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ON ADDITIVE FUNCTIONS WITH ADDITIONAL DERIVATION

PROPERTIES

RICHÁRD GRÜNWALD AND ZSOLT PÁLES

Abstract. The purpose of this paper is to introduce the notion of a generalized derivation
which derivates a prescribed family of smooth vector-valued functions of several variables. The
basic calculus rules are established and then a result derived which shows that if a function
f satisfies an addition theorem whose determining operation is derivable with respect to an
additive function d, then the function f is itself derivable with respect to d. As an application
of this approach, new proof of a generalization of a recent result of Maksa is obtained. We also
extend the result of Nishiyama and Horinouchi and formulate two open problems.

1. Introduction

Derivations are additive and Leibniz-type mappings of a ring into itself. More precisely, if
(R,+, ·) is a ring, then a function d : R → R is called a derivation if, for all x, y ∈ R,

d(x+ y) = d(x) + d(y), (1)

d(x · y) = d(x) · y + x · d(y). (2)

Derivations are used in many branches of analysis and algebra. For instance, nonnegative
information functions are constructed via real derivations (see Daróczy–Maksa [4], Maksa [17]).
Nonconstant functions that are convex with respect to families of power means are also obtained
in terms of real derivations (see Maksa–Páles [21]). Derivations are used to express the general
solutions of certain functional equations (see Fechner–Gselmann [5], Gselmann [7], [8], Halter-
Koch [12], [11], Jurkat [13]). Generalizations, such as higher-order derivations, bi-derivations
and approximate or near-derivations were studied by Badora [1], Gselmann [9], Gselmann–Páles
[10], and Maksa [18], [19].

We say that a function d : R → R derivates a differentiable function f : I → R if the functional
equation

d(f(x)) = f ′(x)d(x) (x ∈ I)

holds. In the pioneering papers [15, 16] Kurepa proved that if d is an additive functions which
derivates one of the maps x 7→ x2 or x 7→ x−1, then it satisfies the Leibniz Rule, i.e., it is a
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standard derivation. This result was then extended by Nishiyama and Horinouchi in [22], who
proved an analogous statement about the derivability of the power function x 7→ xr with rational
exponent different from 0 and 1. Boros and Erdei in [2] proved that those additive functions
that derivate the map x 7→

√
1− x2, that is, satisfy the identity

d(
√
1− x2) = − x√

1− x2
d(x) (x ∈]− 1, 1[ ), (3)

are also standard derivations. Maksa in [20] showed that if an additive function derivates any of
the exponential, hyperbolic or trigonometric functions, then is has to be a standard derivation
again. A counterpart of this result was obtained by Grünwald and Páles in [6], where an
analogous statement was established assuming Leibniz property instead of additivity.

The purpose of this paper is to introduce the notion of generalized derivation which derivates
a prescribed family of smooth vector-valued functions of several variables. After establishing
the basic calculus rules in Theorem 1, we derive in Corollary 2 a result which shows that if a
function f satisfies an addition theorem whose determining operation is derivable with respect
to an additive function d, then the function f is itself derivable with respect to d. Using this
result, we will be able to give a completely new proof for the aforementioned result of Maksa [20].
In addition, we also generalize this result, because we require the derivability of the exponential,
hyperbolic or trigonometric functions only on small intervals. In the last section of our paper,
we also offer a generalization of Nishiyama and Horinouchi by replacing power functions of the
form P ◦ Q−1, where P and Q are polynomials with rational coefficients. Finally, we formulate
some open problems.

2. Generalized derivations and their properties

For fixed n,m ∈ N, the class of n-variable Rm-valued admissible functions is defined as follows:

A
m
n := {f : Ω → Rm | ∅ 6= Ω ⊂ Rn is open and f is Fréchet differentiable on Ω}

and we set

A :=

∞
⋃

n,m=1

A
m
n .

The set Ω related to f will be called the domain of f and denoted by domf . In general, for a
vector x ∈ Rn, we will denote the ith coordinate of x by xi, and for a function f ∈ A

m
n , fj will

stand for the jth coordinate function of f .
We say that a function d : R → R is a derivation with respect to an admissible function f ∈ A

m
n

if, for all x ∈ domf and j ∈ {1, . . . , m},
d
(

fj(x)
)

= ∂1fj(x)d(x1) + · · ·+ ∂nfj(x)d(xn) (4)

holds. Furthermore we say that d is a derivation with respect to A ⊆ A, if d is a derivation with
respect to each member of A. For any n ∈ N and x ∈ Rn, define d(x) by

d(x) := (d(x1), . . . , d(xn)).

