
DITIS: A Distributed Tiered Storage Simulator

DECEMBER 2022 • VOLUME XIV • NUMBER 418

INFOCOMMUNICATIONS JOURNAL

DITIS: A Distributed Tiered Storage Simulator
Edson Ramiro Lucas Filho1, Lambros Odysseos1, Yang Lun2, Fu Kebo2, and Herodotos Herodotou, IEEE 1,*

1 E. R. Lucas Filho, L. Odysseos, and H. Herodotou are with Cyprus 
University of Technology, Cyprus (e-mail: edson.lucas@cut.ac.cy, lambros.
odysseos@cut.ac.cy, herodotos.herodotou@cut.ac.cy)

2 Y. Lun and F. Kebo are with Huawei Technologies Co., Ltd., China (e- mail: 
yanglun12@huawei.com, fukebo@huawei.com).

* Corresponding author.

Abstract—This paper presents DITIS, a simulator for dis- 
tributed and tiered file-based storage systems. In particular, 
DITIS can model a distributed storage system with up to three 
levels of storage tiers and up to three additional levels of caches. 
Each tier and cache can be configured with different number and 
type of storage media devices (e.g., HDD, SSD, NVRAM, DRAM), 
each with their own performance characteristics. The simulator 
utilizes the provided characteristics in fine-grained performance 
cost models (which are distinct for each device type) in order to 
compute the duration time of each I/O request processed on each 
tier. At the same time, DITIS simulates the overall flow of requests 
through the different layers and storage nodes of the system 
using numerous pluggable policies that control every aspect of 
execution, ranging from request routing and data redundancy to 
cache and tiering strategies. For performing the simulation, DITIS 
adapts an extended version of the Actor Model, during which key 
components of the system exchange asynchronous messages with 
each other, much like a real distributed multi-threaded system. 
The ability to simulate the execution of a workload in such an 
accurate and realistic way brings multiple benefits for its users, 
since DITIS can be used to better understand the behavior of the 
underlying file system as well as evaluate different storage setups 
and policies.

Index Terms—Storage Simulator, Distributed Data Storage, 
Tiered Storage, Performance Cost Models

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 1

DITIS: A Distributed Tiered Storage Simulator
Edson Ramiro Lucas Filho1, Lambros Odysseos1, Yang Lun2, Fu Kebo2, and Herodotos Herodotou, IEEE1,∗

Abstract—This paper presents DITIS, a simulator for dis-
tributed and tiered file-based storage systems. In particular,
DITIS can model a distributed storage system with up to three
levels of storage tiers and up to three additional levels of caches.
Each tier and cache can be configured with different number
and type of storage media devices (e.g., HDD, SSD, NVRAM,
DRAM), each with their own performance characteristics. The
simulator utilizes the provided characteristics in fine-grained
performance cost models (which are distinct for each device
type) in order to compute the duration time of each I/O request
processed on each tier. At the same time, DITIS simulates
the overall flow of requests through the different layers and
storage nodes of the system using numerous pluggable policies
that control every aspect of execution, ranging from request
routing and data redundancy to cache and tiering strategies. For
performing the simulation, DITIS adapts an extended version of
the Actor Model, during which key components of the system
exchange asynchronous messages with each other, much like a
real distributed multi-threaded system. The ability to simulate
the execution of a workload in such an accurate and realistic
way brings multiple benefits for its users, since DITIS can be
used to better understand the behavior of the underlying file
system as well as evaluate different storage setups and policies.

Index Terms—Storage Simulator, Distributed Data Storage,
Tiered Storage, Performance Cost Models

I. INTRODUCTION

THE inclusion of multiple storage and caching tiers con-
sisting of multiple HDD, SSD, NVRAM, and DRAM

devices (among others) are common in modern data storage
systems, but require the development of new data management
policies for controlling the flow, placement, and migration of
data across the tiers. At the same time, it is hard to evaluate the
impact of the tiers and their policies across different workloads
as that would require constantly modifying and redeploying
the storage system. Hence, the development and testing of
such policies can quickly become a very cumbersome and
time-consuming process. From the end-users’ perspective, it
becomes exceedingly difficult to (i) identify whether their
workloads will execute efficiently on a particular multi-tiered
system configuration, or (ii) select the best system configura-
tion that will satisfy their requirements.

DITIS is a new distributed tiered storage simulator that can
be used to address the aforementioned challenges by enabling
its users to accurately simulate I/O flows and data storage
operations for given workloads and system configurations. In
particular, DITIS is able to represent a set of distributed nodes

1 E.R. Lucas Filho, L. Odysseos, and H. Herodotou are with Cyprus
University of Technology, Cyprus (e-mail: edson.lucas@cut.ac.cy, lam-
bros.odysseos@cut.ac.cy, herodotos.herodotou@cut.ac.cy)

2 Y. Lun and F. Kebo are with Huawei Technologies Co., Ltd., China (e-
mail: yanglun12@huawei.com, fukebo@huawei.com)

∗ Corresponding author. Address: 30 Arch. Kyprianos Str., 3036 Limassol,
Cyprus. Phone: +357 2500 2500

containing multiple storage tiers with different storage media
and performance characteristics, as well as multiple levels
of caches. DITIS processes a workload trace and simulates
the execution of file system operations, which are guided
by numerous data flow, caching, and tiering policies, while
maintaining all metadata information and several statistics. As
a result, developers can use DITIS to narrow down the design
spaces, evaluate design trade-offs, test different setups and
policies, and reduce prototyping efforts, while end users can
use it to better understand the system’s behavior and identify
the system configuration that best satisfies their requirements.

Even though DITIS is a discrete-event simulator (i.e., it
models operations as a discrete sequence of events), it does not
follow the typical event-oriented or process-oriented models.
Instead, DITIS adapts the actor model as a basic design
principle [1]. As such, each key component is an actor that
maintains its own private state, processes messages received
from other actors, and sends messages to other actors. This
enables the seemingly concurrent computation of actors that
interact only through direct asynchronous message passing. In
DITIS adaptation, all outgoing messages are associated with a
simulated (virtual) time of submission, based on which DITIS
schedules message delivery. The use of the actor model and
other crucial design decisions resulted in a simulator that is:

• Configurable: With over 100 configuration parameters,
DITIS can simulate a large variety of different system
setups and scenarios. For example, a user can configure a
system with multiple storage nodes, with up to 3 different
persistent storage tiers, and up to 3 additional levels of
caches, along with the performance characteristics of the
storage media.

• Extensible: All key decisions made by a storage system
are modelled as policies that can be replaced for changing
the behavior of the system and the simulation. Currently,
there are 39 policies that control every aspect of execu-
tion, including the routing of requests, data flow manage-
ment, caching, tiering, and performance modeling.

• Accurate: DITIS utilizes fine-grained performance cost
models at the level of individual storage devices and net-
work data transfers while modeling (and costing) the flow
of messages between the different system components.

Section II presents the design of DITIS. Section III presents
the flow management of I/O requests. Section IV presents the
device-specific performance cost models. Section V presents
the experimental evaluation of DITIS. Section VI presents the
related work. Finally, Section VII concludes the paper.

II. DESIGN AND ARCHITECTURE

This section presents the design and architecture of DITIS.

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 1

DITIS: A Distributed Tiered Storage Simulator
Edson Ramiro Lucas Filho1, Lambros Odysseos1, Yang Lun2, Fu Kebo2, and Herodotos Herodotou, IEEE1,∗

Abstract—This paper presents DITIS, a simulator for dis-
tributed and tiered file-based storage systems. In particular,
DITIS can model a distributed storage system with up to three
levels of storage tiers and up to three additional levels of caches.
Each tier and cache can be configured with different number
and type of storage media devices (e.g., HDD, SSD, NVRAM,
DRAM), each with their own performance characteristics. The
simulator utilizes the provided characteristics in fine-grained
performance cost models (which are distinct for each device
type) in order to compute the duration time of each I/O request
processed on each tier. At the same time, DITIS simulates
the overall flow of requests through the different layers and
storage nodes of the system using numerous pluggable policies
that control every aspect of execution, ranging from request
routing and data redundancy to cache and tiering strategies. For
performing the simulation, DITIS adapts an extended version of
the Actor Model, during which key components of the system
exchange asynchronous messages with each other, much like a
real distributed multi-threaded system. The ability to simulate
the execution of a workload in such an accurate and realistic
way brings multiple benefits for its users, since DITIS can be
used to better understand the behavior of the underlying file
system as well as evaluate different storage setups and policies.

Index Terms—Storage Simulator, Distributed Data Storage,
Tiered Storage, Performance Cost Models

I. INTRODUCTION

THE inclusion of multiple storage and caching tiers con-
sisting of multiple HDD, SSD, NVRAM, and DRAM

devices (among others) are common in modern data storage
systems, but require the development of new data management
policies for controlling the flow, placement, and migration of
data across the tiers. At the same time, it is hard to evaluate the
impact of the tiers and their policies across different workloads
as that would require constantly modifying and redeploying
the storage system. Hence, the development and testing of
such policies can quickly become a very cumbersome and
time-consuming process. From the end-users’ perspective, it
becomes exceedingly difficult to (i) identify whether their
workloads will execute efficiently on a particular multi-tiered
system configuration, or (ii) select the best system configura-
tion that will satisfy their requirements.

DITIS is a new distributed tiered storage simulator that can
be used to address the aforementioned challenges by enabling
its users to accurately simulate I/O flows and data storage
operations for given workloads and system configurations. In
particular, DITIS is able to represent a set of distributed nodes

1 E.R. Lucas Filho, L. Odysseos, and H. Herodotou are with Cyprus
University of Technology, Cyprus (e-mail: edson.lucas@cut.ac.cy, lam-
bros.odysseos@cut.ac.cy, herodotos.herodotou@cut.ac.cy)

2 Y. Lun and F. Kebo are with Huawei Technologies Co., Ltd., China (e-
mail: yanglun12@huawei.com, fukebo@huawei.com)

∗ Corresponding author. Address: 30 Arch. Kyprianos Str., 3036 Limassol,
Cyprus. Phone: +357 2500 2500

containing multiple storage tiers with different storage media
and performance characteristics, as well as multiple levels
of caches. DITIS processes a workload trace and simulates
the execution of file system operations, which are guided
by numerous data flow, caching, and tiering policies, while
maintaining all metadata information and several statistics. As
a result, developers can use DITIS to narrow down the design
spaces, evaluate design trade-offs, test different setups and
policies, and reduce prototyping efforts, while end users can
use it to better understand the system’s behavior and identify
the system configuration that best satisfies their requirements.

Even though DITIS is a discrete-event simulator (i.e., it
models operations as a discrete sequence of events), it does not
follow the typical event-oriented or process-oriented models.
Instead, DITIS adapts the actor model as a basic design
principle [1]. As such, each key component is an actor that
maintains its own private state, processes messages received
from other actors, and sends messages to other actors. This
enables the seemingly concurrent computation of actors that
interact only through direct asynchronous message passing. In
DITIS adaptation, all outgoing messages are associated with a
simulated (virtual) time of submission, based on which DITIS
schedules message delivery. The use of the actor model and
other crucial design decisions resulted in a simulator that is:

• Configurable: With over 100 configuration parameters,
DITIS can simulate a large variety of different system
setups and scenarios. For example, a user can configure a
system with multiple storage nodes, with up to 3 different
persistent storage tiers, and up to 3 additional levels of
caches, along with the performance characteristics of the
storage media.

• Extensible: All key decisions made by a storage system
are modelled as policies that can be replaced for changing
the behavior of the system and the simulation. Currently,
there are 39 policies that control every aspect of execu-
tion, including the routing of requests, data flow manage-
ment, caching, tiering, and performance modeling.

• Accurate: DITIS utilizes fine-grained performance cost
models at the level of individual storage devices and net-
work data transfers while modeling (and costing) the flow
of messages between the different system components.

Section II presents the design of DITIS. Section III presents
the flow management of I/O requests. Section IV presents the
device-specific performance cost models. Section V presents
the experimental evaluation of DITIS. Section VI presents the
related work. Finally, Section VII concludes the paper.

II. DESIGN AND ARCHITECTURE

This section presents the design and architecture of DITIS.

DOI: 10.36244/ICJ.2022.4.3

mailto:edson.lucas%40cut.ac.cy?subject=
mailto:lambros.odysseos%40cut.ac.cy?subject=
mailto:lambros.odysseos%40cut.ac.cy?subject=
mailto:herodotos.herodotou%40cut.ac.cy?subject=
mailto:yanglun12%40huawei.com?subject=
mailto:fukebo%40huawei.com?subject=
https://doi.org/10.36244/ICJ.2022.4.3


DITIS: A Distributed Tiered Storage Simulator

Fig. 1: The architecture of DITIS. Components marked with a * are 
pluggable policies.

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 19

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 2

A. Simulation Input

DITIS requires two input files for simulating a workload
execution on a storage system. The first one is an input
workload trace (in CSV) with each line corresponding to one
file request to be processed by the storage system. A file
request consists of (1) the process id of the application that
submitted the request, (2) the submission epoch timestamp (in
microseconds), (3) the file operation (open, close, read, write,
or delete), (4) the name for the file to be accessed, (5) the offset
of the file (in bytes) when reading from or writing to a file, (6)
the length containing the amount of data to be processed (in
bytes), (7) the current file size, and (8) the original duration
of the operation (in microseconds). The original duration is
ignored by the simulator but having it facilitates its comparison
with the simulated duration time.

The second input is a configuration file, which defines the
storage system and its behavior. DITIS is a very flexible and
extensible simulator, and its configuration allows users to adapt
the simulated storage system in many ways. For instance, users
can resize internal components of the storage system (e.g.,
set 3 nodes, 10 SSDs per node), specify their performance
characteristics (e.g., disk IOPS, RPM), as well as determine
which combination of policies to use during the simulation.

B. Components

Figure 1 depicts the overall architecture and key components
of DITIS, inspired by modern hybrid storage systems such as
Huawei OceanStor series. Next, we present the description of
each component.
Workload Level: The Trace Parser is responsible for parsing
requests from the input trace, validating them, and preparing
them to be processed by DITIS as trace events. The Trace
Parser is used by the Workload Initializer and the Workload
Replay to process the input trace. The Workload Initializer is
responsible for creating an initial state for the storage system
before the trace is executed. For example, it can create files that
are read by the trace but not created by the trace, place files in
specific layers, populate caches, or execute any other action
required. The Workload Replay is a policy that dictates the
order and timing for replaying the trace of file requests based
on the submission timestamps. The Workload Replay creates a
new Application for each distinct process id it encounters and
a message for every file request. This message is then sent to
its corresponding Application for processing. Each Application
represents a different client application outside the storage
system that submits file requests to the storage system.
Access Layer: The Access Layer defines the interface of
the storage system for client Applications. It holds a set
of Access Modules, and an Application Connector, which is
responsible for balancing incoming Application connections to
the available Access Modules. An Access Module represents
either the storage system’s client running on the Application
node or an access component of the storage system running on
a storage node. The Access Module receives and processes file
requests from Applications, and has three main components:
the Dataflow Manager, which determines when and how to
process or forward a file request based on the Dataflow

Persistence Layer

Persistence Module

Access Layer

Application 
Connector*

Access Module

Workload Replay*

Application
Application

Workload Initializer*

Trace ParserTrace Parser

File Home Layer

File 
Balancer*

Access Module

Persistence ModuleRedundancy 
Policy*

Block 
Balancer*

File Home Module

Metadata 
Manager

Storage Pool  
Manager

Cold Storage Pool 
SATA/NL-SAS SSDs or HDDs

Warm Storage Pool 
SAS SSDs

Hot Storage Pool 
NVMe SSDs

Access Module

Metadata 
Manager
Cache

Dataflow
Manager 

Dataflow
Policies*

Dataflow
Manager 

Dataflow
Policies*

Dataflow
Manager 

Dataflow
Policies*

Cache  
Manager

L2 Cache
Policies*

Cache  
Manager

L0 Cache
Policies*

L0 Data
Cache

Cache  
Manager

L1 Cache
Policies*

L1 Data
Cache

Tiering
Manager

Tiering
Policies*

L2 Data Cache

Fig. 1: The architecture of DITIS. Components marked with
a * are pluggable policies.

