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ON ADDITIVE AND MULTIPLICATIVE
DECOMPOSITIONS OF SETS OF INTEGERS
WITH RESTRICTED PRIME FACTORS, II.

(SMOOTH NUMBERS AND GENERALIZATIONS.)

K. GYŐRY, L. HAJDU AND A. SÁRKÖZY

Abstract. In part I of this paper we studied additive decompos-
ability of the set Fy of th y-smooth numbers and the multiplicative
decomposability of the shifted set Gy = Fy + {1}. In this paper,
focusing on the case of ’large’ functions y, we continue the study
of these problems. Further, we also investigate a problem related
to the m-decomposability of k-term sumsets, for arbitrary k.

1. Introduction

First we recall some notation, definitions and results from part I of
this paper [6] which we all also need here.
A,B, C, . . . denote (usually infinite) sets of non-negative integers, and

their counting functions are denoted by A(X), B(X), C(X), . . . so that
e.g.

A(X) = |{a : a ≤ X, a ∈ A}|.

The set of the positive integers is denoted by N, and we write N∪{0} =
N0. The set of rational numbers is denoted by Q.
We will need

Definition 1.1. Let G be an additive semigroup and A,B, C subsets
of G with

(1.1) |B| ≥ 2, |C| ≥ 2.

If

(1.2) A = B + C (= {b+ c : b ∈ B, c ∈ C})
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then (1.2) is called an additive decomposition or briefly a-decomposition
of A, while if a multiplication is defined in G and (1.1) and

(1.3) A = B · C (= {bc : b ∈ B, c ∈ C})

hold then (1.3) is called a multiplicative decomposition or briefly m-
decomposition of A.

Definition 1.2. A finite or infinite set A of non-negative integers is
said to be a-reducible if it has an additive decomposition

A = B + C with |B| ≥ 2, |C| ≥ 2

(where B ⊂ N0, C ⊂ N0). If there are no sets B, C with these properties
then A is said to be a-primitive or a-irreducible.

Definition 1.3. Two sets A,B of non-negative integers are said to be
asymptotically equal if there is a number K such that A∩ [K,+∞) =
B ∩ [K,+∞) and then we write A ∼ B.

Definition 1.4. An infinite set A of non-negative integers is said to
be totally a-primitive if every A′ with A′ ⊂ N0, A

′ ∼ A is a-primitive.

The multiplicative analogs of Definitions 1.2 and 1.4 are:

Definition 1.5. If A is an infinite set of positive integers then it is
said to be m-reducible if it has a multiplicative decomposition

A = B · C with |B| ≥ 2, |C| ≥ 2

(where B ⊂ N, C ⊂ N). If there are no such sets B, C then A is said
to be m-primitive or m-irreducible.

Definition 1.6. An infinite set A ⊂ N is said to be totally m-primitive
if every A′ ⊂ N with A′ ∼ A is m-primitive.

Definition 1.7. Denote the greatest prime factor of the positive integer
n by p+(n). Then n is said to be smooth (or friable) if p+(n) is ”small”
in terms of n. More precisely, if y = y(n) is a monotone increasing
function on N assuming positive values and n ∈ N is such that p+(n) ≤
y(n), then we say that n is y-smooth, and we write Fy (F for ”friable”)
for the set of all y-smooth positive integers.

Starting out from a conjecture of the third author [11] and a related
partial result of Elsholtz and Harper [2], in [6] we proved the following
two theorems:

Theorem A. If y(n) is an increasing function with y(n) → ∞ and

(1.4) y(n) < 2−32 logn for large n,

then the set Fy is totally a-primitive.
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(If y(n) is increasing then the set Fy is m-reducible since Fy = Fy ·Fy,
and we also have Fy ∼ Fy · {1, 2}, thus if we want to prove an m-

primitivity theorem involving Fy then we have to switch from Fy to
the shifted set

(1.5) Gy := Fy + {1}.

See also [1].)

Theorem B. If y(n) is defined as in Theorem 1.1, then the set Gy is
totally m-primitive.

