

[http://pubs.acs.org/journal/acsodf](http://pubs.acs.org/journal/acsodf?ref=pdf) **Review** Review **Review** Re

Real-Time Ellipsometry at High and Low Temperatures

[Deshabrato](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Deshabrato+Mukherjee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Mukherjee and Peter [Petrik](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+Petrik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-8-0)

Cite This: [https://doi.org/10.1021/acsomega.2c07438](https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c07438&ref=pdf) **Read [Online](https://pubs.acs.org/doi/10.1021/acsomega.2c07438?ref=pdf)**

ACCESS | [Metrics](https://pubs.acs.org/doi/10.1021/acsomega.2c07438?goto=articleMetrics&ref=pdf) & More | Article [Recommendations](https://pubs.acs.org/doi/10.1021/acsomega.2c07438?goto=recommendations&?ref=pdf)

ABSTRACT: Among the many available real-time characterization methods, ellipsometry stands out with the combination of high sensitivity and high speed as well as nondestructive, spectroscopic, and complex modeling capabilities. The thicknesses of thin films such as the complex dielectric function can be determined simultaneously with precisions down to sub-nanometer and 10[−]⁴ , respectively. Consequently, the first applications of high- and low-temperature real-time ellipsometry have been related to the monitoring of layer growth and the determination of optical properties of metals, semiconductors, and superconductors, dating back to the late 1960s. Ellipsometry has been ever since a steady alternative of nonpolarimetric spectroscopies in applications where quantitative information (e.g., thickness, crystallinity, porosity, band gap, absorption) is to be determined in complex layered structures. In this article the main applications and fields of research are reviewed.

■ **INTRODUCTION**

Ellipsometry measurements have already been made since the final decades of the [1](#page-9-0)9th century pioneered by P. Drude.^{1,[2](#page-9-0)} The measurement performed by B. Pogany in 1916 can already be considered as a multi-wavelength measurement.^{[3](#page-9-0)} The term "ellipsometer" was coined in the article by A. Rothen in 1944 studying biomaterials on metal surfaces^{[4](#page-9-0)} revealing subnanometer sensitivity. The reason for the early appearance of this technique is that, by using ellipsometry, high sensitivity can be achieved without a coherent light source and any other very expensive and sophisticated components. The most important hardware component has been the computer, which serves both as a control for the measuring device and as a tool for analyzing the data, since most ellipsometers are polarization modulation devices computing the measured values by analyzing the temporal line shapes of intensity signals. The need for computation is the result of the increase in the number of publications in the field of ellipsometry, which started to accelerate in the 1980s (Figure 1), coinciding with the era of affordable computation becoming available worldwide.

Today, the range of applications of ellipsometry has diversified to basic research in physical sciences, semiconductors, and data storage solutions as well as biosensor, communication, flat panel displays, and optical coating industries. Since the 1960s, ellipsometry has been implemented to provide the sensitivity necessary to measure nanometerscale layers used in microelectronics resulting in increased interest at a steady rate in the field. In the 1980s, a rapid increase can be observed in both the development and the applications of ellipsometry (Figure 1). The real-time

Figure 1. Number of articles containing the words "ellipsometry" or ["ellipsometry" and ("real time" or "in situ") and "temperature"] in the title, abstract, or keywords, the latter denoted by "HT/LT ellipsometry" in the legend.

capabilities of ellipsometry were already utilized in the early $1980s$.

Received: November 20, 2022 Accepted: December 29, 2022

Table 1. Summary of Publications on Real-Time Ellipsometry at HT and LT Ordered by Time*[a](#page-3-0)*

Table 1. continued

Table 1. continued

In this work, the presented studies of high-temperature (HT) or low-temperature (LT) ellipsometry are organized in three major groups: (i) instrumentation, (ii) monitoring of HT or LT processes, and (iii) determination of the reference dielectric functions at elevated or low temperatures (T). We exclude those investigations that focus on the ex situ characterization of the effect of HT (annealing) on the materials or structures and only deal with articles that measure real time at HT or LT. The number of ex situ characterizations is high, because both annealing and optical characterizations are basic methods in material processing and characterization. Numerous material properties that can be modified by annealing (e.g., band gap, crystallinity, porosity) can sensitively be measured and followed by optical methods.

We are only concerned here with real-time ellipsometry applications at temperatures higher or lower than room temperature (RT). Consequently, real-time optical measurements other than ellipsometry and real-time ellipsometry measurements at RT are excluded. Even so, looking at [Figure](#page-0-0) [1](#page-0-0), it is obvious that it is nearly impossible to include all the publications in the field in such a short review. Therefore, we only discuss a few significant achievements categorized by their type of applications and materials. In [Table](#page-1-0) 1 we specify the topic and materials of all the papers discussed in this review ordered by the year of the work. We also include studies on

processes at HT even if the temperatures have not been changed or the temperature dependence has not been investigated in real time (e.g., monitoring of growth at a given temperature).

Finally, in the majority of the articles the phrases "in situ" and "real time" are used more or less as synonyms. "In situ" is used if the integration of the measurement into a process is emphasized, whereas "real time" is used if the simultaneous measurement during the process is in focus. We use "real time" for both cases because it also implies that the characterization technique is integrated into the processing device.

■ **INSTRUMENTATION**

The majority of the real-time measurements presented in this review are based on homemade equipment, because commercial heat cells have not been available during most of the covered period of time. Many of the investigations utilize single-wavelength ellipsometry, which is sufficient in many cases to understand complex phenomena such as the oxidation of $Si⁶$ $Si⁶$ $Si⁶$ or the evolution of surface roughness.^{[7](#page-9-0),[8](#page-9-0)} However, the development of spectroscopic ellipsometry $(SE)^9$ $(SE)^9$ and the rotating compensator version $10 \text{ (later also double rotating)}$ $10 \text{ (later also double rotating)}$ compensator ellipsometry for the full Muller matrix anal $ysis$ ^{[11](#page-9-0)−[13](#page-9-0)}) have substantially accelerated the development of the field. Rotating compensator ellipsometry is not only more

suitable for real-time investigations but, due to the multichannel approach (measurement at each wavelength simultaneously at the same sensitivity-supported by the rotating compensator approach), the measurement time can also be decreased to the millisecond range while maintaining the spectroscopic capabilities.^{[14](#page-9-0)}

A few of the developed instruments give access to ultrahigh temperatures. For example, J.C. Miller¹⁵ measured the optical properties of seven metals up to *T* = 1873 K. T.T. Charalampopoulos et al. 16 developed an HT ellipsometer to measure metal surfaces. A. Cezairliyan et al. 17 utilized spectral radiometry and laser polarimetry to investigate Mo and W surfaces up to $T = 2800$ K. The device developed by J. Lee et al.^{[10](#page-9-0)} is capable of monitoring the growth of thin films up to $T =$ 1085 K. W. Lehnert et al[.18](#page-9-0) measured the oxidation of Si for *T* $= 293 \rightarrow 1200$ K. S. Krishnan et al.^{[19](#page-9-0)} applied high-speed laser polarimetry for the noncontact determination of phase transformation in metals and alloys up to $T = 2500$ K. Y. Ohmasa et al.^{[20](#page-9-0)} investigated wetting phenomena at Hgsapphire interfaces for $T = 1623 \rightarrow 1773$ K. R.I. Sheldon et al.²¹ measured the optical properties of liquid Ce in the range $\,^{\rm L}$ measured the optical properties of liquid Ce in the range of $T = 1700 \rightarrow 2130$ K using electromagnetic levitation in order to avoid contamination during the process. M. Schmid et al.^{[22](#page-9-0)} measured the optical properties of metals up to $T = 1700$ K. The band gap of M_0 Se₂ was determined by Choi et al.²³ at $T = 1123$ K.

Measurements conducted at ultralow temperatures also require special hardware and attention to the details. For the low-temperature measurements reported by Bjorneklett et al.²⁴ the samples were held in a vacuum cell with a cryostat. During the low-temperature experiments the sample chamber was filled with oxygen at a pressure of 15−25 kPa in order to avoid the condensation of oxygen onto the surface of the sample. Furthermore, an oxygen background atmosphere was chosen to avoid oxygen depletion of the Y−Ba−Cu−O sample surface during measurement at 80 K. To avoid small freeze-outs on the sample surface, Bäckström et al. 25 25 25 employed a measurement protocol with thermal cyclings between 10 K and room temperature between each pair of measured temperature points. R. Henn et al. 26 26 26 evacuated the total volume of the Fourier spectrometer, the prechamber, and the ellipsometer chamber simultaneously in order to eliminate spurious absorption by air molecules. The sample chamber was separated by an additional lid, which allowed them to reach a pressure of about 10[−]⁶ mbar in the cryostat.

There have been special applications such as the combination of ellipsometry with other methods: M. Brown et al.^{[27](#page-9-0)} built an ultrastable oven for the HT investigation of liquid surfaces using X-ray reflectometry and ellipsometry. Other examples include the high photon energy SE by J.A. Zapien et al. 28 and the demonstration of SE in an industrial environment, integrating it into a vertical furnace by W. Lehnert et al.^{[18](#page-9-0)} to follow layer growth during batch processing (Figure 2).[29](#page-9-0) Integration of SE in a chemical vapor deposition tool has been demonstrated by C. Eitzinger et al.^{[30](#page-9-0)} J. Humlice k^{31} k^{31} k^{31} proposed a general scheme of analyzing the film growth in this tool using a series of in situ SE spectra in a closed-loop system.

■ **INVESTIGATION OF PROCESSES**

Semiconductors, Superconductors, and Related Materials. A large part of the LT SE studies is related to the characterization of superconducting materials. A. Bjorneklett et

Figure 2. Integration of SE in a vertical furnace. Reprinted with permission from ref [29.](#page-9-0) Copyright 2001 Elsevier.

 $al.²⁴$ $al.²⁴$ $al.²⁴$ determined the optical properties of superconductor material Y−Ba−Cu−O. S. Yamamoto et al.^{[32](#page-9-0)} monitored metal organic chemical vapor deposition (CVD) processes of superconductor materials at depositions up to $T = 923$ K. J. Humlicek et al.^{[33](#page-9-0)} investigated superconducting materials at $T =$ $20 \rightarrow 300$ K. R. Henn et al.²⁶ used synchrotron radiation farinfrared ellipsometry to determine the out-of-plane response of the HT superconductor La2[−]*x*Sr*x*CuO4. The properties of the $YBa₂Cu₃O_{6.9} HT superconductor (superconducting transition$ *T* = 92.7 K) were investigated by wide-band (0.01−5.6 eV) SE.[34](#page-9-0) The SE data provided real-time information on the optical self-energy in the normal and superconducting states. The optical conductivity σ , defined as $\epsilon(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega) =$ $1 + 4\pi i\sigma(\omega)/\omega$ (where ϵ and ω denote the dielectric function and the angular frequency, respectively), reveals a distinct feature at the superconduction transition temperature. 34 Optical properties of cuprite superconductors have been measured by A.V. Boris et al.^{[35](#page-9-0)} and J. Backstrom et al.²⁵ C. Gianetti et al.^{[36](#page-9-0)} revealed high-energy electronic excitations in superconducting cuprates. Li et al. 37 investigated dopingdependent photon scattering resonance in the HT superconductor by Raman scattering and ellipsometry. Transport properties in HT superconductor $BaFe_{1.91}Ni_{0.09}As_2$ have been studied by J.A. Aleshenko et al.^{[38](#page-9-0)}

Understanding the growth of oxide on Si has been one of the major issues of microelectronics from the dawn of the technology. The kinetics of oxide growth has been studied by E. Irene et al.^{[39,40](#page-10-0)} already in the late 1970s using real-time SE, followed by several other studies of the same group, $41-43$ $41-43$ also for silicides.^{[44](#page-10-0)} The real-time measurement of the oxidation of Si has also been demonstrated in a vertical furnace that has a smaller-sized system along with better contamination control.^{[18](#page-9-0),[29](#page-9-0)} Laser-induced oxidation has been investigated by A.V. Osipov et al.^{[45](#page-10-0)} for $T = 308 \rightarrow 473$ K.