Policies; the Metadata Manager Cache that manages the
information about the files stored in the system and accessed
by this Access module; and the Cache Manager that manages
the data stored in the L0 DRAM Data Cache using the L0
Cache Policies, which are responsible for admitting, evicting,
or prefetching data to/from the L0 Data Cache.
File Home Layer: The File Home Layer holds the File
Balancer and a list of File Home Modules, one for each
storage node of the system. The File Balancer distributes files
across the File Home Modules based on full file paths, and
the File Home Modules maintain the file system namespace
and process the file requests forwarded by the Access Layer.
The File Home Module consists of the Dataflow Manager and
its Dataflow Policies; the Metadata Manager that manages the
metadata information about the files stored in the system; the
Cache Manager that hosts the L1 NVRAM Data Cache and
the L1 Data Policies; and the Tiering Manager that manages
the Tiering Policies, which decide when to place, migrate, and
delete files from the storage tiers in the Persistence Layer.
Persistence Layer: The Persistence Layer models the underly-
ing storage capabilities of the storage system. It holds the Re-
dundancy Policy that determines how to create and distribute
redundancy blocks (e.g., using Erasure Coding, replication, or
per-node RAID); the Block Balancer that distributes blocks
across the Persistence Modules; and the Persistence Modules
(one per node) that process block requests forwarded by the
Access and File Home Layers as well as store data blocks
on the different storage pools that form the storage tiers. The
Persistence Module has three main components: the Dataflow
Manager with its Dataflow Policies; the Cache Manager that

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 2

A. Simulation Input

DITIS requires two input files for simulating a workload
execution on a storage system. The first one is an input
workload trace (in CSV) with each line corresponding to one
file request to be processed by the storage system. A file
request consists of (1) the process id of the application that
submitted the request, (2) the submission epoch timestamp (in
microseconds), (3) the file operation (open, close, read, write,
or delete), (4) the name for the file to be accessed, (5) the offset
of the file (in bytes) when reading from or writing to a file, (6)
the length containing the amount of data to be processed (in
bytes), (7) the current file size, and (8) the original duration
of the operation (in microseconds). The original duration is
ignored by the simulator but having it facilitates its comparison
with the simulated duration time.

The second input is a configuration file, which defines the
storage system and its behavior. DITIS is a very flexible and
extensible simulator, and its configuration allows users to adapt
the simulated storage system in many ways. For instance, users
can resize internal components of the storage system (e.g.,
set 3 nodes, 10 SSDs per node), specify their performance
characteristics (e.g., disk IOPS, RPM), as well as determine
which combination of policies to use during the simulation.

B. Components

Figure 1 depicts the overall architecture and key components
of DITIS, inspired by modern hybrid storage systems such as
Huawei OceanStor series. Next, we present the description of
each component.
Workload Level: The Trace Parser is responsible for parsing
requests from the input trace, validating them, and preparing
them to be processed by DITIS as trace events. The Trace
Parser is used by the Workload Initializer and the Workload
Replay to process the input trace. The Workload Initializer is
responsible for creating an initial state for the storage system
before the trace is executed. For example, it can create files that
are read by the trace but not created by the trace, place files in
specific layers, populate caches, or execute any other action
required. The Workload Replay is a policy that dictates the
order and timing for replaying the trace of file requests based
on the submission timestamps. The Workload Replay creates a
new Application for each distinct process id it encounters and
a message for every file request. This message is then sent to
its corresponding Application for processing. Each Application
represents a different client application outside the storage
system that submits file requests to the storage system.
Access Layer: The Access Layer defines the interface of
the storage system for client Applications. It holds a set
of Access Modules, and an Application Connector, which is
responsible for balancing incoming Application connections to
the available Access Modules. An Access Module represents
either the storage system’s client running on the Application
node or an access component of the storage system running on
a storage node. The Access Module receives and processes file
requests from Applications, and has three main components:
the Dataflow Manager, which determines when and how to
process or forward a file request based on the Dataflow

Persistence Layer

Persistence Module

Access Layer

Application 
Connector*

Access Module

Workload Replay*

Application
Application

Workload Initializer*

Trace ParserTrace Parser

File Home Layer

File 
Balancer*

Access Module

Persistence ModuleRedundancy 
Policy*

Block 
Balancer*

File Home Module

Metadata 
Manager

Storage Pool  
Manager

Cold Storage Pool 
SATA/NL-SAS SSDs or HDDs

Warm Storage Pool 
SAS SSDs

Hot Storage Pool 
NVMe SSDs

Access Module

Metadata 
Manager
Cache

Dataflow
Manager 

Dataflow
Policies*

Dataflow
Manager 

Dataflow
Policies*

Dataflow
Manager 

Dataflow
Policies*

Cache  
Manager

L2 Cache
Policies*

Cache  
Manager

L0 Cache
Policies*

L0 Data
Cache

Cache  
Manager

L1 Cache
Policies*

L1 Data
Cache

Tiering
Manager

Tiering
Policies*

L2 Data Cache

Fig. 1: The architecture of DITIS. Components marked with
a * are pluggable policies.

Policies; the Metadata Manager Cache that manages the
information about the files stored in the system and accessed
by this Access module; and the Cache Manager that manages
the data stored in the L0 DRAM Data Cache using the L0
Cache Policies, which are responsible for admitting, evicting,
or prefetching data to/from the L0 Data Cache.
File Home Layer: The File Home Layer holds the File
Balancer and a list of File Home Modules, one for each
storage node of the system. The File Balancer distributes files
across the File Home Modules based on full file paths, and
the File Home Modules maintain the file system namespace
and process the file requests forwarded by the Access Layer.
The File Home Module consists of the Dataflow Manager and
its Dataflow Policies; the Metadata Manager that manages the
metadata information about the files stored in the system; the
Cache Manager that hosts the L1 NVRAM Data Cache and
the L1 Data Policies; and the Tiering Manager that manages
the Tiering Policies, which decide when to place, migrate, and
delete files from the storage tiers in the Persistence Layer.
Persistence Layer: The Persistence Layer models the underly-
ing storage capabilities of the storage system. It holds the Re-
dundancy Policy that determines how to create and distribute
redundancy blocks (e.g., using Erasure Coding, replication, or
per-node RAID); the Block Balancer that distributes blocks
across the Persistence Modules; and the Persistence Modules
(one per node) that process block requests forwarded by the
Access and File Home Layers as well as store data blocks
on the different storage pools that form the storage tiers. The
Persistence Module has three main components: the Dataflow
Manager with its Dataflow Policies; the Cache Manager that

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 2

A. Simulation Input

DITIS requires two input files for simulating a workload
execution on a storage system. The first one is an input
workload trace (in CSV) with each line corresponding to one
file request to be processed by the storage system. A file
request consists of (1) the process id of the application that
submitted the request, (2) the submission epoch timestamp (in
microseconds), (3) the file operation (open, close, read, write,
or delete), (4) the name for the file to be accessed, (5) the offset
of the file (in bytes) when reading from or writing to a file, (6)
the length containing the amount of data to be processed (in
bytes), (7) the current file size, and (8) the original duration
of the operation (in microseconds). The original duration is
ignored by the simulator but having it facilitates its comparison
with the simulated duration time.

The second input is a configuration file, which defines the
storage system and its behavior. DITIS is a very flexible and
extensible simulator, and its configuration allows users to adapt
the simulated storage system in many ways. For instance, users
can resize internal components of the storage system (e.g.,
set 3 nodes, 10 SSDs per node), specify their performance
characteristics (e.g., disk IOPS, RPM), as well as determine
which combination of policies to use during the simulation.

B. Components

Figure 1 depicts the overall architecture and key components
of DITIS, inspired by modern hybrid storage systems such as
Huawei OceanStor series. Next, we present the description of
each component.
Workload Level: The Trace Parser is responsible for parsing
requests from the input trace, validating them, and preparing
them to be processed by DITIS as trace events. The Trace
Parser is used by the Workload Initializer and the Workload
Replay to process the input trace. The Workload Initializer is
responsible for creating an initial state for the storage system
before the trace is executed. For example, it can create files that
are read by the trace but not created by the trace, place files in
specific layers, populate caches, or execute any other action
required. The Workload Replay is a policy that dictates the
order and timing for replaying the trace of file requests based
on the submission timestamps. The Workload Replay creates a
new Application for each distinct process id it encounters and
a message for every file request. This message is then sent to
its corresponding Application for processing. Each Application
represents a different client application outside the storage
system that submits file requests to the storage system.
Access Layer: The Access Layer defines the interface of
the storage system for client Applications. It holds a set
of Access Modules, and an Application Connector, which is
responsible for balancing incoming Application connections to
the available Access Modules. An Access Module represents
either the storage system’s client running on the Application
node or an access component of the storage system running on
a storage node. The Access Module receives and processes file
requests from Applications, and has three main components:
the Dataflow Manager, which determines when and how to
process or forward a file request based on the Dataflow

Persistence Layer

Persistence Module

Access Layer

Application 
Connector*

Access Module

Workload Replay*

Application
Application

Workload Initializer*

Trace ParserTrace Parser

File Home Layer

File 
Balancer*

Access Module

Persistence ModuleRedundancy 
Policy*

Block 
Balancer*

File Home Module

Metadata 
Manager

Storage Pool  
Manager

Cold Storage Pool 
SATA/NL-SAS SSDs or HDDs

Warm Storage Pool 
SAS SSDs

Hot Storage Pool 
NVMe SSDs

Access Module

Metadata 
Manager
Cache

Dataflow
Manager 

Dataflow
Policies*

Dataflow
Manager 

Dataflow
Policies*

Dataflow
Manager 

Dataflow
Policies*

Cache  
Manager

L2 Cache
Policies*

Cache  
Manager

L0 Cache
Policies*

L0 Data
Cache

Cache  
Manager

L1 Cache
Policies*

L1 Data
Cache

Tiering
Manager

Tiering
Policies*

L2 Data Cache

Fig. 1: The architecture of DITIS. Components marked with
a * are pluggable policies.

Policies; the Metadata Manager Cache that manages the
information about the files stored in the system and accessed
by this Access module; and the Cache Manager that manages
the data stored in the L0 DRAM Data Cache using the L0
Cache Policies, which are responsible for admitting, evicting,
or prefetching data to/from the L0 Data Cache.
File Home Layer: The File Home Layer holds the File
Balancer and a list of File Home Modules, one for each
storage node of the system. The File Balancer distributes files
across the File Home Modules based on full file paths, and
the File Home Modules maintain the file system namespace
and process the file requests forwarded by the Access Layer.
The File Home Module consists of the Dataflow Manager and
its Dataflow Policies; the Metadata Manager that manages the
metadata information about the files stored in the system; the
Cache Manager that hosts the L1 NVRAM Data Cache and
the L1 Data Policies; and the Tiering Manager that manages
the Tiering Policies, which decide when to place, migrate, and
delete files from the storage tiers in the Persistence Layer.
Persistence Layer: The Persistence Layer models the underly-
ing storage capabilities of the storage system. It holds the Re-
dundancy Policy that determines how to create and distribute
redundancy blocks (e.g., using Erasure Coding, replication, or
per-node RAID); the Block Balancer that distributes blocks
across the Persistence Modules; and the Persistence Modules
(one per node) that process block requests forwarded by the
Access and File Home Layers as well as store data blocks
on the different storage pools that form the storage tiers. The
Persistence Module has three main components: the Dataflow
Manager with its Dataflow Policies; the Cache Manager that



DITIS: A Distributed Tiered Storage Simulator

DECEMBER 2022 • VOLUME XIV • NUMBER 420

INFOCOMMUNICATIONS JOURNAL

Algorithm 1: Main simulation control loop.

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 3

// initialize storage
storage.initialize()
// Process events scheduled in the queue
lastTraceTime ← -1;
while lastTraceTime != INF or queue.hasPendingMessages() do

if !queue.hasPendingMessages() or lastTraceTime <
queue.getNextMessageTime() then↪→

// Get a new trace item and generate a new message
lastTraceTime ← workloadReplay.processNextTraceItem()

else
// Process the next available message
queue.processNextMessage()

end
end

Algorithm 1: Main simulation control loop.

hosts the L2 Data Cache in the hot tier and manages the L2
Data Policies; and the Storage Pool Manager, which manages
the storage pools consisting for storage medias (e.g., HDDs,
SSDs) organized in up to three tiers (Hot, Warm, and/or Cold).

C. Simulation Model

DITIS employs a modified version of the Actor Model for
simulating a distributed data storage system. In DITIS, the
Workload Replay, the Applications, the Access Modules, the
File Home Modules, and the Persistence Modules are modeled
as actors. Actors are only responsible for maintaining their
own private state, making local decisions, and exchanging
messages to communicate with each other. In the original
Actor Model, every actor can concurrently send messages to
other actors, create new actors, and react on a message basis
asynchronously. There is no ordered sequence that needs to
be followed, and these actions can be executed in parallel. In
DITIS, however, instead of exchanging messages directly to
each other, DITIS implements a global simulation message
queue. This is a priority queue, where the timestamp of
messages is the priority token. Thus, actors exchange messages
by writing and reading to and from the simulation queue. The
messages are then delivered based on the timestamp of each
message to simulate the passing of time in an orderly fashion.

Another difference from the original actor model is that,
in DITIS, actors are allowed to perform concurrent actions
respecting the simulation time. DITIS implements a Simulation
Clock that maintains the simulation time. The timestamps of
exchanged messages are set based on the Simulation Clock and
the duration time of the request processing. The requests hold
the duration time, which accounts for the simulated time taken
to process the request. Each time some processing is taking
place, the processing is calculated based on some performance
cost model and added to the duration time.

This enables a fine grained modeling of the various actions
that take place during processing, such as exchanging data
over the network, accessing a cache, accessing one or more
disks in parallel, etc. The simulated duration at various points
is added to the Simulation Clock to specify the time the next
message needs to be delivered. The scheduling of messages
from the simulation queue then respects the execution flow of
the simulated storage system and accounts for all processing
taken at different parts of the system.

Algorithm 1 presents the main simulation control loop
of DITIS. First, the storage is initialized by the Workload
Initializer policy. Then, if the simulation queue does not have
any pending message to be processed, it will schedule a new
trace event in the queue. Processing the next trace event
means that the Workload Replay will create a new message
based on the next trace event and queue it to be processed
by its application. A new trace event is also scheduled if
there is a gap between the last trace event and the next
message in the queue to ensure that messages in the trace
are scheduled correctly before other pending messages in the
queue. Otherwise, if the system has messages in the queue,
DITIS will process the next message in the queue, which also
sets the current simulation time.

D. Simulation Output

During the simulation, DITIS will generate an output trace.
This is a trace with the same sequence of requests given
in the input trace but contain the simulated duration time
instead. The output trace is written as the file requests are
finished but following the correct order of submission. DITIS
also generates a report containing a wealth of information
regarding the simulated execution of the workload trace. In
particular, it contains information and statistics about the input
trace, for the storage initialization, for each storage layer, and
for each application, including the number of bytes read and
written by the file requests, the number of files opened, closed,
written, and read, the number of requests processed, the cache
hit ratio, the throughput, and much more.

III. REQUEST FLOW MANAGEMENT AND ROUTING

During a simulation, the I/O requests originate from appli-
cations, traverse the appropriate layers of the storage system
in order to be served, and then are returned to the applications.
This section presents the request routing model and the key
flow of requests in DITIS.

