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ABSTRACT
We investigate the effect of strong emission line galaxies on the performance of empirical
photometric redshift estimation methods. In order to artificially control the contribution of
photometric error and emission lines to total flux, we develop a PCA-based stochastic mock
catalogue generation technique that allows for generating infinite signal-to-noise ratio model
spectra with realistic emission lines on top of theoretical stellar continua. Instead of running
the computationally expensive stellar population synthesis and nebular emission codes, our
algorithm generates realistic spectra with a statistical approach, and – as an alternative to
attempting to constrain the priors on input model parameters – works by matching output
observational parameters. Hence, it can be used to match the luminosity, colour, emission line
and photometric error distribution of any photometric sample with sufficient flux-calibrated
spectroscopic follow-up. We test three simple empirical photometric estimation methods and
compare the results with and without photometric noise and strong emission lines. While
photometric noise clearly dominates the uncertainty of photometric redshift estimates, the key
findings are that emission lines play a significant role in resolving colour space degeneracies
and good spectroscopic coverage of the entire colour space is necessary to achieve good
results with empirical photo-z methods. Template fitting methods, on the other hand, must use
a template set with sufficient variation in emission line strengths and ratios, or even better,
first estimate the redshift empirically and fit the colours with templates at the best-fit redshift
to calculate the K-correction and various physical parameters.
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1 INTRODUCTION

Due to the well-known limitations of spectroscopic observations,
ongoing and upcoming wide area cosmological surveys, such as
DES (Dark Energy Survey, Annis 2013), HSC (Hyper Suprime-
Cam Subaru, Aihara et al. 2019), KiDS (Kilo-Degree Survey, de
Jong et al. 2015) LSST (Large Synoptic Survey Telescope, Ivezić
et al. 2019) and Euclid (Laureĳs et al. 2014), depend highly on reli-
able photometric redshifts to recover the cosmological parameters
with sufficient accuracy. Photometric redshift evaluation methods
can be split in two groups: the template-based methods that rely on
representative libraries of model spectra to fit the spectral energy
distributions of galaxies (see Benítez 2000; Budavári et al. 2001;
Csabai et al. 2003; Ilbert et al. 2006; Brammer et al. 2008 and
references therein) and the empirical methods that apply machine
learning techniques to infer the hidden correlation between photo-
metric data and redshift. There are numerous new machine learning

★ E-mail: csogeza@mpa-garching.mpg.de

based photo-z estimators in development, with a large variety of
approaches for providing the most precise measurements of cosmo-
logical parameters (Sadeh et al. 2016; Speagle et al. 2016; Cavuoti
et al. 2017; Graham et al. 2018). Current, state-of-the-art photo-z
codes use empirical methods, often combined with a Bayesian ap-
proach (Benítez 2000; Dahlen et al. 2010; Tanaka 2015), to derive
the probability distribution 𝑝(𝑧phot) for each galaxy, and the 𝑁 (𝑧)
distribution function for the total ensemble. Combined with regu-
larization techniques (Bordoloi et al. 2010) and folding in galaxy
clustering information ((Morrison et al. 2017; Scottez et al. 2018)),
photo-z uncertainties can be well controlled and propagated into the
final cosmological parameter uncertainties. For a more complete
overview on photometric redshift evaluation methods see Salvato
et al. (2019).

One major difficulty of the photometric redshift evaluation
methods is that the current and future spectroscopic surveys are
incomplete in magnitude, redshift and physical properties (Cooper
et al. 2006), along with the fact that spectroscopic surveys to date do
not sample the full colour space of galaxies in the deeper, Euclid-

© 2021 The Authors

ar
X

iv
:2

10
1.

11
36

8v
1 

 [
as

tr
o-

ph
.G

A
] 

 2
7 

Ja
n 

20
21



2 G. Csörnyei, L. Dobos & I. Csabai

like surveys, and thus the colour-redshift relation is not fully con-
strained with existing spectroscopy, which makes the photometric
redshift calibration challenging (Masters et al. 2017). This issue
was investigated in detail by Beck et al. (2017) who constructed two
separate sets of galaxy catalogues to model the biases present in the
photo-z estimations either due to the lack of training set coverage
in the feature space compared to the test set or due to the mismatch
between photometric error distributions of the two samples. They
found that the mismatch between distributions could be adequately
handled by template fitting and empirical methods as long as train-
ing sample coverage is sufficient, while the issue of spectroscopic
coverage mainly lowers the precision of the local machine-learning
based estimations, but the calibration of template-based techniques
is also affected. They also note that in case of single instrument
spectroscopic observations the results cannot be tested on poorer
quality photometry from another survey, which in turn means that
more than the feature-space coverage has to be taken into account to
address the photo-z issues. Moreover, projections for cosmic shear
measurements considering Euclid statistics indicate two require-
ments on photo-z for precision weak lensing: the precision for each
object should be better than 0.05(1 + 𝑧) and the redshift bias, or the
true mean redshift of objects in each photo-z bin must be known
with at least Δ𝑧 = 0.002(1+ 𝑧) precision ((Zhan & Knox 2006; Bor-
doloi et al. 2010). To estimate and understand the physical reasons
behind photo-z uncertainties and bias beyond the limited training
sets, photometric noise and other observational effects, we should
investigate the distribution of model galaxies in the colour-colour
space with as much detail as possible. This will not only us help
get an insight into what can go wrong with empirical techniques
but also help improve spectroscopic targeting strategies to compile
spectroscopic training sets with optimized colour space coverage.

1.1 Template-based and empirical photometric redshift
estimation

Template-based photometric estimation works by fitting model
spectra to observed broad-band colours. Synthetic magnitudes from
the models are computed by convolving the templates with trans-
mission curves of the filters used for the observations. While this
approach is physical in the sense that spectral templates can be
derived from theoretical models with known physical input param-
eters, template-based photo-z usually performs significantly worse
than empirical methods due to differences between the models and
real galaxies and discrepancies between synthetic and real magni-
tudes Salvato et al. (2019).

Empirical photometric redshift estimation methods are based
on the application of a training set (galaxies with both known spec-
troscopic redshift and broad-band colours) and machine learning
methods that interpolate from the properties of the training set
galaxies to galaxies with available photometry but no spectroscopic
redshift. It has become clear, however, that empirical methods can
be severely limited by the availability of a training set with reliable
spectroscopic redshift measurements. The main limiting factors of
training sets are the sparse coverage of themulti-dimensional colour-
colour space that photometric galaxies span and the unavoidable
necessity to extrapolate to faint magnitudes where spectroscopic
observations are not feasible. The training sets usually cover only
the brighter end of observations, thus extrapolation to faint objects
– which might have got different spectral features than brighter
ones – is also often necessary. The quality of the latter is hard
to measure. Template-based methods could overcome these limita-

tions, but they lag behind empirical techniques due to the problems
mentioned above.

1.2 Related work

The large amount of flux-calibrated optical spectra accumulated by
the SDSS opened up new ways to test the various spectral syn-
thesis models and theories. The connection of stellar population
synthesis and radiative-transfer models allowed the modelling of
emission lines on top of stellar continua, most notably PÉGASE
(Fioc & Rocca-Volmerange 1997) and BPASS (Eldridge & Stanway
2012), but the photoionization models of these software packages
introduces a large set of free parameters that describe the distribu-
tion and composition of the ISM. The number of these parameters
can be reduced by theoretical or empirical assumptions, i.e. assum-
ing a certain symmetry for the ISM (Stasińska 1984) or common
ionization spectrum for all gas clouds (Ferland et al. 2017), or by
estimating the priori distribution of model parameters using large
ensembles of models with observations, as for instance, in case of
the LE PHARE code (Ilbert et al. 2006).