Then (4) can simply be rewritten as

d(f(x)) = f ′(x)d(x),
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where f ∈ A
m
n and f ′(x) denotes the Fréchet derivative of f at x, which is an n × m matrix

whose entries are the partial derivatives ∂ifj at x.
One can immediately see that a function d : R → R is a standard derivation if and only if it

is a derivation with respect to S2 and P2, where

S2(x1, x2) := x1 + x2 and P2(x1, x2) := x1x2 ((x1, x2) ∈ R2).

In what follows, we will prefer the terminology d is additive (resp. of Leibniz-type) whenever d
is a derivation with respect to S2 (resp. P2).

The following result, which is a significant extension of [6, Lemma A] collects the basic rules
for functions that are derivable with respect to a fixed real function. In particular, its second
assertion will be very useful for our purposes.

Theorem 1. For any function d : R → R, we have the following three assertions.

(i) Let n,m, k ∈ N and f ∈ A
m
n , g ∈ Rk

m. If d is a derivation with respect to f and g, then d
is also a derivation with respect to g ◦ f .

(ii) Let n,m, k ∈ N and f ∈ A
m
n , g ∈ Rk

m such that f(domf ) is open. If d is a derivation with
respect to f and g ◦ f , then d is also a derivation with respect to g on f(domf) ∩ domg.

(iii) Let n ∈ N and f ∈ A
n
n with a continuous nowhere singular derivative. If d is a derivation

with respect to f , then d is also a derivation with respect to its inverse f−1.

Proof. By the assumptions of (i), for all x ∈ domf and y ∈ domg, we have

d(f(x)) = f ′(x)d(x) and d(g(y)) = g′(y)d(y). (5)

Let x ∈ domf with y := f(x) ∈ domg. Using that d is a derivation with respect to f and g, by
the standard Chain Rule, we get

d((g ◦ f)(x)) = d(g(f(x))) = d(g(y)) = g′(y)d(y)

= g′(f(x))d(f(x)) = g′(f(x))f ′(x)d(x) = (g ◦ f)′(x)d(x),
which yields that d is a derivation with respect to the function g ◦ f .

Let y ∈ f(domf ) ∩ domg. Then there exists x ∈ domf such that y = f(x). Thus, applying
the standard Chain Rule, we get

d(g(y)) = d(g(f(x)) = d(g ◦ f(x)) = (g ◦ f)′(x)d(x)
= g′(f(x))f ′(x)d(x) = g′(f(x))d(f(x)) = g′(y)d(y),

which proves that d is also a derivation with respect to g on f(domf) ∩ domg.
By the assumption of (iii), for all x ∈ domf , we have the first equality in (5). Let y ∈ domf−1 .

Using the substitution x = f−1(y), this implies

d(y) = f ′(f−1(y))d(f−1(y)).

Thus, by the inverse function theorem, it follows that

d(f−1(y)) =
(

f ′(f−1(y))
)−1

d(y) =
(

f−1
)′
(y)d(y).

Thus, d is a derivation with respect to the inverse function f−1. �

The following consequence of the above theorem will be useful in several proofs.
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Corollary 2. Let Ω1,Ω2 ⊆ Rn be nonempty open sets, let f : Ω1 ∪ Ω2 ∪ (Ω1 + Ω2) → Rm be
a Fréchet differentiable function such that f(Ω1) and f(Ω2) are open. Assume that there exists
a Fréchet differentiable function g : f(Ω1) × f(Ω2) → Rm such that f satisfies the functional
equation

f(x+ y) = g(f(x), f(y)) ((x, y) ∈ Ω1 × Ω2). (6)

Let d : R → R be an additive function which is a derivation with respect to f . Then d is also a
derivation with respect to g on f(Ω1)× f(Ω2).

Proof. Assume that d is an additive derivation with respect to f . By the additivity of d, we
have that d is a derivation with respect to the mapping

Ω1 × Ω2 ∋ (x, y) 7→ f(x+ y).

Thus, the equality (6) implies that d is a derivation with respect to the composition

Ω1 × Ω2 ∋ (x, y) 7→ g(f(x), f(y)).