A. Three-level Request Routing

DITIS has three levels of routing used to distribute requests
across storage layers and nodes due to semantic differences.
The first level routes requests from Application to Access
modules and is implemented by the Application Connector.
The first time an Application is ready to submit a request
to the file system, the Application Connector is invoked to
connect a specific Access Module with the Application. The
default policy connects an Application to an Access Module in
a Round Robin fashion, simulating the presence of a basic load
balancer at the top of the file system. DITIS also supports a
Client Mode policy that connects each Application to its own
private Access Module, which runs on the same (compute)
node as the Application. This enables DITIS to simulate a
scenario where each application has its own local data cache
and showcases another aspect of DITIS’s flexibility.

The second level routes requests to the appropriate File
Home Modules based on file semantics and is implemented
by the File Balancer. When an Access Module submits a file

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 3

// initialize storage
storage.initialize()
// Process events scheduled in the queue
lastTraceTime ← -1;
while lastTraceTime != INF or queue.hasPendingMessages() do

if !queue.hasPendingMessages() or lastTraceTime <
queue.getNextMessageTime() then↪→

// Get a new trace item and generate a new message
lastTraceTime ← workloadReplay.processNextTraceItem()

else
// Process the next available message
queue.processNextMessage()

end
end

Algorithm 1: Main simulation control loop.

hosts the L2 Data Cache in the hot tier and manages the L2
Data Policies; and the Storage Pool Manager, which manages
the storage pools consisting for storage medias (e.g., HDDs,
SSDs) organized in up to three tiers (Hot, Warm, and/or Cold).

C. Simulation Model

DITIS employs a modified version of the Actor Model for
simulating a distributed data storage system. In DITIS, the
Workload Replay, the Applications, the Access Modules, the
File Home Modules, and the Persistence Modules are modeled
as actors. Actors are only responsible for maintaining their
own private state, making local decisions, and exchanging
messages to communicate with each other. In the original
Actor Model, every actor can concurrently send messages to
other actors, create new actors, and react on a message basis
asynchronously. There is no ordered sequence that needs to
be followed, and these actions can be executed in parallel. In
DITIS, however, instead of exchanging messages directly to
each other, DITIS implements a global simulation message
queue. This is a priority queue, where the timestamp of
messages is the priority token. Thus, actors exchange messages
by writing and reading to and from the simulation queue. The
messages are then delivered based on the timestamp of each
message to simulate the passing of time in an orderly fashion.

Another difference from the original actor model is that,
in DITIS, actors are allowed to perform concurrent actions
respecting the simulation time. DITIS implements a Simulation
Clock that maintains the simulation time. The timestamps of
exchanged messages are set based on the Simulation Clock and
the duration time of the request processing. The requests hold
the duration time, which accounts for the simulated time taken
to process the request. Each time some processing is taking
place, the processing is calculated based on some performance
cost model and added to the duration time.

This enables a fine grained modeling of the various actions
that take place during processing, such as exchanging data
over the network, accessing a cache, accessing one or more
disks in parallel, etc. The simulated duration at various points
is added to the Simulation Clock to specify the time the next
message needs to be delivered. The scheduling of messages
from the simulation queue then respects the execution flow of
the simulated storage system and accounts for all processing
taken at different parts of the system.

Algorithm 1 presents the main simulation control loop
of DITIS. First, the storage is initialized by the Workload
Initializer policy. Then, if the simulation queue does not have
any pending message to be processed, it will schedule a new
trace event in the queue. Processing the next trace event
means that the Workload Replay will create a new message
based on the next trace event and queue it to be processed
by its application. A new trace event is also scheduled if
there is a gap between the last trace event and the next
message in the queue to ensure that messages in the trace
are scheduled correctly before other pending messages in the
queue. Otherwise, if the system has messages in the queue,
DITIS will process the next message in the queue, which also
sets the current simulation time.

D. Simulation Output

During the simulation, DITIS will generate an output trace.
This is a trace with the same sequence of requests given
in the input trace but contain the simulated duration time
instead. The output trace is written as the file requests are
finished but following the correct order of submission. DITIS
also generates a report containing a wealth of information
regarding the simulated execution of the workload trace. In
particular, it contains information and statistics about the input
trace, for the storage initialization, for each storage layer, and
for each application, including the number of bytes read and
written by the file requests, the number of files opened, closed,
written, and read, the number of requests processed, the cache
hit ratio, the throughput, and much more.

III. REQUEST FLOW MANAGEMENT AND ROUTING

During a simulation, the I/O requests originate from appli-
cations, traverse the appropriate layers of the storage system
in order to be served, and then are returned to the applications.
This section presents the request routing model and the key
flow of requests in DITIS.

A. Three-level Request Routing

DITIS has three levels of routing used to distribute requests
across storage layers and nodes due to semantic differences.
The first level routes requests from Application to Access
modules and is implemented by the Application Connector.
The first time an Application is ready to submit a request
to the file system, the Application Connector is invoked to
connect a specific Access Module with the Application. The
default policy connects an Application to an Access Module in
a Round Robin fashion, simulating the presence of a basic load
balancer at the top of the file system. DITIS also supports a
Client Mode policy that connects each Application to its own
private Access Module, which runs on the same (compute)
node as the Application. This enables DITIS to simulate a
scenario where each application has its own local data cache
and showcases another aspect of DITIS’s flexibility.

The second level routes requests to the appropriate File
Home Modules based on file semantics and is implemented
by the File Balancer. When an Access Module submits a file

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 3

// initialize storage
storage.initialize()
// Process events scheduled in the queue
lastTraceTime ← -1;
while lastTraceTime != INF or queue.hasPendingMessages() do

if !queue.hasPendingMessages() or lastTraceTime <
queue.getNextMessageTime() then↪→

// Get a new trace item and generate a new message
lastTraceTime ← workloadReplay.processNextTraceItem()

else
// Process the next available message
queue.processNextMessage()

end
end

Algorithm 1: Main simulation control loop.

hosts the L2 Data Cache in the hot tier and manages the L2
Data Policies; and the Storage Pool Manager, which manages
the storage pools consisting for storage medias (e.g., HDDs,
SSDs) organized in up to three tiers (Hot, Warm, and/or Cold).

C. Simulation Model

DITIS employs a modified version of the Actor Model for
simulating a distributed data storage system. In DITIS, the
Workload Replay, the Applications, the Access Modules, the
File Home Modules, and the Persistence Modules are modeled
as actors. Actors are only responsible for maintaining their
own private state, making local decisions, and exchanging
messages to communicate with each other. In the original
Actor Model, every actor can concurrently send messages to
other actors, create new actors, and react on a message basis
asynchronously. There is no ordered sequence that needs to
be followed, and these actions can be executed in parallel. In
DITIS, however, instead of exchanging messages directly to
each other, DITIS implements a global simulation message
queue. This is a priority queue, where the timestamp of
messages is the priority token. Thus, actors exchange messages
by writing and reading to and from the simulation queue. The
messages are then delivered based on the timestamp of each
message to simulate the passing of time in an orderly fashion.

Another difference from the original actor model is that,
in DITIS, actors are allowed to perform concurrent actions
respecting the simulation time. DITIS implements a Simulation
Clock that maintains the simulation time. The timestamps of
exchanged messages are set based on the Simulation Clock and
the duration time of the request processing. The requests hold
the duration time, which accounts for the simulated time taken
to process the request. Each time some processing is taking
place, the processing is calculated based on some performance
cost model and added to the duration time.

This enables a fine grained modeling of the various actions
that take place during processing, such as exchanging data
over the network, accessing a cache, accessing one or more
disks in parallel, etc. The simulated duration at various points
is added to the Simulation Clock to specify the time the next
message needs to be delivered. The scheduling of messages
from the simulation queue then respects the execution flow of
the simulated storage system and accounts for all processing
taken at different parts of the system.

Algorithm 1 presents the main simulation control loop
of DITIS. First, the storage is initialized by the Workload
Initializer policy. Then, if the simulation queue does not have
any pending message to be processed, it will schedule a new
trace event in the queue. Processing the next trace event
means that the Workload Replay will create a new message
based on the next trace event and queue it to be processed
by its application. A new trace event is also scheduled if
there is a gap between the last trace event and the next
message in the queue to ensure that messages in the trace
are scheduled correctly before other pending messages in the
queue. Otherwise, if the system has messages in the queue,
DITIS will process the next message in the queue, which also
sets the current simulation time.

D. Simulation Output

During the simulation, DITIS will generate an output trace.
This is a trace with the same sequence of requests given
in the input trace but contain the simulated duration time
instead. The output trace is written as the file requests are
finished but following the correct order of submission. DITIS
also generates a report containing a wealth of information
regarding the simulated execution of the workload trace. In
particular, it contains information and statistics about the input
trace, for the storage initialization, for each storage layer, and
for each application, including the number of bytes read and
written by the file requests, the number of files opened, closed,
written, and read, the number of requests processed, the cache
hit ratio, the throughput, and much more.

III. REQUEST FLOW MANAGEMENT AND ROUTING

During a simulation, the I/O requests originate from appli-
cations, traverse the appropriate layers of the storage system
in order to be served, and then are returned to the applications.
This section presents the request routing model and the key
flow of requests in DITIS.

A. Three-level Request Routing

DITIS has three levels of routing used to distribute requests
across storage layers and nodes due to semantic differences.
The first level routes requests from Application to Access
modules and is implemented by the Application Connector.
The first time an Application is ready to submit a request
to the file system, the Application Connector is invoked to
connect a specific Access Module with the Application. The
default policy connects an Application to an Access Module in
a Round Robin fashion, simulating the presence of a basic load
balancer at the top of the file system. DITIS also supports a
Client Mode policy that connects each Application to its own
private Access Module, which runs on the same (compute)
node as the Application. This enables DITIS to simulate a
scenario where each application has its own local data cache
and showcases another aspect of DITIS’s flexibility.

The second level routes requests to the appropriate File
Home Modules based on file semantics and is implemented
by the File Balancer. When an Access Module submits a file



DITIS: A Distributed Tiered Storage Simulator
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 21

Fig. 3: Request Exchange.

Fig. 2: Simulator message attributes.

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 4

Message

Timestamp Type Source
Request

DurationRequest
Status

Response
StatusOperation DestinationDestination

Fig. 2: Simulator message attributes.

request to the File Home Layer, the File Balancer is used to
find the File Home Module hosting the required file so that
the request is correctly routed there. The current policy uses
hashing based on file path to determine the appropriate File
Home Module but more complex approaches such as consis-
tent hashing or distributed hash table are easily supported.

The last level routes requests to the appropriate Persistence
Modules based on block semantics and is implemented by
the Block Balancer. When an Access or File Home Module
sends a block request to a Persistence Module, the Block
Balancer is used for determining the Persistence Module that
is responsible for managing that particular block. The default
policy also employs hashing based on the block id but more
advanced routing strategies are also easy to support.

B. General Request Flow

During a simulation, the trace events in the input trace are
converted into I/O requests. Currently, a request can be a file,
a standard stream (e.g., stdout), or a special device (e.g., to
CD-ROM) request. Only file requests are sent and served by
the simulated storage system. Every request holds the type
of operation (open, close, read, write, or delete), the request
status (pending, in-progress, or completed), the response status
after request completion (success or fail); and the duration
time taken to process the request. Requests are encapsulated
in messages, in order to be sent from one component to
another based on the actor model. Figure 2 depicts the message
attributes, including the request. A message consists of a
timestamp, referring to the simulated submission time; a type
that distinguishes whether the message should be sent forward
to the next destination or backward to the previous source; the
source component that is sending the message; and the list of
destination components that received the messages in order.
The list of destination components forms the lineage of the
request and is used for returning the message back through
the components that initiated or forwarded the request.

Figure 3 depicts the general request flow starting from the
Workload Replay, which creates and passes requests to the
appropriate Applications (based on the request’s PID in the
input trace), and continuing through the components of the
simulator. Access Modules receive messages from Applica-
tions containing file requests. Each Access Module extracts
the request and forwards it to the Data Flow Manager. The
Data Flow Manager processes the request according to its Data
Flow Policies, which determine how the processing interacts
with the Cache Manager and the Metadata Manager, and
decide if the request can be completed or not. In the former
case, a response message is send back to the Application.
Otherwise, either file requests are sent to appropriate File
Home Modules or block requests to appropriate Persistence

 Request File Home 
Module

Block 
Request 

 (large read/write) 

 Request Access 
Module

 File/Stream/Device 
RequestWorkload  

Replay
File Request 
(read/write) 

 (open/close/delete) 

Application

File 
 Fragment 

File 
Request 

(small read/write) 
 (open/close/delete) 

 Response 

Data Flow
Manager

Cache 
Manager

File 
 Fragment 

Metadata
Manager 
Cache

File 
 Fragment 

 Response 

Data Flow
Manager

Cache 
Manager

File 
 Fragment 

Metadata
Manager

Block 
Request 

 (read/write/delete) 

Persistence 
Module  Block Data Flow

Manager
Cache 

Manager

Cache 
Request 

 (write/delete) 

 Request 

 Response 

Storage Pool 
Manager Block 

Tiering 
Manager

 File 

Fig. 3: Request Exchange.

Modules. The request flow in the File Home is analogous
to the Access Module. The only additional component is the
Tiering Manager, that invokes its Tiering Policies to decide
how to place, migrate, or delete files among the storage tiers.
Request processing in a File Home Module may result in
cache mirroring requests to other File Home Modules or
block requests to Persistence Modules. Finally, the Persistence
Modules receive block requests from the Access and File
Home Modules and processes them in a similar manner.

Messages exchanged among the modules can either be
synchronous or asynchronous, depending on the simulated
operation. Synchronous messages create chains of requests
for which the successor requests need to be completed before
the predecessor requests are completed. For example, if a file
read request cannot be completed by the cache of the File
Home Module, then synchronous block read requests are sent
to appropriate Persistence Modules. Asynchronous messages
contain requests that can execute independently from other
requests. For example, when a fixed size of data is accumulated
on a File Home cache, asynchronous block write requests are
sent to Persistent modules for persisting that data.

C. Read/Write Request Flow

We present the key read and write operations simulated in
the File Home Module by the default read and write policies.
The data flow policies in the other modules are similar.

File Home Module read: The read policy receives a request
containing a file name, an offset, and a data length. It checks
with the Metadata Manager if the file exists and is open. If
not, the request is returned with fail status. Then, the Cache
Manager is invoked to check if the fragment is in the cache.
If the cache contains the entire fragment, the fragment is read
from the cache. The Data Flow Manager adds the read time
to the request duration, marks the request as completed, and
returns it to the source Access module. If the cache contains

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 4

Message

Timestamp Type Source
Request

DurationRequest
Status

Response
StatusOperation DestinationDestination

Fig. 2: Simulator message attributes.

request to the File Home Layer, the File Balancer is used to
find the File Home Module hosting the required file so that
the request is correctly routed there. The current policy uses
hashing based on file path to determine the appropriate File
Home Module but more complex approaches such as consis-
tent hashing or distributed hash table are easily supported.

The last level routes requests to the appropriate Persistence
Modules based on block semantics and is implemented by
the Block Balancer. When an Access or File Home Module
sends a block request to a Persistence Module, the Block
Balancer is used for determining the Persistence Module that
is responsible for managing that particular block. The default
policy also employs hashing based on the block id but more
advanced routing strategies are also easy to support.