Beyond existing theoretical methods, the large amount of ob-
served galaxy spectra allow for an empirical route to generate realis-
tic emission lines on top of stellar continua derived from population
synthesis models. Yip et al. (2004) demonstrated that the spectra
of SDSS galaxies form a sequence which, in leading order, can be
parametrized by a single parameter by expressing the spectra on a
basis derived by principal component analysis. Győry et al. (2011)
and Beck et al. (2016a) showed that correlations exist between the
principal components (PCs) of stellar continua and emission line
log 𝐸𝑊s. Beck et al. (2016a) also gave a recipe to generate real-
istic emission lines on model stellar continua by leveraging these
correlations. The correlations are not very tight: instead of finding
scaling relations or fitting formulae between line and continuum
PCs, one has to use probability distributions to describe emission
line strengths and correlate the parameters of the distributions with
PCs of the continuum. In our paper, we extend their approach for
a wider set of galaxies and create a realistic mock catalogue on a
purely empirical basis, that matches the observed distributions.

1.3 Analysing the effect of emission lines

The principal goal of this paper is to assess the effect of strong
emission line galaxies, and the lack of sufficient training set cover-
age of them, on photometric redshift estimation. For this purpose
we generate model galaxy spectra with infinite signal-to-noise ra-
tio that match the luminosity, redshift, colour and emission line
distributions of a spectroscopic sample.

The advantage of the outlined technique is clearly its simplic-
ity over approaches which require detailed modelling of the gas and
sources of excitation in galaxies to determine line strengths. Con-
sequently, instead of trying to find the right priors on population
synthesis and photoionization models to generate realistic simu-
lated catalogues, we start from observations and build a stochastic
model that can generate physically meaningful model spectra by
linear combination of stellar continuum eigenspectra and emission
line eigenvectors derived from logarithmic equivalent widths. The
method starts by fitting the stellar continuum and emission lines
of the observed spectra, then running a principal component anal-
ysis on both. After classifying the fitted models according to a few
parameters, such as single-band luminosity and the first two con-
tinuum PCs, we describe the distribution of both continuum and
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line PCs in each class with Gaussian mixture models (GMM). By
drawing samples from a prescribed luminosity function and PCs
from the Gaussian Mixture Models, we can generate very realistic
spectroscopic and photometric catalogues with arbitrary emission
line contribution and photometric noise. This opens the way to test
empirical photo-z methods on samples with and without these ef-
fects to compare their outcome. We intentionally limit ourselves
to the simplest photo-z techniques so that the complexities of the
more advanced codes do not obscure the lessons we can learn from
turning emission lines and photometric error on and off.
The paper is structured as follows. In Sec. 2, we introduce the initial
observed data set we start from and outline the continuum and
emission line fitting of the spectroscopic sample. We explain the
PCA-based stochastic method for generating realistic mock spectra
in Sec. 3, then investigate the basic properties and distributions along
with the influence of emission lines on these in Sec. 4. Following a
brief summary of the empirical photo-z methods we test in Sec. 5,
we continue by presenting the results of the analysis in Sec. 6
and we conclude the paper in Sec. 7. The python code that was
used for the analysis is available on the GitHub page of the author:
https://github.com/Csogeza/EmiPhotoZ

2 DATA SET AND DATA PROCESSING

In order to match the spectroscopic mock catalogue to observations,
we use a data set derived from the SDSS main galaxy spectroscopic
sample. Although shallow in redshift, the advantage of using SDSS
over newer, deeper data sets is its relatively unbiased target se-
lection method and excellent colour-space coverage. The obvious
consequence of using SDSS is restricting ourselves to low redshifts
of 𝑧 < 0.35 and shallow photometric depths of 𝑚𝑟 < 17.77. On
the other hand, we only use the SDSS sample as a starting point
to generate the mock catalogue and our method allows for reason-
able extrapolation to depths where spectral evolution effects are still
considered small.

The SDSSmain spectroscopic galaxy sample consists of amix-
ture of blue and red galaxies at low redshifts and mostly luminous
red galaxies (LRGs) above 𝑧 > 0.1. The left panel of Fig. 1 shows
the normalized redshift distribution, as well as the distributions of
absolute and apparent 𝑟-band magnitudes of the initial empirical
sample we attempt to match with the mock catalogue.

We divided the original SDSS sample into “strong emission
line” and “other” galaxies, the latter to include all galaxies that have
got Hydrogen emission only or show no prominent emission lines.
Galaxies showing no emission lines will be termed “passive” and
the rest “weak emission line” galaxy. The sub-sample of emission
line galaxies was selected based on the criterion that all nebular
emission lines of Tab. 1 should be detected at a signal-to-noise
ratio larger than 3. Passive and weak line galaxies were treated as a
continuum based on the strength of the H𝛼 line.

The data processing steps for “strong emission line” galaxies
are outlined in the top panel of Fig. 8. Each step is explained in
details in the following sections.

2.1 Continuum PCA

To be able to match the observed data with infinite signal-to-noise
ratio models, we first correct the flux calibrated spectra for fore-
ground extinction based on the law of Calzetti et al. (2000) and
O’Donnell (1994) using the dust map of Schlegel et al. (1998), then
fit the intrinsic extinction, velocity dispersion and stellar continuum

0.0 0.2
z

N

23 20 17
Mr

12 14 16 18
mr

Figure 1. Left:Normalized redshift distributions of the original SDSS DR7
spectroscopic main galaxy sample (solid line) and the mock catalogue (blue
histogram) generated by our method. Middle: Normalized distribution of
absolute 𝑟 -band Petrosian magnitudes of the original SDSS sample (solid
line) and the mock catalogue (blue histogram). Right: Normalized apparent
𝑟 -band Petrosian magnitude of the original SDSS sample (solid line) and
the mock catalogue (blue histogram). The minor differences are thought to
be primarily to the large scale structure that our model does not take into
account.

Line 𝜆vac [Å] Line 𝜆vac [Å]

H𝛼 6565 H𝛽 4863
S ii 6718 S ii 6733
O ii 3727 H𝛾 4342
O iii 5008 O iii 4960
N i 6586 N ii 6556

Table 1. The list of emission lines used to define the “emission line” galaxy
sample. All of these lines must be detected at 3𝜎 level for a galaxy to be
classified as “emission line” galaxy.

of the empirical data set with non-negative linear combinations of
stellar population templates generated with the code of Bruzual &
Charlot (2003) and Tremonti et al. (2004), as described in Beck et al.
(2016a). Intrinsic extinction is modelled using the prescriptions of
Charlot & Fall (2000), and extinction is re-applied to the model
continua after fitting. Before further analysis the obtained model
spectra are then resampled to a common wavelength grid, then nor-
malized according to the procedure detailed in Beck et al. (2016a)
by setting the average of median fluxes in various featureless wave-
length ranges to 1, to account for the flux differences among the
spectra.

To reduce the dimensionality of the fitted continua, we run
Principal Component Analysis on the model flux vectors and plot
the resulting average spectrum and the first five eigenspectra in
the left panels of Fig. 2. Since the third and higher eigenspectra
appear to be sensitive to absorption features only, we expect that
broadband colours of the models are mostly determined by the
first two eigenspectra. We note, that even though we use the linear
combination of only 10 Bruzual–Charlot templates to fit the stellar
continua of the observed spectra, due to the non-linearity of intrinsic
extinction, we can do the PCA without restricting ourselves into a
linear subspace.

For the purpose of mock catalogue generation, we split the
sample into absolute magnitude intervals, as listed in Tab. 2, and
plot the distribution of the first two principal components in Fig. 3
for each absolute magnitude bin, with different colours for “strong
emission line” and “passive + weak emission line” galaxies. In
each of the absolute magnitude intervals, we model the distribution
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Figure 2. Stellar continuum (left) and line log𝐸𝑊 (right) average vectors (first row) and eigenvectors derived from models fitted to the spectra of the SDSS
main galaxy sample. While the continuum eigenspectra account for all galaxies, emission line eigenvectors are only computed from the emission line galaxy
sample.

of the first five continuum principal components with multivariate
Gaussian mixture models. The number of components used for the
fitting of the distributions are determined based on how well the
samplings from the resulting GMMs reproduce the original point
clouds in each luminosity bin. To measure this, we fitted the subsets
with GMMs with the number of components varying between 2
and 25, then compared the resulting sample distributions of these
models for the different principal components using the two-sample
Kolmogorov–Smirnov statisticMassey Jr (1951). For the luminosity
bins with the lowest galaxy count the distributions are best modelled
with two mixture components, with this number increasing for bins
with more numerous data entries. We found that the KS statistic of
the GMM fit did not improve above 𝑁 = 11 − 15 for the subsets
with the highest amount of datapoints, thus we limited the number
of mixture components used for the fitting to 15, which was only
used for the most populous luminosity bins, to avoid the possible
issue of overfitting.