On the other hand, d is trivially a derivation with respect to the mapping

Ω1 × Ω2 ∋ (x, y) 7→ (f(x), f(y)).

Applying the second assertion of the previous theorem, now it follows that d is also a derivation
with respect to g on f(Ω1)× f(Ω2). �

3. Localization theorems

In the sequel, for a number r ∈ Q, let Dr denote the domain of the power function x 7→ xr,
which is defined in the following way: If r = m/n, where n ∈ N, m ∈ Z and n,m are coprime,
then let

Dr :=



















R if n is odd and m ≥ 0,

R \ {0} if n is odd and m < 0,

[0,∞[ if n is even and m ≥ 0,

]0,∞[ if n is even and m < 0.

A function d : R → R is said to be Q-homogeneous if, for all x ∈ R and r ∈ Q, the equal-
ity d(rx) = rd(x) holds. It is well-known that every additive function is automatically Q-
homogeneous.

Lemma 3. Let r ∈ Q, let I ⊆ Dr−1 be a nonempty open subset and d : R → R be a Q-
homogeneous function. Suppose that the equality

d(xr) = rxr−1d(x) (7)

holds for all x ∈ I. Then it is also valid for all x ∈ Dr−1.

Proof. Assume that (7) holds for all x ∈ I. Let x ∈ Dr−1 be arbitrary. If x = 0, then r ≥ 1 and
hence xr = 0r = 0. Thus, by d(0) = 0, (7) is trivially valid. If r = 1 So may assume that x is an
arbitrarily fixed element from Dr \ {0}. Suppose that r is of the form r = m/n for some n ∈ N

and m ∈ Z. By the density of Q in R, it is clear that the set

{q ∈ Q | q 6= 0, qnx ∈ I}
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is nonempty. Let q be a fixed element from it. Thus, using the validity of equation (7) on the
interval I and the Q-homogeneity of d, we obtain

qmd(xr) = d(qmxr) = d((qnx)r) = r(qnx)r−1d(qnx) = qmrxr−1d(x),

which simplifies to d(xr) = rxr−1d(x). This is exactly the desired equality since x was an
arbitrary element from Dr \ {0}. �

The following result essentially was proved by Nishiyama and Horinouchi [22]. The result
concerning the particular cases r = −1 and r = 2 were discovered by Kurepa in [15] and [16].

Lemma 4. Let d : R → R be an additive function, let r ∈ Q \ {0, 1} and let I ⊆ Dr be a
nonempty open subinterval. Then d is a standard derivation if and only if (7) is valid for all
x ∈ I.

Proof. Assume first that d is a standard derivation. Then by an easy argument, it follows that
(7) is valid for all x ∈ Dr.

Conversely, if (7) is valid for all x ∈ I, then, by Lemma 3, we get that (7) is valid for all
x ∈ Dr. Now, the result of Nishiyama and Horinouchi [22] implies that d must be a standard
derivation. �

Lemma 5. Let U ⊆ R2 be a nonempty open subset and let d : R → R be a Q-homogeneous
function which satisfies the functional equation (2) for all (x, y) ∈ U . Then (2) also holds for
all x, y ∈ R.

Proof. Let x, y ∈ R. Using the density of Q in R, it is clear that there exist p, q ∈ Q \ {0}
such that (px, qy) ∈ U . Applying equation (2) for px and qy, taking into consideration the
Q-homogeneity of d, we obtain that

pqd(xy) = d((px)(qy)) = d(px)qy + pxd(qy) = pd(x)qy + pxqd(y).

Dividing by pq the above equality, we get the statement. �

To prove our main result, which will extend the theorem of Maksa [20], the following lemma
will also be needed.

Lemma 6. The sets

U := {x ∈ R : x,
√
1 + x2 ∈ Q},

V := {x ∈ ]−∞,−1[∪ ]1,∞[ : x,
√
x2 − 1 ∈ Q},

W := {x ∈ ]− 1, 1[ : x,
√
1− x2 ∈ Q}

are dense in R, in ]−∞,−1[∪ ]1,∞[ , and in ]− 1, 1[ , respectively.

Proof. To prove the density of U , let x ∈ ]− 1, 1[ , let 0 < ε < min(1+ x, 1−x) be arbitrary and
denote

I :=

]

√

1− x− ε

1 + x+ ε
,

√

1− x+ ε

1 + x− ε

[

.