B. General Request Flow

During a simulation, the trace events in the input trace are
converted into I/O requests. Currently, a request can be a file,
a standard stream (e.g., stdout), or a special device (e.g., to
CD-ROM) request. Only file requests are sent and served by
the simulated storage system. Every request holds the type
of operation (open, close, read, write, or delete), the request
status (pending, in-progress, or completed), the response status
after request completion (success or fail); and the duration
time taken to process the request. Requests are encapsulated
in messages, in order to be sent from one component to
another based on the actor model. Figure 2 depicts the message
attributes, including the request. A message consists of a
timestamp, referring to the simulated submission time; a type
that distinguishes whether the message should be sent forward
to the next destination or backward to the previous source; the
source component that is sending the message; and the list of
destination components that received the messages in order.
The list of destination components forms the lineage of the
request and is used for returning the message back through
the components that initiated or forwarded the request.

Figure 3 depicts the general request flow starting from the
Workload Replay, which creates and passes requests to the
appropriate Applications (based on the request’s PID in the
input trace), and continuing through the components of the
simulator. Access Modules receive messages from Applica-
tions containing file requests. Each Access Module extracts
the request and forwards it to the Data Flow Manager. The
Data Flow Manager processes the request according to its Data
Flow Policies, which determine how the processing interacts
with the Cache Manager and the Metadata Manager, and
decide if the request can be completed or not. In the former
case, a response message is send back to the Application.
Otherwise, either file requests are sent to appropriate File
Home Modules or block requests to appropriate Persistence

 Request File Home 
Module

Block 
Request 

 (large read/write) 

 Request Access 
Module

 File/Stream/Device 
RequestWorkload  

Replay
File Request 
(read/write) 

 (open/close/delete) 

Application

File 
 Fragment 

File 
Request 

(small read/write) 
 (open/close/delete) 

 Response 

Data Flow
Manager

Cache 
Manager

File 
 Fragment 

Metadata
Manager 
Cache

File 
 Fragment 

 Response 

Data Flow
Manager

Cache 
Manager

File 
 Fragment 

Metadata
Manager

Block 
Request 

 (read/write/delete) 

Persistence 
Module  Block Data Flow

Manager
Cache 

Manager

Cache 
Request 

 (write/delete) 

 Request 

 Response 

Storage Pool 
Manager Block 

Tiering 
Manager

 File 

Fig. 3: Request Exchange.

Modules. The request flow in the File Home is analogous
to the Access Module. The only additional component is the
Tiering Manager, that invokes its Tiering Policies to decide
how to place, migrate, or delete files among the storage tiers.
Request processing in a File Home Module may result in
cache mirroring requests to other File Home Modules or
block requests to Persistence Modules. Finally, the Persistence
Modules receive block requests from the Access and File
Home Modules and processes them in a similar manner.

Messages exchanged among the modules can either be
synchronous or asynchronous, depending on the simulated
operation. Synchronous messages create chains of requests
for which the successor requests need to be completed before
the predecessor requests are completed. For example, if a file
read request cannot be completed by the cache of the File
Home Module, then synchronous block read requests are sent
to appropriate Persistence Modules. Asynchronous messages
contain requests that can execute independently from other
requests. For example, when a fixed size of data is accumulated
on a File Home cache, asynchronous block write requests are
sent to Persistent modules for persisting that data.

C. Read/Write Request Flow

We present the key read and write operations simulated in
the File Home Module by the default read and write policies.
The data flow policies in the other modules are similar.

File Home Module read: The read policy receives a request
containing a file name, an offset, and a data length. It checks
with the Metadata Manager if the file exists and is open. If
not, the request is returned with fail status. Then, the Cache
Manager is invoked to check if the fragment is in the cache.
If the cache contains the entire fragment, the fragment is read
from the cache. The Data Flow Manager adds the read time
to the request duration, marks the request as completed, and
returns it to the source Access module. If the cache contains

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 4

Message

Timestamp Type Source
Request

DurationRequest
Status

Response
StatusOperation DestinationDestination

Fig. 2: Simulator message attributes.

request to the File Home Layer, the File Balancer is used to
find the File Home Module hosting the required file so that
the request is correctly routed there. The current policy uses
hashing based on file path to determine the appropriate File
Home Module but more complex approaches such as consis-
tent hashing or distributed hash table are easily supported.

The last level routes requests to the appropriate Persistence
Modules based on block semantics and is implemented by
the Block Balancer. When an Access or File Home Module
sends a block request to a Persistence Module, the Block
Balancer is used for determining the Persistence Module that
is responsible for managing that particular block. The default
policy also employs hashing based on the block id but more
advanced routing strategies are also easy to support.

B. General Request Flow

During a simulation, the trace events in the input trace are
converted into I/O requests. Currently, a request can be a file,
a standard stream (e.g., stdout), or a special device (e.g., to
CD-ROM) request. Only file requests are sent and served by
the simulated storage system. Every request holds the type
of operation (open, close, read, write, or delete), the request
status (pending, in-progress, or completed), the response status
after request completion (success or fail); and the duration
time taken to process the request. Requests are encapsulated
in messages, in order to be sent from one component to
another based on the actor model. Figure 2 depicts the message
attributes, including the request. A message consists of a
timestamp, referring to the simulated submission time; a type
that distinguishes whether the message should be sent forward
to the next destination or backward to the previous source; the
source component that is sending the message; and the list of
destination components that received the messages in order.
The list of destination components forms the lineage of the
request and is used for returning the message back through
the components that initiated or forwarded the request.

Figure 3 depicts the general request flow starting from the
Workload Replay, which creates and passes requests to the
appropriate Applications (based on the request’s PID in the
input trace), and continuing through the components of the
simulator. Access Modules receive messages from Applica-
tions containing file requests. Each Access Module extracts
the request and forwards it to the Data Flow Manager. The
Data Flow Manager processes the request according to its Data
Flow Policies, which determine how the processing interacts
with the Cache Manager and the Metadata Manager, and
decide if the request can be completed or not. In the former
case, a response message is send back to the Application.
Otherwise, either file requests are sent to appropriate File
Home Modules or block requests to appropriate Persistence

 Request File Home 
Module

Block 
Request 

 (large read/write) 

 Request Access 
Module

 File/Stream/Device 
RequestWorkload  

Replay
File Request 
(read/write) 

 (open/close/delete) 

Application

File 
 Fragment 

File 
Request 

(small read/write) 
 (open/close/delete) 

 Response 

Data Flow
Manager

Cache 
Manager

File 
 Fragment 

Metadata
Manager 
Cache

File 
 Fragment 

 Response 

Data Flow
Manager

Cache 
Manager

File 
 Fragment 

Metadata
Manager

Block 
Request 

 (read/write/delete) 

Persistence 
Module  Block Data Flow

Manager
Cache 

Manager

Cache 
Request 

 (write/delete) 

 Request 

 Response 

Storage Pool 
Manager Block 

Tiering 
Manager

 File 

Fig. 3: Request Exchange.

Modules. The request flow in the File Home is analogous
to the Access Module. The only additional component is the
Tiering Manager, that invokes its Tiering Policies to decide
how to place, migrate, or delete files among the storage tiers.
Request processing in a File Home Module may result in
cache mirroring requests to other File Home Modules or
block requests to Persistence Modules. Finally, the Persistence
Modules receive block requests from the Access and File
Home Modules and processes them in a similar manner.

Messages exchanged among the modules can either be
synchronous or asynchronous, depending on the simulated
operation. Synchronous messages create chains of requests
for which the successor requests need to be completed before
the predecessor requests are completed. For example, if a file
read request cannot be completed by the cache of the File
Home Module, then synchronous block read requests are sent
to appropriate Persistence Modules. Asynchronous messages
contain requests that can execute independently from other
requests. For example, when a fixed size of data is accumulated
on a File Home cache, asynchronous block write requests are
sent to Persistent modules for persisting that data.

C. Read/Write Request Flow

We present the key read and write operations simulated in
the File Home Module by the default read and write policies.
The data flow policies in the other modules are similar.

File Home Module read: The read policy receives a request
containing a file name, an offset, and a data length. It checks
with the Metadata Manager if the file exists and is open. If
not, the request is returned with fail status. Then, the Cache
Manager is invoked to check if the fragment is in the cache.
If the cache contains the entire fragment, the fragment is read
from the cache. The Data Flow Manager adds the read time
to the request duration, marks the request as completed, and
returns it to the source Access module. If the cache contains

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 4

Message

Timestamp Type Source
Request

DurationRequest
Status

Response
StatusOperation DestinationDestination

Fig. 2: Simulator message attributes.

request to the File Home Layer, the File Balancer is used to
find the File Home Module hosting the required file so that
the request is correctly routed there. The current policy uses
hashing based on file path to determine the appropriate File
Home Module but more complex approaches such as consis-
tent hashing or distributed hash table are easily supported.

The last level routes requests to the appropriate Persistence
Modules based on block semantics and is implemented by
the Block Balancer. When an Access or File Home Module
sends a block request to a Persistence Module, the Block
Balancer is used for determining the Persistence Module that
is responsible for managing that particular block. The default
policy also employs hashing based on the block id but more
advanced routing strategies are also easy to support.

B. General Request Flow

During a simulation, the trace events in the input trace are
converted into I/O requests. Currently, a request can be a file,
a standard stream (e.g., stdout), or a special device (e.g., to
CD-ROM) request. Only file requests are sent and served by
the simulated storage system. Every request holds the type
of operation (open, close, read, write, or delete), the request
status (pending, in-progress, or completed), the response status
after request completion (success or fail); and the duration
time taken to process the request. Requests are encapsulated
in messages, in order to be sent from one component to
another based on the actor model. Figure 2 depicts the message
attributes, including the request. A message consists of a
timestamp, referring to the simulated submission time; a type
that distinguishes whether the message should be sent forward
to the next destination or backward to the previous source; the
source component that is sending the message; and the list of
destination components that received the messages in order.
The list of destination components forms the lineage of the
request and is used for returning the message back through
the components that initiated or forwarded the request.

Figure 3 depicts the general request flow starting from the
Workload Replay, which creates and passes requests to the
appropriate Applications (based on the request’s PID in the
input trace), and continuing through the components of the
simulator. Access Modules receive messages from Applica-
tions containing file requests. Each Access Module extracts
the request and forwards it to the Data Flow Manager. The
Data Flow Manager processes the request according to its Data
Flow Policies, which determine how the processing interacts
with the Cache Manager and the Metadata Manager, and
decide if the request can be completed or not. In the former
case, a response message is send back to the Application.
Otherwise, either file requests are sent to appropriate File
Home Modules or block requests to appropriate Persistence

 Request File Home 
Module

Block 
Request 

 (large read/write) 

 Request Access 
Module

 File/Stream/Device 
RequestWorkload  

Replay
File Request 
(read/write) 

 (open/close/delete) 

Application

File 
 Fragment 

File 
Request 

(small read/write) 
 (open/close/delete) 

 Response 

Data Flow
Manager

Cache 
Manager

File 
 Fragment 

Metadata
Manager 
Cache

File 
 Fragment 

 Response 

Data Flow
Manager

Cache 
Manager

File 
 Fragment 

Metadata
Manager

Block 
Request 

 (read/write/delete) 

Persistence 
Module  Block Data Flow

Manager
Cache 

Manager

Cache 
Request 

 (write/delete) 

 Request 

 Response 

Storage Pool 
Manager Block 

Tiering 
Manager

 File 

Fig. 3: Request Exchange.

Modules. The request flow in the File Home is analogous
to the Access Module. The only additional component is the
Tiering Manager, that invokes its Tiering Policies to decide
how to place, migrate, or delete files among the storage tiers.
Request processing in a File Home Module may result in
cache mirroring requests to other File Home Modules or
block requests to Persistence Modules. Finally, the Persistence
Modules receive block requests from the Access and File
Home Modules and processes them in a similar manner.

Messages exchanged among the modules can either be
synchronous or asynchronous, depending on the simulated
operation. Synchronous messages create chains of requests
for which the successor requests need to be completed before
the predecessor requests are completed. For example, if a file
read request cannot be completed by the cache of the File
Home Module, then synchronous block read requests are sent
to appropriate Persistence Modules. Asynchronous messages
contain requests that can execute independently from other
requests. For example, when a fixed size of data is accumulated
on a File Home cache, asynchronous block write requests are
sent to Persistent modules for persisting that data.

C. Read/Write Request Flow

We present the key read and write operations simulated in
the File Home Module by the default read and write policies.
The data flow policies in the other modules are similar.

File Home Module read: The read policy receives a request
containing a file name, an offset, and a data length. It checks
with the Metadata Manager if the file exists and is open. If
not, the request is returned with fail status. Then, the Cache
Manager is invoked to check if the fragment is in the cache.
If the cache contains the entire fragment, the fragment is read
from the cache. The Data Flow Manager adds the read time
to the request duration, marks the request as completed, and
returns it to the source Access module. If the cache contains



DITIS: A Distributed Tiered Storage Simulator

DECEMBER 2022 • VOLUME XIV • NUMBER 422

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 5

only some parts of the file fragments, those parts are read and
the missing file fragments are computed. If the cache does not
contain the fragment, then the entire fragment is considered
missing. The read policy asks the Metadata Manager for the
location of the blocks storing the missing fragments. Then, it
creates a child block request for each block, and sends them
to the Persistence layer in a synchronous manner. When the
child requests are received back, their fragments are offered to
the cache. The Cache Manager decides whether to cache the
fragments or not based on an admission policy. After receiving
all child requests, the Data Flow Manager adds the time of
the slowest request to the read duration time of the original
request (since child requests were executed in parallel and any
potential interactions are accounted for in the lower layers),
sets it as completed, and returns to the appropriate Access
module.
File Home Module write: The received write request contains
a file name, an offset, and a data length. First, it checks with
the Metadata Manager whether the file exists and is open. If
not, the request is returned with fail status. Note that a new file
is created and opened during an open request. The fragment is
written directly to the File Home Cache and then mirrored to
other File Home Modules (to other storage nodes) according
to a data mirroring policy. The times to write to the cache
and to mirror to other nodes are both accounted for in the
duration of the request. If the insertion of new file fragments
into the cache caused other fragments to be evicted, and if
those fragments were dirty (i.e., they are not stored in the
Persistence layer), then the dirty evicted fragments are sent
to the Persistence layer as block requests in a synchronous
manner. New file fragments that are added into the cache are
aggregated into larger data blocks before they are flushed to
the Persistence layer. If enough data has been aggregated for
flushing, then that data is sent to the Persistence layer. These
operations are managed by a flushing policy that decides when
and which data to flush. For example, if erasure coding is
used, the flushing policy will wait until a full stripe of data is
formed before flushing it. The original request is considered
completed when all synchronous child requests return from
the Persistence layer (if any). The Data Flow Manager adds
to the original duration the write time of the slowest request
and returns to the originating Access module.

IV. PERFORMANCE COST MODELING

This section presents the current cost models used to simu-
late the performance of storage media types and network. The
cost models are pluggable, and hence, can be easily replaced.

A. HDD Modeling

A Hard Disk Drive (HDD) is a non-volatile data storage
device that consists of an arm, a platter, a spindle, a read and
write head, and an interface. In order to serve I/O requests, in
a simplified description, the arm moves to find the right track
and the spindle spins the platter to set it to the right sector.
Then, the read and write head transfers data to or from the
platter. The data is received from or sent to the interface, and
the I/O request is completed [2].

Modeling the performance of HDD devices require account-
ing for the delays of every internal action. First, moving the
arm accounts for the seek time. Manufacturers generally report
the average seek time t̄seek = s as a constant. Yet, if this
parameter is not given, estimations present that this value is
approximately one-third of the full seek time [2]. In short,
t̄seek = n3/3, where n is the number of tracks.

Rotating the platters to position the head to the right sector
accounts for the rotation time. The average rotational time
t̄rotation is derived directly from the disk rotation speed, which
is given by manufacturers as Rotations Per Minute (RPM).
Thus, the rotation time for a disk with r RPM is given by:

t̄rotation =
60

r
· 1
2
· 106 (1)

where 60/r is the time (in seconds) to execute one single
rotation, the 1/2 is included because, on average, a request
will require a half rotation [2], and we multiply by 106 to
convert to microseconds. The data being accessed might be
contiguous to the previous data, and consequently, the seek
and rotation times would be lower. Our model can differentiate
random from sequential operations.