2.2 Line PCA

To measure the equivalent width of emission lines, we applied the
noise-limited technique developed for fitting strong and asymmetric
AGN lines by Beck et al. (2016a). For those galaxies which have
got emission lines measurable at least at 3𝜎, we plot the Baldwin
et al. (1981) diagnostic diagram in the left panel of Fig. 5. The
BPT diagram shows the strengths of the strongest nebular lines
normalized to the closest Hydrogen lines. We refer the reader to
Kewley et al. (2013) to learn more about the BPT diagram of SDSS
galaxies.Anymock catalogue generation technique that accounts for
emission lines should, at the minimum, reproduce the BPT diagram
to match line ratios.

We form data vectors from the logarithms of equivalent widths
of each line listed in Tab. 1. Taking the logarithm of equivalent width
ensures that line ratios will persist after dimensionality reduction by
PCA.We compute the principal components for the entire “emission
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Figure 3. The distribution of the first two continuum principal components
in different absolute magnitude bins between −16.5 < 𝑀𝑟 < −23.5. Blue
dots represent galaxies with emission lines detectable at 3𝜎 level, whereas
red dots are “passive” galaxies, i.e. galaxies with no emission lines, weak
emission lines or Hydrogen lines only.

Absolute magnitude Strong e. l. Passive + Weak e. l.

-24.0 <M< -23.5 0 128
-23.5 <M< -23.0 30 1369
-23.0 <M< -22.5 187 5591
-22.5 <M< -22.0 738 8034
-22.0 <M< -21.5 1654 8918
-21.5 <M< -21.0 2313 7901
-21.0 <M< -20.5 2642 5163
-20.5 <M< -20.0 2324 3066
-20.0 <M< -19.5 1685 1522
-19.5 <M< -19.0 1051 707
-19.0 <M< -18.5 647 432
-18.5 <M< -18.0 375 246
-18.0 <M< -17.5 168 183
-17.5 <M< -17.0 46 70
-17.0 <M< -16.5 3 9

Table 2. The number of strong emission line and passive/weak emission
line galaxies in the various absolute magnitude intervals. As it is expected,
the brighter end of the galaxy sample consists of mostly passive or weak
emission line galaxies, owing to the fact that these galaxies are mostly large
mass ellipticals, whereas the distribution among the two classes is more even
for the fainter galaxies.

PC1cont

PC
2 c

on
t

PC1line

PC
2 li

ne

Figure 4. Top: Clusters derived from continuum principal components by
running the 𝑘-means algorithm over the first five PCs. The black outlines
show the projection of the convex hull of the clusters to the first two PCs. The
overlap between the clusters in the first two principal components is minimal
due to how PCA works. Bottom: Distribution of line principal components
in each continuum cluster plotted over the distribution of line PCs of the
entire emission line galaxy sample. Continuum clusters are ordered by the
first component of their centroids, from left to right, top to bottom. The dis-
tribution of line PCs clearly depends on where the corresponding continuum
is located in the PC space, but no tight correlations are observable.
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Figure 5. The Baldwin–Philips–Terlevich (BPT) diagram of the original
SDSS DR7 main galaxy sample and the mock catalogue generated by our
technique. Only galaxies with emission line SNR better than 3 are plotted in
the left panel. Although higher randomness is visible in the mock sample, it
matches observations reasonably well.

line” sub-sample and plot the average log 𝐸𝑊 vector and the first
five eigenvectors in the right panel of Fig. 2. The first emission line
eigenvector sets the primary line ratios and it captures themajority of
differences between the emission of different types of galaxies. The
second eigenvector captures mainly the correlation among Oxygen
lines, thus it is expected to correlate with the vertical position of the
galaxies on the BPT diagram. The third eigenvector mainly contains
information about the [NII] and [OIII] emission strengths and the
fourth vector sets the strength of the Balmer series lines, which
primarily determine the horizontal location on the BPT diagram.
The last shown eigenvector most probably contains noise terms,
indicated by the large difference between the strengths of [OIII]
lines.

2.3 Continuum–line correlations

To investigate how the number fraction of galaxies from the various
emission types depends on the absolute brightness, we plotted the
distributions of the first two derived continuum PCA coefficients of
the compiled galaxy set in the various brightness ranges in Fig. 3.
It is clear from Fig. 3 that the bright-end of the sample consist
of passive Luminous Red Galaxies (LRGs) whereas emission line
galaxies, both star-forming ones and galaxies with active nuclei
tend to have somewhat lower luminosity. Tomeasure the probability
of a galaxy having strong emission lines, we simply bin galaxies
by the first two continuum principal components in each absolute
magnitude bin and take the ratio of “strong emission line” and
“passive + weak emission line” galaxies. In Sec. 3.2.1 and 3.2.2,
we are going to use these luminosity dependent distributions of the
continuum principal components and the probabilities of having all
lines listed in Tab. 1 to generate the emission lines on top of stellar
continua of the mock spectrum catalogue.

We further organize “strong emission line” galaxies, regardless
of their luminosity, into automatically determined classes based on
the first five continuum principal components. The results from 𝑘-
means clustering with the Euclidean metric and 𝑘 = 40 are shown
in Fig. 4. When choosing the number of clusters for the modelling
we aimed to cut the complete dataset into smaller subsets which can
represent distinct subclasses of galaxies, while keeping the number
of clusters low enough that each cluster will contain at least 20-30
galaxies. The resulting clusters are sufficiently small for the stellar

continua in each of them to be very similar to each other in both
broad-band colours and absorption features, thus the average spec-
trum in each cluster represents the cluster well. We are going to
model the correlations between the stellar continua and emission
lines on a per-cluster basis. Here we make the assumption that emis-
sion lines show stronger correlations with the shape of the stellar
continuum than with the intrinsic luminosity of the galaxy, hence
we can avoid further binning by absolute magnitude. Consequently,
the absolute magnitudes of mock galaxies determine the probability
of presence of strong emission lines but not equivalent widths and
line ratios which are solely determined by their correlations to the
stellar continuum.

To quantify the correlations between the stellar continua and
strong emission lines, we consider the distribution of emission line
principal components within each continuum k-means cluster. In
Fig. 4, we plot the distribution of the first two line principal com-
ponents for each continuum clusters. Similarly to modelling the
distribution of continuum PCs with Gaussian mixture models, we
also use GMMs to describe the distribution of line principal com-
ponents within each of these continuum clusters.

In case of “passive + weak emission line” galaxies, we focus
on correlations between the continuum principal components and
the strength of the H𝛼 line only. Fig. 6 shows the equivalent width
of H𝛼 as a function of the first two continuum principal compo-
nents regardless of absolute magnitude. The independence of H𝛼
equivalent widths from absolute magnitude results from the fact
that most of the weak emission and passive galaxies are quiescent
star forming galaxies, for which a relation between the strength of
emission and continuum shape is expected from the correlation be-
tween the Balmer-line strengths and the 4000Å break (Kauffmann
et al. 2003). The plotted region corresponds to the distribution of
red dots in Fig. 3. One can find that the equivalent width of H𝛼
emission shows a linear dependence on the first two continuum
principal components in the form of

𝐸𝑊H𝛼 = 𝛼

√︃
(𝑃𝐶1 − 𝑎)2 + (𝑃𝐶2 − 𝑏)2 + 𝛽, (1)

where 𝑎 and 𝑏 are reference principal component coefficients, which
describe a reference point, from which the Euclidean distance is
measured in the PC space (in Fig. 6). This reference spectra is
denoted by the red cross in the figure. The 𝛼 and 𝛽 parameters
describe the linear dependence of equivalent width on the defined
distance measure.