Here our goal is to prove further related results. First we will prove
a theorem in the direction opposite to the one in Theorem A. Indeed,
we will show that if y(n) grows faster than n/2, then Fy is not totally
a-primitive.

Theorem 1.1. Let y(n) be any monotone increasing function on N
with

n

2
< y(n) < n for all n ∈ N.

Then Fy is not totally a-primitive. In particular, in this case the set

Fy ∩ [9,+∞)

is a-reducible, namely, we have

Fy ∩ [9,+∞) = A+ B

with

A = {n ∈ N : none of n, n+ 1, n+ 3, n+ 5 is prime}, B = {0, 1, 3, 5}.

Next we will show that under a standard conjecture, the decomposi-
tion in Theorem 1.1 is best possible in the sense that no such decompo-
sition is possible with 2 ≤ |B| ≤ 3. For this, we need to formulate the
so-called prime k-tuple conjecture. A finite set A of integers is called
admissible, if for any prime p, no subset of A forms a complete residue
system modulo p.

Conjecture 1.1 (The prime k-tuple conjecture). Let {a1, . . . , ak} be
an admissible set of integers. Then there exist infinitely many positive
integers n such that n+ a1, . . . , n+ ak are all primes.

Remark. By a recent, deep result of Maynard [8] we know that for each
k, the above conjecture holds for a positive proportion of admissible
k-tuples. We also mention that if the prime k-tuple conjecture is true,
then there exist infinitely many n such that n + a1, . . . , n + ak are
consecutive primes (see e.g. the proof of Theorem 2.4 of [7]).
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Theorem 1.2. Define y(n) as in Theorem 1.1 and suppose that the
prime k-tuple conjecture is true for k = 2, 3. Then for any C ⊂ N with
C ∼ Fy there is no decomposition of the form

C = A+ B

with

2 ≤ |B| ≤ 3.

We propose the following problem, which is a shifted, multiplicative
analogue of the question studied in Theorems 1.1 and 1.2.
Problem. With the same y = y(n) as in Theorem 1.1, write

Gy = Fy + {1} = {m+ 1 : m ∈ Fy}.

Is the set Gy totally m-primitive?
Towards the above problem, we prove that no appropriate decompo-

sition is possible with |B| < +∞.

Theorem 1.3. Let y(n) be as in Theorem 1.1. Then for any C ⊂ N
with C ∼ Gy there is no decomposition of the form

C = A · B

with

|B| < +∞.

Let

Γ := {n1, . . . , ns}

be a set of pairwise coprime positive integers > 1, and let {Γ} be the
multiplicative semigroup generated by Γ, with 1 ∈ {Γ}. If in particular,
n1, . . . , ns are distinct primes, then we use the notation Γ = S, and
{Γ} = {S} is just the set of positive integers composed of the primes
from S.
The next theorem shows that if Γ is finite, then the sets of k-term and

at most k-term sums of pairwise coprime elements of {Γ} are totally
m-primitive. For the precise formulation of the statement, write H1 :=
{Γ}, and for k ≥ 2 set

Hk := {u1 + · · ·+ uk : ui ∈ {Γ}, gcd(ui, uj) = 1 for 1 ≤ i < j ≤ k}

and

H≤k :=
k
⋃

ℓ=1

Hℓ.



DECOMPOSITIONS OF SETS OF INTEGERS 5

Theorem 1.4. Let k ≥ 2. Then both Hk and H≤k are totally m-
primitive, apart from the only exception exception of the case Γ = {2}
and k = 3, when we have

H≤3 = {1, 2} · {2β, 2β + 1 : β ≥ 0}.

Remark. As we have

{Γ} = {Γ} · {Γ},

the assumption k ≥ 2 is clearly necessary. Further, the coprimality
assumption in the definition of Hk cannot be dropped. Indeed, letting

H∗
k := {u1 + · · ·+ uk : ui ∈ {Γ} for 1 ≤ i ≤ k}

and

H∗
≤k :=

k
⋃

ℓ=1

H∗
ℓ

we clearly have

H∗
k = {Γ} ·H∗

k and H∗
≤k = {Γ} ·H∗

≤k.

