite with $n > n_0$, but $n + 1 \notin C$. This will clearly imply the statement. It is obvious that $n > n_0$, and as $q_1q_2 \mid N$ and $q_1q_2 \mid x_0$, we also have that n is composite. Further, we have that $n + 1 \notin A$. Indeed, otherwise we would also have $b_2(n + 1) \in C$, that is, $b_2(n + 1) - 1$ should be composite - however,

$$b_2(n+1) - 1 = (b_2N)t + (b_2(x_0+1) - 1)$$

is a prime. (The importance of this fact is that we cannot have $n+1 \in \mathcal{C}$ by the relation $n+1 = (n+1) \cdot 1$ with $n+1 \in \mathcal{A}$ and $1 \in \mathcal{B}$.) Further, since $n+1 \equiv 1, 2 \pmod{p}$ for $p \in P$ as $p_i \geq 3$ and $p_i \mid b_i$ we have $b_i \nmid n+1$ for $i = 3, \ldots, \ell$. We need to check the case i = 2 separately. If $b_2 > 2$, then we have $p_2 \geq 3$ and $p_2 \mid b_2$, and we have $b_2 \nmid n+1$ again. On the other hand, if $b_2 = 2$ then as $b_2 - 1 = 1$ and $p_2 = 4$, we have $4 \mid n$, so $b_2 \nmid n+1$ once again. So in any case, $b_i \nmid n+1$ ($i = 2, \ldots, \ell$). Hence n+1 cannot be of the form ab_i with $a \in \mathcal{A}$ and $i = 1, \ldots, \ell$. Thus our claim follows also in this case. \Box

5. Proof of Theorem 1.4

The proof of Theorem 1.4 is based on the following deep theorem. Recall that $\{\Gamma\}$ denotes the multiplicative semigroup generated by Γ . Consider the equation

(5.1)
$$a_1x_1 + \dots + a_mx_m = 0 \text{ in } x_1, \dots, x_m \in \{\Gamma\},\$$

where a_1, \ldots, a_m are non-zero elements of \mathbb{Q} . If $m \geq 3$, a solution of (5.1) is called *non-degenerate* if the left hand side of (5.1) has no vanishing subsums. Two solutions x_1, \ldots, x_m and x'_1, \ldots, x'_m are proportional if

$$(x_1',\ldots,x_m')=\lambda(x_1,\ldots,x_m)$$

with some $\lambda \in \{\Gamma\} \setminus \{1\}$.

Theorem C. Equation (5.1) has only finitely many non-proportional, non-degenerate solutions.

This theorem was proved independently by van der Poorten and Schlickewei [9] and Evertse [3] in a more general form. Later Evertse and Győry [4] showed that the number of non-proportional, nondegenerate solutions of (5.1) can be estimated from above by a constant which depends only on Γ . For related results, see the paper [10] and the book [5].

We shall use the following consequence of Theorem C.

Corollary 5.1. There exists a finite set \mathcal{L} such that if x_1, \ldots, x_ℓ are pairwise coprime elements of $\{\Gamma\}$, y_1, \ldots, y_h are also pairwise coprime elements of $\{\Gamma\}$ such that $\ell, h \leq k, \ell + h \geq 3$ and

(5.2)
$$\varepsilon(x_1 + \dots + x_\ell) - \eta(y_1 + \dots + y_h) = 0$$

with some $\varepsilon, \eta \in \{\Gamma\}$ and without vanishing subsum on the left hand side, then

$$x_1,\ldots,x_\ell, y_1,\ldots,y_h \in \mathcal{L}.$$

Further, \mathcal{L} is independent of ε, η .

Proof. Without loss of generality we may assume that $\ell \geq 2$. Then Theorem C implies that

$$(\varepsilon x_1,\ldots,\varepsilon x_\ell)=\nu(z_1,\ldots,z_\ell),$$

where $\nu, z_1, \ldots, z_\ell \in \{\Gamma\}$, and z_1, \ldots, z_ℓ belong to a finite set. Hence, as

$$(x_1,\ldots,x_\ell)=\nu^*(z_1,\ldots,z_\ell)$$

with $\nu^* = \nu/\varepsilon$, in view of that $x_1, \ldots, x_\ell \in \{\Gamma\}$ are pairwise coprime, we conclude that x_1, \ldots, x_ℓ belong to a finite set (which is independent of ε, η). If we have h = 1, then expressing y_1 from (5.2), the statement immediately follows. On the other hand, if $h \ge 2$, then applying the above argument for $(\eta y_1, \ldots, \eta y_h)$ in place of $(\varepsilon x_1, \ldots, \varepsilon x_\ell)$, the statement also follows.

Now we can prove our Theorem 1.4. Our argument will give the proof of our statement concerning both H_k and $H_{\leq k}$. First note that there is a constant C_1 such that if in H_k (resp. in $H_{\leq k}$) we have

$$u_1 + \dots + u_t > C_1$$

with t = k (resp. with $2 \le t \le k$) and $gcd(u_i, u_j) = 1$ for $1 \le i < j \le t$, then this sum is not contained in $\{\Gamma\}$. This is an immediate consequence of Theorem C.