2.4 Photometric errors

To be able to add realistic noise to mock apparent magnitude, in-
stead of using the error estimates of the SDSS photometric reduction
pipeline, we consider repeated observations. Fig. 7 shows the dis-
tribution of the differences between 𝑟-band magnitudes 𝑚𝑟 of two
observations of the same galaxy. We consider the error to be Gaus-
sian in bins of Δ𝑚 = 0.025 and fit the 1𝜎 error as a function of 𝑚
with a 10th order polynomial in each band. We then calculated the
final photometric error for each band as the sum of the polynomial
fit and a random term, which was drawn from a normal distribution
with a scatter of 1𝜎 of the fits. With the choice of a very high
degree polynomial we aimed to capture the leading trend in the
photometric error without assuming any strict dependency on the
apparent brightnesses of galaxies. Equivalent trends can be captured
simply by calculating the average curve of the data or by applying
generalized additive model regression to the dataset, thus the exact
choice of the models does not alter the results obtained through the
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Figure 6. Left:Distribution of H𝛼 line equivalent widths for passive galax-
ies and galaxies with detectable H𝛼 but no significant nebular emission
lines, in case of SDSS (black curve) and the mock catalogue (blue his-
togram). The large peak at zero is due to passive galaxies with no detectable
H𝛼 line. Right: Average equivalent width of the H𝛼 line (colour coded) as
a function of the first two continuum principal components. The red cross
marks the locus from which distance 𝑑 is measured, c.f. Eq 1 and Fig. 9.
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Figure 7. Estimation of photometric error from repeated observations. The
dots show the absolute difference of apparent Petrosian magnitudes as a
function of magnitude, whereas the solid curve is a fit to the distribution
in magnitude bins of 0.008. The upturn at bright magnitudes is due to low
galaxy counts and repeatability problems of image reduction.

fitting. Thus, for simplicity, we have chosen to model the photomet-
ric errors with a high degree polynomial trend. Since we only aim
to analyse the randomizing effect cause by the photometric errors
qualitatively, a simple modelling reproducing the general trend in
the errors is sufficient for our purposes. However, we note, that in the
case of using this catalogue for the purposes of investigating a real
sample of galaxies, the photometric errors should inevitably mod-
elled in more detail, to match the photometric error distribution of
the real sample correctly, either though more complex models or by
taking into account the possible correlations with other observation
parameters as well instead of a single apparent magnitude.

3 MOCK CATALOGUE GENERATION

We generate our mock catalogue to match observational properties
of the SDSSDR7main spectroscopic sample. Continuum and emis-
sion line generation, rather than starting from physical properties,
are based on randomized principal components as introduced by
Beck et al. (2016a). The main steps of the algorithm are illustrated
in the bottom half of Fig. 8 for “strong emission line” galaxies.
The algorithm for ”weak emission line + passive” galaxies is some-
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Figure 8. The method of mock catalogue generation. The upper panel shows
how we model the continuum and emission lines of the observed galaxies by
Gaussian mixture models of the continuum and line principal components.
The lower panel explains how model spectra are generated by drawing sam-
ples from the theoretical distributions (for absolute magnitude and redshift)
and fitted stochastic models (for continuum and line principal components
and the photometric error). This flowchart applies to strong emission line
galaxies only, see text for details about passive and weak emission line
galaxies.

what simpler as only the H𝛼 line and its correlation of the stellar
continuum is taken into account.

3.1 Stellar continuum generation

Mock catalogue generation starts by drawing SDSS 𝑟-band abso-
lute magnitudes and redshifts from theoretical distributions. We
sample SDSS 𝑟-band luminosities from the standard function of
Schechter (1976) with parameters 𝛼 = −1.23 and 𝑀∗ = −21.53. To
generate the redshifts, we assume constant galaxy density in a stan-
dard ΛCDM setting with parameters 𝐻0 = 69.32 km s−1 Mpc−1,
Ω𝑀 = 0.287 and ΩΛ = 0.713. Only galaxies passing the flux limit
are kept1. The panels of Fig. 1 show the distribution of randomly
generated absolute magnitudes and redshifts and the correspond-
ing apparent magnitudes for the mock catalogue. Our method can
reproduce the redshift distribution well, although the effect of the
large-scale structure is not accounted for.

To construct realistic stellar continua based on the eigenspectra

1 To simplify catalogue generation, when applying the flux limit, we do not
take emission lines and photometric error into account.
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derived from PCA, first we consider the absolute magnitude of each
mock galaxy and look up the absolute magnitude bin it belongs to,
c.f. Tab. 2 and Sec. 2.1. Then, based on the Gaussian mixture model
corresponding to the absolute magnitude bin, we randomly draw
coefficients and calculate the linear combination of the continuum
eigenspectra.

3.2 Emission line generation

When adding emission lines to the mock stellar continua, we dis-
tinguish “strong emission line” and “weak emission line + passive”
galaxies. The right mixture of the groups and the correlations be-
tween the lines and the stellar continuum are essential to generate a
realistic mock catalogue for the purpose of photo-z testing.

Depending on the continuum coefficients drawn in the previous
step (see Sec. 3.1) we randomly classify mock galaxies as “strong
emission line” or “weak emission line + passive”. The probability
of a galaxy having strong emission lines is taken as described in
Sec. 2.3 and visualized in Fig. 3, where we plotted the first two
principal components of the SDSS galaxies in absolute magnitude
bins, colour-coded by the presence of strong emission lines. If the
mock galaxy is classified as “strong emission line”, we generate
lines with the algorithm described in Sec. 3.2.1, whereas in case
of the rest of the galaxies, we only add the H𝛼 line as discussed in
Sec. 3.2.2.

3.2.1 Strong emission line galaxies

If a mock galaxy is selected as “strong emission line”, based on
the random continuum coefficients, it is classified into one of the 40
continuum k-means clusters, see Fig. 4. In Sec. 2.2, we detailed how
the distribution of principal components of emission line log 𝐸𝑊s
are described using Gaussian mixture models on the set of principal
component coefficients. Based on the continuum k-means cluster
the mock galaxy falls into, we draw its emission line coefficients
randomly from the corresponding Gaussian mixture model. Lines
are then added on top of the mock galaxy continua as random
linear combinations of the line eigenvectors derived in Sec. 2.2. To
examine how well the empirical method reproduces the flux excess
caused by emission lines, we plotted the distribution of line flux–
continuum flux ratio for the mock catalogue and the galaxy sample
in Fig. 10.

3.2.2 Weak line and passive galaxies

If a mock galaxy is selected as “weak emission line + passive” we
generate the H𝛼 line only. The equivalent width of the line is cal-
culated from the random continuum coefficients using Eq. 1. For
each of the generated continuum coefficients we randomly deter-
mined whether any H𝛼 emission should be observable, then the
emission line equivalent width baseline was determined based on
Eq. 1, which was altered with a random value to match the ob-
servations (see Fig. 9). At this step, taking the absolute magnitude
into account was not necessary, as those galaxies, that exhibit only
strong H𝛼 emission, are mostly quiescent star-forming galaxies, in
which case the shape of the continuum correlates with the strength
of the emission in a straightforward manner.
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d

mock

Figure 9. Equivalent width of the H𝛼 line as a function of distance 𝑑 as
defined byEq. 1 in the space of the first two continuumprincipal components.
The red line shows our fit to the trend of SDSS data (left panel), whereas
the right panel shows H𝛼 lines for the mock catalogue generated by our
stochastic technique.
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Figure 10. The distribution of line-to-continuum flux ratios in the SDSS
𝑔 and 𝑟 photometric bands for the SDSS DR7 emission line galaxy sam-
ple (solid line) and the mock catalogue (blue histogram) generated by our
method. Contributions of lines to the total flux in these bands can reach as
high as a few per cent.

3.3 Broadband colours and photometric error

Once the stellar continuum was generated and emission lines were
added, we calculated the SDSS broadband colours and apparent
magnitudes using the standard formula of AB magnitudes and us-
ing the 𝑟 magnitude as a reference. Finally, random photometric
noise was added to the apparent magnitudes based on the 1𝜎 fits
introduced in Sec. 2.4.