Real-time monitoring and control of thin-film growth for photovoltaic applications is one of the key topics of HT SE, in which the temperature of the substrate is a critical process parameter. The majority of the studies deal with amorphous or microcrystalline Si and Ge, such as the growth of glowdischarge deposited amorphous Si (a-Si) and Ge (a-Ge) comparing the growth at RT and $T = 523$ K, developing models for the formation of nanoroughness, 46 or the formation of amorphous Si on transparent conductive oxides at *T* = 453 $K⁴⁷$ $K⁴⁷$ $K⁴⁷$ The growth of amorphous Si was followed by real-time SE at $T = 573$ K,^{[48,49](#page-10-0)} and the crystallization of amorphous Si was observed at $T = 853 \rightarrow 898 \text{ K}^{50}$ $T = 853 \rightarrow 898 \text{ K}^{50}$ $T = 853 \rightarrow 898 \text{ K}^{50}$ SE was proven to be a unique tool to reveal and optimize nucleation and a roughness layer separate from the bulk layer during thin-film growth (Figure 3,

Figure 3. Evolution of amorphous Si surface roughness and bulk layer thickness during magnetron sputtering. Reprinted with permission from ref [48.](#page-10-0) Copyright 1990 The American Physical Society.

ref [48\)](#page-10-0), which greatly contributes to the identification and optimization of microcrystalline phases for photovoltaic applications.^{[51](#page-10-0)} Hu et al.^{[52](#page-10-0)} measured the incubation time for Si nucleation on SiO₂ in a rapid thermal process at $T = 973$ K. The interaction between methyl radicals and atomic H during the growth of amorphous hydrogenated carbon films has been studied by A. von Keudell et al.^{[53](#page-10-0)} for $T = 320$ K, whereas the interaction with H plasma has been investigated in detail by A. Hadjadj et al.^{[54](#page-10-0)} at $T = 373 \rightarrow 523$ K.

Rapid thermal chemical vapor deposition was used by C. Basa et al.^{[55](#page-10-0)} to create polycrystalline Si layers at $T = 1123 \text{ K}^{56}$ and $T = 873 \rightarrow 933$ K. Hot wire deposition has also been studied by Gupta et al.^{[57](#page-10-0)} at $T = 323 \rightarrow 788$ K. W. Lehnert et al.^{[18](#page-9-0)} and P. Petrik et al.^{[58](#page-10-0)} demonstrated the integration of realtime SE in a vertical furnace by the example of thermal oxidation of Si and crystallization of a-Si, respectively.^{[29](#page-9-0),[59](#page-10-0)} The crystallization of $Ge_{60}Te_{40}$ has also been investigated for $T =$ $293 \rightarrow 623$ K.⁶⁰ The growth of amorphous Si films has been monitored by H. Fujiwara et al.^{[61](#page-10-0)} using real-time SE at $T = 473$ K. The same group has demonstrated the applicability of realtime ellipsometry for the development of thin films for solar applications in numerous publications, see, e.g., ref [62.](#page-10-0) D.H. Levi et al. 63 also developed real-time SE for the optimization of Si-based photovoltaic structures during hot wire chemical

vapor deposition at $T = 363 \rightarrow 713$ K. Silicon-based compound semiconductor structures have also been studied, such as the growth of graded Si_{1−*x*}Ge_{*x*} films followed using real-time ellipsometry by N. Podraza et al.^{[64](#page-10-0)} at $T = 473 \rightarrow 533$ K for the substrate. The same group, focusing on the investigations of photovoltaic materials, published in the same year a study on the deposition and growth of CdTe, CdS, and CdTe_{1−*x*}S_{*x*} by J. Li et al.^{[65](#page-10-0)} using real-time SE at $T =$ 418 \rightarrow 593 K. A parametric B-Spline model^{[66](#page-10-0)} has been developed by B. Johs et al.^{[67](#page-10-0)} for Hg_{1−*x*}Cd_{*x*}Te to control the composition during molecular beam epitaxial growth.

The capability of SE to determine not only thicknesses but also both the real and imaginary parts of the dielectric function simultaneously has been utilized in many phase-transition studies in charge transfer solids $(T = 150 \rightarrow 400 \text{ K})$,^{[68](#page-10-0)} crystallization of amorphous $Si^{29,59}$ $Si^{29,59}$ $Si^{29,59}$ $Si^{29,59}$ also in the presence of Al, 69 69 69 annealing of Si,^{[70](#page-10-0)} NiSi $(T = 623 \rightarrow 1023 \text{ K})$,^{[71](#page-10-0)} the switchable molecular solid RbMn[FeCN₆] (*T* = 150 \rightarrow 400 K),^{[72](#page-10-0)} Ge₂Sb₂Te₅ phase changing material $(T = 293 \rightarrow 623 \text{ K})$,^{[73](#page-10-0)} relaxation in a-InGaZnO, 74 and phase change in vanadium oxides.[75](#page-10-0)−[77](#page-11-0) S. Bin Anooz et al.[78](#page-11-0) determined the phase transition in epitaxial $NaNbO₃$ films grown under tensile lattice strain on the (110) DyScO₃ substrate up to $T = 823$ K. The *n* is measured at an energy of 3.2 eV, i.e., near the band gap of 3.9 eV, to best observe variations with phase transitions and structural changes. At RT, monoclinic a1a2 ferroelectric phase with exclusive in-plane electrical polarization and at $T = 523 \rightarrow$ 573 K depicts a ferroelectric-to-ferroelectric phase transition. At around $T = 773$ K, a further transition to the paraelectric phase was observed.

Formation and features of surface structures have been studied on GaAs $(T = 474 \text{ K})^7$ $(T = 474 \text{ K})^7$ $(T = 474 \text{ K})^7$ and strontium titanate surfaces $(T = 293 \rightarrow 1000 \text{ K})$.^{[79](#page-11-0)} S. Andrieu et al.^{[80](#page-11-0)} followed Sb adsorption on Si(111) at $T = 998$ K revealing adsorption/ desorption kinetics. H. Yao and P.G. Snyder 81 have presented real-time SE data from both oxidized and unoxidized surfaces of GaAs(100) at elevated temperature in ultrahigh vacuum. Real-time data showed the desorption of native oxide at approximately $T = 850$ K causing a surface roughening and degradation. Cleaning of the surface of Si wafers has been studied by Hu et al. 82° 82° showing that the residual damage can be monitored by SE. This group also studied the etching of Si surface by Ar and H ions revealing a saturation of the damage layer with the etching time in case of $Ar.^{83}$ $Ar.^{83}$ $Ar.^{83}$

Thin film growth has been controlled for epitaxy of GaAs, [84](#page-11-0) Al_xGa_{1−*x*}As^{[8,](#page-9-0)[85](#page-11-0)} (also with control for parabolic composition profile^{[86](#page-11-0)}), CdHgTe and CdTe/HgTe superlattices, 87 InAs, 88 and for metal organic CVD of AlGaAs and InGaAs (*T* = 873 \rightarrow 973 K).^{[89](#page-11-0)} The capabilities of SE for a precise composition control during deposition has been demonstrated by D.E. Aspnes et al.^{[86](#page-11-0)} [\(Figure](#page-6-0) 4). B. Gallas et al.^{[90](#page-11-0)} investigated the formation of oxide layer on Si for reflective dielectric mirror applications, whereas S.C. Deshmukh et al. 91 monitored metal−organic vapor-phase epitaxy of GaN for optoelectronics. A versatility of other effects has also been investigated including oxidation of InSb/GaAs $(T = 523 \rightarrow 573 \text{ K})^{92}$ $(T = 523 \rightarrow 573 \text{ K})^{92}$ $(T = 523 \rightarrow 573 \text{ K})^{92}$ and Si $(T = 1200 \text{ K})^{18}$ $(T = 1200 \text{ K})^{18}$ $(T = 1200 \text{ K})^{18}$ surfaces or HT effects in Li-doped $ZnO.⁹³$ $ZnO.⁹³$ $ZnO.⁹³$

Perovskites, langasite, and other special crystal structures have been studied for a broad range of applications. M. Kouaba et al.⁹⁴ explored the thermal properties of the perovskite slab alkylammonium lead iodide using real-time ellipsometry and numerous complementary methods. The thermal behavior of

Figure 4. Composition control during growth of an Al_xGa_{1−x}As layer to create a parabolic quantum well. Reprinted with permission from ref [86](#page-11-0). Copyright 1992 AIP Publishing.

the excitonic absorption obtained by SE and PL showed a good quantitative agreement, but it was not possible to measure both the heating and cooling modes by SE due to the long data acquisition time (∼180 s) causing photodegradation of the material at HT. The ferroelectric ordering has been studied in SrTiO₃ and BaTiO₃ by Rössle et al.^{[95](#page-11-0)} at $T = 4 \rightarrow$ 700 K, with a special emphasis on its influence on the direct band gap close to the ferroelectric transition. It has been shown that the anomalous T-dependent shift of the direct band gap of $SrTiO₃$ is strongly affected by the Fröhlich electron−phonon interaction with the so-called soft mode that is at the heart of its quantum-paraelectric properties.

Piezoelectric materials of the langasite family have been investigated by T. Karaki et al.⁹⁶ Nucleation of diamond has been monitored during filament-assisted CVD at substrate temperatures of $T = 300 \rightarrow 1073 \text{ K}^{.97}$ $T = 300 \rightarrow 1073 \text{ K}^{.97}$ $T = 300 \rightarrow 1073 \text{ K}^{.97}$ S. Troiler-McKinstry et al.^{[98](#page-11-0)} studied the annealing of sol−gel ferroelectric thin films to follow the crystallization process at $T = 773 \rightarrow 873$ K.

Dielectrics and Organic Materials. A large portion of real-time temperature-dependent ellipsometry studies on dielectrics includes polymers and organic materials. Compatibilization of immiscible polymer blends have been investigated by S. Yukioka et al.⁹⁹ at $T = 443 \rightarrow 483$ K. Orientational dynamics in dye-doped organic electro-optic materials has been investigated by Apitz et al. 100 together with the temperature dependence of the phenomenon. It has been shown that the switching properties of the chromophores in a guest−host polymer composite based on Disperse Red 1 and poly(methyl methacrylate) hardly depends on the temperature. Bonaventurová-Zrzavecká et al.^{[101](#page-11-0)} determined the temperature-dependent optical properties of an organic-inorganic polymer material poly(methyl-phenylsilane). They identified the onset of thermal degradation at $T = 373$ K. Below this temperature the optical response was reversible with an average shift of the lowest excitonic band of -8.5×10^{-4} eV/K. Lipid bilayer modification by polyelectrolyte adsorption was investigated by Z.V. Feng et al.^{[102](#page-11-0)} using real-time ellipsometry. In this study, the melting temperature is lowered from 297 to 294 K of a phospholipid bilayer made from 1,2-

dimyristoyl-*sn*-glycero-3-phosphocholine (DMPC) when added with a weak polyelectrolyte, poly(methacrylic acid) (PMA). A slight asymmetry is also observed upon PMA addition in the gel phase, further verified by other characterization procedures.

In a special tool and application O. Santos et $al.^{103}$ $al.^{103}$ $al.^{103}$ monitored protein adsorption onto steel surfaces at *T* = 313 \rightarrow 367 K, in which both the surface properties and the bulk solution conditions affected the adsorption rate. G. Demirel et al. 104 used polymer layers on a Si wafer for DNA sensing. Here, a validation test was conducted at $T = 298$ and $T = 318$ K, below and above the lower critical solution temperature value, respectively, on the Si(001) platform that interacted with the complementary of the probe "immobilized" oligo or the noncomplementary model oligo. It was confirmed that the hybridization between the probe and the target within the medium can be modulated. G. F. Malgas et al. 105 studied the temperature dependence of the phase separation in polymer− fullerene films. The study determined the optimum temperature to obtain the desired phase separation for solar cell application in P3HT:PCBM film, a methanofullerene derivative. The measurements using SE were made at multiple angles of incidence that showed a reduction in the electronic peaks of PCBM, causing an improved extinction coefficient and refractive index during annealing at 413 K.