We are going to show that

1− r2

1 + r2
∈ ]x− ε, x+ ε[∩U for all r ∈ Q ∩ I. (8)
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Indeed, let r ∈ Q ∩ I be arbitrary. Then there exists (m,n) ∈ Z × N such that r = m
n
. Using

that r is bounded by the endpoints of I, we easily get that

s :=
1− r2

1 + r2
∈ ]x− ε, x+ ε[ .

On the other hand, s ∈ Q and

√
1− s2 =

√

1−
(

1− r2

1 + r2

)2

=

√

1−
(

n2 −m2

n2 +m2

)2

=
2nm

n2 +m2
∈ Q,

which completes the proof of (8).
To prove the density of V , let x ∈ ]−∞,−1[∪ ]1,∞[ , that is, let |x| > 1, let 0 < ε < |x| − 1

be arbitrary and denote

J :=



















]
√

x+ ε− 1

x+ ε+ 1
,

√

x− ε− 1

x− ε+ 1

[

if x < −1,

]
√

x− ε− 1

x− ε+ 1
,

√

x+ ε− 1

x+ ε+ 1

[

if 1 < x.

Then, one can easily check that J is nonempty and J ⊆ ]1,∞[ if x < −1 and J ⊆ ]0, 1[ if 1 < x.
Thus 1 6∈ J holds in both cases. We are going to show that

1 + r2

1− r2
∈ ]x− ε, x+ ε[∩V for all r ∈ Q ∩ J. (9)

Indeed, let r ∈ Q ∩ J be arbitrary. Then there exists (m,n) ∈ N× N such that r = m
n
. Since r

cannot be equal to 1, therefore n 6= m holds. Using that r is bounded by the endpoints of J , in
each cases we easily get that

s :=
1 + r2

1− r2
∈ ]x− ε, x+ ε[ .

On the other hand, s ∈ Q and

√
s2 − 1 =

√

(

1 + r2

1− r2

)2

− 1 =

√

(

n2 +m2

n2 −m2

)2

− 1 =
2nm

|n2 −m2| ∈ Q,

which completes the proof of (9).
To prove the density of W , let x ∈ R \ {0} and 0 < ε < |x| be arbitrary and denote

K :=



















] −1

x+ ε
−

√

1

(x+ ε)2
+ 1, 1

[

if x < 0,

]

−1,
−1

x+ ε
+

√

1

(x+ ε)2
+ 1

[

if 0 < x.

Then, one can easily check that K is nonempty and K ⊆ ] − 1, 1[ . Thus 1 6∈ K holds in both
cases. We are going to show that

2r

1− r2
∈ ]x− ε, x+ ε[∩W for all r ∈ Q ∩K. (10)
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Indeed, let r ∈ Q ∩K be arbitrary. Then there exists (m,n) ∈ Z× N such that r = m
n
. Since r

cannot be equal to 1, therefore n 6= m holds. Using that r is bounded by the endpoints of K, in
each cases we easily get that

s :=
2r

1− r2
∈ ]x− ε, x+ ε[ .

On the other hand, s ∈ Q and

√
1 + s2 =

√

1 +

(

2r

1− r2

)2

=

√

1 +

(

2nm

n2 −m2

)2

=
n2 +m2

|n2 −m2| ∈ Q,

which completes the proof of (10). �

4. Extension of the result of Maksa

In what follows we extend the result of Maksa [20] by assuming the derivability of any of the
exponential, hyperbolic or trigonometric functions on a small interval. Our approach is based
on the use of the addition theorems for each of these functions and the application Corollary 2.
In each particular case, we obtain that d is a derivation with respect to a two-variable algebraic
function.

Theorem 7. Let d : R → R be an additive function and let α, β ∈ R with α < β. Suppose that
d is a derivation with respect to the restriction to ]α, β[ of any of the following functions with
further assumptions on α and β, respectively:

(i) exp (2α < β and α < 2β),

(ii) sinh (α < 0 < β),

(iii) cosh (0 < 2α < β or α < 2β < 0),

(iv) tanh (α < 0 < β),

(v) coth (0 < 2α < β or α < 2β < 0),

(vi) sin (α < 0 < β),

(vii) cos (0 < 2α < π < β or α < −π < 2β < 0),

(viii) tan (−π < 2α < β and α < 2β < π),

(ix) cot (0 < 2α < β < π or − π < α < 2β < 0).

(11)

Then d is a standard derivation.