4 MOCK CATALOGUE EVALUATION

We generated three mock catalogues: two mock catalogues that
follow the parameter distributions of the SDSS main galaxy sample
with amagnitude limit of 𝑟 = 17.7which differed in sample size, and
were used as training and test sample for the redshift estimations, and
a faint sample with a magnitude limit of 𝑟 = 20.0. Approximately
25.1% of the galaxies in the two main sample catalogues have got
strong emission lines, 37.7% show𝐻𝛼 emission only and 37.2% are
passive. These ratios in the faint galaxy sample are 26.9%, 37.0%
and 36.1%. The fainter sample consists of 30000 galaxies in total,
while the main sample mock catalogues number 30000 and 24254
objects, with a similar relative number of galaxies from different
classes. By simulating a separate catalogue for both the training and
test set of the photo-z evaluation, we ensured that the estimation
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parameter symbol value unit

Cosmology:

matter density Ω𝑀 0.287
dark energy density ΩΛ 0.713
curvature Ω𝑘 0
Hubble constant 𝐻0 69.32 km s−1 Mpc−1

Luminosity function:

characteristic magnitude 𝑀𝑟∗ -21.53 mag
slope 𝛼 -1.23

Apparent magnitude limits:

training set 𝑚𝑟 17.7 mag
faint sample 𝑚𝑟 20.0 mag

Table 3. Parameters of the mock catalog.

precision will not be affected by the non-identical ratios of different
galaxy classes between the two sets. The fainter sample consists of
mock galaxies generated from the same luminosity functions but
have got significantly larger simulated relative photometric error.
The main parameters of the cosmology and luminosity function, as
well as the applied magnitude cuts, are summarized in Tab. 3.

To compare the main properties of one main sample mock cat-
alogue to the SDSS main galaxy sample, we plot the normalized
distribution of redshift, absolute and apparent magnitude in Fig. 1.
The distribution of the simulated absolute magnitudes matches the
observational data well, whereas the redshift distribution, as ex-
pected, does not account for the effects of large scale structure, as
these values were drawn from a uniform distribution according to
the comoving volume. The distribution of the apparent magnitudes
also matches that of the SDSS main sample.

As a verification of the emission line generation algorithm, we
plot the BPT diagram of the mock catalogue in the right panel of
Fig. 5. While it is not a perfect match to the SDSS sample, the AGN
and star forming sequences are clearly distinguishable and show
sufficient variance to cover the parameter space of the original data.
However, the mock catalogue seems to miss the galaxies with very
strong emission on both, the AGN and the star-forming side. As a
result, the simulated BPT diagram appears to be shrank along the
horizontal axis. This suggests, that the use of Gaussian Mixture
Models is not sufficient to model the population of galaxies, as the
outstandingly strong emission lines were not reproduced. The use of
heavier tailed distributions could result in a complete reproduction
of the set of emission lines, however, we chose to use the Gaussian
model for this study.

The left panel of Fig. 6 shows the normalized histograms of H𝛼
equivalentwidths for both the SDSS sample and themock catalogue,
whereas Fig. 9 shows the scatter plots of the equivalent width values
as a function of distance 𝑑, as defined by Eq. 1. According to Fig. 6,
the mock catalogue reproduces the distribution of the main galaxy
sample, although some minor discrepancies can be observed: our
algorithm produces more galaxies that exhibit strong H𝛼 emission
than the real galaxy sample would suggest, as visible on the left
panel of Fig. 6 and the right panel of Fig. 9. The most probable
source of this discrepancy is the simplicity of the model that was
used to describe the dependency between the equivalent widths
and the distance parameter 𝑑 (Eq. 1). Since the first two principal
component of galaxy continua define the colour of the galaxy and
the low 𝑑 regime is connected to primarily bluer colours (as both
principal component coefficients are low, which regime is primarily
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Figure 11. Normalized distributions of broad-band colour indices for the
SDSS emission line galaxy sample and the mock catalogue generated by our
method. As it is visible from the similarity of the distributions, our model
can results in realistic colours. For a discussion of the apparent offset in
𝑢 − 𝑔, see the text.

connected to strong emission line spirals, see Fig. 3), we suspect that
the algorithm produces more blue galaxies than what we observe
in case of the real sample, which are then assigned to accordingly
stronger equivalent width values by the simple model. However, as
this discrepancy is negligible in terms of relative occurrence, we
chose not to alter the linear model for the simulation process.

Fig. 11 shows the broadband colour distributions of the mock
catalogue and the real sample. Although themock catalogue genera-
tion process does not involve any direct constraints on the broadband
colours, the PCA-based procedure reliably reproduces the observ-
able colour distributions with the exception of 𝑢 − 𝑔. The offset in
𝑢 − 𝑔 is attributed to the fact that observed spectra had to be ex-
tended in wavelength coverage towards to blue by the use of models
in order to compute the SDSS 𝑢 broadband magnitude, as described
earlier in Sec. 2.1. When fitting the continuum, the near UV end of
the spectrum is not very well constrained by the longer wavelength
flux. As we used the same mock catalogue generation algorithm to
prepare the training sets and the test sets for photo-z evaluation, this
bias is not expected to affect the results of the empirical algorithms.
In case of template-based photo-z, which we don’t investigate in
this study, care must be taken and the bias need to be corrected or
the simulated 𝑢-band has to be left out of the evaluation.

Since the mock catalogue allows for turning emission lines on
and off, we can visualize the effect of strong lines on broadband
colours. In the left four panels of Fig. 12, we plot the SDSS broad-
band colour indices of the emission line mock galaxies against the
colour indices of the pure stellar continua to emphasize the effect
of strong emission lines on galaxy colours. As it is expected, the
scatter in colours due to the emission lines affects low redshift blue
galaxies more prominently since high redshift galaxies in the SDSS
main galaxy sample are LRGs due to the shallow flux limit. The
right four panels of Fig. 13 show the colour distributions of the main
sample mock galaxies with and without emission lines and photo-
metric error. According to the plot, at these bright magnitudes, the
main source of scatter in colours is the presence of emission lines
and not photometric noise. Hence, the main source of error in tem-

MNRAS 000, 1–18 (2021)



10 G. Csörnyei, L. Dobos & I. Csabai

0.0 1.0 2.0 3.0
(u g)cont

-0.4

-0.2

0.0

0.2

0.4

(u
g)

0.0 0.2 0.4 0.6
(r i)cont

-0.4

-0.2

0.0

0.2

0.4

(r
i)

0.0 0.5 1.0 1.5
(g r)cont

-0.4

-0.2

0.0

0.2

0.4

(g
r)

0.0 0.2 0.4 0.6
(i z)cont

-0.4

-0.2

0.0

0.2

0.4

(i
z)

0.05 0.10 0.15 0.20 0.25 0.30
z

Figure 12. The effect of emission lines on SDSS broad-band colour indices.
Continuum-only colours are on the 𝑥-axis, the 𝑦-axis represents the differ-
ence caused by adding the emission lines. Colour coding is by redshift. Since
we matched the flux limited SDSS DR7 spectroscopic sample, galaxies at
higher redshifts tend to be passive LRGs with no significant emission lines.

plate based photometric redshift estimation methods is very likely
the limited variance of emission lines of the templates. On the other
hand, as we will show later, the scatter due to emission lines help
empirical photometric redshift estimation methods significantly at
low redshifts.

5 PHOTO-𝑧 ALGORITHMS

In this section we briefly describe the algorithms we tested with
mock catalogues consisting of weak and strong emission line galax-
ies. The algorithms chosen are intentionally simple compared to the
state-of-the-art empirical photo-𝑧 methods as our primary intention
is to assess the effect of emission lines on photometric redshift
estimation and not to optimize the algorithms themselves. Both
tested methods are empirical and require a training set with known
photometry and redshift. Despite their relative simplicity, the tech-
niques perform well and can be used to yield error estimates on
photometric redshifts as well.