Glass transition and thickness change has been investigated in polymers by A. Clough et al.¹⁰⁶ for $T = 300 \rightarrow 400$ K. Both the change of the optical properties and the thickness have been monitored by real-time ellipsometry determining the major features of the kinetics (Figure 5). Ogieglo et $al.^{107}$ $al.^{107}$ $al.^{107}$

Figure 5. Derivative of the ellipsometric Ψ parameter as a funtion of *T* for the identification of the glass transition temperature (T_g) . Reprinted with permission from ref [106.](#page-11-0) Copyright 2011 The American Chemical Society.

investigated the glass transition in swollen polymers (polystyrene). For SE studies, a temperature stabilization system that operates in the range of $T = 283 \rightarrow 333$ K was equipped to the test cell. Thermal equilibrium was maintained within the system, as polymer chains and penetrant mobility are large above glass transition temperatures, whereas the solvent concentration in the swollen matrix reduces when the temperature is lowered. T.J. Murdoch et al. 108 108 108 investigated enhanced ion effects in thermoresponsive polymer brushes by real-time ellipsometry. The thermoresponse of homo- and copolymer PMEO2MA brushes (size 540 ± 30 Å) in aqueous solution were characterized via different techniques. Ellipsometry measurements showed that the main impact of the

addition of salt is a displacement of the overall temperature response along the temperature axis, where increase in thiocyanate concentration up to 250 mM shifted the response to higher temperatures, while increasing acetate concentration shifted the response to lower temperatures. B.A. Humphreys et $al.¹⁰⁹$ $al.¹⁰⁹$ $al.¹⁰⁹$ investigated the thermoresponse of polymer brushes by the combination of SE and quartz crystal microbalance (QCM) for $T = 293 \rightarrow 318$ K. HT ellipsometry has been reviewed recently for polymers by B. Hajduk et al.^{[110](#page-11-0)}

The formation of mesostructured nanocrystalline titania thin films has been monitored by both real-time SE and X-ray diffraction (XRD) revealing a perfect complementary character, with SE showing the thickness and the porosity and XRD determining the crystallinity.^{[111](#page-11-0)} Bass et al.^{[112](#page-11-0)} investigated the pyrolysis, crystallization, and sintering of titania films assessed by real-time thermal ellipsometry. It is used to determine the evolution of porosity and characterization of the influence of parameters such as heating schedule, initial film thickness, nature of the substrate, solution aging, presence of water during calcination, nature of the templating agent, and influence of additives in the calcination environment as a function of temperature. Romanenko et al. 113 used real-time ellipsometry to determine characteristics of zirconia films formed on the surface of Zr during oxidation at $T = 300 \rightarrow 700$ K.

Metals, Conductive, and Related Materials. There have been a few studies by SE in the 1990s on the evolution of optical properties of metals in both solid and liquid forms. Al has been studied by Nguyen et al.¹¹⁴ up to $T = 573$ K. Phase transformation in metals has been measured by Krishnan et al.^{[19](#page-9-0)} using HT real-time laser polarimetry^{[17](#page-9-0)} at temperatures up to *T* = 2500 K. Wetting properties of the Hg-sapphire interface have been characterized using real-time ellipsometry at pressures and temperatures up to 144 MPa and *T* = 1773 K, respectively.[20](#page-9-0) It was found that the highly precise detection of the wetting layer was possible on comparison of the R_p and R_s reflections, along with confirmation of the prewetting transition via a 45° reflection measurement setup using a wedge-shaped sapphire rod. Metallic materials can also be used as diffusion barriers, e.g., against Cu. The atomic layer deposition (ALD) growth of WN, one kind of those materials, has been monitored by J.W. Klaus et al.^{[115](#page-12-0)} to reveal a linear growth rate at $T = 600 \rightarrow 800$ K. Another promising application of refractory metal nitrides is nanophotonics and plasmonics, for which the high-temperature optical properties are essential data. These have been determined for TiN by J.A. Briggs et al.¹¹⁶ for $T = RT \rightarrow 1531$ K.

The temperature dependence of plasmonic materials is also a hot topic. Wu et al.^{[117](#page-12-0)} have shown for $T = RT \rightarrow 873$ K that the plasmonic properties of Ga nanoparticles can be tuned. Thermal stability has been revealed for Ag by H. Reddy et $al,$ ^{[118](#page-12-0)} which is a key factor in many other fields including solar materials.^{[119](#page-12-0)} The melting temperatures and HT phase transitions in Ag have been measured by S.A. Little et $al.120$ $al.120$ up to $T = 773$ K. M. Schmid et al.²² measured the optical properties of Au and Ag at *T* = 1700 K parametrized by Lorentz oscillators. In the case of Au samples, the refractive index (*n*) increases with increasing temperature in the solid as well as in the liquid phase, and the absorption coefficient (*k*) depicts the influence of the cracking up of the debris layers at high temperatures above the melting point on the surface of the liquid metal sample, while upon heating the Au sample below the melting point, the surface of the sample changed

from a smooth surface to a satin-like texture and back to smooth again. For a Ag sample, the experimental value of the *n* decreases with increasing temperature below the melting point.

The oxidation of metal surfaces has been measured by numerous techniques that involve ellipsometry. The group of E.J. Mittemeijer measured in real time the initial stages of oxidation of a range of crystalline metal surfaces. A few studies used real-time ellipsometry alone, such as investigating the growth of ultrathin oxides on Zr^{121} Zr^{121} Zr^{121} or MgAl alloys.^{[122](#page-12-0)} Another way is the combination of different methods either separately, such as the combination of depth profiling Auger electron spectroscopy and SE for the study of Zr oxidation,^{[123](#page-12-0)} passivation of Al surfaces,^{[124](#page-12-0)} and AlZr alloys,^{[125,126](#page-12-0)} or a simultaneous measurement such as the characterization of the surface by real-time SE and X-ray photoelectron spectroscopy (XPS) to investigate the initial stages of the oxidation of Zr ,^{[123](#page-12-0)} Al, 124 124 124 and AlMg^{[127,128](#page-12-0)} (Figure 6). G. He et al.^{[129](#page-12-0)} oxidized Zr in

Figure 6. Film growth by real-time SE (lines) and XPS (symbols) during the oxidation of AlMg alloy. Reprinted with permission from ref [128](#page-12-0). Copyright 2010 Elsevier.

thin-film form, where it was also studied by real-time SE at temperatures of $T = 873 \rightarrow 1173$ K. The critical role of the sample surface in the HT optical properties of pure Fe and steel has been shown by A. Nebojsa et al.^{[130](#page-12-0)} for $T = RT \rightarrow 923$ K. The authors identified the influence of the increased temperature on the magnetic contribution to the electronic interband transitions. Pichon et al.^{[131](#page-12-0)} revealed a complex mechanism during plasma nitridation of Zr at $T = 973 \rightarrow 1173$ K. Oxidation on bare Zr substrates was performed at *T* = 375 \rightarrow 773 K. At lower temperatures (423 K), oxidation stops after the first stage at a limiting thickness that increases with temperature (0.6 nm at 373 K; 0.7 nm at 423 K), while at *T* > 423 K a second stage of much slower, but continued, oxidefilm growth occurs.¹²³ The orientation-dependent oxidation kinetics has also been investigated on Zr by Bakradze et al. 132 132 132 Romanenko et al. 113 used real-time ellipsometry to create diffusion models for the oxidation of Zr.

■ **DETERMINATION OF REFERENCE DIELECTRIC FUNCTIONS**

One of the most important materials of electronics is Si, the optical properties of which have been investigated at high

temperature in both crystalline and amorphous forms. The interband structure in crystalline Si shows three sharp peaks that are blended into a single broad peak in the amorphous samples.¹³³ P. Lautenschlager et al.^{[134](#page-12-0)} ($T = 0 \rightarrow 1000 \text{ K}$), T. Aoki et al.^{[135](#page-12-0)} (*T* = 0 \rightarrow 800 K), G. Vuye et al.^{[136](#page-12-0)} (*T* = 293 \rightarrow 723 K), and J. Sik et al.^{[137](#page-12-0)} (*T* = 300 \rightarrow 1200 K) determined the dispersion of refractive index of Si, whereas the optical properties of amorphous Si have been determined by I. An et al.^{[49](#page-10-0)} during deposition on HT substrates up to $T = 573$ K. A recent review with tabulated optical function of Si for photovoltaic applications has been published by M. A. Green¹³⁸ for $T = 249 \rightarrow 473$ K, which heavily relies on ellipsometric results.

The optical properties and the related electron band structure have been analyzed for a couple of semiconductors by several authors. The group of M. Cardona investigated numerous semiconductors at HT from the middle of the 1980s. The temperature dependence of the band gap of Si and Ge was investigated by Lautenschlager et al.^{[134](#page-12-0)} for $T = 0 \rightarrow$ 1000 K. This work was followed by numerous studies by the same group on the fundamental band structure models of semiconductors and their dependence on the temperature, such as the investigations by Logothetidis et al. on GeS in the range of $T = 0 \rightarrow 1000 \text{ K}^{139}$ $T = 0 \rightarrow 1000 \text{ K}^{139}$ $T = 0 \rightarrow 1000 \text{ K}^{139}$ C.H. Kuo et al.¹⁴⁰ measured the optical constants of GaAs from RT to *T* = 923 K, whereas M. Zorn et al.^{[141](#page-12-0)} measured those of InP for $T = RT \rightarrow 875$ K. B.K. Choi et al.²³ measured the band gap of epitaxial MoSe₂ at HT. D.E. Aspnes et al.^{[142](#page-12-0)} determined the optical properties of Ge at $T = 295 \rightarrow 1073$ K by utilization of a modified photometric polarimeter and ellipsometer system. At *T* = 1073 K, the sample with a dull orange glow was detected via the photomultiplier and started to strongly degenerate due to shrinking of the band gap and thermal excitation, where all structures are broadened and shifted to lower energy by as much as 0.4 eV. Temperature-dependent dielectric functions of InSb have been measured by T.J. Kim et al. 143 in the photon energy range of 0.7−6.5 eV and *T* = 31 → 675 K. The critical point features have also been analyzed utilizing the secondderivative method.[144](#page-12-0)−[146](#page-12-0) The optical properties of AlN films have been investigated at $T = RT \rightarrow 860$ K by Y. Liu et al.^{[147](#page-12-0)}

References for metals have been determined in both liquid and solid forms. The optical properties of seven liquid metals have been measured by J.C. Miller^{[15](#page-9-0)} in an early pioneer work in 1969 up to *T* = 1873 K. Optical properties of Ag have been measured by S. Tripura Sundari et al. 148 148 148 in the photon energy range of 1.4−5.0 eV at *T* = 300 → 650 K, together with the thermo-optic coefficient using real-time SE. Temperaturedependent optical properties of Au have been determined to demonstrate experimentally that, upon optical excitation of the surface plasmon polaritons, a nonthermal electron population appears in the topmost part of the illuminated Au layer.¹⁴⁹

It has also been demonstrated that ellipsometry and polarimetry are capable of measuring the optical properties of materials in the liquid state. It has not only been discussed for the case of liquid metals shown above 150 but also for water. The temperature dependence of the optical properties of water has been determined by G. Abbate et al.^{[151](#page-12-0)} in 1978 revealing an exponential behavior, replacing a previously developed transmission-based method by ellipsometry.¹⁵⁰

As a special application, SE was used as a nonintrusive means of temperature measurement of Si wafer by Kroesen et al.^{[152](#page-12-0)} for $T = 300 \rightarrow 373$ K. The detailed database on the temperature dependence of Si can also be used as a tool for the

determination of the temperature.^{[136](#page-12-0)} This capability has been demonstrated by R.K. Sampson et al.^{[153](#page-12-0)} using Si in the temperature range from RT to 1173 K. The benefit of using shorter wavelengths than the usual 632.8 nm was pointed out, increasing the resolution of the temperature determination.

Reference optical data have been determined and analyzed for many oxide materials. K. Kamaras et al. 154 investigated the LT optical functions of SrTiO at $T = 20 \rightarrow 300$ K. The optical properties of vanadium oxide have been measured by M.S. Thomas et al.^{[155](#page-13-0)} including the phase-transition temperatures. Li et al.^{[156](#page-13-0)} determined the optical properties of PtO_x at $T = RT$ → 973 K. PtO_x is oxidized on heat treatment and then decomposes into Pt at 822 K. Condensation of porous Pt film occurs at *T* = 973 K for the samples with *x* > 1.3, where the surface roughness increases at $T > 822$ K. PtO_x changes to metallic Pt via oxidization, decomposition, and condensation at elevated temperatures. B. Berini et al. 157 measured the reference dielectric function for the conductive oxide $LaNiO₃$ at $T \rightarrow 923$ K. A change in the optical constants as a result of change in temperature was observed for $T = 513 \rightarrow 673$ K.

■ **CONCLUSIONS**

Ellipsometry has been a widely used tool in the real-time characterization and monitoring of HT and LT processes since the 1960s. In the last decades, besides the initial application of superconducting, microelectronic, and semiconducting materials, new fields emerged including plasmonic, organic, and polymer applications. Similar to liquid metals in the early applications, now solid−liquid interfaces have also been investigated with temperature control and study of temperature effects. In many cases, vacuum chambers are replaced by small heat and liquid cells that can be used with table-top ellipsometers. Due to the sensitivity of SE to the crystalline order, the electron structure, and thickness of ultrathin films, an increase in applications is to be expected for 2D, perovskite, plasmonic, bio, and a range of other new materials.

■ **AUTHOR INFORMATION**

Corresponding Author

Peter Petrik − *Institute for Technical Physics and Materials Science, Centre for Energy Research, Budapest 1525, Hungary; Department of Electrical and Electronic Engineering, Institute of Physics, Faculty of Science and Technology, University of Debrecen, Debrecen 4032, Hungary*; ● orcid.org/0000-0002-5374-6952; Email: petrik.peter@ek-cer.hu

Author

Deshabrato Mukherjee − *Institute for Technical Physics and Materials Science, Centre for Energy Research, Budapest 1525, Hungary; Doctoral School of Materials Sciences and Technologies, O*́ *buda University, Budapest 1034, Hungary*

Complete contact information is available at: [https://pubs.acs.org/10.1021/acsomega.2c07438](https://pubs.acs.org/doi/10.1021/acsomega.2c07438?ref=pdf)

Notes

The authors declare no competing financial interest.