Assume that contrary that contrary to the statement of the theorem for some \mathcal{R} which is asymptotically equal to one of H_k and $H_{\leq k}$ we have

$$\mathcal{R} = \mathcal{A} \cdot \mathcal{B}$$

with

$$\mathcal{A}, \mathcal{B} \subset \mathbb{N}, \quad |\mathcal{A}|, |\mathcal{B}| \ge 2.$$

Since both H_k and $H_{\leq k}$ are infinite, so is \mathcal{R} , whence at least one of \mathcal{A} and \mathcal{B} , say \mathcal{B} is infinite.

We prove that

$$(5.3)\qquad\qquad\qquad \mathcal{A}=\{a_0t:t\in T\}$$

with some positive integer a_0 and $T \subset \{\Gamma\}$, such that $|T| \geq 2$. Indeed, take distinct elements $a_1, a_2 \in \mathcal{A}$. Then for all sufficiently large $b \in \mathcal{B}$ we have

(5.4)
$$r_1 := a_1 b = u_1 + \dots + u_\ell$$

and

(5.5)
$$r_2 := a_2 b = v_1 + \dots + v_h$$

with some $r_1, r_2 \in \mathcal{R}, \ \ell, h \leq k$, and with $u_1, \ldots, u_\ell, v_1, \ldots, v_h \in \{\Gamma\}$ such that

$$gcd(u_{i_1}, u_{i_2}) = gcd(v_{j_1}, v_{j_2}) = 1 \ (1 \le i_1 < i_2 \le \ell, 1 \le j_1 < j_2 \le h).$$

We infer from (5.4) and (5.5) that

(5.7)
$$a_2(u_1 + \dots + u_\ell) - a_1(v_1 + \dots + v_h) = 0.$$

Since there are infinitely many $b \in \mathcal{B}$, and we arrive at (5.7) whenever b is large enough, this equation has infinitely many solutions $u_1, \ldots, u_\ell, v_1, \ldots, v_h \in \{\Gamma\}$ with the property (5.6). However, by Theorem C this can hold only if, after changing the indices if necessary,

(5.8)
$$a_2 u_1 = a_1 v_1.$$

Let d_1, d_2 be the maximal positive divisors of a_1, a_2 from $\{\Gamma\}$, respectively. Write

(5.9)
$$a_1 = a'_1 d_1 \text{ and } a_2 = a'_2 d_2,$$

and observe that by the pairwise coprimality of the elements of Γ both d_1, d_2 and a'_1, a'_2 are uniquely determined. In particular, none of a'_1, a'_2 is divisible by any element of Γ . Equations (5.9) together with (5.8) imply

$$a_2'd_2u_1 = a_1'd_1v_1,$$

10

where $d_2u_1, d_1v_1 \in \{\Gamma\}$. We know infer that

$$a_0 := a'_1 = a'_2$$

and

$$a_1 = a_0 t_1, \quad a_2 = a_0 t_2 \quad \text{with } t_1, t_2 \in \{\Gamma\}.$$

It is important to note that a_0 is the greatest positive divisor of a_1 (and of a_2) which is not divisible by any element of Γ . Considering now a_1, a_i instead of a_1, a_2 for any other $a_i \in \mathcal{A}$, we get in the same way that

$$a_i = a_0 t_i \quad \text{with } t_i \in \{\Gamma\}.$$

This proves (5.3).

Write $\Gamma = \{n_1, \ldots, n_s\}$ and put $m := \min(s, k)$. Denote by \mathcal{R}° the subset of \mathcal{R} consisting of sums $u_1 + \cdots + u_k$ with $u_1, \ldots, u_m \in \{\Gamma\} \setminus \mathcal{L}$ such that

(5.10)
$$u_i = \begin{cases} n_i^{\alpha_i} & \text{with } \alpha_i > 1 \text{ for } i \leq m, \\ 1 & \text{for } s < i \leq k \text{ (if } s < k). \end{cases}$$

Clearly, \mathcal{R}° is an infinite set. Take $r_1 \in \mathcal{R}^{\circ}$ of the form

$$r_1 = u_1 + \dots + u_k$$

with u_1, \ldots, u_k satisfying (5.10). By what we have already proved, we can write

$$r_1 = a_0 t_1 b$$

with some $t_1 \in T$ and $b \in \mathcal{B}$. Put $r_2 = a_0 t_2 b$ with some $t_2 \in T$, $t_2 \neq t_1$ such that $r_2 \in \mathcal{R}$. Writing

$$r_2 = v_1 + \dots + v_h$$

with pairwise coprime $v_1, \ldots, v_h \in \{\Gamma\}$, we get

(5.11)
$$t_2(u_1 + \dots + u_k) - t_1(v_1 + \dots + v_h) = 0$$

Recall that by assumption, $u_i \in \{\Gamma\} \setminus \mathcal{L}$ for $i = 1, \ldots, m$. Hence we must have $h \geq m$, and repeatedly applying Corollary 5.1 (after changing the indices if necessary) we get

$$t_2 u_i - t_1 v_i = 0$$
 $(i = 1, \dots, m)$

whence

$$\frac{u_1}{v_1} = \dots = \frac{u_m}{v_m}$$

that is

$$u_1 v_i = v_1 u_i \quad (2 \le i \le m).$$

If m > 1, then this by the coprimality of u_1, \ldots, u_k and v_1, \ldots, v_k gives $u_i = v_i$ $(i = 1, \ldots, m)$. This is a contradiction, which proves the theorem whenever m > 1.