5.1 The 𝑘-nearest neighbour method with local linear
regression (LLR)

The simplest empirical methods work by finding galaxies in the
training set with very similar colours to galaxies with unknown red-
shifts. Similarity is very often defined as a Euclidean distance in the
D-dimensional space of broadband colour indices or magnitudes,
a choice lacking any physical meaning. The 𝑘-nearest neighbour
(𝑘NN) method, in particular, works by finding 𝑘 galaxies in the
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Figure 13. The effect of emission lines and photometric error on SDSS
broad-band colour indices, plotted in the 𝑔− 𝑟 , 𝑟 − 𝑖 colour-colour space for
the bright𝑚𝑟 < 17.77 part of the mock catalogue. The panels show colours
calculate with and without emission lines and photometric error. At this low
level of photometric error, the broadening of the colour space coverage is
primarily due to emission lines.

training set that are the closest to a given galaxy with no known
redshift. In the simplest case the photometric redshift is taken to
be the (weighted) average of the known redshifts of the nearest
neighbours. Computationally efficient algorithms are available in
the scikit-learn Python package to speed up neighbour look ups
(Pedregosa et al. 2011).

Beck et al. (2016b) further developed the 𝑘NN estimator
method to mitigate the effect of outliers in the training set and
compute a realistic error on photo-𝑧, as well as to flag photomet-
ric galaxies which require extrapolation from the training set. The
algorithm starts by finding the 𝑘 nearest neighbours of a photomet-
ric galaxy in the training set, but instead of simply averaging the
known redshifts, it performs a linear fit of redshift as a function of a
data vector 𝑥𝑖,𝑙 defined from magnitudes and colour indices, where
𝑖 = 1, 2, ..., 𝑘 indexes the nearest neighbours. The data vector of the
galaxy with unknown redshift is denoted by 𝑥0,𝑙 . The redshift is
modelled in the form of

𝑧phot (𝑥𝑖,𝑙) = 𝑐 + 𝑎𝑙𝑥𝑙 , (2)

where 𝑐 is a constant offset and 𝑎𝑙 are linear coefficients. The values
of 𝑐 and 𝑎𝑙 are found by minimizing the expression

𝜒2 =
𝑘∑︁
𝑖=1

(
𝑧𝑖 − 𝑐 −

∑
𝑙 𝑎𝑙𝑥𝑖,𝑙

)2
𝑤𝑖

, (3)

hence the name of the method (local linear regression, LLR). The
weight 𝑤𝑖 can take the photometric error of training set galaxies
and the distance of the nearest neighbours from 𝑥0,𝑙 into account.
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The redshift of the photometric galaxy is found by substituting 𝑥0,𝑙
into Eq. 2.

The goodness of the linear fit over the 𝑘 nearest neighbours,
which can be considered as an approximation to the error of the
photometric redshift, is calculated by Beck et al. (2016b) as

𝜎𝑧 =

√︄∑𝑘
𝑖=1

(
𝑧𝑖 − 𝑐 −

∑
𝑙 𝑎𝑙𝑑𝑖,𝑙

)2
𝑘

. (4)

This quantity can also be used to constrain items of the training
set used for interpolating the redshift from colours and magnitudes.
Once the 𝑎𝑙 coefficients are determined, one can substitute the 𝑥𝑙
data vectors into 𝑧phot (𝑥𝑖,𝑙) and verify if 𝑧phot (𝑥𝑖,𝑙) < 3𝜎𝑧 holds.
Nearest neighbours not satisfying the constraint can be removed and
the fitting repeated.

When interpolating a multivariate function 𝑓 at 𝑥0 from the
nearest neighbour known values at {𝑥𝑖} = 𝑁𝑁 (𝑥0, 𝑘), one can
define extrapolation as the case when 𝑥0 is outside the convex hull
of {𝑥𝑖}. The volume of the convex hull can also be used to define
the quality of interpolation.

5.2 The Random Forest method

Random Forest (RF) is another empirical method applicable to pho-
tometric redshifts that also yields reliable error estimates (Ho 1995).
The method works by building a large ensemble of decision trees
over randomized subsets of the training set. Bootstrapping is done by
selecting random subsets of training set galaxies, as well as selecting
random subspaces of the training set data vectors, i.e. magnitudes
and colour indices. Randomizing the subspaces used to build the
decision trees help avoid overfitting. Best parameter estimates are
taken by averaging the predictions from the individual trees over the
ensemble while the standard deviation of predictions gives realistic
error. A significant advantage of random forests over 𝑘NN estimates
is that RFs do not require a metric over the colour space, hence do
not involve any artificial, non-physical quantities. We used the RF
implementation of the scikit-learn Python package (Pedregosa
et al. 2011).

5.3 Self-organizing maps (SOM)

Self-organizingmaps (Kohonen 1982) are a simple form of artificial
neural networks that allow competitive learning. SOMs can map
high dimensional data vectors onto a few, typically two-dimensional
grid. These maps tend to preserve some topological properties of
the original data. For instance, if galaxies with similar redshifts are
located near each other by some metric in the original space of
magnitudes or colour indices, they tend to be mapped near each
other by SOM as well. While SOMs have got also been successfully
used for photometric redshift estimation (Carrasco Kind & Brunner
2014), in the present paper we focus on the visualization capabilities
of the method.

To construct our SOM, we consider the data set as data vectors
𝑥𝑖,𝑚, where 𝑖 = 1, ...𝑁 indexes the 𝑁 galaxies of the sample and
𝑚 = 1, ...𝑀 indexes the 𝑀 broadband colours. The 𝑥𝑖,𝑚 vectors are
usually called features in the computer science literature. The SOM
is defined as a regular grid of𝐾×𝐾 neurons, also referred to as cells,
that are organized in a 2D lattice pattern. Each of the 𝐾 ×𝐾 neurons
has𝑀 weights which wewill denote by𝑤𝑘,𝑚, where 𝑘 = 1, ...𝐾×𝐾
indexes the neurons. Theweight vectorswill be initialized to random
values which will be iteratively updated during the training process.
The training process will consist of 𝑇 passes, or training epochs,

over the data set, each time in a randomized order. At each iteration,
the algorithm takes a galaxy and finds the SOM cell with index 𝑘best
which has the weight vector 𝑤𝑘,𝑚 closest to feature vector 𝑥𝑖,𝑚 of
the galaxy in least squares sense, i.e.

𝑘best = argmin
𝑘

𝑀∑︁
𝑚=1

[
𝑥𝑖,𝑚 − 𝑤 (𝑡)

𝑘,𝑚

]2
, (5)

where the 𝑡 = 1, ...𝑇×𝑁 superscript denotes the value of the weights
at epoch 𝑡. Once 𝑘best is found, the weights of all SOM cells are
updated by the rule following Carrasco Kind & Brunner (2014).
Updates to the weights are scaled according a neighbourhood func-
tion which can take into account the SOM cells’ distance from the
cell 𝑘best by the Euclidean metric of the 2D embedding space of the
neurons. Updates are calculated as

𝑤
(𝑡+1)
𝑘,𝑚

= 𝑤
(𝑡)
𝑘,𝑚

+ 𝛼 (𝑡) · 𝐻 (𝑡)
best,𝑘 ·

[
𝑥𝑖,𝑚 − 𝑤 (𝑡)

𝑘,𝑚

]
, (6)

where 𝛼 (𝑡) is the learning rate and 𝐻 (𝑡)
best,𝑘 is the neighbourhood

function. The index 𝑖 denotes the feature vector that we use to
calculate the updates in iteration 𝑡.

We used a decreasing learning rate in the form of

𝛼(𝑡) = 𝛼𝑠
(
𝛼𝑒

𝛼𝑠

) 𝑡/(𝑇 ·𝑁 )
, (7)

where 𝛼𝑠 and 𝛼𝑒 are the starting and ending learning rates. We used
the values 𝛼𝑠 = 1 and 𝛼𝑒 = 0.1.