Proof. Observe that in each of the above cases the inequalities 2α < β and α < 2β hold. Adding
up these inequalities side by side, it follows that α < β and hence

γ := 1
2
max(α, 2α) < 1

2
min(β, 2β) =: δ.

Then ]γ, δ[⊆ ]α, β[∩ ]α
2
, β

2
[ , which implies that

]γ, δ[ + ]γ, δ[ = ]2γ, 2δ[⊆ ]α, β[ .

In the rest of proof, we shall utilize that each of the functions listed in (11) possesses an addition
formula, i.e., it satisfies functional equation of type (6) with Ω1 := Ω2 := ]γ, δ[ .
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(i) Assume first that 2α < β and α < 2β and d is a derivation with respect to the restriction
to ]α, β[ of the exponential function. It means that the equation d(exp(x)) = exp(x)d(x) holds
for all x ∈ ]α, β[ . Using that this restriction satisfies the functional equation

exp(x+ y) = exp(x) exp(y) (x, y ∈ ]γ, δ[ ),

Corollary 2 implies that d is a derivation with respect to the mapping

(u, v) 7→ u · v (u, v ∈ ] exp(γ), exp(δ)[ ),

i.e., d is of Leibniz-type on the interval ] exp(γ), exp(δ)[ . In view of Lemma 5, it follows that d
is of Leibniz-type on R and hence it is a standard derivation.

(ii) In the second case assume that α < 0 < β and d(sinh(x)) = cosh(x)d(x) holds for all
x ∈ ]α, β[ . Then γ = α

2
and δ = β

2
. First we can choose λ > 0 such that ]− λ, λ[⊆ ]γ, δ[ . Using

the identity cosh(x) =
√

1 + sinh2(x) (x ∈ ] − λ, λ[ ), we obtain that the restriction of the sine

hyperbolic function to the interval ]α, β[ satisfies the functional equation

sinh(x+ y) = sinh(x)

√

1 + sinh2(y) +

√

1 + sinh2(x) sinh(y)

for all x, y ∈ ] − λ, λ[ . By Corollary 2, it follows that d is also a derivation with respect to the
function

(u, v) 7→ u
√
1 + v2 + v

√
1 + u2 (u, v ∈ ]− sinh(λ), sinh(λ)[ ).

It means that the functional equation

d(u
√
1 + v2 + v

√
1 + u2)

=
(√

1 + v2 + v
u√

1 + u2

)

d(u) +
(√

1 + u2 + u
v√

1 + v2

)

d(v)
(12)

holds for all u, v ∈ ]− sinh(λ), sinh(λ)[ . Replacing v by −v and adding the equality so obtained
to (12) side by side, we get that

d(u
√
1 + v2) =

√
1 + v2d(u) + u

v√
1 + v2

d(v) (13)

holds for all u, v ∈ ] − sinh(λ), sinh(λ)[ . Let U be the set defined in Lemma 6. Then, by
this lemma, the intersection U∩ ] − sinh(λ), sinh(λ)[ is nonempty, moreover it is dense in ] −
sinh(λ), sinh(λ)[ . Then, for u, v ∈ U∩ ]− sinh(λ), sinh(λ)[ , we have that u, v, and

√
1 + v2 ∈ Q.

For such values of u and v, the equality (13) and the Q-homogeneity of d implies that

u
√
1 + v2d(1) =

√
1 + v2ud(1) + u

v√
1 + v2

vd(1),

which is possible only if d(1) = 0. Let 0 6= u ∈ ]−sinh(λ), sinh(λ)[∩Q, and v ∈ ]−sinh(λ), sinh(λ)[ .
By the Q-homogeneity and additivity of d, it follows that d(u) = ud(1) = 0 and hence (13) sim-
plifies to (3) on the interval ]− sinh(λ), sinh(λ)[ . Using this, (13) can be rewritten as

d(u
√
1 + v2) =

√
1 + v2d(u) + ud(

√
1 + v2)

for all u, v ∈ ]− sinh(λ), sinh(λ)[ . With the substitution w :=
√
1 + v2, this equality yields that

d(uw) = ud(w) + wd(u)
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for all u ∈ ]− sinh(λ), sinh(λ)[ and w ∈ [1, cosh(λ)[. Then, in view of Lemma 5, d is of Leibniz-
type and hence is a standard derivation on R.