■ **ACKNOWLEDGMENTS**

Support from Hungarian NRDI Grant of OTKA No. K131515 is acknowledged. The work in frame of the 20FUN02 "POLight" project has received funding from the EMPIR

program cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation program. Project No. TKP2022-EGA04 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021 funding scheme. Support by the ELKHcloud is also gratefully acknowledged.

■ **REFERENCES**

(1) Drude, P. Ueber Oberflächenschichten. I. Theil. *Annalen der Physik* 1889, *272*, 532.

(2) Drude, P. Ueber [Oberflachenschichten.](https://doi.org/10.1002/andp.18892720409) ̈ II. Theil. *Annalen der Physik* 1889, *272*, 865.

(3) Pogány, B. Ü ber [spezifischen](https://doi.org/10.1002/andp.19163540503) Widerstand und optische Konstanten dünner [Metallschichten.](https://doi.org/10.1002/andp.19163540503) *Annalen der Physik* 1916, *354*, 531.

(4) Rothen, A. Forces [involved](https://doi.org/10.1126/science.102.2653.446) in the reaction between antigen and antibody [molecules.](https://doi.org/10.1126/science.102.2653.446) *Science* 1945, *102*, 446.

(5) Theeten, J. B.; Aspnes, D. E. [Ellipsometry](https://doi.org/10.1146/annurev.ms.11.080181.000525) in Thin Film Analysis. *Annu. Rev. Mater. Sci.* 1981, *11*, 97.

(6) van der Meulen, Y. J.; Hien, N. C. Design and [operation](https://doi.org/10.1364/JOSA.64.000804) of an automated, [high-temperature](https://doi.org/10.1364/JOSA.64.000804) ellipsometer. *JOSA* 1974, *64*, 804.

(7) Lukes,̌ F. [Ellipsometric](https://doi.org/10.1002/pssa.2211070125) studies of natural films on GaAs. *physica status solidi (a)* 1988, *107*, 239.

(8) Aspnes, D. E.; Quinn, W. E.; Gregory, S. [Optical](https://doi.org/10.1063/1.103806) control of growth of Al_xGa_{1-*x*}As by [organometallic](https://doi.org/10.1063/1.103806) molecular beam epitaxy. *Appl. Phys. Lett.* 1990, *57*, 2707.

(9) Aspnes, D. E.; Studna, A. A. High [Precision](https://doi.org/10.1364/AO.14.000220) Scanning [Ellipsometer.](https://doi.org/10.1364/AO.14.000220) *Appl. Opt.* 1975, *14*, 220.

(10) Lee, J.; Rovira, P. I.; An, I.; Collins, R. W. [Rotating](https://doi.org/10.1063/1.1148844)compensator [multichannel](https://doi.org/10.1063/1.1148844) ellipsometry: Applications for real time Stokes vector [spectroscopy](https://doi.org/10.1063/1.1148844) of thin film growth. *Rev. Sci. Instrum.* 1998, *69*, 1800.

(11) Hauge, P. S. Mueller matrix [ellipsometry](https://doi.org/10.1364/JOSA.68.001519) with imperfect [compensators.](https://doi.org/10.1364/JOSA.68.001519) *J. Opt. Soc. Am.* 1978, *68*, 1519.

(12) Collins, R. W.; Koh, J. Dual [rotating-compensator](https://doi.org/10.1364/JOSAA.16.001997) multichannel [ellipsometer:](https://doi.org/10.1364/JOSAA.16.001997) instrument design for real-time Mueller matrix spec[troscopy](https://doi.org/10.1364/JOSAA.16.001997) of surfaces and films. *JOSA A* 1999, *16*, 1997−2006.

(13) Li, J.; Ramanujam, B.; Collins, R. W. Dual [rotating](https://doi.org/10.1016/j.tsf.2010.11.075) compensator [ellipsometry:](https://doi.org/10.1016/j.tsf.2010.11.075) Theory and simulations. *Thin Solid Films* 2011, *519*, 2725.

(14) An, I.; Li, Y. M.; Nguyen, H. V.; Collins, R. W. [Spectroscopic](https://doi.org/10.1063/1.1143280) ellipsometry on the millisecond time scale for real-time [investigations](https://doi.org/10.1063/1.1143280) of thin-film and surface [phenomena.](https://doi.org/10.1063/1.1143280) *Rev. Sci. Instrum.* 1992, *63*, 3842. (15) Miller, J. C. Optical [properties](https://doi.org/10.1080/14786436908228198) of liquid metals at high [temperatures.](https://doi.org/10.1080/14786436908228198) *Philos. Mag.* 1969, *20*, 1115−1132.

(16) Charalampopoulos, T. T.; Stagg, B. J. [High-temperature](https://doi.org/10.1364/AO.33.001930) [ellipsometer](https://doi.org/10.1364/AO.33.001930) system to determine the optical properties of materials. *Appl. Opt.* 1994, *33*, 1930.

(17) Cezairliyan, A.; Krishanan, S.; McClure, J. L. [Simultaneous](https://doi.org/10.1007/BF01438679) [measurements](https://doi.org/10.1007/BF01438679) of normal spectral emissivity by spectral radiometry and laser polarimetry at high temperatures in [millisecond-resolution](https://doi.org/10.1007/BF01438679) pulse-heating experiments: Application to [molybdenum](https://doi.org/10.1007/BF01438679) and tungsten. *Int. J. Thermophys.* 1996, *17*, 1455.

(18) Lehnert, W.; Berger, R.; Schneider, C.; Pfitzner, L.; Ryssel, H.; Stehle, J. L.; Piel, J. P.; Neumann, W. In situ [spectroscopic](https://doi.org/10.1016/S0040-6090(97)00861-4) [ellipsometry](https://doi.org/10.1016/S0040-6090(97)00861-4) for advanced process control in vertical furnaces. *Thin Solid Films* 1998, *313*−*314*, 442.

(19) Krishnan, S.; Basak, D. Application of [High-Speed](https://doi.org/10.1023/A:1022674400392) Laser Polarimetry to Noncontact Detection of Phase [Transformations](https://doi.org/10.1023/A:1022674400392) in Metals and Alloys at High [Temperatures.](https://doi.org/10.1023/A:1022674400392) *Int. J. Thermophys.* 1999, *20*, 1811.

(20) Ohmasa, Y.; Kajihara, Y.; Kohno, H.; Hiejima, Y.; Yao, M. Wetting phenomena at [mercury-sapphire](https://doi.org/10.1016/S0022-3093(99)00118-0) interface under high [temperature](https://doi.org/10.1016/S0022-3093(99)00118-0) and pressure. *J. Non-Cryst. Solids* 1999, *250*−*252*, 209.

(21) Sheldon, R. I.; Rinehart, G. H.; Krishnan, S.; Nordine, P. C. The optical [properties](https://doi.org/10.1016/S0921-5107(00)00553-5) of liquid cerium at 632.8 nm. *Materials Science and Engineering: B* 2001, *79*, 113.

(22) Schmid, M.; Zehnder, S.; Schwaller, P.; Neuenschwander, B.; Zürcher, J.; Hunziker, U. Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining. In *Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXII;* SPIE, 2013; p 147.

(23) Choi, B. K.; Kim, M.; Jung, K.-H.; Kim, J.; Yu, K.-S.; Chang, Y. J. [Temperature](https://doi.org/10.1186/s11671-017-2266-7) dependence of band gap in $Mose₂$ grown by [molecular](https://doi.org/10.1186/s11671-017-2266-7) beam epitaxy. *Nanoscale Res. Lett.* 2017, *12*, 492.

(24) Bjørneklett, A.; Borg, A.; Hunderi, O.; Julsrud, S. [Optical](https://doi.org/10.1016/0038-1098(84)90175-3) properties of YBaCuO, an [ellipsometric](https://doi.org/10.1016/0038-1098(84)90175-3) study. *Solid State Commun.* 1988, *67*, 525.

(25) BäckstrÖ m, J.; Budelmann, D.; Rauer, R.; Rübhausen, M.; Rodríguez, H.; Adrian, H. Optical properties of YBa₂Cu₃O_{7−*δ*} films: [High-energy](https://doi.org/10.1103/PhysRevB.70.174502) correlations and metallicity. *Phys. Rev. B* 2004, *70*, 174502.

(26) Henn, R.; Bernhard, C.; Wittlin, A.; Cardona, M.; Uchida, S. Far infrared [ellipsometry](https://doi.org/10.1016/S0040-6090(97)00970-X) using synchrotron radiation: the out-of-plane [response](https://doi.org/10.1016/S0040-6090(97)00970-X) of La2[−]*x*Sr*x*CuO4. *Thin Solid Films* 1998, *313*−*314*, 642.

(27) Brown, M.; Uran, S.; Law, B.; Marschand, L.; Lurio, L.; Kuzmenko, I.; Gog, T. [Ultra-stable](https://doi.org/10.1063/1.1771496) oven designed for x-ray [reflectometry](https://doi.org/10.1063/1.1771496) and ellipsometry studies of liquid surfaces. *Rev. Sci. Instrum.* 2004, *75*, 2536.

(28) Zapien, J.; Collins, R.; Messier, R. Real-time [spectroscopic](https://doi.org/10.1016/S0040-6090(99)00916-5) [ellipsometry](https://doi.org/10.1016/S0040-6090(99)00916-5) from 1.5 to 6.5 eV. *Thin Solid Films* 2000, *364*, 16.

(29) Petrik, P.; Schneider, C. In situ [spectroscopic](https://doi.org/10.1016/S0042-207X(01)00139-7) ellipsometry in vertical furnace: monitoring and control of [high-temperature](https://doi.org/10.1016/S0042-207X(01)00139-7) [processes.](https://doi.org/10.1016/S0042-207X(01)00139-7) *Vacuum* 2001, *61*, 427.

(30) Eitzinger, C.; Fikar, J.; Forsich, C.; Humlíček, J.; Krüger, A.; Kullmer, R.; Laimer, J.; Lingenhöle, E.; Lingenhöle, K.; Mühlberger, M.; Müller, T.; Störi, H.; Wielsch, U. [Spectroscopic](https://doi.org/10.4028/www.scientific.net/MSF.518.423) Ellipsometry as a Tool for On-Line [Monitoring](https://doi.org/10.4028/www.scientific.net/MSF.518.423) and Control of Surface Treatment [Processes.](https://doi.org/10.4028/www.scientific.net/MSF.518.423) *Mater. Sci. Forum* 2006, *518*, 423−430.

(31) Humlíček, J. In-situ [spectroscopic](https://doi.org/10.1002/pssa.200777798) ellipsometry: optimization of monitoring and [closed-loop-control](https://doi.org/10.1002/pssa.200777798) procedures. *physica status solidi (a)* 2008, *205*, 793−796.

(32) Yamamoto, S.; Sugai, S.; Matsukawa, Y.; Sengoku, A.; Tobisaka, H.; Hattori, T.; Oda, S. In Situ Growth [Monitoring](https://doi.org/10.1143/JJAP.38.L632) During [Metalorganic](https://doi.org/10.1143/JJAP.38.L632) Chemical Vapor Deposition of YBa 2Cu 3Ox Thin Films by [Spectroscopic](https://doi.org/10.1143/JJAP.38.L632) Ellipsometry. *Jpn. J. Appl. Phys.* 1999, *38*, L632.

(33) Humlíěk, J.; Thomsen, C.; Cardona, M.; Kamarás, K.; Reedyk, M.; Kelly, M. K.; Berberich, P. [Far-infrared](https://doi.org/10.1016/0921-4534(94)90127-9) response of free carriers in YBA2Cu3O7 from ellipsometric [measurements.](https://doi.org/10.1016/0921-4534(94)90127-9) *Physica C: Superconductivity* 1994, *222*, 166.

(34) Boris, A. V.; Kovaleva, N. N.; Dolgov, O. V.; Holden, T.; Lin, C. T.; Keimer, B.; Bernhard, C. [In-Plane](https://doi.org/10.1126/science.1095532) Spectral Weight Shift of Charge Carriers in [YBa2Cu3O6.9.](https://doi.org/10.1126/science.1095532) *Science* 2004, *304*, 708.