For the purposes of the neighbourhood function we used a
Gaussian kernel in the form of

𝐻best,𝑘 = e−𝐷best,𝑘/(𝜎
(𝑡 ) )2 (8)

where 𝐷best,𝑘 is the Euclidean distance between SOM cells 𝑘best
and 𝑘 , as measured in the embedding space of the SOM neurons.
The 𝜎 (𝑡) parameter is the width of the neighbourhood function
which decreases according to the formula

𝜎 (𝑡) = 𝜎𝑠

(
𝜎𝑒

𝜎𝑠

) 𝑡/(𝑇 ·𝑁 )
(9)

where 𝜎𝑠 and 𝜎𝑒 denote an initial and final values of the kernel
width. The former is usually set to the size of the map, while the
latter should be roughly the size of a cell, which corresponds to
𝜎𝑠 = 𝐾 and 𝜎𝑒 = 1 if the cells located at unit distance from each
other in the lattice.

Once the SOM is constructed, after the last iteration we can
order each galaxy to one of the cells of the map by finding the
cell 𝑘best with weights closest to the vector of broadband colours.
We chose the values 𝐾 = 58 and 𝑇 = 300, whereas the number
of galaxies was approximately 𝑁 ≈ 30,000. Since we created the
SOMs solely for visualization purposes, we wanted to create as big
maps as possible while avoiding overfitting which occurs when the
number of cells exceeds the number of input data vectors. By setting
𝑘 to 58, we ensured that structures in the map will appear, yet the
average number of galaxies per cell will still be high enough for
these structures to be statistically meaningful.

Once the whole catalogue was distributed among the SOM
cells, we calculated the moments of the redshift distribution of
galaxies in each cell, then coloured the SOM coordinate bins in
accordance with these values. The resulting SOMs of the bright
sample are plotted in Fig. 14. The upper row of images show the
map of projected broadband colour values as cells coloured by the
average redshift of the galaxies belonging to that bin, whereas the
lower row shows the samemap coloured by the standard deviation of
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the galaxy redshifts in each bin. The different columns of the figure
show the map filtered for the three types of galaxies. All three maps
show patches that are devoid of galaxies, which shows that none of
the three considered emission line types can cover the entire colour-
field spun by the complete mock catalogue. More importantly, the
stacked map of the weak emission line and passive galaxies can-
not cover the entire field either, which implies the importance of
inclusion of strong emission line galaxies for template based photo-
metric redshift evaluation methods for yielding statistically correct
results. If these galaxies were missing from the training sample,
then the redshift of some galaxies would be determined through
extrapolation, which would lead to biased results.

A common problem of empirical photometric redshift estima-
tions is that the reference catalogue with measured spectroscopic
redshift values is usually brighter in terms of limiting magnitude
than the test set, which can result is significant differences between
the distribution of broadband colours of the training and test sets
and can ultimately influence the precision of the photometric red-
shift estimations. Self-organising maps are also useful to assess how
representative a training set is for empirical photo-z. For example,
redshifted faint blue galaxies can occupy the same colour locus as
low redshift red galaxies. Fig. 15 shows the self-organisingmap gen-
erated from the fainter mock catalogue (with a magnitude limit of
𝑟 < 20) and the brighter mock catalogue projected to the calculated
map. The large amount of empty pixels on the brighter catalogue
map suggests that the fainter catalogue covers colour ranges that are
not present in the brighter catalogue. This indicates that there exists
a subset of galaxies in the fainter sample for which an empirical
photo-z estimate based on a brighter training set will be biased.

6 PHOTO-𝑧 EVALUATION

To assess the influence of the presence of emission lines on the
performance of the various photo-z estimators, we investigated each
of the threemethods (Sec. 5) on themock catalogues in four different
settings:

(i) continuum only, where the emission lines were excluded from
the spectra and the synthetic magnitudes did not contain the photo-
metric noise term
(ii) continuum+photometric error, where synthetic magnitudes

were calculated from the continuum and photometric error was
added
(iii) continuum+emission lines, which represents the case of per-

fect measurements, as the simulated photometric error is not added
to the magnitude values
(iv) continuum+emission lines+photometric error, which repre-

sents the realistic case.

For each setting, the number of neighbours for the kNN and LLR
estimators was set to 30. The training set was chosen to be the
smaller brighter mock catalogue for each of the estimations. It is
important to note, that for each of the four settings outlined above
the spectral sets with the same characteristics were used for both the
training and the test set, e.g. for the pure continuum case, not only
the test magnitudes were calculated with the exclusion of emission
lines and the photometric error, but the training set magnitudes as
well.

Fig. 18 shows the performance of the photo-z estimators in
the various cases. The odd rows show the estimated photometric
redshift, while the even rows show the bias as a function of the
simulated redshift. For every estimation the RMS error is expressed

in the form

ΔRMS =
∑︁
𝑖

Δ𝑧𝑖

1 + 𝑧𝑖
. (10)

For each of the estimations we also calculated the outlier rate by
flagging each of the galaxies an outlier for which the difference
between the simulated and estimated redshifts differed with more
than 3𝜎. It has to be noted, that these galaxies were still included
in the calculation of the RMS, since in case of realistic estimations,
we cannot detect outliers on this basis.

The first characteristic that can be observed for each of the
estimation methods is the degrading effect of the photometric er-
ror, which reduces the accuracy of the estimates significantly. The
second feature, which is also inherent in all the various methods
used is the effect of emission lines; once the emission lines are su-
perimposed on the continuum spectra, the quality of the estimation
improves compared to the purely continuum based case. This effect
could also be observed in the case extended with the photometric
errors. In terms of statistics, the lines have moderate effect com-
pared to the photometric precision of SDSS, as the RMS in case
of included measurement errors decreases with only few percent
due to the addition of lines. The effect is more distinguishable in
the bias plots in Fig. 18: when the emission lines are included, the
absolute bias of the estimation decreases for all redshift values, but
most significantly for the lowest redshift galaxies. This effect can
be explained by the redshifting of emission lines across different
wavelength which resolve degeneracies present in the colour space
of the continua and alter the position of the galaxy on the colour-
colour diagram non-negligibly compared to the purely continuum
based case. Accordingly, the emission lines reduce the possibility
of having objects of different redshifts close to each other in the
colour space, thus it improves the accuracy of the photometric red-
shift estimations. This effect is mostly significant only for the lower
redshift galaxies due to the limitations of the SDSS sample itself,
but more recent spectroscopic surveys are able to detect fainter
strong emission line galaxies, which can allow for the investigation
of the degeneracy resolution on much higher redshifts as well. The
resulting photometric redshift distributions are shown in Fig. 16.

Some differences between the bias plots of different settings
can also be explained by the addition of emission lines. The im-
provement of bias in the low redshift regime (𝑧 < 0.05) can be
explained by the filter shift of the H𝛼 line, which adds a flux excess
to the 𝑖 filter and thus it partly resolves the degeneracies in this red-
shift range. The second observable difference that can be accounted
to the presence of emission lines is observable in the 𝑧 > 0.13
regime: in this range the absolute value of the bias is decreased
which can accounted to the filter shift of the [OIII] and H𝛽 emis-
sion lines. Thus, the emission lines add sharp features to the spectra
of galaxies, which will result in a more precise estimation than what
we observe in case of purely continuum based estimations.

The presence of a bias in each of the estimation methods sug-
gests that it is independent of the estimator, and it originates from
the training set, thus it can be corrected for. According to our hy-
pothesis, the bias of the estimations is determined primarily by how
the redshifts of the neighbour galaxies are distributed on average.
Due to degeneracies and various errors, galaxies from different red-
shifts are mixed in the colour space, where the scale of the mixing is
significantly affected by how the galaxies are distributed according
to redshift: if a redshift range contains a large amount of galaxies,
then the probability of colour space scatter is higher, i.e. it is more
probable to find a galaxy of this redshift with colour values that
should be exhibited by galaxies on either lower or higher redshifts.
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Figure 14. Self-organizing maps generated from the mock catalogue using synthetic broad-band colours as input. Panels in the top row show the mean redshift
〈𝑧 〉 in every SOM cell for the strong emission line, weak emission line and passive subsample, respectively. The bottom row shows the 𝜎𝑧 standard deviation
of redshift in each SOM cell. Black SOM cells contain zero or one galaxy of the particular type. Strong emission line galaxies fill in significant gaps in the
broad-band colour space, hence are necessary for valid photometric redshift estimation. Note that the axes are not physical, but are merely indices into the map.
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Figure 15. Self-organizing maps generated from the simulated mock catalogues using synthetic broad-band colours as input. The left-hand side panel shows
the self-organizing map of the faint mock catalogue, while the right-hand side panel shows the main sample mock catalogue projected to the map of the faint
sample. The large amount of black squares on the latter map indicate the absence of galaxies with certain broadband colours.