2. Proof of Theorem 1.1

By the choice of y(n) we see that Fy is the set of all composite
integers. Put

C = Fy ∩ [9,+∞).

We show that by the definition of A and B as in the theorem, we have

C = A+ B.

To see this, first observe that by the assumptions on A and B, all the
elements of A + B are composite. So we only need to check that all
composite numbers n with n ≥ 9 belong to A + B. If n is an odd
composite number, then by n ∈ A we have

(2.1) n ∈ (A+ B).

So assume that n is an even composite number with n ≥ 10. Then one
of n− 1, n− 3, n− 5 is not a prime. As this number is clearly in A, we
have (2.1) again and our claim follows. �
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3. Proof of Theorem 1.2

Let C ⊂ N with C ∼ Fy. Then, as we noted in the proof of Theorem
1.1, with some positive integer n0 we have

C ∩ [n0,+∞) = {n ∈ N : n ≥ n0 and n is composite}.

We handle the cases k = 2 and 3 separately.
Let first k = 2, that is assume that contrary to the assertion of the

theorem the set C can be represented as

(3.1) C = A+ B

with |B| = 2. Set B = {b1, b2}. Clearly, without loss of generality we
may assume that b1 < b2 and also that b1 = 0. Indeed, the first as-
sumption is trivial, and the second one can be made since (3.1) implies
that

C = A∗ + {0, b2 − b1}

with

A∗ = A+ {b1} = {a+ b1 : a ∈ A}.

As the set {−b2, b2} is admissible, by our assumption on the validity of
Conjecture 1.1 we get that there exist infinitely many integers n such
that n − b2 and n + b2 are both primes. In view of the Remark after
Conjecture 1.1, we may assume that these primes are consecutive, that
is, in particular, n is composite. Observe that then, assuming that
n ≥ n0 + b2, we have n− b2 /∈ A and n /∈ A. Indeed, otherwise by the
primality of n− b2 and n + b2, respectively, we get a contradiction: in
case of n − b2 ∈ A we have n − b2 ∈ C, while n + b2 ∈ A implies that
n+ b2 ∈ C. But then we get n /∈ C, which is a contradiction.
Let now k = 3, that is assume that we have (3.1) with some B with

|B| = 3. Write B = {b1, b2, b3}. As in the case k = 2, we may assume
that 0 = b1 < b2 < b3. Now we construct an admissible triple related
to B. If b2 and b3 are of the same parity, then either

t1 = {−b3,−b2, b3}

or

t2 = {−b3,−b2, b2}

is admissible, according as 3 | b3 or 3 ∤ b3. Further, if b2 is odd and b3
is even, then either

t3 = {−b3 + b2, b3 − b2, b2}

or

t4 = {−b3 + b2,−b2, b2}
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is admissible, according as b2 ≡ b3 (mod 3) or b2 6≡ b3 (mod 3). Fi-
nally, if b2 is even and b3 is odd, then either

t5 = {−b3 + b2, b3 − b2, b3}

or

t6 = {−b3, b3 − b2, b3}

is admissible, according as b2 ≡ b3 (mod 3) or b2 6≡ b3 (mod 3). Let
1 ≤ i ≤ 6 such that ti is admissible, and write ti = {u1, u2, u3}. Ac-
cording to Conjecture 1.1 (see also the Remark after it) we get that
there exists an n with n ≥ n0 + b3 such that n is composite, but

n+ u1, n + u2, n+ u3

are all primes ≥ n0. However, then a simple check shows that for any
value of i, we have that none of n− b3, n− b2, n is in A, since otherwise
C would contain a prime ≥ n0. However, then we get n /∈ C. This is a
contradiction, and our claim follows. �

4. Proof of Theorem 1.3

Let C ⊂ N with C ∼ Gy. Then with some positive integer n0 we have

C ∩ [n0,+∞) = {n+ 1 : n ≥ n0 − 1 and n is composite}.