(35) Boris, A. V.; Munzar, D.; Kovaleva, N. N.; Liang, B.; Lin, C. T.; Dubroka, A.; Pimenov, A. V.; Holden, T.; Keimer, B.; Mathis, Y.-L.; Bernhard, C. Josephson Plasma [Resonance](https://doi.org/10.1103/PhysRevLett.89.277001) and Phonon Anomalies in Trilayer Bi₂Sr₂Ca₂Cu₃O₁₀. *Phys. Rev. Lett.* **2002**, 89, 277001.

(36) Giannetti, C.; Cilento, F.; Conte, S. D.; Coslovich, G.; Ferrini, G.; Molegraaf, H.; Raichle, M.; Liang, R.; Eisaki, H.; Greven, M.; Damascelli, A.; van der Marel, D.; Parmigiani, F. [Revealing](https://doi.org/10.1038/ncomms1354) the highenergy electronic excitations underlying the onset of [high-temperature](https://doi.org/10.1038/ncomms1354) [superconductivity](https://doi.org/10.1038/ncomms1354) in cuprates. *Nat. Commun.* 2011, *2*, 353.

(37) Li, Y.; Le Tacon, M.; Matiks, Y.; Boris, A. V.; Loew, T.; Lin, C. T.; Chen, L.; Chan, M. K.; Dorow, C.; Ji, L.; Barišić, N.; Zhao, X.; Greven, M.; Keimer, B. [Doping-Dependent](https://doi.org/10.1103/PhysRevLett.111.187001) Photon Scattering Resonance in the Model [High-Temperature](https://doi.org/10.1103/PhysRevLett.111.187001) Superconductor HgBa₂CuO_{4+δ} Revealed by Raman Scattering and Optical Ellipsom[etry.](https://doi.org/10.1103/PhysRevLett.111.187001) *Phys. Rev. Lett.* 2013, *111*, 187001.

(38) Aleshchenko, Y. A.; Muratov, A. V.; Ummarino, G. A.; Richter, S.; Anna Thomas, A.; Hühne, R. Optical and hidden [transport](https://doi.org/10.1088/1361-648X/abbc33) properties of BaFe_{1.91}Ni_{0.09}As₂ film. *J. Phys.: Condens. Matter* 2021, 33, 045601.

(39) Irene, E. A.; van der Meulen, Y. J. Silicon [Oxidation](https://doi.org/10.1149/1.2133080) Studies: [Analysis](https://doi.org/10.1149/1.2133080) of SiO2 Film Growth Data. *J. Electrochem. Soc.* 1976, *123*, 1380.

(40) Irene, E. A.; Ghez, R. Silicon [Oxidation](https://doi.org/10.1149/1.2133151) Studies: The Role of [H2O.](https://doi.org/10.1149/1.2133151) *J. Electrochem. Soc.* 1977, *124*, 1757.

(41) Irene, E. A. Silicon Oxidation Studies: [Measurement](https://doi.org/10.1149/1.2123870) of the [Diffusion](https://doi.org/10.1149/1.2123870) of Oxidant in SiO₂ Films. *J. Electrochem. Soc.* 1982, 129, 413.

(42) Massoud, H. Z.; Plummer, J. D.; Irene, E. A. [Thermal](https://doi.org/10.1149/1.2114204) Oxidation of Silicon in Dry Oxygen: Accurate [Determination](https://doi.org/10.1149/1.2114204) of the Kinetic Rate [Constants.](https://doi.org/10.1149/1.2114204) *J. Electrochem. Soc.* 1985, *132*, 1745.

(43) Ravindra, N. M.; Narayan, J.; Fathy, D.; Srivastava, J. K.; Irene, E. A. Silicon [oxidation](https://doi.org/10.1557/JMR.1987.0216) and Si-SiO₂ interface of thin oxides. *J. Mater. Res.* 1987, *2*, 216.

(44) Frampton, R. D.; Irene, E. A.; d'Heurle, F. M. A [study](https://doi.org/10.1063/1.339383) of the [oxidation](https://doi.org/10.1063/1.339383) of selected metal silicides. *J. Appl. Phys.* 1987, *62*, 10.

(45) Osipov, A.; Patzner, P.; Hess, P. Kinetics of [laser-induced](https://doi.org/10.1007/s00339-005-3415-x) oxidation of silicon near room [temperature.](https://doi.org/10.1007/s00339-005-3415-x) *Appl. Phys. A: Mater. Sci. Process.* 2006, *82*, 275.

(46) Antoine, A. M.; Drevillon, B.; Roca i Cabarrocas, P. [In-situ](https://doi.org/10.1063/1.337924) investigation of the growth of rf [glow-discharge](https://doi.org/10.1063/1.337924) deposited amorphous [germanium](https://doi.org/10.1063/1.337924) and silicon films. *J. Appl. Phys.* 1987, *61*, 2501.

(47) Kumar, S.; Drevillon, B. A real time [ellipsometry](https://doi.org/10.1063/1.342694) study of the growth of amorphous silicon on [transparent](https://doi.org/10.1063/1.342694) conducting oxides. *J. Appl. Phys.* 1989, *65*, 3023−3034.

(48) An, I.; Nguyen, H. V.; Nguyen, N. V.; Collins, R. W. [Microstructural](https://doi.org/10.1103/PhysRevLett.65.2274) evolution of ultrathin amorphous silicon films by realtime [spectroscopic](https://doi.org/10.1103/PhysRevLett.65.2274) ellipsometry. *Phys. Rev. Lett.* 1990, *65*, 2274.

(49) An, I.; Li, Y. M.; Wronski, C. R.; Nguyen, H. V.; Collins, R. W. In situ [determination](https://doi.org/10.1063/1.105947) of dielectric functions and optical gap of ultrathin amorphous silicon by real time [spectroscopic](https://doi.org/10.1063/1.105947) ellipsometry. *Appl. Phys. Lett.* 1991, *59*, 2543.

(50) Wakagi, M.; Fujiwara, H.; Collins, R. W. Real [time](https://doi.org/10.1016/S0040-6090(97)00865-1) spectroscopic ellipsometry for [characterization](https://doi.org/10.1016/S0040-6090(97)00865-1) of the crystallization of [amorphous](https://doi.org/10.1016/S0040-6090(97)00865-1) silicon by thermal annealing. *Thin Solid Films* 1998, *313*−*314*, 464.

(51) Nguyen, H. V.; An, I.; Collins, R. W.; Lu, Y.; Wakagi, M.; Wronski, C. R. Preparation of ultrathin [microcrystalline](https://doi.org/10.1063/1.113024) silicon layers by atomic hydrogen etching of [amorphous](https://doi.org/10.1063/1.113024) silicon and end-point detection by real time [spectroellipsometry.](https://doi.org/10.1063/1.113024) *Appl. Phys. Lett.* 1994, *65*, 3335.

(52) Hu, Y. Z.; Diehl, D. J.; Liu, Q.; Zhao, C. Y.; Irene, E. A. *In [situ](https://doi.org/10.1063/1.114104)* real time [measurement](https://doi.org/10.1063/1.114104) of the incubation time for silicon nucleation on silicon dioxide in a rapid thermal [process.](https://doi.org/10.1063/1.114104) *Appl. Phys. Lett.* 1995, *66*, 700.

(53) von Keudell, A.; Schwarz-Selinger, T.; Meier, M.; Jacob, W. Direct [identification](https://doi.org/10.1063/1.125858) of the synergism between methyl radicals and atomic hydrogen during growth of amorphous [hydrogenated](https://doi.org/10.1063/1.125858) carbon [films.](https://doi.org/10.1063/1.125858) *Appl. Phys. Lett.* 2000, *76*, 676.

(54) Hadjadj, A.; Djellouli, G.; Jbara, O. *In situ* [ellipsometry](https://doi.org/10.1063/1.3517495) study of the kinetics of hydrogen plasma [interaction](https://doi.org/10.1063/1.3517495) with a-Si:H thin films: A particular [temperature-dependence.](https://doi.org/10.1063/1.3517495) *Appl. Phys. Lett.* 2010, *97*, 211906.

(55) Basa, C.; Tinani, M.; Irene, E. A. Atomic force [microscopy](https://doi.org/10.1116/1.581368) and [ellipsometry](https://doi.org/10.1116/1.581368) study of the nucleation and growth mechanism of [polycrystalline](https://doi.org/10.1116/1.581368) silicon films on silicon dioxide. *Journal of Vacuum Science & Technology A* 1998, *16*, 2466.

(56) Hu, Y. Z.; Zhao, C. Y.; Basa, C.; Gao, W. X.; Irene, E. A. [Effects](https://doi.org/10.1063/1.118148) of hydrogen surface [pretreatment](https://doi.org/10.1063/1.118148) of silicon dioxide on the nucleation and surface roughness of [polycrystalline](https://doi.org/10.1063/1.118148) silicon films prepared by rapid thermal chemical vapor [deposition.](https://doi.org/10.1063/1.118148) *Appl. Phys. Lett.* 1996, *69*, 485.

(57) Gupta, S.; Weiner, B. R.; Morell, G. Interplay of [hydrogen](https://doi.org/10.1116/1.2056552) and deposition [temperature](https://doi.org/10.1116/1.2056552) in optical properties of hot-wire deposited a-Si:H Films: Ex situ [spectroscopic](https://doi.org/10.1116/1.2056552) ellipsometry studies. *Journal of Vacuum Science & Technology A* 2005, *23*, 1668.

(58) Petrik, P.; Lehnert, W.; Schneider, C.; Fried, M.; Lohner, T.; Gyulai, J.; Ryssel, H. In situ [spectroscopic](https://doi.org/10.1016/S0040-6090(99)00935-9) ellipsometry for the [characterization](https://doi.org/10.1016/S0040-6090(99)00935-9) of polysilicon formation inside a vertical furnace. *Thin Solid Films* 2000, *364*, 150.

(59) Petrik, P.; Lehnert, W.; Schneider, C.; Lohner, T.; Fried, M.; Gyulai, J.; Ryssel, H. In situ measurement of the [crystallization](https://doi.org/10.1016/S0040-6090(00)01792-2) of amorphous silicon in a vertical furnace using [spectroscopic](https://doi.org/10.1016/S0040-6090(00)01792-2) [ellipsometry.](https://doi.org/10.1016/S0040-6090(00)01792-2) *Thin Solid Films* 2001, *383*, 235.

(60) Yi, X.; Wang, Z.; Dong, F.; Cheng, S.; Wang, J.; Liu, C.; Li, J.; Wang, S.; Yang, T.; Su, W.-S.; Chen, L. [Structural](https://doi.org/10.1088/0022-3727/49/15/155105) and optical properties of Ge₆₀Te₄₀: [experimental](https://doi.org/10.1088/0022-3727/49/15/155105) and theoretical verification. *J*. *Phys. D: Appl. Phys.* 2016, *49*, 155105.

(61) Fujiwara, H.; Koh, J.; Rovira, P. I.; Collins, R. W. [Assessment](https://doi.org/10.1103/PhysRevB.61.10832) of [effective-medium](https://doi.org/10.1103/PhysRevB.61.10832) theories in the analysis of nucleation and microscopic surface roughness evolution for [semiconductor](https://doi.org/10.1103/PhysRevB.61.10832) thin films. *Phys. Rev. B* 2000, *61*, 10832.

(62) Koh, J.; Lee, Y.; Fujiwara, H.; Wronski, C. R.; Collins, R. W. Optimization of [hydrogenated](https://doi.org/10.1063/1.122194) amorphous silicon p-i-n solar cells with two-step i layers guided by real-time [spectroscopic](https://doi.org/10.1063/1.122194) ellipsometry. *Appl. Phys. Lett.* 1998, *73*, 1526.

(63) Levi, D. H.; Teplin, C. W.; Iwaniczko, E.; Yan, Y.; Wang, T. H.; Branz, H. M. Real-time [spectroscopic](https://doi.org/10.1116/1.2167083) ellipsometry studies of the growth of amorphous and epitaxial silicon for [photovoltaic](https://doi.org/10.1116/1.2167083) [applications.](https://doi.org/10.1116/1.2167083) *Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films* 2006, *24*, 1676.

(64) Podraza, N.; Li, J.; Wronski, C.; Dickey, E.; Horn, M.; Collins, R. Analysis of Si_{1−x}Ge_x:H thin films with graded [composition](https://doi.org/10.1002/pssa.200777876) and structure by real time [spectroscopic](https://doi.org/10.1002/pssa.200777876) ellipsometry. *Physica Status Solidi (A) Applications and Materials Science* 2008, *205*, 892.

(65) Li, J.; Podraza, N. J.; Collins, R. W. Real time [spectroscopic](https://doi.org/10.1002/pssa.200777892) [ellipsometry](https://doi.org/10.1002/pssa.200777892) of sputtered CdTe, CdS, and CdTe1[−]*^x* S*^x* thin films for [photovoltaic](https://doi.org/10.1002/pssa.200777892) applications. *physica status solidi (a)* 2008, *205*, 901.