Such colour space scatter causes the neighbour finding algorithms
to systematically pick up galaxies that are farther away in terms
of redshift, which ultimately causes the observed bias. To test our
hypothesis, we calculated the redshift distributions of neighbours
for the brighter mock catalogue in various redshift ranges: we cal-
culated the redshift histograms for every galaxy in each redshift

range, then added these together, to obtain a single average distri-
bution in each redshift range, which are shown in Fig. 17. In the
central (0.06 < 𝑧 < 0.2) redshift range the distributions are mostly
centred on the correct redshift values, thus in this range the esti-
mation yields results that are unbiased. However, on the lower and
higher redshift ranges these distributions are systematically shifted
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Figure 16.The photometric redshift distributions obtained with the different
estimators (blue) compared to the redshift distribution of themock catalogue
(black).

toward one side, which causes the observed bias: since the estima-
tors applied by us are primarily sensitive to the average of these
distributions (especially the 𝑘NN and RF methods), which in this
case do not characterize the distributions properly, they return bi-
ased estimation values for such systematically skewed distributions.
Although the LLR method is more robust against outliers by its
construction (Sec. 5), the skewness of these distributions also cause
similar biases than in the case of 𝑘NN and RF. To correct the bias
of the estimations, non-average based (for example, mode based)
algorithms would be required, that yield correct results even for
skewed redshift distributions (however, their statistics would then
be inevitable more complex). In accordance with the calculated
redshift distribution of colour-space neighbours, the problem arises
from the limited redshift coverage of the mock catalogue: in the
lower redshift range only galaxies from higher redshift can scatter
into the colour neighbourhood, as there are no objects with negative
redshifts. This causes the empirical methods to overestimate the red-
shift of the object in question, which ultimately leads to the observed
bias. This also suggests that the bias at this range is determined by
the luminosity function in first order, as it only depends on the spec-
tral types and brightness of the simulated galaxies. On the higher
redshift range the situation is quite the opposite, as only the galaxies
from the lower redshifts can scatter among the neighbours, which
leads to a systematic underestimation of redshift. This problem can
be easily mitigated by extending the training set to higher redshifts,
however this would leave the bias observed on lower redshift ranges
unaffected.

To test how well the brighter catalogues can be used for a pho-
tometric redshift estimation of fainter catalogues, we applied the
described estimators on the brighter and fainter mock catalogues.
For the training process, the same bright mock catalogue was used
as in the brighter sample estimations described earlier in this sec-
tion. The results of the photo-z estimations are plotted in Fig. 19.
Since the limiting magnitude of the training and test sets are con-
siderably different, the estimations are a lot less precise than in the
case of the main sample mock catalogues. The largest fraction of
this difference is caused mainly by the intermediate redshift faint
blue galaxies, which are not present in the main sample mock cat-
alogue. These fainter galaxies occupy an area on the colour-colour
diagram that overlaps with the intermediate-high redshift part of
the main sample diagram, which causes an extra uncertainty for the

estimator. This causes a general underestimation of redshifts and
an even more significant bias on larger redshifts (𝑧 > 0.25). An-
other major difference between the two sets of mock catalogues is
the significance of the photometric error: as the test set comprises
fainter galaxies, the error terms on the photometric magnitudes will
be greater, which causes a much greater scatter on the colour-colour
diagram compared to the main sample case, which leads to greater
uncertainties. In overall, the emission lines seem to produce the op-
posite effect compared to the main sample case, as in their presence
we observe the bias to be shifted towards more negative values,
which either causes the precision of the estimation to drop com-
pared to the continuum based case (for RF) or either improves the
statistical quality of the estimation (for kNN and LLR). This shift
causes a less significant bias on the lower redshifts, which suggests
that the emission lines resolve degeneracies at this range, similarly,
to the main sample case. However, on larger redshifts they cause the
estimation to become even less accurate by mixing the colour field.
Notably, the outlier rate decreased for each of the methods when the
emission lines were added.

For each of the methods a breakdown in precision can be ob-
served around 𝑧 ≈ 0.25, which correspond to the limited magnitude
and redshift range of the training set: as there is only a limited
number of galaxies above this redshift value in the bright mock
catalogue, which are mostly LRGs, the faint blue galaxies from the
test sample will have neighbours from much lower redshifts, which
leads to systematic underestimation of redshift and to an increased
bias. Due to the large difference between the limiting magnitudes
the less complicated methods, like the kNN and RF, perform less
accurately, while the LLR, which allows for an outlier detection and
𝜎 clipping during the estimation, can still yield relatively unbiased
results. This well demonstrates the necessity of the more complex
methods for correct estimations in case extrapolation capabilities of
the training set to the test set are limited.

7 CONCLUSIONS

In this study we developed a method that can be used to gener-
ate a mock catalogue of galaxy spectra with realistic line strengths
and distributions. To establish such a technique, we relied on semi-
empirical methods: we calculated a basis for both of the continuum
spectra and the set of emission lines and modelled the catalogue
distributions using PCA and Gaussian Mixture Models. The mock
catalogues, which consist of passive (no emission lines, or H𝛼 only)
and active (complete set of emission lines) galaxies mimic the real-
istic broad band colour and line strength distributions. Using self-
organizing maps we showed that the inclusion of galaxies with a
complete set of emission lines is necessary to cover the entire colour
space spanned by the real galaxy catalogues. By applying three dif-
ferent estimators on the various mock catalogues we examined how
the presence of emission lines affect the precision of photometric
redshifts. According to our results, the emission lines, which cor-
respond to sharp features present in the spectra, can improve the
estimation accuracy by resolving degeneracies in the colour-colour
field. This effect was only observed significantly when the limit-
ing magnitude of the training and test set were identical, otherwise
the effects caused by the emission lines are blurred by the photo-
metric uncertainties. Our simulated results on photometric redshifts
showed a non-negligible estimation bias, which showed a clear trend
with the redshift for each of the estimators. Our analysis showed that
this bias is inherent in the training set itself, but could be corrected
using non-average based empirical algorithms, which can take the
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Figure 17. The normalized redshift distributions of the neighbours of galaxies at the various redshift ranges. Each galaxy has been sorted into one of the ranges
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skewness of the colour space neighbour redshift distributions into
account as well.

The SDSS galaxy sample, which we attempted to match with
our mock catalogue, contains significantly more blue galaxies that
show strong emission lines at low redshift than at redshift higher
than 𝑧 > 0.15 where the sample is dominated by passive Luminous
Red Galaxies. Since red galaxies occupy a well-known sequence
in the SDSS colour-colour space, their photometric redshift esti-
mates are dominated by the photometric error. On the other hand,
at low redshift, due to the mixing of galaxies of different types,
the colour-colour space can be highly degenerate. The presence of
strong emission lines further complicates the scheme. According to
the results from the Random Forest estimator, the effect of emis-
sion lines is comparable to that of photometric error, at least at the
quality of SDSS spectroscopic observations (𝑚𝑟 < 17.77). Uncer-
tainties of photometric redshifts of future large mirror surveys with
lower photometric noise will likely be dominated by the variance
in strong emission lines also at greater depths / higher redshifts.
Consequently, as an immediate next step to this study, we will in-
vestigate the extrapolation capabilities of the method outside the
brightness interval of the typical spectroscopic training sets.

Template-based photometric redshift estimation techniques
usually employ a small, carefully selected set of templates to fit
broadband colours, hence are more prone to uncertainties caused
by the emission lines. Through the described method one can cre-

ate a realistic set of galaxy spectra with infinite signal-to-noise
ratio, which could be used as a set of galaxy templates for further
research. Since K-correction and physical parameter estimation re-
quires template fitting, a careful investigation of the biases due to
strong emission lines and limited template sets will be performed
in the near future.
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