Assume to the contrary that we can write

(4.1) C = A · B

with |B| < +∞. Put B = {b1, . . . , bℓ} with ℓ ≥ 2 and 1 ≤ b1 < b2 <
· · · < bℓ.
Assume first that 1 /∈ B (that is, b1 > 1). Let n be an arbitrary

(composite) multiple of the product b1 . . . bℓ such that n ≥ n0. Then
we immediately see that n + 1 is not divisible by any bi (i = 1, . . . , ℓ),
which shows that n + 1 /∈ C. However, this is a contradiction, and our
claim follows in this case.
Suppose now that 1 ∈ B (that is, b1 = 1). For each of i = 2, . . . , ℓ

choose a prime divisor pi of bi, with the convention that pi = 4 if bi
is a power of 2, and let P be the set of these primes. Observe that P
is non-empty. Take two distinct primes q1, q2 not belonging to P , and
consider the following system of linear congruences:

x ≡ 0 (mod qi) for i = 1, 2,

x ≡ 1 (mod p) if p ∈ P, p | b2 − 1,

x ≡ 0 (mod p) if p ∈ P, p ∤ b2 − 1.
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Let x0 be an arbitrary positive solution to the above system. Put

N := q1q2
∏

p∈P

p

and consider the arithmetic progression

(4.2) (b2N)t + (b2(x0 + 1)− 1)

in t ≥ 0. Observe that here we have gcd(b2N, b2(x0 + 1) − 1) = 1.
Indeed, gcd(b2, b2(x0+1)−1) = 1 trivially holds, and as b2(x0+1)−1 =
b2x0 + b2 − 1, the relation gcd(N, b2(x0 + 1)− 1) = 1 follows from the
definition of x0. Thus by Dirichlet’s theorem there exist infinitely many
integers t such that (4.2) is a prime. Let t be such an integer with
t > n0, and put

n := tN + x0.

We claim that n is composite with n > n0, but n + 1 /∈ C. This will
clearly imply the statement. It is obvious that n > n0, and as q1q2 | N
and q1q2 | x0, we also have that n is composite. Further, we have that
n + 1 /∈ A. Indeed, otherwise we would also have b2(n + 1) ∈ C, that
is, b2(n+ 1)− 1 should be composite - however,

b2(n + 1)− 1 = (b2N)t + (b2(x0 + 1)− 1)

is a prime. (The importance of this fact is that we cannot have n+1 ∈ C
by the relation n+1 = (n+1) · 1 with n+1 ∈ A and 1 ∈ B.) Further,
since n + 1 ≡ 1, 2 (mod p) for p ∈ P as pi ≥ 3 and pi | bi we have
bi ∤ n + 1 for i = 3, . . . , ℓ. We need to check the case i = 2 separately.
If b2 > 2, then we have p2 ≥ 3 and p2 | b2, and we have b2 ∤ n+1 again.
On the other hand, if b2 = 2 then as b2 − 1 = 1 and p2 = 4, we have
4 | n, so b2 ∤ n + 1 once again. So in any case, bi ∤ n + 1 (i = 2, . . . , ℓ).
Hence n + 1 cannot be of the form abi with a ∈ A and i = 1, . . . , ℓ.
Thus our claim follows also in this case. �

5. Proof of Theorem 1.4

The proof of Theorem 1.4 is based on the following deep theorem.
Recall that {Γ} denotes the multiplicative semigroup generated by Γ.
Consider the equation

(5.1) a1x1 + · · ·+ amxm = 0 in x1, . . . , xm ∈ {Γ},

where a1, . . . , am are non-zero elements of Q. If m ≥ 3, a solution of
(5.1) is called non-degenerate if the left hand side of (5.1) has no vanish-
ing subsums. Two solutions x1, . . . , xm and x′

1, . . . , x
′
m are proportional

if
(x′

1, . . . , x
′
m) = λ(x1, . . . , xm)
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with some λ ∈ {Γ} \ {1}.

Theorem C. Equation (5.1) has only finitely many non-proportional,
non-degenerate solutions.