(66) Likhachev, D. V. On the [optimization](https://doi.org/10.1063/5.0035456) of knot allocation for Bspline [parameterization](https://doi.org/10.1063/5.0035456) of the dielectric function in spectroscopic [ellipsometry](https://doi.org/10.1063/5.0035456) data analysis. *J. Appl. Phys.* 2021, *129*, 034903.

(67) Johs, B.; Herzinger, C. M.; Dinan, J. H.; Cornfeld, A.; Benson, J. D. [Development](https://doi.org/10.1016/S0040-6090(97)00800-6) of a parametric optical constant model for Hg1[−]*x*Cd*x*Te for control of composition by [spectroscopic](https://doi.org/10.1016/S0040-6090(97)00800-6) ellipsometry during MBE [growth.](https://doi.org/10.1016/S0040-6090(97)00800-6) *Thin Solid Films* 1998, *313*−*314*, 137.

(68) Boukheddaden, K.; Loutete-Dangui, E.; Koubaa, M.; Eypert, C. First-order phase transitions of [spin-crossover](https://doi.org/10.1002/pssc.200777877) and charge transfer solids probed by [spectroscopic](https://doi.org/10.1002/pssc.200777877) ellipsometry. *physica status solidi c* 2008, *5*, 1003.

(69) Wang, Z. M.; Wang, J. Y.; Jeurgens, L. P. H.; Mittemeijer, E. J. Tailoring the Ultrathin Al-Induced [Crystallization](https://doi.org/10.1103/PhysRevLett.100.125503) Temperature of Amorphous Si by Application of Interface [Thermodynamics.](https://doi.org/10.1103/PhysRevLett.100.125503) *Phys. Rev. Lett.* 2008, *100*, 125503.

(70) Yakovlev, V. A.; Liu, Q.; Irene, E. A. [Spectroscopic](https://doi.org/10.1116/1.578166) immersion [ellipsometry](https://doi.org/10.1116/1.578166) study of the mechanism of Si/SiO₂ interface annealing. *J. Vac. Sci. Technol.* 1992, *10*, 427.

(71) Tinani, M.; Mueller, A.; Gao, Y.; Irene, E. A.; Hu, Y. Z.; Tay, S. P. In situ real-time studies of nickel silicide phase [formation.](https://doi.org/10.1116/1.1347046) *Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures* 2001, *19*, 376.

(72) Boukheddaden, K.; Loutete-Dangui, E. D.; Codjovi, E.; Castro, M.; Rodriguéz-Velamazán, J. A.; Ohkoshi, S.; Tokoro, H.; Koubaa, M.; Abid, Y.; Varret, F. [Experimental](https://doi.org/10.1063/1.3528239) access to elastic and thermodynamic properties of [RbMnFe\(CN\)6.](https://doi.org/10.1063/1.3528239) *J. Appl. Phys.* 2011, *109*, 013520.

(73) Seo, Y. K.; Chung, J. S.; Lee, Y. S.; Choi, E. J.; Cheong, B. [Spectroscopic](https://doi.org/10.1016/j.tsf.2011.12.043) investigation on phase transitions for Ge2Sb2Te5 in a wide photon energy and high [temperature](https://doi.org/10.1016/j.tsf.2011.12.043) region. *Thin Solid Films* 2012, *520*, 3458.

(74) Ide, K.; Nomura, K.; Hiramatsu, H.; Kamiya, T.; Hosono, H. Structural relaxation in amorphous oxide [semiconductor,](https://doi.org/10.1063/1.3699372) a-In-Ga-Zn-[O.](https://doi.org/10.1063/1.3699372) *J. Appl. Phys.* 2012, *111*, 073513.

(75) Rampelberg, G.; Deduytsche, D.; De Schutter, B.; Premkumar, P. A.; Toeller, M.; Schaekers, M.; Martens, K.; Radu, I.; Detavernier, C. Crystallization and [semiconductor-metal](https://doi.org/10.1016/j.tsf.2013.10.039) switching behavior of thin VO2 layers grown by atomic layer [deposition.](https://doi.org/10.1016/j.tsf.2013.10.039) *Thin Solid Films* 2014, *550*, 59.

(76) Sun, J.; Pribil, G. K. Analyzing optical [properties](https://doi.org/10.1016/j.apsusc.2016.09.125) of thin vanadium oxide films through [semiconductor-to-metal](https://doi.org/10.1016/j.apsusc.2016.09.125) phase transition using [spectroscopic](https://doi.org/10.1016/j.apsusc.2016.09.125) ellipsometry. *Appl. Surf. Sci.* 2017, *421*, 819.

(77) Pósa, L.; Molnár, G.; Kalas, B.; Baji, Z.; Czigány, Z.; Petrik, P.; Volk, J. A Rational [Fabrication](https://doi.org/10.3390/nano11010212) Method for Low Switching-[Temperature](https://doi.org/10.3390/nano11010212) VO2. *Nanomaterials* 2021, *11*, 212.

(78) Bin Anooz, S.; Wang, Y.; Petrik, P.; de Oliveira Guimaraes, M.; Schmidbauer, M.; Schwarzkopf, J. High [temperature](https://doi.org/10.1063/5.0087959) phase transitions in [NaNbO3](https://doi.org/10.1063/5.0087959) epitaxial films grown under tensile lattice strain. *Appl. Phys. Lett.* 2022, *120*, 202901.

(79) Hrabovsky, D.; Berini, B.; Fouchet, A.; Aureau, D.; Keller, N.; Etcheberry, A.; Dumont, Y. [Strontium](https://doi.org/10.1016/j.apsusc.2016.01.175) titanate (100) surfaces monitoring by high temperature in situ [ellipsometry.](https://doi.org/10.1016/j.apsusc.2016.01.175) *Appl. Surf. Sci.* 2016, *367*, 307.

(80) Andrieu, S.; d'Avitaya, F. Antimony [adsorption](https://doi.org/10.1016/0039-6028(89)90213-6) on silicon (111) analyzed in real time by in situ [ellipsometry.](https://doi.org/10.1016/0039-6028(89)90213-6) *Surf. Sci.* 1989, *219*, 277.

(81) Yao, H.; Snyder, P. G. In situ [ellipsometric](https://doi.org/10.1016/0040-6090(91)90436-2) studies of optical and surface properties of GaAs(100) at elevated [temperatures.](https://doi.org/10.1016/0040-6090(91)90436-2) *Thin Solid Films* 1991, *206*, 283.

(82) Hu, Y. Z.; Conrad, K. A.; Li, M.; Andrews, J. W.; Simko, J. P.; Irene, E. A. Studies of [hydrogen](https://doi.org/10.1063/1.104596) ion beam cleaning of silicon dioxide from silicon using *in situ* [spectroscopic](https://doi.org/10.1063/1.104596) ellipsometry and x-ray [photoelectron](https://doi.org/10.1063/1.104596) spectroscopy. *Appl. Phys. Lett.* 1991, *58*, 589.

(83) Hu, Y. Z.; Li, M.; Andrews, J. W.; Conrad, K. A.; Irene, E. A. [A](https://doi.org/10.1149/1.2221167) [Comparison](https://doi.org/10.1149/1.2221167) of Argon and Hydrogen Ion Etching and Damage in the Si - SiO2 [System.](https://doi.org/10.1149/1.2221167) *J. Electrochem. Soc.* 1992, *139*, 2022.

(84) Zettler, J.; Wethkamp, T.; Zorn, M.; Pristovsek, M.; Meyne, C.; Ploska, K.; Richter, W. Growth [oscillations](https://doi.org/10.1063/1.115382) with monolayer periodicity monitored by ellipsometry during [metalorganic](https://doi.org/10.1063/1.115382) vapor phase epitaxy of [GaAs\(001\).](https://doi.org/10.1063/1.115382) *Appl. Phys. Lett.* 1995, *67*, 3783.

(85) Droopad, R. [Determination](https://doi.org/10.1116/1.587046) of molecular beam epitaxial growth parameters by [ellipsometry.](https://doi.org/10.1116/1.587046) *Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures* 1994, *12*, 1211.

(86) Aspnes, D. E.; Quinn, W. E.; Tamargo, M. C.; Pudensi, M. A. A.; Schwarz, S. A.; Brasil, M. J. S. P.; Nahory, R. E.; Gregory, S. Growth of Al_xGa_{1−x}As [parabolic](https://doi.org/10.1063/1.107419) quantum wells by real-time feedback control of [composition.](https://doi.org/10.1063/1.107419) *Appl. Phys. Lett.* 1992, *60*, 1244.

(87) Hartley, R.; Folkard, M.; Carr, D.; Orders, P.; Rees, D.; Varga, I.; Kumar, V.; Shen, G.; Steele, T.; Buskes, H.; Lee, J. [Ellipsometry:](https://doi.org/10.1016/0022-0248(92)90738-5) a technique for real time monitoring and analysis of [MBE-grown](https://doi.org/10.1016/0022-0248(92)90738-5) CdHgTe and [CdTe/HgTe](https://doi.org/10.1016/0022-0248(92)90738-5) superlattices. *J. Cryst. Growth* 1992, *117*, 166.

(88) Steimetz, E.; Schienle, F.; Zettler, J.-T.; Richter, W. [Stranski-](https://doi.org/10.1016/S0022-0248(96)00630-6)Krastanov formation of InAs quantum dots [monitored](https://doi.org/10.1016/S0022-0248(96)00630-6) during growth by reflectance anisotropy spectroscopy and [spectroscopic](https://doi.org/10.1016/S0022-0248(96)00630-6) ellipsom[etry.](https://doi.org/10.1016/S0022-0248(96)00630-6) *J. Cryst. Growth* 1997, *170*, 208.

(89) Kussmaul, A.; Vernon, S.; Colter, P. C.; Sudharsanan, R.; Mastrovito, A.; Linden, K. J.; Karam, N. H.; Karam, N. H.; Warnick, S. C.; Dahleh, M. A. In-situ [monitoring](https://doi.org/10.1007/s11664-997-0011-1) and control for MOCVD growth of AlGaAs and [InGaAs.](https://doi.org/10.1007/s11664-997-0011-1) *J. Electron. Mater.* 1997, *26*, 1145.

(90) Gallas, B.; Fisson, S.; Brunet-Bruneau, A.; Vuye, G.; Rivory, J. [Ellipsometric](https://doi.org/10.1016/S0040-6090(00)01383-3) investigation of the $Si/SiO₂$ interface formation for [application](https://doi.org/10.1016/S0040-6090(00)01383-3) to highly reflective dielectric mirrors. *Thin Solid Films* 2000, *377*−*378*, 62.

(91) Deshmukh, S. C. [Investigation](https://doi.org/10.1116/1.588707) of low temperature $SiO₂$ plasma enhanced chemical vapor [deposition.](https://doi.org/10.1116/1.588707) *Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures* 1996, *14*, 738.

(92) Qian, Y.; Liang, Y.; Luo, X.; He, K.; Sun, W.; Lin, H.-H.; Talwar, D. N.; Chan, T.-S.; Ferguson, I.; Wan, L.; Yang, Q.; Feng, Z. C. Synchrotron Radiation X-Ray Absorption [Spectroscopy](https://doi.org/10.1155/2018/5016435) and [Spectroscopic](https://doi.org/10.1155/2018/5016435) Ellipsometry Studies of InSb Thin Films on GaAs Grown by [Metalorganic](https://doi.org/10.1155/2018/5016435) Chemical Vapor Deposition. *Advances in Materials Science and Engineering* 2018, *2018*, No. e5016435.

(93) Deyneka, A.; Hubicka, Z.; Cada, M.; Suchaneck, G.; Savinov, M.; Jastrabik, L.; Gerlach, G. High [Temperature](https://doi.org/10.1080/10584580490459549) Effects in Li-Doped ZnO Thin [Films.](https://doi.org/10.1080/10584580490459549) *Integr. Ferroelectr.* 2004, *63*, 209.

(94) Koubaa, M.; Dammak, T.; Garrot, D.; Castro, M.; Codjovi, E.; Mlayah, A.; Abid, Y.; Boukheddaden, K. [Thermally-induced](https://doi.org/10.1063/1.3690920) firstorder phase transition in the $(FC_6H_4C_2H_4NH_3)_2[PbI_4]$ photoluminescent [organic-inorganic](https://doi.org/10.1063/1.3690920) material. *J. Appl. Phys.* 2012, *111*, 053521.