Finally, transferring data accounts for the transfer time. The
average transfer time t̄transfer depends on the amount of data
transferred over the peak transfer rate. In particular, t̄transfer
in microseconds is calculated as:

t̄transfer =
⌈k
p ⌉ · p
m

· 106 (2)

where, m is the maximum transfer rate of the disk in MB/sec, p
is the minimum amount of data in a single transfer (and equals
the disk page size), and k is the amount of data requested.

Thus, the total duration time for a single random request is
the sum of the seek, rotation, and transfer times. For sequential
I/O requests, there will be no seek and rotation costs.

Disks also maintain a queue of outstanding requests that
need to wait for some time while the disk is serving other
requests. If the disk is idle when the request arrives, the wait
time is zero. Otherwise, the wait time equals the time left for
processing the currently active request plus the duration times
of all outstanding requests in the disk queue. DITIS computes
the wait time by (i) maintaining the virtual completion time
of the last request that arrived at the disk, and (ii) subtracting
the virtual completion time from the current virtual time if the
current request arrives before the last completion time.

B. SSD Modeling

A solid-state drive (SDD) device, in a simplified manner,
consists of an I/O controller, a flash array, a data register,
and a cache register. The I/O controller receives requests for
reading or writing data, which is stored in the flash array. The
data register acts as data buffer for the flash array, and the
cache register acts as a buffer for the I/O requests. A read
request involves decoding the I/O request, reading data from
the flash array to the data register, then transferring data from
the data register to the I/O bus. When reading multiple pages,
it will first transfer data to the data register, then to the cache
register, which will finally transfer the data to the I/O bus [3].



DITIS: A Distributed Tiered Storage Simulator
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 23

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 6

Consider trr as the total duration time for reading a single
random page. Then:

trr = tcmd + tread + ttrans (3)

where tcmd is the time to decode the I/O request, tread is the
time to read a page from the flash array, and ttrans is the time
to transfer a page from the data register or cache register to
the I/O bus. For sequential read requests, there will be only
one single I/O request, but multiple transfers from the data
register to the data cache and I/O bus. The following equation
generalizes the average time to read n bytes of data:

t̄n = t̄acc +
⌈ n
psize

⌉ · psize
m

(4)

where tacc is the average access time (accounting for decoding
and reading the first page), psize is the page size, and m is
the maximum data transfer rate.

Similar to HDDs, SSDs also maintain a queue of outstand-
ing requests. The simulator computes the wait time of each
arriving request in the same manner as for HDDs.

C. DRAM/NVRAM Modeling

A memory address consists of a bank, a row, and a column.
Multiple DRAM commands are required to access a particular
location. The duration of internal steps required to serve
a request is counted in clock cycles. Accessing a specific
location requires that an entire row from a specific bank to
be activated. After the activation, any location within the
row can be read or written [4], [5]. DRAM manufacturers
provide the number of clock cycles required to perform these
internal actions. The constant tcl is the number of clock cycles
between receiving a request and having the data ready; trp is
a minimum number of cycles to open a new row; and tras is
the amount of cycles that a row must be open to write data.

Considering f to be the DRAM frequency, n to be the
number of bytes to be accessed, r the size of a row in bytes,
mr the maximum read transfer rate, and tr the time to execute
a read request, then:

tr(n) =

⌈
n
r

⌉
· r

mr
, where mr =

f · r
tcl

(5)

Similarly, the time to execute a write request tw for n bytes
can also be expressed using:

tw(n) =

⌈
n
r

⌉
· r

mw
, where mw =

f · r
tcl + trp + tras

(6)

D. Network Modeling

A model developed by Mathis et al. [6] predicts net-
work bandwidth for a sustained TCP connection subjected to
moderate packet losses, including losses caused by network
congestion. According to this model, the maximum network
bandwidth bw is measure by:

bw =
MSS

RTT
· C
√
p

(7)

where MSS is the Maximum Segment Size, i.e., the amount
of data in bytes that a computer can receive in a single TCP
segment; RTT is the Round Trip Time, i.e., the time a packet
takes to go to a destination and return; C is a constant of
proportionality; and p is a random packet loss at constant
probability. The bw value represents the maximum throughput
in a channel. Thus, the time to transfer n bytes end-to-end is:

tn =
n

bw
(8)

When multiple clients are actively using the network con-
currently, the network bandwidth is split evenly between
the clients. The simulator keeps track of the active network
connections a and adjusts the model to compute the transfer
of n bytes accordingly:

tn =
n · a
bw

(9)

V. EXPERIMENTAL EVALUATION

In this section, we present the evaluation of DITIS. All
experiments were executed on a machine with i7-7500U CPU
@ 2.70GHz, 12 GB of RAM, and OpenJDK 17.0.3. The
simulator was developed with Java v17, and Maven v3.8
is used for automating the process of building the project.
At the moment, the simulator consists of 25 packages, 12
enumeration types, 31 interfaces, 9 abstract classes, and 140
classes, totaling over 10700 lines of code.

We evaluate DITIS by simulating eight traces derived from
production workloads provided by Huawei Technologies Inc.
To evaluate the simulation accuracy, we compare the real and
simulated times of each request present in the traces, and re-
port the Mean Absolute Percentage Error (MAPE). The details
of each trace are presented in Table I, including the number of
file requests per trace, the ratio of read and write operations,
the number of random and sequential (read/write) operations,
as well as the corresponding MAPE. As it can be seen, the
traces exhibit a wide-spectrum of behavior ranging from read-
heavy to write-heavy, with different mixes of sequential versus
random read/write requests. Note that we consider sequential
requests those that operate over consecutive file fragments
through a sequential time frame. In our evaluation, DITIS
simulates each input trace with a different storage configu-
ration (which we cannot reveal due to privacy considerations),
as each trace was originally executed with a different setup.
Since open and close requests are straightforward operations,
we focus our evaluation on read and write requests.

DITIS is able to accurately simulate write and read requests
in most cases. The MAPE metric ranges from 0.06 up to 0.26
in 7 out of 8 traces for write requests, with an outlier of 0.96
for trace 5. Note that up to 70% of trace 5 amounts to read
requests, which were simulated with a MAPE of 0.27. Read
request simulations exhibited a slightly worse MAPE ranging
from 0.07 to 0.93. Figure 5 presents the real and simulated
execution times for the write requests of trace 4. DITIS is able
to correctly follow the execution trends of the real workload
along with all the spikes, albeit with lower magnitude for



DITIS: A Distributed Tiered Storage Simulator

Fig. 4: Real and simulated execution times (raw values and distributions) 
for read requests for trace 2.

Fig. 5: Real and simulated execution times (raw values and distributions) 
for write requests for trace 4.

DECEMBER 2022 • VOLUME XIV • NUMBER 424

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 7

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 4: Real and simulated execution times (raw values and
distributions) for read requests for trace 2.

TABLE I: Request distribution and simulation error per trace.

Ratio (%) Sequential Random MAPE
Requests Read Write Read Write Read Write Read Write

1 3106 100.0 0.0 3022 0 84 0 0.34 -
2 5528 99.7 0.3 5342 9 171 6 0.07 0.31
3 49883 0.2 99.8 101 49770 12 0 0.75 0.21
4 16118 89.6 10.4 3388 1544 11047 139 0.70 0.06
5 71496 68.3 31.7 48767 22630 92 7 0.27 0.96
6 47823 85.4 14.6 10562 0 30263 6998 0.92 0.13
7 54473 96.1 3.9 8633 1573 43713 554 0.92 0.13
8 1483669 99.3 0.7 1285 10053 1472181 150 0.93 0.26

the bigger spikes. Similarly, Figure 4 presents the real and
simulated times for the read requests for trace 2. While DITIS
is able to correctly simulate most of the trace, there are a
few outliers present in the trace that are missed by DITIS.
These differences (observed mainly for read requests) are due
to the different policies that move file fragments through the
data storage with different approaches (e.g., policies related
to cache, tiers, data placement during initialization), or delays
that are not yet modeled by DITIS such as different levels
of network contention within the distributed storage. For
example, some read requests in DITIS were served from a
cache, whereas they were probably served by the persistence
storage in the real system (based on their duration). It is a
complex task to precisely simulate and replay the various data
management and caching decisions in the presence of several
policies that works together and influences each other. Yet,
DITIS is able to follow the overall trend of the real execution
times as well as accurately match the average execution times.

Next, we evaluate the efficiency of DITIS during both the
initialization phase and the trace simulation. The correspond-
ing run times are shown in Table II along with statistics that
explain DITIS’ run times. The Workload Initializer (recall
Section II-B) is responsible for creating an initial state for
the storage system, such as creating files that existed prior to
the beginning of the trace. The time needed for initialization
is proportional to (i) the number of files created since DITIS
maintains metadata for each file, and (ii) the file size since
DITIS distributes file data into blocks that are stored across the
storage media, and maintains metadata for each block, much

0 500 1000 1500
0

1000

2000

3000

4000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 5: Real and simulated execution times (raw values and
distributions) for write requests for trace 4.

TABLE II: DITIS run times (in seconds) and interesting
statistics during initialization and simulation.

Initialization Simulation
Files Bytes Run Write Bytes Read Bytes Run

Created Written Time Requests Written Requests Read Time
1 56 35.2M 0.14 0 0.0 3106 11.99M 0.13
2 21 14.9G 1.50 15 109.9M 5513 6.7G 0.36
3 12 809.2K 0.16 49770 376.1M 113 817.2K 23.22
4 3136 526.7K 4.98 1683 7.0G 14435 3.8G 1.11
5 10 707.2M 0.37 22637 707.4M 48859 708.3M 55.30
6 3299 635.7M 5.38 6998 37.8G 40825 3.1G 3.87
7 3138 51.7M 5.00 2127 8.7G 52346 2.6G 1.92
8 857778 6.6G 13.84 10203 465.7K 1473466 11.3G 18.61

like like a real storage system does. Even when hundreds of
thousand of files are created and GBs of data are written, this
part of the simulation executes within a few seconds.

Simulating a trace with DITIS is also very efficient and
completes within seconds as shown in Table II. The simulation
time depends heavily on both the number of write requests and
bytes written in the trace for the same reasons explained above.
The simulation time is also proportional to the number of read
requests but is not affected much by the the number of bytes
read. Finally, simulation time can also be affected by other,
non-obvious factors, such as the order of requests (as it can
impact cache policies), the size of requests (as it can impact
data flow policies), as well as configuration parameters (such
as the number of disks or disk block size). Nonetheless, DITIS
is able to simulate large traces both efficiently and accurately.

VI. RELATED WORK

There are several efforts to simulate multi-tiered data stor-
age systems. MDCSim [7] is a multi-tier data center simulation
framework that supports a three-tier architecture, whereas
OGSSim [8] enables users to explore the design space of
storage systems by supporting various combinations of tiers
and volumes. StorageSim [9] enable users to define up to three
storage tiers with their performance profiles, while it provides
pluggable data placement policies to analyze their impact
in the storage’s performance. All aforementioned simulators
focus on single-node storage systems. EEffSim [10] supports

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 7

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 4: Real and simulated execution times (raw values and
distributions) for read requests for trace 2.

TABLE I: Request distribution and simulation error per trace.

Ratio (%) Sequential Random MAPE
Requests Read Write Read Write Read Write Read Write

1 3106 100.0 0.0 3022 0 84 0 0.34 -
2 5528 99.7 0.3 5342 9 171 6 0.07 0.31
3 49883 0.2 99.8 101 49770 12 0 0.75 0.21
4 16118 89.6 10.4 3388 1544 11047 139 0.70 0.06
5 71496 68.3 31.7 48767 22630 92 7 0.27 0.96
6 47823 85.4 14.6 10562 0 30263 6998 0.92 0.13
7 54473 96.1 3.9 8633 1573 43713 554 0.92 0.13
8 1483669 99.3 0.7 1285 10053 1472181 150 0.93 0.26

the bigger spikes. Similarly, Figure 4 presents the real and
simulated times for the read requests for trace 2. While DITIS
is able to correctly simulate most of the trace, there are a
few outliers present in the trace that are missed by DITIS.
These differences (observed mainly for read requests) are due
to the different policies that move file fragments through the
data storage with different approaches (e.g., policies related
to cache, tiers, data placement during initialization), or delays
that are not yet modeled by DITIS such as different levels
of network contention within the distributed storage. For
example, some read requests in DITIS were served from a
cache, whereas they were probably served by the persistence
storage in the real system (based on their duration). It is a
complex task to precisely simulate and replay the various data
management and caching decisions in the presence of several
policies that works together and influences each other. Yet,
DITIS is able to follow the overall trend of the real execution
times as well as accurately match the average execution times.

Next, we evaluate the efficiency of DITIS during both the
initialization phase and the trace simulation. The correspond-
ing run times are shown in Table II along with statistics that
explain DITIS’ run times. The Workload Initializer (recall
Section II-B) is responsible for creating an initial state for
the storage system, such as creating files that existed prior to
the beginning of the trace. The time needed for initialization
is proportional to (i) the number of files created since DITIS
maintains metadata for each file, and (ii) the file size since
DITIS distributes file data into blocks that are stored across the
storage media, and maintains metadata for each block, much

0 500 1000 1500
0

1000

2000

3000

4000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 5: Real and simulated execution times (raw values and
distributions) for write requests for trace 4.

TABLE II: DITIS run times (in seconds) and interesting
statistics during initialization and simulation.

Initialization Simulation
Files Bytes Run Write Bytes Read Bytes Run

Created Written Time Requests Written Requests Read Time
1 56 35.2M 0.14 0 0.0 3106 11.99M 0.13
2 21 14.9G 1.50 15 109.9M 5513 6.7G 0.36
3 12 809.2K 0.16 49770 376.1M 113 817.2K 23.22
4 3136 526.7K 4.98 1683 7.0G 14435 3.8G 1.11
5 10 707.2M 0.37 22637 707.4M 48859 708.3M 55.30
6 3299 635.7M 5.38 6998 37.8G 40825 3.1G 3.87
7 3138 51.7M 5.00 2127 8.7G 52346 2.6G 1.92
8 857778 6.6G 13.84 10203 465.7K 1473466 11.3G 18.61

like like a real storage system does. Even when hundreds of
thousand of files are created and GBs of data are written, this
part of the simulation executes within a few seconds.

Simulating a trace with DITIS is also very efficient and
completes within seconds as shown in Table II. The simulation
time depends heavily on both the number of write requests and
bytes written in the trace for the same reasons explained above.
The simulation time is also proportional to the number of read
requests but is not affected much by the the number of bytes
read. Finally, simulation time can also be affected by other,
non-obvious factors, such as the order of requests (as it can
impact cache policies), the size of requests (as it can impact
data flow policies), as well as configuration parameters (such
as the number of disks or disk block size). Nonetheless, DITIS
is able to simulate large traces both efficiently and accurately.

VI. RELATED WORK

There are several efforts to simulate multi-tiered data stor-
age systems. MDCSim [7] is a multi-tier data center simulation
framework that supports a three-tier architecture, whereas
OGSSim [8] enables users to explore the design space of
storage systems by supporting various combinations of tiers
and volumes. StorageSim [9] enable users to define up to three
storage tiers with their performance profiles, while it provides
pluggable data placement policies to analyze their impact
in the storage’s performance. All aforementioned simulators
focus on single-node storage systems. EEffSim [10] supports

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 7

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 4: Real and simulated execution times (raw values and
distributions) for read requests for trace 2.

TABLE I: Request distribution and simulation error per trace.