This theorem was proved independently by van der Poorten and
Schlickewei [9] and Evertse [3] in a more general form. Later Ev-
ertse and Győry [4] showed that the number of non-proportional, non-
degenerate solutions of (5.1) can be estimated from above by a constant
which depends only on Γ. For related results, see the paper [10] and
the book [5].
We shall use the following consequence of Theorem C.

Corollary 5.1. There exists a finite set L such that if x1, . . . , xℓ are
pairwise coprime elements of {Γ}, y1, . . . , yh are also pairwise coprime
elements of {Γ} such that ℓ, h ≤ k, ℓ+ h ≥ 3 and

(5.2) ε(x1 + · · ·+ xℓ)− η(y1 + · · ·+ yh) = 0

with some ε, η ∈ {Γ} and without vanishing subsum on the left hand
side, then

x1, . . . , xℓ, y1, . . . , yh ∈ L.

Further, L is independent of ε, η.

Proof. Without loss of generality we may assume that ℓ ≥ 2. Then
Theorem C implies that

(εx1, . . . , εxℓ) = ν(z1, . . . , zℓ),

where ν, z1, . . . , zℓ ∈ {Γ}, and z1, . . . , zℓ belong to a finite set. Hence,
as

(x1, . . . , xℓ) = ν∗(z1, . . . , zℓ)

with ν∗ = ν/ε, in view of that x1, . . . , xℓ ∈ {Γ} are pairwise coprime,
we conclude that x1, . . . , xℓ belong to a finite set (which is independent
of ε, η). If we have h = 1, then expressing y1 from (5.2), the state-
ment immediately follows. On the other hand, if h ≥ 2, then applying
the above argument for (ηy1, . . . , ηyh) in place of (εx1, . . . , εxℓ), the
statement also follows. �

Now we can prove our Theorem 1.4. Our argument will give the
proof of our statement concerning both Hk and H≤k. First note that
there is a constant C1 such that if in Hk (resp. in H≤k) we have

u1 + · · ·+ ut > C1

with t = k (resp. with 2 ≤ t ≤ k) and gcd(ui, uj) = 1 for 1 ≤ i <
j ≤ t, then this sum is not contained in {Γ}. This is an immediate
consequence of Theorem C.
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Assume that contrary that contrary to the statement of the theorem
for some R which is asymptotically equal to one of Hk and H≤k we
have

R = A · B

with

A,B ⊂ N, |A|, |B| ≥ 2.

Since both Hk and H≤k are infinite, so is R, whence at least one of A
and B, say B is infinite.
We prove that

(5.3) A = {a0t : t ∈ T}

with some positive integer a0 and T ⊂ {Γ}, such that |T | ≥ 2. Indeed,
take distinct elements a1, a2 ∈ A. Then for all sufficiently large b ∈ B
we have

(5.4) r1 := a1b = u1 + · · ·+ uℓ

and

(5.5) r2 := a2b = v1 + · · ·+ vh

with some r1, r2 ∈ R, ℓ, h ≤ k, and with u1, . . . , uℓ, v1, . . . , vh ∈ {Γ}
such that
(5.6)

gcd(ui1, ui2) = gcd(vj1, vj2) = 1 (1 ≤ i1 < i2 ≤ ℓ, 1 ≤ j1 < j2 ≤ h).

We infer from (5.4) and (5.5) that

(5.7) a2(u1 + · · ·+ uℓ)− a1(v1 + · · ·+ vh) = 0.

Since there are infinitely many b ∈ B, and we arrive at (5.7) when-
ever b is large enough, this equation has infinitely many solutions
u1, . . . , uℓ, v1, . . . , vh ∈ {Γ} with the property (5.6). However, by The-
orem C this can hold only if, after changing the indices if necessary,

(5.8) a2u1 = a1v1.

Let d1, d2 be the maximal positive divisors of a1, a2 from {Γ}, respec-
tively. Write

(5.9) a1 = a′1d1 and a2 = a′2d2,

and observe that by the pairwise coprimality of the elements of Γ both
d1, d2 and a′1, a

′
2 are uniquely determined. In particular, none of a′1, a

′
2

is divisible by any element of Γ. Equations (5.9) together with (5.8)
imply

a′2d2u1 = a′1d1v1,
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where d2u1, d1v1 ∈ {Γ}. We know infer that

a0 := a′1 = a′2

and
a1 = a0t1, a2 = a0t2 with t1, t2 ∈ {Γ}.