So we are left with the only possibility m = 1, that is, s = 1. Then, letting $\Gamma = \{n\}$, equation (5.11) reduces to

(5.12)
$$t_2 n^{\alpha_1} - t_1 n^{\alpha_2} = c_1$$

where $c = t_1 w - t_2(k-1)$ with some $0 \le w \le k-1$. For any fixed $c \ne 0$ the above equation has only finitely many solutions in non-negative integers α_1, α_2 . Indeed, we may easily bound $\min(\alpha_1, \alpha_2)$ first, and then also $\max(\alpha_1, \alpha_2)$. Hence we may assume that c = 0 in (5.12). Observe, that in the case of the set H_k we have w = k - 1, whence we get $t_1 = t_2$, a contradiction.

So in what follows, we may assume that we deal with the set $H_{\leq k}$. Observe that for any large β , both n^{β} and $n^{\beta} + 1$ belong to \mathcal{R} . Hence, in view of (5.3) we get $a_0 = 1$, and all elements of \mathcal{A} are powers of n. This implies that $1 \in \mathcal{A}$: indeed, since all elements of \mathcal{A} are powers of n, we can have $n^{\beta} + 1 \in \mathcal{R}$ only if $1 \in \mathcal{A}$ (and $n^{\beta} + 1 \in \mathcal{B}$). Recall that $|\mathcal{A}| \geq 2$; let $n^{\alpha} \in \mathcal{A}$ with some $\alpha > 0$, and assume that α is minimal with this property. Obviously, for all large β we must have $n^{\beta} + i \in \mathcal{B}$, for all $0 \leq i < k$. One of k - 2, k - 1 is not divisible by n; write j for this number. (Note that for k = 2 we have j = 1.) Then, for all large β , we must have $n^{\beta} + j \in \mathcal{B}$. Consequently, we have

$$n^{\alpha+\beta} + n^{\alpha}j \in \mathcal{R}.$$

However, this implies that

$$n^{\alpha}j \le k-1.$$

Hence, in view of $j \in \{k - 2, k - 1\}$ (with j = 1 for k = 2) we easily get that the only possibility is given by

$$n=2, \quad \alpha=1, \quad k=3.$$

Thus the theorem follows. \Box

References

- C. Elsholtz, Multiplicative decomposability of shifted sets, Bull. London Math. Soc. 40 (2008), 97–107.
- [2] C. Elsholtz and A. J. Harper, Additive decomposability of sets with restricted prime factors, Trans. Amer. Math. Soc. 367 (2015), 7403–7427.
- [3] J.-H. Evertse, On sums of S-units and linear recurrences, Compos. Math. 53 (1984), 225–244.
- [4] J.-H. Evertse, K. Győry, On the number of solutions of weighted unit equations, Compos. Math. 66 (1988), 329–354.
- [5] J.-H. Evertse, K. Győry, Unit Equations in Diophantine Number Theory, Cambridge University Press, 2015.

12

- [6] K. Győry, L. Hajdu, A. Sárközy, On additive and multiplicative decompositions of sets of integers with restricted prime factors, I. (Smooth numbers.) (submitted).
- [7] L. Hajdu, N. Saradha, On generalizations of problems of Recaman and Pomerance, J. Number Theory 162 (2016), 552–563.
- [8] J. Maynard, Small gaps between primes, Annals Math. 181 (2015), 383-413.
- [9] A. J. van der Poorten, H. P. Schlickewei, The growth condition for recurrence sequences, Macquarie University Math. Rep., 1982, 82–0041.
- [10] A. J. van der Poorten, H. P. Schlickewei, Additive relations in fields, J. Austral. Math. Soc. 51 (1991), 154–170.
- [11] A. Sárközy, Unsolved problems in number theory, Periodica Math. Hungar. 42(1-2) (2001), 17–35.

K. Győry

L. Hajdu

UNIVERSITY OF DEBRECEN, INSTITUTE OF MATHEMATICS

H-4002 Debrecen, P.O. Box 400.

HUNGARY

Email address: gyory@science.unideb.hu Email address: hajdul@science.unideb.hu

A. SÁRKÖZY EÖTVÖS LORÁND UNIVERSITY, INSTITUTE OF MATHEMATICS H-1117 BUDAPEST, PÁZMÁNY PÉTER SÉTÁNY 1/C HUNGARY Email address: sarkozy@cs.elte.hu