Ratio (%) Sequential Random MAPE
Requests Read Write Read Write Read Write Read Write

1 3106 100.0 0.0 3022 0 84 0 0.34 -
2 5528 99.7 0.3 5342 9 171 6 0.07 0.31
3 49883 0.2 99.8 101 49770 12 0 0.75 0.21
4 16118 89.6 10.4 3388 1544 11047 139 0.70 0.06
5 71496 68.3 31.7 48767 22630 92 7 0.27 0.96
6 47823 85.4 14.6 10562 0 30263 6998 0.92 0.13
7 54473 96.1 3.9 8633 1573 43713 554 0.92 0.13
8 1483669 99.3 0.7 1285 10053 1472181 150 0.93 0.26

the bigger spikes. Similarly, Figure 4 presents the real and
simulated times for the read requests for trace 2. While DITIS
is able to correctly simulate most of the trace, there are a
few outliers present in the trace that are missed by DITIS.
These differences (observed mainly for read requests) are due
to the different policies that move file fragments through the
data storage with different approaches (e.g., policies related
to cache, tiers, data placement during initialization), or delays
that are not yet modeled by DITIS such as different levels
of network contention within the distributed storage. For
example, some read requests in DITIS were served from a
cache, whereas they were probably served by the persistence
storage in the real system (based on their duration). It is a
complex task to precisely simulate and replay the various data
management and caching decisions in the presence of several
policies that works together and influences each other. Yet,
DITIS is able to follow the overall trend of the real execution
times as well as accurately match the average execution times.

Next, we evaluate the efficiency of DITIS during both the
initialization phase and the trace simulation. The correspond-
ing run times are shown in Table II along with statistics that
explain DITIS’ run times. The Workload Initializer (recall
Section II-B) is responsible for creating an initial state for
the storage system, such as creating files that existed prior to
the beginning of the trace. The time needed for initialization
is proportional to (i) the number of files created since DITIS
maintains metadata for each file, and (ii) the file size since
DITIS distributes file data into blocks that are stored across the
storage media, and maintains metadata for each block, much

0 500 1000 1500
0

1000

2000

3000

4000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 5: Real and simulated execution times (raw values and
distributions) for write requests for trace 4.

TABLE II: DITIS run times (in seconds) and interesting
statistics during initialization and simulation.

Initialization Simulation
Files Bytes Run Write Bytes Read Bytes Run

Created Written Time Requests Written Requests Read Time
1 56 35.2M 0.14 0 0.0 3106 11.99M 0.13
2 21 14.9G 1.50 15 109.9M 5513 6.7G 0.36
3 12 809.2K 0.16 49770 376.1M 113 817.2K 23.22
4 3136 526.7K 4.98 1683 7.0G 14435 3.8G 1.11
5 10 707.2M 0.37 22637 707.4M 48859 708.3M 55.30
6 3299 635.7M 5.38 6998 37.8G 40825 3.1G 3.87
7 3138 51.7M 5.00 2127 8.7G 52346 2.6G 1.92
8 857778 6.6G 13.84 10203 465.7K 1473466 11.3G 18.61

like like a real storage system does. Even when hundreds of
thousand of files are created and GBs of data are written, this
part of the simulation executes within a few seconds.

Simulating a trace with DITIS is also very efficient and
completes within seconds as shown in Table II. The simulation
time depends heavily on both the number of write requests and
bytes written in the trace for the same reasons explained above.
The simulation time is also proportional to the number of read
requests but is not affected much by the the number of bytes
read. Finally, simulation time can also be affected by other,
non-obvious factors, such as the order of requests (as it can
impact cache policies), the size of requests (as it can impact
data flow policies), as well as configuration parameters (such
as the number of disks or disk block size). Nonetheless, DITIS
is able to simulate large traces both efficiently and accurately.

VI. RELATED WORK

There are several efforts to simulate multi-tiered data stor-
age systems. MDCSim [7] is a multi-tier data center simulation
framework that supports a three-tier architecture, whereas
OGSSim [8] enables users to explore the design space of
storage systems by supporting various combinations of tiers
and volumes. StorageSim [9] enable users to define up to three
storage tiers with their performance profiles, while it provides
pluggable data placement policies to analyze their impact
in the storage’s performance. All aforementioned simulators
focus on single-node storage systems. EEffSim [10] supports

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 7

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)
Original Simulated

Fig. 4: Real and simulated execution times (raw values and
distributions) for read requests for trace 2.

TABLE I: Request distribution and simulation error per trace.

Ratio (%) Sequential Random MAPE
Requests Read Write Read Write Read Write Read Write

1 3106 100.0 0.0 3022 0 84 0 0.34 -
2 5528 99.7 0.3 5342 9 171 6 0.07 0.31
3 49883 0.2 99.8 101 49770 12 0 0.75 0.21
4 16118 89.6 10.4 3388 1544 11047 139 0.70 0.06
5 71496 68.3 31.7 48767 22630 92 7 0.27 0.96
6 47823 85.4 14.6 10562 0 30263 6998 0.92 0.13
7 54473 96.1 3.9 8633 1573 43713 554 0.92 0.13
8 1483669 99.3 0.7 1285 10053 1472181 150 0.93 0.26

the bigger spikes. Similarly, Figure 4 presents the real and
simulated times for the read requests for trace 2. While DITIS
is able to correctly simulate most of the trace, there are a
few outliers present in the trace that are missed by DITIS.
These differences (observed mainly for read requests) are due
to the different policies that move file fragments through the
data storage with different approaches (e.g., policies related
to cache, tiers, data placement during initialization), or delays
that are not yet modeled by DITIS such as different levels
of network contention within the distributed storage. For
example, some read requests in DITIS were served from a
cache, whereas they were probably served by the persistence
storage in the real system (based on their duration). It is a
complex task to precisely simulate and replay the various data
management and caching decisions in the presence of several
policies that works together and influences each other. Yet,
DITIS is able to follow the overall trend of the real execution
times as well as accurately match the average execution times.

Next, we evaluate the efficiency of DITIS during both the
initialization phase and the trace simulation. The correspond-
ing run times are shown in Table II along with statistics that
explain DITIS’ run times. The Workload Initializer (recall
Section II-B) is responsible for creating an initial state for
the storage system, such as creating files that existed prior to
the beginning of the trace. The time needed for initialization
is proportional to (i) the number of files created since DITIS
maintains metadata for each file, and (ii) the file size since
DITIS distributes file data into blocks that are stored across the
storage media, and maintains metadata for each block, much

0 500 1000 1500
0

1000

2000

3000

4000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 5: Real and simulated execution times (raw values and
distributions) for write requests for trace 4.

TABLE II: DITIS run times (in seconds) and interesting
statistics during initialization and simulation.

Initialization Simulation
Files Bytes Run Write Bytes Read Bytes Run

Created Written Time Requests Written Requests Read Time
1 56 35.2M 0.14 0 0.0 3106 11.99M 0.13
2 21 14.9G 1.50 15 109.9M 5513 6.7G 0.36
3 12 809.2K 0.16 49770 376.1M 113 817.2K 23.22
4 3136 526.7K 4.98 1683 7.0G 14435 3.8G 1.11
5 10 707.2M 0.37 22637 707.4M 48859 708.3M 55.30
6 3299 635.7M 5.38 6998 37.8G 40825 3.1G 3.87
7 3138 51.7M 5.00 2127 8.7G 52346 2.6G 1.92
8 857778 6.6G 13.84 10203 465.7K 1473466 11.3G 18.61

like like a real storage system does. Even when hundreds of
thousand of files are created and GBs of data are written, this
part of the simulation executes within a few seconds.

Simulating a trace with DITIS is also very efficient and
completes within seconds as shown in Table II. The simulation
time depends heavily on both the number of write requests and
bytes written in the trace for the same reasons explained above.
The simulation time is also proportional to the number of read
requests but is not affected much by the the number of bytes
read. Finally, simulation time can also be affected by other,
non-obvious factors, such as the order of requests (as it can
impact cache policies), the size of requests (as it can impact
data flow policies), as well as configuration parameters (such
as the number of disks or disk block size). Nonetheless, DITIS
is able to simulate large traces both efficiently and accurately.

VI. RELATED WORK

There are several efforts to simulate multi-tiered data stor-
age systems. MDCSim [7] is a multi-tier data center simulation
framework that supports a three-tier architecture, whereas
OGSSim [8] enables users to explore the design space of
storage systems by supporting various combinations of tiers
and volumes. StorageSim [9] enable users to define up to three
storage tiers with their performance profiles, while it provides
pluggable data placement policies to analyze their impact
in the storage’s performance. All aforementioned simulators
focus on single-node storage systems. EEffSim [10] supports

TABLE I
Request distribution and simulation error per trace.

TABLE II
DITIS run times (in seconds) and interesting statistics during 

initialization and simulation.

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 7

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 4: Real and simulated execution times (raw values and
distributions) for read requests for trace 2.

TABLE I: Request distribution and simulation error per trace.

Ratio (%) Sequential Random MAPE
Requests Read Write Read Write Read Write Read Write

1 3106 100.0 0.0 3022 0 84 0 0.34 -
2 5528 99.7 0.3 5342 9 171 6 0.07 0.31
3 49883 0.2 99.8 101 49770 12 0 0.75 0.21
4 16118 89.6 10.4 3388 1544 11047 139 0.70 0.06
5 71496 68.3 31.7 48767 22630 92 7 0.27 0.96
6 47823 85.4 14.6 10562 0 30263 6998 0.92 0.13
7 54473 96.1 3.9 8633 1573 43713 554 0.92 0.13
8 1483669 99.3 0.7 1285 10053 1472181 150 0.93 0.26

the bigger spikes. Similarly, Figure 4 presents the real and
simulated times for the read requests for trace 2. While DITIS
is able to correctly simulate most of the trace, there are a
few outliers present in the trace that are missed by DITIS.
These differences (observed mainly for read requests) are due
to the different policies that move file fragments through the
data storage with different approaches (e.g., policies related
to cache, tiers, data placement during initialization), or delays
that are not yet modeled by DITIS such as different levels
of network contention within the distributed storage. For
example, some read requests in DITIS were served from a
cache, whereas they were probably served by the persistence
storage in the real system (based on their duration). It is a
complex task to precisely simulate and replay the various data
management and caching decisions in the presence of several
policies that works together and influences each other. Yet,
DITIS is able to follow the overall trend of the real execution
times as well as accurately match the average execution times.

Next, we evaluate the efficiency of DITIS during both the
initialization phase and the trace simulation. The correspond-
ing run times are shown in Table II along with statistics that
explain DITIS’ run times. The Workload Initializer (recall
Section II-B) is responsible for creating an initial state for
the storage system, such as creating files that existed prior to
the beginning of the trace. The time needed for initialization
is proportional to (i) the number of files created since DITIS
maintains metadata for each file, and (ii) the file size since
DITIS distributes file data into blocks that are stored across the
storage media, and maintains metadata for each block, much

0 500 1000 1500
0

1000

2000

3000

4000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 5: Real and simulated execution times (raw values and
distributions) for write requests for trace 4.

TABLE II: DITIS run times (in seconds) and interesting
statistics during initialization and simulation.

Initialization Simulation
Files Bytes Run Write Bytes Read Bytes Run

Created Written Time Requests Written Requests Read Time
1 56 35.2M 0.14 0 0.0 3106 11.99M 0.13
2 21 14.9G 1.50 15 109.9M 5513 6.7G 0.36
3 12 809.2K 0.16 49770 376.1M 113 817.2K 23.22
4 3136 526.7K 4.98 1683 7.0G 14435 3.8G 1.11
5 10 707.2M 0.37 22637 707.4M 48859 708.3M 55.30
6 3299 635.7M 5.38 6998 37.8G 40825 3.1G 3.87
7 3138 51.7M 5.00 2127 8.7G 52346 2.6G 1.92
8 857778 6.6G 13.84 10203 465.7K 1473466 11.3G 18.61

like like a real storage system does. Even when hundreds of
thousand of files are created and GBs of data are written, this
part of the simulation executes within a few seconds.

Simulating a trace with DITIS is also very efficient and
completes within seconds as shown in Table II. The simulation
time depends heavily on both the number of write requests and
bytes written in the trace for the same reasons explained above.
The simulation time is also proportional to the number of read
requests but is not affected much by the the number of bytes
read. Finally, simulation time can also be affected by other,
non-obvious factors, such as the order of requests (as it can
impact cache policies), the size of requests (as it can impact
data flow policies), as well as configuration parameters (such
as the number of disks or disk block size). Nonetheless, DITIS
is able to simulate large traces both efficiently and accurately.

VI. RELATED WORK

There are several efforts to simulate multi-tiered data stor-
age systems. MDCSim [7] is a multi-tier data center simulation
framework that supports a three-tier architecture, whereas
OGSSim [8] enables users to explore the design space of
storage systems by supporting various combinations of tiers
and volumes. StorageSim [9] enable users to define up to three
storage tiers with their performance profiles, while it provides
pluggable data placement policies to analyze their impact
in the storage’s performance. All aforementioned simulators
focus on single-node storage systems. EEffSim [10] supports

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 7

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 4: Real and simulated execution times (raw values and
distributions) for read requests for trace 2.

TABLE I: Request distribution and simulation error per trace.

Ratio (%) Sequential Random MAPE
Requests Read Write Read Write Read Write Read Write

1 3106 100.0 0.0 3022 0 84 0 0.34 -
2 5528 99.7 0.3 5342 9 171 6 0.07 0.31
3 49883 0.2 99.8 101 49770 12 0 0.75 0.21
4 16118 89.6 10.4 3388 1544 11047 139 0.70 0.06
5 71496 68.3 31.7 48767 22630 92 7 0.27 0.96
6 47823 85.4 14.6 10562 0 30263 6998 0.92 0.13
7 54473 96.1 3.9 8633 1573 43713 554 0.92 0.13
8 1483669 99.3 0.7 1285 10053 1472181 150 0.93 0.26

the bigger spikes. Similarly, Figure 4 presents the real and
simulated times for the read requests for trace 2. While DITIS
is able to correctly simulate most of the trace, there are a
few outliers present in the trace that are missed by DITIS.
These differences (observed mainly for read requests) are due
to the different policies that move file fragments through the
data storage with different approaches (e.g., policies related
to cache, tiers, data placement during initialization), or delays
that are not yet modeled by DITIS such as different levels
of network contention within the distributed storage. For
example, some read requests in DITIS were served from a
cache, whereas they were probably served by the persistence
storage in the real system (based on their duration). It is a
complex task to precisely simulate and replay the various data
management and caching decisions in the presence of several
policies that works together and influences each other. Yet,
DITIS is able to follow the overall trend of the real execution
times as well as accurately match the average execution times.

Next, we evaluate the efficiency of DITIS during both the
initialization phase and the trace simulation. The correspond-
ing run times are shown in Table II along with statistics that
explain DITIS’ run times. The Workload Initializer (recall
Section II-B) is responsible for creating an initial state for
the storage system, such as creating files that existed prior to
the beginning of the trace. The time needed for initialization
is proportional to (i) the number of files created since DITIS
maintains metadata for each file, and (ii) the file size since
DITIS distributes file data into blocks that are stored across the
storage media, and maintains metadata for each block, much

0 500 1000 1500
0

1000

2000

3000

4000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 5: Real and simulated execution times (raw values and
distributions) for write requests for trace 4.

TABLE II: DITIS run times (in seconds) and interesting
statistics during initialization and simulation.

Initialization Simulation
Files Bytes Run Write Bytes Read Bytes Run

Created Written Time Requests Written Requests Read Time
1 56 35.2M 0.14 0 0.0 3106 11.99M 0.13
2 21 14.9G 1.50 15 109.9M 5513 6.7G 0.36
3 12 809.2K 0.16 49770 376.1M 113 817.2K 23.22
4 3136 526.7K 4.98 1683 7.0G 14435 3.8G 1.11
5 10 707.2M 0.37 22637 707.4M 48859 708.3M 55.30
6 3299 635.7M 5.38 6998 37.8G 40825 3.1G 3.87
7 3138 51.7M 5.00 2127 8.7G 52346 2.6G 1.92
8 857778 6.6G 13.84 10203 465.7K 1473466 11.3G 18.61

like like a real storage system does. Even when hundreds of
thousand of files are created and GBs of data are written, this
part of the simulation executes within a few seconds.