It is important to note that a0 is the greatest positive divisor of a1
(and of a2) which is not divisible by any element of Γ. Considering
now a1, ai instead of a1, a2 for any other ai ∈ A, we get in the same
way that

ai = a0ti with ti ∈ {Γ}.

This proves (5.3).
Write Γ = {n1, . . . , ns} and put m := min(s, k). Denote by R◦ the

subset of R consisting of sums u1 + · · ·+ uk with u1, . . . , um ∈ {Γ} \ L
such that

(5.10) ui =

{

nαi

i with αi > 1 for i ≤ m,

1 for s < i ≤ k (if s < k).

Clearly, R◦ is an infinite set. Take r1 ∈ R◦ of the form

r1 = u1 + · · ·+ uk

with u1, . . . , uk satisfying (5.10). By what we have already proved, we
can write

r1 = a0t1b

with some t1 ∈ T and b ∈ B. Put r2 = a0t2b with some t2 ∈ T , t2 6= t1
such that r2 ∈ R. Writing

r2 = v1 + · · ·+ vh

with pairwise coprime v1, . . . , vh ∈ {Γ}, we get

(5.11) t2(u1 + · · ·+ uk)− t1(v1 + · · ·+ vh) = 0.

Recall that by assumption, ui ∈ {Γ} \ L for i = 1, . . . , m. Hence
we must have h ≥ m, and repeatedly applying Corollary 5.1 (after
changing the indices if necessary) we get

t2ui − t1vi = 0 (i = 1, . . . , m)

whence
u1

v1
= · · · =

um

vm
,

that is
u1vi = v1ui (2 ≤ i ≤ m).

If m > 1, then this by the coprimality of u1, . . . , uk and v1, . . . , vk
gives ui = vi (i = 1, . . . , m). This is a contradiction, which proves the
theorem whenever m > 1.
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So we are left with the only possibility m = 1, that is, s = 1. Then,
letting Γ = {n}, equation (5.11) reduces to

(5.12) t2n
α1 − t1n

α2 = c,

where c = t1w− t2(k−1) with some 0 ≤ w ≤ k−1. For any fixed c 6= 0
the above equation has only finitely many solutions in non-negative
integers α1, α2. Indeed, we may easily bound min(α1, α2) first, and
then also max(α1, α2). Hence we may assume that c = 0 in (5.12).
Observe, that in the case of the set Hk we have w = k − 1, whence we
get t1 = t2, a contradiction.
So in what follows, we may assume that we deal with the set H≤k.

Observe that for any large β, both nβ and nβ + 1 belong to R. Hence,
in view of (5.3) we get a0 = 1, and all elements of A are powers of n.
This implies that 1 ∈ A: indeed, since all elements of A are powers of
n, we can have nβ +1 ∈ R only if 1 ∈ A (and nβ +1 ∈ B). Recall that
|A| ≥ 2; let nα ∈ A with some α > 0, and assume that α is minimal
with this property. Obviously, for all large β we must have nβ + i ∈ B,
for all 0 ≤ i < k. One of k − 2, k − 1 is not divisible by n; write j for
this number. (Note that for k = 2 we have j = 1.) Then, for all large
β, we must have nβ + j ∈ B. Consequently, we have

nα+β + nαj ∈ R.

However, this implies that

nαj ≤ k − 1.

Hence, in view of j ∈ {k − 2, k − 1} (with j = 1 for k = 2) we easily
get that the only possibility is given by

n = 2, α = 1, k = 3.

Thus the theorem follows. �
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L. Hajdu
University of Debrecen, Institute of Mathematics
H-4002 Debrecen, P.O. Box 400.
Hungary
Email address : gyory@science.unideb.hu
Email address : hajdul@science.unideb.hu

A. Sárközy
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