(95) Rössle, M.; Wang, C. N.; Marsik, P.; Yazdi-Rizi, M.; Kim, K. W.; Dubroka, A.; Marozau, I.; Schneider, C. W.; Humlíček, J.; Baeriswyl, D.; Bernhard, C. Optical probe of [ferroelectric](https://doi.org/10.1103/PhysRevB.88.104110) order in bulk and thin-film [perovskite](https://doi.org/10.1103/PhysRevB.88.104110) titanates. *Phys. Rev. B* 2013, *88*, 104110. (96) Karaki, T.; Kobayashi, M.; Song, S.; Fujii, T.; Adachi, M.; Ohashi, Y.; Kushibiki, J.-i. Growth and [high-temperature](https://doi.org/10.7567/JJAP.54.10ND07) characterization of [langasite-family](https://doi.org/10.7567/JJAP.54.10ND07) Ca₃NbGa₃-xAl_xSi₂O₁₄ single crystals. *Jpn. J. Appl. Phys.* 2015, *54*, 10ND07.

(97) Collins, R.; Cong, Y.; Nguyen, H.; An, I.; Vedam, K.; Badzian, T.; Messier, R. Real time spectroscopic ellipsometry [characterization](https://doi.org/10.1063/1.350544) of the nucleation of diamond by [filament-assisted](https://doi.org/10.1063/1.350544) chemical vapor [deposition.](https://doi.org/10.1063/1.350544) *J. Appl. Phys.* 1992, *71*, 5287.

(98) Trolier-McKinstry, S.; Chen, J.; Vedam, K.; Newnham, R. E. *[In](https://doi.org/10.1111/j.1151-2916.1995.tb08908.x) Situ* Annealing Studies of Sol-Gel [Ferroelectric](https://doi.org/10.1111/j.1151-2916.1995.tb08908.x) Thin Films by [Spectroscopic](https://doi.org/10.1111/j.1151-2916.1995.tb08908.x) Ellipsometry. *J. Am. Ceram. Soc.* 1995, *78*, 1907.

(99) Yukioka, S.; Inoue, T. [Ellipsometric](https://doi.org/10.1016/0032-3861(94)90009-4) analysis on the in situ reactive [compatibilization](https://doi.org/10.1016/0032-3861(94)90009-4) of immiscible polymer blends. *Polymer* 1994, *35*, 1182−1186.

(100) Apitz, D.; Svanberg, C.; Jespersen, K. G.; Pedersen, T. G.; Johansen, P. M. [Orientational](https://doi.org/10.1063/1.1621725) dynamics in dye-doped organic electrooptic [materials.](https://doi.org/10.1063/1.1621725) *J. Appl. Phys.* 2003, *94*, 6263.

(101) Bonaventurová Zrzavecká, O.; Nebojsa, A.; Navrátil, K.; Nešpůrek, S.; Humliček, J. [Temperature](https://doi.org/10.1016/j.tsf.2004.01.012) dependence of ellipsometric spectra of [poly\(methyl-phenylsilane\).](https://doi.org/10.1016/j.tsf.2004.01.012) *Thin Solid Films* 2004, *455*− *456*, 278−282.

(102) Feng, Z. V.; Granick, S.; Gewirth, A. A. [Modification](https://doi.org/10.1021/la049030w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of a Supported Lipid Bilayer by [Polyelectrolyte](https://doi.org/10.1021/la049030w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Adsorption. *Langmuir* 2004, *20*, 8796.

(103) Santos, O.; Nylander, T.; Schillén, K.; Paulsson, M.; Trägardh, ̊ C. Effect of surface and bulk solution properties on the [adsorption](https://doi.org/10.1016/j.jfoodeng.2005.01.018) of whey protein onto steel surfaces at high [temperature.](https://doi.org/10.1016/j.jfoodeng.2005.01.018) *Journal of Food Engineering* 2006, *73*, 174.

(104) Demirel, G.; Rzaev, Z.; Patir, S.; Pişkin, E. [Poly\(N](https://doi.org/10.1166/jnn.2009.388)[isopropylacrylamide\)](https://doi.org/10.1166/jnn.2009.388) Layers on Silicon Wafers as Smart DNA-Sensor [Platforms.](https://doi.org/10.1166/jnn.2009.388) *J. Nanosci. Nanotechnol.* 2009, *9*, 1865−1871.

(105) Malgas, G. F.; Motaung, D. E.; Arendse, C. J. [Temperature](https://doi.org/10.1007/s10853-012-6278-5)[dependence](https://doi.org/10.1007/s10853-012-6278-5) on the optical properties and the phase separation of polymer−[fullerene](https://doi.org/10.1007/s10853-012-6278-5) thin films. *J. Mater. Sci.* 2012, *47*, 4282.

(106) Clough, A.; Peng, D.; Yang, Z.; Tsui, O. K. C. Glass [Transition](https://doi.org/10.1021/ma102918s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Temperature](https://doi.org/10.1021/ma102918s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Polymer Films That Slip. *Macromolecules* 2011, *44*, 1649−1653.

(107) Ogieglo, W.; Upadhyaya, L.; Wessling, M.; Nijmeijer, A.; Benes, N. E. Effects of time, [temperature,](https://doi.org/10.1016/j.memsci.2014.04.013) and pressure in the vicinity of the glass [transition](https://doi.org/10.1016/j.memsci.2014.04.013) of a swollen polymer. *J. Membr. Sci.* 2014, *464*, 80.

(108) Murdoch, T. J.; Humphreys, B. A.; Willott, J. D.; Prescott, S. W.; Nelson, A.; Webber, G. B.; Wanless, E. J. [Enhanced](https://doi.org/10.1016/j.jcis.2016.11.044) specific ion effects in ethylene glycol-based [thermoresponsive](https://doi.org/10.1016/j.jcis.2016.11.044) polymer brushes. *J. Colloid Interface Sci.* 2017, *490*, 869−878.

(109) Humphreys, B. A.; Willott, J. D.; Murdoch, T. J.; Webber, G. B.; Wanless, E. J. Specific ion modulated [thermoresponse](https://doi.org/10.1039/C5CP07468A) of poly(N[isopropylacrylamide\)](https://doi.org/10.1039/C5CP07468A) brushes. *Phys. Chem. Chem. Phys.* 2016, *18*, 6037.

(110) Hajduk, B.; Bednarski, H.; Trzebicka, B. [Temperature-](https://doi.org/10.1021/acs.jpcb.9b11863?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)Dependent [Spectroscopic](https://doi.org/10.1021/acs.jpcb.9b11863?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Ellipsometry of Thin Polymer Films. *J. Phys. Chem. B* 2020, *124*, 3229.

(111) Choi, S. Y.; Lee, B.; Carew, D. B.; Mamak, M.; Peiris, F. C.; Speakman, S.; Chopra, N.; Ozin, G. A. 3D [Hexagonal](https://doi.org/10.1002/adfm.200500507) (R-3m) [Mesostructured](https://doi.org/10.1002/adfm.200500507) Nanocrystalline Titania Thin Films: Synthesis and [Characterization.](https://doi.org/10.1002/adfm.200500507) *Adv. Funct. Mater.* 2006, *16*, 1731.

(112) Bass, J. D.; Grosso, D.; Boissiere, C.; Sanchez, C. [Pyrolysis,](https://doi.org/10.1021/ja078140x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Crystallization, and Sintering of [Mesostructured](https://doi.org/10.1021/ja078140x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Titania Thin Films Assessed by in Situ Thermal [Ellipsometry.](https://doi.org/10.1021/ja078140x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2008, *130*, 7882−7897.

(113) Romanenko, A.; Agócs, E.; Hózer, Z.; Petrik, P.; Serényi, M. Concordant element of the oxidation kinetics-[Interpretation](https://doi.org/10.1016/j.apsusc.2021.151543) of ellipsometric [measurements](https://doi.org/10.1016/j.apsusc.2021.151543) on Zr. *Appl. Surf. Sci.* 2022, *573*, 151543.

(114) Nguyen, H. V.; An, I.; Collins, R. W. [Evolution](https://doi.org/10.1103/PhysRevB.47.3947) of the optical functions of thin-film aluminum: A real-time [spectroscopic](https://doi.org/10.1103/PhysRevB.47.3947) [ellipsometry](https://doi.org/10.1103/PhysRevB.47.3947) study. *Phys. Rev. B* 1993, *47*, 3947.

(115) Klaus, J. W.; Ferro, S. J.; George, S. M. [Atomic](https://doi.org/10.1149/1.1393332) Layer [Deposition](https://doi.org/10.1149/1.1393332) of Tungsten Nitride Films Using Sequential Surface [Reactions.](https://doi.org/10.1149/1.1393332) *J. Electrochem. Soc.* 2000, *147*, 1175.

(116) Briggs, J. A.; Naik, G. V.; Zhao, Y.; Petach, T. A.; Sahasrabuddhe, K.; Goldhaber-Gordon, D.; Melosh, N. A.; Dionne, J. A. [Temperature-dependent](https://doi.org/10.1063/1.4977840) optical properties of titanium nitride. *Appl. Phys. Lett.* 2017, *110*, 101901.

(117) Wu, P. C.; Kim, T.-H.; Brown, A. S.; Losurdo, M.; Bruno, G.; Everitt, H. O. Real-time plasmon [resonance](https://doi.org/10.1063/1.2712508) tuning of liquid Ga nanoparticles by *in situ* [spectroscopic](https://doi.org/10.1063/1.2712508) ellipsometry. *Appl. Phys. Lett.* 2007, *90*, 103119.

(118) Reddy, H.; Guler, U.; Kudyshev, Z.; Kildishev, A. V.; Shalaev, V. M.; Boltasseva, A. [Temperature-Dependent](https://doi.org/10.1021/acsphotonics.7b00127?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Optical Properties of [Plasmonic](https://doi.org/10.1021/acsphotonics.7b00127?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Titanium Nitride Thin Films. *ACS Photonics* 2017, *4*, 1413.

(119) Selvakumar, N.; Barshilia, H. C.; Rajam, K.; Biswas, A. Structure, optical [properties](https://doi.org/10.1016/j.solmat.2010.04.073) and thermal stability of pulsed sputter deposited high temperature [HfOx/Mo/HfO2](https://doi.org/10.1016/j.solmat.2010.04.073) solar selective absorb[ers.](https://doi.org/10.1016/j.solmat.2010.04.073) *Sol. Energy Mater. Sol. Cells* 2010, *94*, 1412.

(120) Little, S. A.; Begou, T.; Collins, R. W.; Marsillac, S. [Optical](https://doi.org/10.1063/1.3681367) detection of melting point depression for silver [nanoparticles](https://doi.org/10.1063/1.3681367) via in situ real time [spectroscopic](https://doi.org/10.1063/1.3681367) ellipsometry. *Appl. Phys. Lett.* 2012, *100*, 051107.

(121) Jeurgens, L. P. H.; Lyapin, A.; Mittemeijer, E. J. The [initial](https://doi.org/10.1002/sia.2218) oxidation of zirconium-oxide-film [microstructure](https://doi.org/10.1002/sia.2218) and growth [mechanism.](https://doi.org/10.1002/sia.2218) *Surf. Interface Anal.* 2006, *38*, 727.

(122) Vinodh, M. S.; Jeurgens, L. P. H.; Mittemeijer, E. J. [Real-time,](https://doi.org/10.1063/1.2245197) *in situ* [spectroscopic](https://doi.org/10.1063/1.2245197) ellipsometry for analysis of the kinetics of ultrathin [oxide-film](https://doi.org/10.1063/1.2245197) growth on MgAl alloys. *J. Appl. Phys.* 2006, *100*, 044903.

(123) Lyapin, A.; Jeurgens, L. P. H.; Mittemeijer, E. J. [Effect](https://doi.org/10.1016/j.actamat.2005.03.009) of [temperature](https://doi.org/10.1016/j.actamat.2005.03.009) on the initial, thermal oxidation of zirconium. *Acta Mater.* 2005, *53*, 2925.

(124) Reichel, F.; Jeurgens, L.; Mittemeijer, E. The [effect](https://doi.org/10.1016/j.actamat.2008.02.031) of substrate [orientation](https://doi.org/10.1016/j.actamat.2008.02.031) on the kinetics of ultra-thin oxide-film growth on Al single [crystals.](https://doi.org/10.1016/j.actamat.2008.02.031) *Acta Mater.* 2008, *56*, 2897.

(125) Weller, K.; Jeurgens, L. P.; Wang, Z.; Mittemeijer, E. J. Thermal oxidation of amorphous [Al0.44Zr0.56](https://doi.org/10.1016/j.actamat.2014.12.022) alloys. *Acta Mater.* 2015, *87*, 187.

(126) Weller, K.; Wang, Z.; Jeurgens, L.; Mittemeijer, E. [Oxidation](https://doi.org/10.1016/j.actamat.2015.09.039) kinetics of [amorphous](https://doi.org/10.1016/j.actamat.2015.09.039) AlZr - alloys. *Acta Mater.* 2016, *103*, 311.