Simulating a trace with DITIS is also very efficient and
completes within seconds as shown in Table II. The simulation
time depends heavily on both the number of write requests and
bytes written in the trace for the same reasons explained above.
The simulation time is also proportional to the number of read
requests but is not affected much by the the number of bytes
read. Finally, simulation time can also be affected by other,
non-obvious factors, such as the order of requests (as it can
impact cache policies), the size of requests (as it can impact
data flow policies), as well as configuration parameters (such
as the number of disks or disk block size). Nonetheless, DITIS
is able to simulate large traces both efficiently and accurately.

VI. RELATED WORK

There are several efforts to simulate multi-tiered data stor-
age systems. MDCSim [7] is a multi-tier data center simulation
framework that supports a three-tier architecture, whereas
OGSSim [8] enables users to explore the design space of
storage systems by supporting various combinations of tiers
and volumes. StorageSim [9] enable users to define up to three
storage tiers with their performance profiles, while it provides
pluggable data placement policies to analyze their impact
in the storage’s performance. All aforementioned simulators
focus on single-node storage systems. EEffSim [10] supports

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 7

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 4: Real and simulated execution times (raw values and
distributions) for read requests for trace 2.

TABLE I: Request distribution and simulation error per trace.

Ratio (%) Sequential Random MAPE
Requests Read Write Read Write Read Write Read Write

1 3106 100.0 0.0 3022 0 84 0 0.34 -
2 5528 99.7 0.3 5342 9 171 6 0.07 0.31
3 49883 0.2 99.8 101 49770 12 0 0.75 0.21
4 16118 89.6 10.4 3388 1544 11047 139 0.70 0.06
5 71496 68.3 31.7 48767 22630 92 7 0.27 0.96
6 47823 85.4 14.6 10562 0 30263 6998 0.92 0.13
7 54473 96.1 3.9 8633 1573 43713 554 0.92 0.13
8 1483669 99.3 0.7 1285 10053 1472181 150 0.93 0.26

the bigger spikes. Similarly, Figure 4 presents the real and
simulated times for the read requests for trace 2. While DITIS
is able to correctly simulate most of the trace, there are a
few outliers present in the trace that are missed by DITIS.
These differences (observed mainly for read requests) are due
to the different policies that move file fragments through the
data storage with different approaches (e.g., policies related
to cache, tiers, data placement during initialization), or delays
that are not yet modeled by DITIS such as different levels
of network contention within the distributed storage. For
example, some read requests in DITIS were served from a
cache, whereas they were probably served by the persistence
storage in the real system (based on their duration). It is a
complex task to precisely simulate and replay the various data
management and caching decisions in the presence of several
policies that works together and influences each other. Yet,
DITIS is able to follow the overall trend of the real execution
times as well as accurately match the average execution times.

Next, we evaluate the efficiency of DITIS during both the
initialization phase and the trace simulation. The correspond-
ing run times are shown in Table II along with statistics that
explain DITIS’ run times. The Workload Initializer (recall
Section II-B) is responsible for creating an initial state for
the storage system, such as creating files that existed prior to
the beginning of the trace. The time needed for initialization
is proportional to (i) the number of files created since DITIS
maintains metadata for each file, and (ii) the file size since
DITIS distributes file data into blocks that are stored across the
storage media, and maintains metadata for each block, much

0 500 1000 1500
0

1000

2000

3000

4000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 5: Real and simulated execution times (raw values and
distributions) for write requests for trace 4.

TABLE II: DITIS run times (in seconds) and interesting
statistics during initialization and simulation.

Initialization Simulation
Files Bytes Run Write Bytes Read Bytes Run

Created Written Time Requests Written Requests Read Time
1 56 35.2M 0.14 0 0.0 3106 11.99M 0.13
2 21 14.9G 1.50 15 109.9M 5513 6.7G 0.36
3 12 809.2K 0.16 49770 376.1M 113 817.2K 23.22
4 3136 526.7K 4.98 1683 7.0G 14435 3.8G 1.11
5 10 707.2M 0.37 22637 707.4M 48859 708.3M 55.30
6 3299 635.7M 5.38 6998 37.8G 40825 3.1G 3.87
7 3138 51.7M 5.00 2127 8.7G 52346 2.6G 1.92
8 857778 6.6G 13.84 10203 465.7K 1473466 11.3G 18.61

like like a real storage system does. Even when hundreds of
thousand of files are created and GBs of data are written, this
part of the simulation executes within a few seconds.

Simulating a trace with DITIS is also very efficient and
completes within seconds as shown in Table II. The simulation
time depends heavily on both the number of write requests and
bytes written in the trace for the same reasons explained above.
The simulation time is also proportional to the number of read
requests but is not affected much by the the number of bytes
read. Finally, simulation time can also be affected by other,
non-obvious factors, such as the order of requests (as it can
impact cache policies), the size of requests (as it can impact
data flow policies), as well as configuration parameters (such
as the number of disks or disk block size). Nonetheless, DITIS
is able to simulate large traces both efficiently and accurately.

VI. RELATED WORK

There are several efforts to simulate multi-tiered data stor-
age systems. MDCSim [7] is a multi-tier data center simulation
framework that supports a three-tier architecture, whereas
OGSSim [8] enables users to explore the design space of
storage systems by supporting various combinations of tiers
and volumes. StorageSim [9] enable users to define up to three
storage tiers with their performance profiles, while it provides
pluggable data placement policies to analyze their impact
in the storage’s performance. All aforementioned simulators
focus on single-node storage systems. EEffSim [10] supports

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 7

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)
Original Simulated

Fig. 4: Real and simulated execution times (raw values and
distributions) for read requests for trace 2.

TABLE I: Request distribution and simulation error per trace.

Ratio (%) Sequential Random MAPE
Requests Read Write Read Write Read Write Read Write

1 3106 100.0 0.0 3022 0 84 0 0.34 -
2 5528 99.7 0.3 5342 9 171 6 0.07 0.31
3 49883 0.2 99.8 101 49770 12 0 0.75 0.21
4 16118 89.6 10.4 3388 1544 11047 139 0.70 0.06
5 71496 68.3 31.7 48767 22630 92 7 0.27 0.96
6 47823 85.4 14.6 10562 0 30263 6998 0.92 0.13
7 54473 96.1 3.9 8633 1573 43713 554 0.92 0.13
8 1483669 99.3 0.7 1285 10053 1472181 150 0.93 0.26

the bigger spikes. Similarly, Figure 4 presents the real and
simulated times for the read requests for trace 2. While DITIS
is able to correctly simulate most of the trace, there are a
few outliers present in the trace that are missed by DITIS.
These differences (observed mainly for read requests) are due
to the different policies that move file fragments through the
data storage with different approaches (e.g., policies related
to cache, tiers, data placement during initialization), or delays
that are not yet modeled by DITIS such as different levels
of network contention within the distributed storage. For
example, some read requests in DITIS were served from a
cache, whereas they were probably served by the persistence
storage in the real system (based on their duration). It is a
complex task to precisely simulate and replay the various data
management and caching decisions in the presence of several
policies that works together and influences each other. Yet,
DITIS is able to follow the overall trend of the real execution
times as well as accurately match the average execution times.

Next, we evaluate the efficiency of DITIS during both the
initialization phase and the trace simulation. The correspond-
ing run times are shown in Table II along with statistics that
explain DITIS’ run times. The Workload Initializer (recall
Section II-B) is responsible for creating an initial state for
the storage system, such as creating files that existed prior to
the beginning of the trace. The time needed for initialization
is proportional to (i) the number of files created since DITIS
maintains metadata for each file, and (ii) the file size since
DITIS distributes file data into blocks that are stored across the
storage media, and maintains metadata for each block, much

0 500 1000 1500
0

1000

2000

3000

4000

Ti
m

e
(m

ic
ro

-s
ec

on
ds

)

Original Simulated

Fig. 5: Real and simulated execution times (raw values and
distributions) for write requests for trace 4.

TABLE II: DITIS run times (in seconds) and interesting
statistics during initialization and simulation.

Initialization Simulation
Files Bytes Run Write Bytes Read Bytes Run

Created Written Time Requests Written Requests Read Time
1 56 35.2M 0.14 0 0.0 3106 11.99M 0.13
2 21 14.9G 1.50 15 109.9M 5513 6.7G 0.36
3 12 809.2K 0.16 49770 376.1M 113 817.2K 23.22
4 3136 526.7K 4.98 1683 7.0G 14435 3.8G 1.11
5 10 707.2M 0.37 22637 707.4M 48859 708.3M 55.30
6 3299 635.7M 5.38 6998 37.8G 40825 3.1G 3.87
7 3138 51.7M 5.00 2127 8.7G 52346 2.6G 1.92
8 857778 6.6G 13.84 10203 465.7K 1473466 11.3G 18.61

like like a real storage system does. Even when hundreds of
thousand of files are created and GBs of data are written, this
part of the simulation executes within a few seconds.

Simulating a trace with DITIS is also very efficient and
completes within seconds as shown in Table II. The simulation
time depends heavily on both the number of write requests and
bytes written in the trace for the same reasons explained above.
The simulation time is also proportional to the number of read
requests but is not affected much by the the number of bytes
read. Finally, simulation time can also be affected by other,
non-obvious factors, such as the order of requests (as it can
impact cache policies), the size of requests (as it can impact
data flow policies), as well as configuration parameters (such
as the number of disks or disk block size). Nonetheless, DITIS
is able to simulate large traces both efficiently and accurately.

VI. RELATED WORK

There are several efforts to simulate multi-tiered data stor-
age systems. MDCSim [7] is a multi-tier data center simulation
framework that supports a three-tier architecture, whereas
OGSSim [8] enables users to explore the design space of
storage systems by supporting various combinations of tiers
and volumes. StorageSim [9] enable users to define up to three
storage tiers with their performance profiles, while it provides
pluggable data placement policies to analyze their impact
in the storage’s performance. All aforementioned simulators
focus on single-node storage systems. EEffSim [10] supports

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 8

pluggable data placement policies and aims to study the impact
of data placement on energy efficiency for distributed (but
single-tier) storage systems. Both PFSsim [11] and HPIS3 [12]
focus on simulating Parallel File Systems in High Performance
Computing (HPC) centers, but HPIS3 also supports HDD/SSD
hybrid systems. NCAR MSS [13] simulates storage drives and
software components to explore the design space for cache
on data storage systems. SANgo [14] employs reinforcement
learning to explore the stability of data storage systems by
adjusting the modeled hardware and introducing failures.

In contrast to the related work, DITIS is extremely versatile
and extensible. DITIS implements a series of policies that
govern all decisions related to cache, tiers, request processing
flow, data redundancy, load balance, as well as other options
and configurations, like storage device arrangement, number
of nodes, threshold values, and enabling/disabling tiers.

VII. CONCLUSION

DITIS is a comprehensive storage simulator that is able to
simulate the execution of file system requests on a distributed
storage system with multiple levels of tiers and caches. Each
tier and cache can be configured with different types of storage
media devices, each with their own performance character-
istics. The simulator will utilize the provided characteristics
in fine-grained performance cost models (which are distinct
for each device type) in order to compute the duration time
of each request processed on each tier. At the same time,
DITIS will accurately simulate the overall flow of requests
through the different layers and storage nodes of the system
using numerous pluggable policies that control every aspect of
execution, ranging from request routing and data redundancy
to cache and tiering strategies. The ability to simulate the
execution of a workload in such an accurate and realistic way
brings multiple benefits for its users, since DITIS can be used
to better understand the behavior of the underlying file system
as well as evaluate different storage setups and policies.

REFERENCES

[1] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A Foundation
for Actor Computation,” J. Funct. Program., vol. 7, no. 1, p. 1–72, jan
1997. [Online]. Available: https://doi.org/10.1017/S095679689700261X

[2] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems:
Three Easy Pieces. North Charleston, SC, USA: CreateSpace Indepen-
dent Publishing Platform, 2018.

[3] K. El Maghraoui, G. Kandiraju, J. Jann, and P. Pattnaik, “Modeling
and Simulating Flash based Solid-state Disks for Operating Systems,”
in WOSP/SIPEW ’10. ACM Press, 2010, p. 15. [Online]. Available:
https://doi.org/10.1145/1712605.1712611

[4] J. H. Ahn, M. Erez, and W. J. Dally, “The Design Space of Data-parallel
Memory Systems,” in Proc. of the 2006 ACM/IEEE Conference on
Supercomputing (SC). ACM Press, 2006, p. 80. [Online]. Available:
https://doi.org/10.1145/1188455.1188540

[5] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi,
“Simulating DRAM Controllers for Future System Architecture
Exploration,” IEEE ISPASS, pp. 201–210, 2014. [Online]. Available:
https://doi.org/10.1109/ISPASS.2014.6844484

[6] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm,” Computer
Communication Review, vol. 27, no. 3, pp. 67–82, 1997. [Online].
Available: https://doi.org/10.1145/263932.264023

[7] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “MDCSim:
A Multi-tier Data Center Simulation Platform,” in IEEE Intl. Conf. on
Cluster Computing and Workshops. IEEE, 2009, pp. 1–9. [Online].
Available: https://doi.org/10.1109/CLUSTR.2009.5289159

[8] S. Gougeaud, S. Zertal, J. C. Lafoucriere, and P. Deniel, “A Generic
and Open Simulation Tool for Large Multi-Tiered Hierarchical Storage
Systems,” Simulation Series, vol. 48, no. 8, pp. 91–98, 2016. [Online].
Available: https://doi.org/10.1109/SPECTS.2016.7570515

[9] C. San-Lucas and C. L. Abad, “Towards a Fast Multi-tier Storage
System Simulator,” IEEE ETCM, pp. 1–5, 2016. [Online]. Available:
https://doi.org/10.1109/ETCM.2016.7750836

[10] R. Prabhakar, E. Kruus, G. Lu, and C. Ungureanu, “EEffSim: A
Discrete Event Simulator for Energy Efficiency in Large-scale Storage
Systems,” IEEE Intl. Conf. on Energy Aware Computing (ICEAC),
2011. [Online]. Available: https://doi.org/10.1109/ICEAC.2011.6136682

[11] Y. Liu, R. Figueiredo, Y. Xu, and M. Zhao, “On the Design and
Implementation of a Simulator for Parallel File System Research,”
IEEE Symposium on MSST, pp. 0–4, 2013. [Online]. Available:
https://doi.org/10.1109/MSST.2013.6558438

[12] B. Feng, N. Liu, S. He, and X. H. Sun, “HPIS3: Towards a
High-performance Simulator for Hybrid Parallel I/O and Storage
Systems,” Proc. of the 9th Parallel Data Storage Workshop, pp. 37–42,
2014. [Online]. Available: https://doi.org/10.1109/PDSW.2014.12

[13] B. Anderson, “Mass Storage System Performance Prediction using a
Trace-driven Simulator,” IEEE Symposium on MSST, pp. 297–306,
2005. [Online]. Available: https://doi.org/10.1109/MSST.2005.19

[14] K. Arzymatov, A. Sapronov, V. Belavin, L. Gremyachikh, M. Karpov
et al., “SANgo: A Storage Infrastructure Simulator with Reinforcement
Learning Support,” PeerJ Computer Science, vol. 2020, no. 5, pp.
1–16, 2020. [Online]. Available: https://doi.org/10.7717/peerj-cs.271

Edson Ramiro Lucas Filho is a post-doctoral
researcher at the Data Intensive Computing Research
Lab, Cyprus Univ. of Technology. He received his
Ph.D. from the Federal University of Paraná, Brazil,
in June 2020. He held positions as a post-doctoral
researcher at the Scalable Database Systems group,
Univ. of Passau, Germany, and as a Software Engi-
neer R&D at the Interdisciplinary Centre for Secu-
rity, Reliability and Trust, Univ. of Luxembourg.