(127) Panda, E.; Jeurgens, L. P. H.; Mittemeijer, E. J. The [initial](https://doi.org/10.1063/1.3268480) oxidation of Al−Mg alloys: [Depth-resolved](https://doi.org/10.1063/1.3268480) quantitative analysis by [angle-resolved](https://doi.org/10.1063/1.3268480) x-ray photoelectron spectroscopy and real-time *in situ* [ellipsometry.](https://doi.org/10.1063/1.3268480) *J. Appl. Phys.* 2009, *106*, 114913.

(128) Panda, E.; Jeurgens, L.; Mittemeijer, E. [Growth](https://doi.org/10.1016/j.corsci.2010.03.028) kinetics and [mechanism](https://doi.org/10.1016/j.corsci.2010.03.028) of the initial oxidation of Al-based Al−Mg alloys. *Corros. Sci.* 2010, *52*, 2556.

(129) He, G.; Fang, Q.; Zhang, J. X.; Zhu, L. Q.; Liu, M.; Zhang, L. D. Structural, interfacial and optical [characterization](https://doi.org/10.1088/0957-4484/16/9/040) of ultrathin zirconia film grown by insitu thermal oxidation of [sputtered](https://doi.org/10.1088/0957-4484/16/9/040) metallic Zr [films.](https://doi.org/10.1088/0957-4484/16/9/040) *Nanotechnology* 2005, *16*, 040.

(130) Nebojsa, A.; Zrzavecká, O. F.; Navrátil, K.; Humlícek, ̌ J. [Temperature](https://doi.org/10.1002/pssc.200777816) dependence of ellipsometric spectra of Fe and CrNiAl [steel.](https://doi.org/10.1002/pssc.200777816) *physica status solidi c* 2008, *5*, 1176−1179.

(131) Pichon, L.; Straboni, A.; Girardeau, T.; Drouet, M.; Widmayer, P. Nitrogen and oxygen [transport](https://doi.org/10.1063/1.371961) and reactions during plasma [nitridation](https://doi.org/10.1063/1.371961) of zirconium thin films. *J. Appl. Phys.* 2000, *87*, 925. (132) Bakradze, G.; Jeurgens, L. P. H.; Mittemeijer, E. J. [The](https://doi.org/10.1063/1.3608044) different initial oxidation kinetics of [Zr\(0001\)](https://doi.org/10.1063/1.3608044) and Zr(101−0) [surfaces.](https://doi.org/10.1063/1.3608044) *J. Appl. Phys.* 2011, *110*, 024904.

(133) Tarrio, C.; Schnatterly, S. Optical [properties](https://doi.org/10.1364/JOSAB.10.000952) of silicon and its [oxides.](https://doi.org/10.1364/JOSAB.10.000952) *Journal of the Optical Society of America B: Optical Physics* 1993, *10*, 952−957.

(134) Lautenschlager, P.; Allen, P. B.; Cardona, M. [Temperature](https://doi.org/10.1103/PhysRevB.31.2163) [dependence](https://doi.org/10.1103/PhysRevB.31.2163) of band gaps in Si and Ge. *Phys. Rev. B* 1985, *31*, 2163.

(135) Aoki, T.; Adachi, S. [Temperature](https://doi.org/10.1063/1.347252) dependence of the dielectric [function](https://doi.org/10.1063/1.347252) of Si. *J. Appl. Phys.* 1991, *69*, 1574.

(136) Vuye, G.; Fisson, S.; Nguyen Van, V.; Wang, Y.; Rivory, J.; Abelés, F. [Temperature](https://doi.org/10.1016/0040-6090(93)90082-Z) dependence of the dielectric function of silicon using in situ [spectroscopic](https://doi.org/10.1016/0040-6090(93)90082-Z) ellipsometry. *Thin Solid Films* 1993, *233*, 166−170.

(137) Šik, J.; Hora, J.; Humliček, J. Optical [functions](https://doi.org/10.1063/1.368951) of silicon at high [temperatures.](https://doi.org/10.1063/1.368951) *J. Appl. Phys.* 1998, *84*, 6291−6298.

(138) Green, M. A. Improved silicon optical [parameters](https://doi.org/10.1002/pip.3474) at 25°C, 295 and 300 K including [temperature](https://doi.org/10.1002/pip.3474) coefficients. *Progress in Photovoltaics: Research and Applications* 2022, *30*, 164−179.

(139) Logothetidis, S.; Lautenschlager, P.; Cardona, M. [Temper](https://doi.org/10.1103/PhysRevB.33.1110)ature [dependence](https://doi.org/10.1103/PhysRevB.33.1110) of the dielectric function and the interband critical points in [orthorhombic](https://doi.org/10.1103/PhysRevB.33.1110) GeS. *Phys. Rev. B* 1986, *33*, 1110.

(140) Kuo, C. H. Measurement of GaAs [temperature-dependent](https://doi.org/10.1116/1.587047) optical constants by [spectroscopic](https://doi.org/10.1116/1.587047) ellipsometry. *Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures* 1994, *12*, 1214.

(141) Zorn, M.; Trepk, T.; Zettler, J.-T.; Junno, B.; Meyne, C.; Knorr, K.; Wethkamp, T.; Klein, M.; Miller, M.; Richter, W.; Samuelson, L. [Temperature](https://doi.org/10.1007/s003390050588) dependence of the InP(001) bulk and surface [dielectric](https://doi.org/10.1007/s003390050588) function. *Applied Physics A: Materials Science & Processing* 1997, *65*, 333.

(142) Aspnes, D. E.; Studna, A. A. Methods for drift [stabilization](https://doi.org/10.1063/1.1135394) and [photomultiplier](https://doi.org/10.1063/1.1135394) linearization for photometric ellipsometers and [polarimeters.](https://doi.org/10.1063/1.1135394) *Rev. Sci. Instrum.* 1978, *49*, 291.

(143) Jung Kim, T.; Yong Hwang, S.; Seok Byun, J.; Diware, M. S.; Choi, J.; Gyeol Park, H.; Dong Kim, Y. [Temperature](https://doi.org/10.1063/1.4820765) dependence of the dielectric functions and the critical points of InSb by [spectroscopic](https://doi.org/10.1063/1.4820765) [ellipsometry](https://doi.org/10.1063/1.4820765) from 31 to 675 K. *J. Appl. Phys.* 2013, *114*, 103501.

(144) Lautenschlager, P.; Garriga, M.; Vina, L.; Cardona, M. [Temperature](https://doi.org/10.1103/PhysRevB.36.4821) dependence of the dielectric function and interband critical points in [silicon.](https://doi.org/10.1103/PhysRevB.36.4821) *Phys. Rev. B* 1987, *36*, 4821−4830.

(145) Kelso, S.; Aspnes, D.; Olson, C.; Lynch, D. [Optical](https://doi.org/10.1016/0378-4363(83)90529-6) determination of exciton sizes in [semiconductors.](https://doi.org/10.1016/0378-4363(83)90529-6) *Physica B+C* 1983, *117*−*118*, 362.

(146) Petrik, P.; Khánh, N. Q.; Li, J.; Chen, J.; Collins, R. W.; Fried, M.; Radnóczi, G. Z.; Lohner, T.; Gyulai, J. Ion [implantation](https://doi.org/10.1002/pssc.200777866) induced disorder in single-crystal and [sputter-deposited](https://doi.org/10.1002/pssc.200777866) polycrystalline CdTe characterized by ellipsometry and [backscattering](https://doi.org/10.1002/pssc.200777866) spectrometry. *physica status solidi c* 2008, *5*, 1358.

(147) Liu, Y.; Yang, Z.; Long, X.; Zhang, X.; Yan, M.; Huang, D.; Ferguson, I. T.; Feng, Z. C. Effects of thickness and [interlayer](https://doi.org/10.1116/6.0000966) on optical properties of AlN films at room and high [temperature.](https://doi.org/10.1116/6.0000966) *Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films* 2021, *39*, 043402.

(148) Tripura Sundari, S.; Srinivasu, K.; Dash, S.; Tyagi, A. K. [Temperature](https://doi.org/10.1016/j.ssc.2013.05.001) evolution of optical constants and their tuning in silver. *Solid State Commun.* 2013, *167*, 36.

(149) Budai, J.; Pápa, Z.; Petrik, P.; Dombi, P. [Ultrasensitive](https://doi.org/10.1038/s41467-022-34554-5) probing of plasmonic hot electron [occupancies.](https://doi.org/10.1038/s41467-022-34554-5) *Nat. Commun.* 2022, *13*, 6695.

(150) Abbate, G.; Attanasio, A.; Bernini, U.; Ragozzino, E.; Somma, F. The direct [determination](https://doi.org/10.1088/0022-3727/9/14/004) of the temperature dependence of the [refractive](https://doi.org/10.1088/0022-3727/9/14/004) index of liquids and solids. *J. Phys. D: Appl. Phys.* 1976, *9*, 1945.

(151) Abbate, G.; Bernini, U.; Ragozzino, E.; Somma, F. [The](https://doi.org/10.1088/0022-3727/11/8/007) [temperature](https://doi.org/10.1088/0022-3727/11/8/007) dependence of the refractive index of water. *J. Phys. D: Appl. Phys.* 1978, *11*, 1167.

(152) Kroesen, G. M. W.; Oehrlein, G. S.; Bestwick, T. D. Nonintrusive wafer temperature [measurement](https://doi.org/10.1063/1.348517) using *in situ* [ellipsometry.](https://doi.org/10.1063/1.348517) *J. Appl. Phys.* 1991, *69*, 3390.

(153) Sampson, R. K.; Conrad, K. A.; Massoud, H. Z.; Irene, E. A. Wavelength [Considerations](https://doi.org/10.1149/1.2054762) for Improved Silicon Wafer Temperature [Measurement](https://doi.org/10.1149/1.2054762) by Ellipsometry. *J. Electrochem. Soc.* 1994, *141*, 539.

(154) Kamarás, K.; Barth, K.; Keilmann, F.; Henn, R.; Reedyk, M.; Thomsen, C.; Cardona, M.; Kircher, J.; Richards, P. L.; Stehlé, J. [The](https://doi.org/10.1063/1.360364) [low-temperature](https://doi.org/10.1063/1.360364) infrared optical functions of $SrTiO₃$ determined by reflectance spectroscopy and [spectroscopic](https://doi.org/10.1063/1.360364) ellipsometry. *J. Appl. Phys.* 1995, *78*, 1235.

(155) Thomas, M. S.; DeNatale, J. F.; Hood, P. J. [High-Temperature](https://doi.org/10.1557/PROC-479-161) Optical Properties of [Thin-Film](https://doi.org/10.1557/PROC-479-161) Vanadium Oxides – $VO₂$ and $V₂O₃$. *MRS Online Proceedings Library* 1997, *479*, 161.

(156) Li, X.; Kim, C. I.; An, S. H.; Oh, S. G.; Kim, S. Y. [Optical](https://doi.org/10.1143/JJAP.44.3623) Property of PtOx at Elevated [Temperatures](https://doi.org/10.1143/JJAP.44.3623) Investigated by [Ellipsometry.](https://doi.org/10.1143/JJAP.44.3623) *Jpn. J. Appl. Phys.* 2005, *44*, 3623.

(157) Berini, B.; Noun, W.; Dumont, Y.; Popova, E.; Keller, N. [High](https://doi.org/10.1063/1.2431398) temperature [ellipsometry](https://doi.org/10.1063/1.2431398) of the conductive oxide LaNiO3. *J. Appl. Phys.* 2007, *101*, 023529.

(158) Matsuda, S.; Kikuchi, T.; Sugimoto, K. In-situ [ellipsometric](https://doi.org/10.1016/0010-938X(90)90104-D) [determination](https://doi.org/10.1016/0010-938X(90)90104-D) of thickness and optical constants of passive and [transpassive](https://doi.org/10.1016/0010-938X(90)90104-D) films on alloy 600 in neutral solution. *Corros. Sci.* 1990, *31*, 161.

(159) Reichel, F.; Jeurgens, L. P. H.; Mittemeijer, E. J. [The](https://doi.org/10.1002/sia.2705) role of the initial oxide-film [microstructure](https://doi.org/10.1002/sia.2705) on the passivation behavior of Al metal [surfaces.](https://doi.org/10.1002/sia.2705) *Surf. Interface Anal.* 2008, *40*, 281.

(160) Berini, B.; Fouchet, A.; Popova, E.; Scola, J.; Dumont, Y.; Franco, N.; da Silva, R. M. C.; Keller, N. High [temperature](https://doi.org/10.1063/1.3692088) phase transitions and critical exponents of Samarium [orthoferrite](https://doi.org/10.1063/1.3692088) determined by *in situ* optical [ellipsometry.](https://doi.org/10.1063/1.3692088) *J. Appl. Phys.* 2012, *111*, 053923.