Lambros Odysseos acquired his M.Sc. in Data
Science and Engineering (2019) and his B.Sc. in
Computer Engineering and Informatics (2017) from
Cyprus Univ. of Technology (CUT) both with first
student in class award. He worked as a research
associate at CUT for 3 years and his research inter-
ests include data analytics and visualizations, smart
data processing, Internet of Things, and machine
learning. Currently, he works as an IT officer at CUT.

Yang Lun is an algorithm engineer in Huawei Data
Storage Product Line. He received his Ph.D. in
Mathematics and completed his undergraduate stud-
ies in Electrical Engineering from Beihang Univer-
sity in 2020 and 2014, respectively. He was a visiting
student scholar in Energy Resource Engineering at
Stanford University from 2018-2019. His research
interests are in storage system algorithms.

Fu Kebo is an algorithm engineer in Huawei Data
Storage Product Line. His research interests include
data placement and intelligent storage algorithms.

Herodotos Herodotou is an Assistant Professor at
the Cyprus Univ. of Technology leading the Data
Intensive Computing Research Lab. He received his
Ph.D. in Computer Science from Duke University
in May 2012. His Ph.D. work received the ACM
SIGMOD Jim Gray Doctoral Dissertation Award
Honorable Mention. Prior, he held research positions
at Microsoft Research, Yahoo! Labs, and Aster Data.
His research interests are in large-scale data process-
ing, storage, and database systems.



DITIS: A Distributed Tiered Storage Simulator
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 25

References
	 [1]	 G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A Foundation 

for Actor Computation,” J. Funct. Program., vol. 7, no. 1, p. 1–72, jan 
1997. [Online]. Available: doi: 10.1017/S095679689700261X

	 [2]	 R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems: 
Three Easy Pieces. North Charleston, SC, USA: CreateSpace 
Independent Publishing Platform, 2018.

	 [3]	 K. El Maghraoui, G. Kandiraju, J. Jann, and P. Pattnaik, “Modeling 
and Simulating Flash based Solid-state Disks for Operating Systems,” 
in WOSP/SIPEW ’10. ACM Press, 2010, p. 15. [Online]. Available: 
doi: 10.1145/1712605.1712611

	 [4]	 J. H. Ahn, M. Erez, and W. J. Dally, “The Design Space of Data-parallel 
Memory Systems,” in Proc. of the 2006 ACM/IEEE Conference on 
Supercomputing (SC). ACM Press, 2006, p. 80. [Online]. Available: 
doi: 10.1145/1188455.1188540

	 [5]	 A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi, 
“Simulating DRAM Controllers for Future System Architecture 
Exploration,” IEEE ISPASS, pp. 201–210, 2014. [Online]. Available: 
doi: 10.1109/ISPASS.2014.6844484

	 [6]	 M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic 
Behavior of the TCP Congestion Avoidance Algorithm,” Computer 
Communication Review, vol. 27, no. 3, pp. 67–82, 1997. [Online]. 
Available: doi: 10.1145/263932.264023

	 [7]	 S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “MDCSim: 
A Multi-tier Data Center Simulation Platform,” in IEEE Intl. Conf. on 
Cluster Computing and Workshops. IEEE, 2009, pp. 1–9. [Online]. 
Available: doi: 10.1109/CLUSTR.2009.5289159

	 [8]	 S. Gougeaud, S. Zertal, J. C. Lafoucriere, and P. Deniel, “A Generic 
and Open Simulation Tool for Large Multi-Tiered Hierarchical 
Storage Systems,” Simulation Series, vol. 48, no. 8, pp. 91–98, 2016. 
[Online]. Available: doi: 10.1109/SPECTS.2016.7570515

Edson Ramiro Lucas Filho is a post-doctoral re-
searcher at the Data Intensive Computing Research 
Lab, Cyprus Univ. of Technology. He received his 
Ph.D. from the Federal University of Paraná, Brazil, 
in June 2020. He held positions as a post-doctoral re-
searcher at the Scalable Database Systems group, Univ. 
of Passau, Germany, and as a Software Engineer R&D 
at the Interdisciplinary Centre for Security, Reliability 
and Trust, Univ. of Luxembourg.

Lambros Odysseos acquired his M.Sc. in Data Sci-
ence and Engineering (2019) and his B.Sc. in Computer 
Engineering and Informatics (2017) from Cyprus Univ. 
of Technology (CUT) both with first student in class 
award. He worked as a research associate at CUT for 
3 years and his research interests include data analyt-
ics and visualizations, smart data processing, Internet 
of Things, and machine learning. Currently, he works 
as an IT officer at CUT.

Yang Lun is an algorithm engineer in Huawei Data 
Storage Product Line. He received his Ph.D. in Math-
ematics and completed his undergraduate studies in 
Electrical Engineering from Beihang University in 
2020 and 2014, respectively. He was a visiting student 
scholar in Energy Resource Engineering at Stanford 
University from 2018-2019. His research interests are 
in storage system algorithms.

Fu Kebo is an algorithm engineer in Huawei Data Stor-
age Product Line. His research interests include data 
placement and intelligent storage algorithms.

Herodotos Herodotou is an Assistant Professor at the 
Cyprus Univ. of Technology leading the Data Intensive 
Computing Research Lab. He received his Ph.D. in 
Computer Science from Duke University in May 2012. 
His Ph.D. work received the ACM SIGMOD Jim Gray 
Doctoral Dissertation Award Honorable Mention. Prior, 
he held research positions at Microsoft Research, Ya-
hoo! Labs, and Aster Data. His research interests are 
in large-scale data processing, storage, and database 
systems.

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, OCTOBER 2022 8

pluggable data placement policies and aims to study the impact
of data placement on energy efficiency for distributed (but
single-tier) storage systems. Both PFSsim [11] and HPIS3 [12]
focus on simulating Parallel File Systems in High Performance
Computing (HPC) centers, but HPIS3 also supports HDD/SSD
hybrid systems. NCAR MSS [13] simulates storage drives and
software components to explore the design space for cache
on data storage systems. SANgo [14] employs reinforcement
learning to explore the stability of data storage systems by
adjusting the modeled hardware and introducing failures.

In contrast to the related work, DITIS is extremely versatile
and extensible. DITIS implements a series of policies that
govern all decisions related to cache, tiers, request processing
flow, data redundancy, load balance, as well as other options
and configurations, like storage device arrangement, number
of nodes, threshold values, and enabling/disabling tiers.

VII. CONCLUSION

DITIS is a comprehensive storage simulator that is able to
simulate the execution of file system requests on a distributed
storage system with multiple levels of tiers and caches. Each
tier and cache can be configured with different types of storage
media devices, each with their own performance character-
istics. The simulator will utilize the provided characteristics
in fine-grained performance cost models (which are distinct
for each device type) in order to compute the duration time
of each request processed on each tier. At the same time,
DITIS will accurately simulate the overall flow of requests
through the different layers and storage nodes of the system
using numerous pluggable policies that control every aspect of
execution, ranging from request routing and data redundancy
to cache and tiering strategies. The ability to simulate the
execution of a workload in such an accurate and realistic way
brings multiple benefits for its users, since DITIS can be used
to better understand the behavior of the underlying file system
as well as evaluate different storage setups and policies.

REFERENCES

[1] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A Foundation
for Actor Computation,” J. Funct. Program., vol. 7, no. 1, p. 1–72, jan
1997. [Online]. Available: https://doi.org/10.1017/S095679689700261X

[2] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems:
Three Easy Pieces. North Charleston, SC, USA: CreateSpace Indepen-
dent Publishing Platform, 2018.

[3] K. El Maghraoui, G. Kandiraju, J. Jann, and P. Pattnaik, “Modeling
and Simulating Flash based Solid-state Disks for Operating Systems,”
in WOSP/SIPEW ’10. ACM Press, 2010, p. 15. [Online]. Available:
https://doi.org/10.1145/1712605.1712611

[4] J. H. Ahn, M. Erez, and W. J. Dally, “The Design Space of Data-parallel
Memory Systems,” in Proc. of the 2006 ACM/IEEE Conference on
Supercomputing (SC). ACM Press, 2006, p. 80. [Online]. Available:
https://doi.org/10.1145/1188455.1188540

[5] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi,
“Simulating DRAM Controllers for Future System Architecture
Exploration,” IEEE ISPASS, pp. 201–210, 2014. [Online]. Available:
https://doi.org/10.1109/ISPASS.2014.6844484

[6] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm,” Computer
Communication Review, vol. 27, no. 3, pp. 67–82, 1997. [Online].
Available: https://doi.org/10.1145/263932.264023

[7] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “MDCSim:
A Multi-tier Data Center Simulation Platform,” in IEEE Intl. Conf. on
Cluster Computing and Workshops. IEEE, 2009, pp. 1–9. [Online].
Available: https://doi.org/10.1109/CLUSTR.2009.5289159

[8] S. Gougeaud, S. Zertal, J. C. Lafoucriere, and P. Deniel, “A Generic
and Open Simulation Tool for Large Multi-Tiered Hierarchical Storage
Systems,” Simulation Series, vol. 48, no. 8, pp. 91–98, 2016. [Online].
Available: https://doi.org/10.1109/SPECTS.2016.7570515

[9] C. San-Lucas and C. L. Abad, “Towards a Fast Multi-tier Storage
System Simulator,” IEEE ETCM, pp. 1–5, 2016. [Online]. Available:
https://doi.org/10.1109/ETCM.2016.7750836

[10] R. Prabhakar, E. Kruus, G. Lu, and C. Ungureanu, “EEffSim: A
Discrete Event Simulator for Energy Efficiency in Large-scale Storage
Systems,” IEEE Intl. Conf. on Energy Aware Computing (ICEAC),
2011. [Online]. Available: https://doi.org/10.1109/ICEAC.2011.6136682

[11] Y. Liu, R. Figueiredo, Y. Xu, and M. Zhao, “On the Design and
Implementation of a Simulator for Parallel File System Research,”
IEEE Symposium on MSST, pp. 0–4, 2013. [Online]. Available:
https://doi.org/10.1109/MSST.2013.6558438

[12] B. Feng, N. Liu, S. He, and X. H. Sun, “HPIS3: Towards a
High-performance Simulator for Hybrid Parallel I/O and Storage
Systems,” Proc. of the 9th Parallel Data Storage Workshop, pp. 37–42,
2014. [Online]. Available: https://doi.org/10.1109/PDSW.2014.12

[13] B. Anderson, “Mass Storage System Performance Prediction using a
Trace-driven Simulator,” IEEE Symposium on MSST, pp. 297–306,
2005. [Online]. Available: https://doi.org/10.1109/MSST.2005.19

[14] K. Arzymatov, A. Sapronov, V. Belavin, L. Gremyachikh, M. Karpov
et al., “SANgo: A Storage Infrastructure Simulator with Reinforcement
Learning Support,” PeerJ Computer Science, vol. 2020, no. 5, pp.
1–16, 2020. [Online]. Available: https://doi.org/10.7717/peerj-cs.271

Edson Ramiro Lucas Filho is a post-doctoral
researcher at the Data Intensive Computing Research
Lab, Cyprus Univ. of Technology. He received his
Ph.D. from the Federal University of Paraná, Brazil,
in June 2020. He held positions as a post-doctoral
researcher at the Scalable Database Systems group,
Univ. of Passau, Germany, and as a Software Engi-
neer R&D at the Interdisciplinary Centre for Secu-
rity, Reliability and Trust, Univ. of Luxembourg.

Lambros Odysseos acquired his M.Sc. in Data
Science and Engineering (2019) and his B.Sc. in
Computer Engineering and Informatics (2017) from
Cyprus Univ. of Technology (CUT) both with first
student in class award. He worked as a research
associate at CUT for 3 years and his research inter-
ests include data analytics and visualizations, smart
data processing, Internet of Things, and machine
learning. Currently, he works as an IT officer at CUT.

Yang Lun is an algorithm engineer in Huawei Data
Storage Product Line. He received his Ph.D. in
Mathematics and completed his undergraduate stud-
ies in Electrical Engineering from Beihang Univer-
sity in 2020 and 2014, respectively. He was a visiting
student scholar in Energy Resource Engineering at
Stanford University from 2018-2019. His research
interests are in storage system algorithms.

Fu Kebo is an algorithm engineer in Huawei Data
Storage Product Line. His research interests include
data placement and intelligent storage algorithms.

Herodotos Herodotou is an Assistant Professor at
the Cyprus Univ. of Technology leading the Data
Intensive Computing Research Lab. He received his
Ph.D. in Computer Science from Duke University
in May 2012. His Ph.D. work received the ACM
SIGMOD Jim Gray Doctoral Dissertation Award
Honorable Mention. Prior, he held research positions
at Microsoft Research, Yahoo! Labs, and Aster Data.
His research interests are in large-scale data process-
ing, storage, and database systems.

	 [9]	 C. San-Lucas and C. L. Abad, “Towards a Fast Multi-tier Storage 
System Simulator,” IEEE ETCM, pp. 1–5, 2016. [Online]. Available: 
doi: 10.1109/ETCM.2016.7750836

	[10]	 R. Prabhakar, E. Kruus, G. Lu, and C. Ungureanu, “EEffSim: A 
Discrete Event Simulator for Energy Efficiency in Large-scale Storage 
Systems,” IEEE Intl. Conf. on Energy Aware Computing (ICEAC), 
2011. [Online]. Available: doi: 10.1109/ICEAC.2011.6136682

	[11]	 Y. Liu, R. Figueiredo, Y. Xu, and M. Zhao, “On the Design and 
Implementation of a Simulator for Parallel File System Research,” 
IEEE Symposium on MSST, pp. 0–4, 2013. [Online]. Available:  
doi: 10.1109/MSST.2013.6558438

	[12]	 B. Feng, N. Liu, S. He, and X. H. Sun, “HPIS3: Towards a High-
performance Simulator for Hybrid Parallel I/O and Storage Systems,” 
Proc. of the 9th Parallel Data Storage Workshop, pp. 37–42, 2014. 
[Online]. Available: doi: 10.1109/PDSW.2014.12

	[13]	 B. Anderson, “Mass Storage System Performance Prediction using a 
Trace-driven Simulator,” IEEE Symposium on MSST, pp. 297–306, 
2005. [Online]. Available: doi: 10.1109/MSST.2005.19

	[14]	 K. Arzymatov, A. Sapronov, V. Belavin, L. Gremyachikh, M. Karpov 
et al., “SANgo: A Storage Infrastructure Simulator with Reinforcement 
Learning Support,” PeerJ Computer Science, vol. 2020, no. 5, pp. 
1–16, 2020. [Online]. Available: doi: 10.7717/peerj-cs.271

https://doi.org/10.1017/S095679689700261X
https://doi.org/10.1145/1712605.1712611
https://doi.org/10.1145/1188455.1188540
https://doi.org/10.1109/ISPASS.2014.6844484
 https://doi.org/10.1145/263932.264023
https://doi.org/10.1109/CLUSTR.2009.5289159
https://doi.org/10.1109/SPECTS.2016.7570515
https://doi.org/10.1109/ETCM.2016.7750836
https://doi.org/10.1109/ICEAC.2011.6136682
https://doi.org/10.1109/MSST.2013.6558438
https://doi.org/10.1109/PDSW.2014.12
https://doi.org/10.1109/MSST.2005.19
https://doi.org/10.7717/peerj-cs.271