(iii) In the third case suppose that 0 < 2α < β (the other case can be treated similarly) and
d(cosh(x)) = sinh(x)d(x) holds for all x ∈ ]α, β[ . Then γ = α and δ = β

2
. The restriction of the

cosine hyperbolic function to the interval ]α, β[ satisfies the functional equation

cosh(x+ y) = cosh(x) cosh(y) +

√

cosh2(x)− 1

√

cosh2(y)− 1

for all x, y ∈ ]γ, δ[ . By Corollary 2, it follows that d is also a derivation with respect to the
function

(u, v) 7→ uv +
√
u2 − 1

√
v2 − 1 (u, v ∈ ] cosh(γ), cosh(δ)[ ),

i.e., the functional equation

d(uv +
√
u2 − 1

√
v2 − 1) =

(

v + u

√
v2 − 1√
u2 − 1

)

d(u) +
(

u+ v

√
u2 − 1√
v2 − 1

)

d(v) (14)

holds for all u, v ∈ ] cosh(γ), cosh(δ)[ . Let V be the set defined in Lemma 6. Then, by this lemma,
the intersection V ∩ ] cosh(γ), cosh(δ)[ is nonempty, moreover it is dense in ] cosh(γ), cosh(δ)[ .
Then, for u, v ∈ V ∩ ] cosh(γ), cosh(δ)[ , we have that u, v, and

√
v2 − 1 ∈ Q. For such values of

u and v, the equality (14) and the Q-homogeneity of d implies that

(uv +
√
u2 − 1

√
v2 − 1)d(1)

=
(

v + u

√
v2 − 1√
u2 − 1

)

ud(1) +
(

u+ v

√
u2 − 1√
v2 − 1

)

vd(1),

which is possible only if d(1) = 0. Substituting v := u in (14), using the additivity and Q-
homogeneity of d and that d(1) = 0 we get that (7) with r = 2 holds for all u ∈ ] cosh(γ), cosh(δ)[ ,
which, using Lemma 4, implies that d is a standard derivation.

(iv) In the fourth case assume that α < 0 < β and d(tanh(x)) = 1
cosh2(x)

d(x) is valid for all

x ∈ ]α, β[ . Then γ = α
2

and δ = β

2
. The restriction of the tangent hyperbolic function to the

interval ]α, β[ satisfies the functional equation

tanh(x+ y) =
tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
(x, y ∈ ]γ, δ[ ).

By Corollary 2, it follows that d is also a derivation with respect to the function

(u, v) 7→ u+ v

1 + uv
(u, v ∈ ] tanh(γ), tanh(δ)[ ),

i.e., the functional equation

d
( u+ v

1 + uv

)

=
1− v2

(1 + uv)2
d(u) +

1− u2

(1 + uv)2
d(v) (15)

holds for all u, v ∈ ] tanh(γ), tanh(δ)[ . Now choose a subinterval ]λ, µ[ of ] tanh(γ), tanh(δ)[
such that λ, µ ∈ Q and 0 < λµ =: r. It is easy to see that if u ∈ ]λ, µ[ , then r

u
∈ ]λ, µ[ also
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holds. Substituting u ∈ ]λ, µ[ and v := r
u
, (15) implies

1

1 + r
d
(

u+
r

u

)

=
1− ( r

u
)2

(1 + r)2
d(u) +

1− u2

(1 + r)2
d
( r

u

)

.

A direct and simple computation yields that

− 1

u2
d(u) = d

(1

u

)

for u ∈ ]λ, µ[ , which, using Lemma 4, implies that d is a standard derivation.
(v) In the fifth case assume that 0 < 2α < β (the other case can be handled similarly) and

d(coth(x)) = − 1
sinh2(x)

d(x) holds for all x ∈ ]α, β[ . Then γ = α
2

and δ = β

2
. The restriction of

the cotangent hyperbolic function to the interval ]α, β[ satisfies the functional equation

coth(x+ y) =
coth(x) coth(y) + 1

coth(x) + coth(y)
(x, y ∈ ]γ, δ[ ).

By Corollary 2, it follows that d is also a derivation with respect to the function

(u, v) 7→ uv + 1

u+ v
(u, v ∈ ] coth(δ), coth(γ)[ ),

i.e., the functional equation

d
(uv + 1

u+ v

)

=
v2 − 1

(u+ v)2
d(u) +

u2 − 1

(u+ v)2
d(v) (16)

holds for all u, v ∈ ] coth(δ), coth(γ)[ . Now choose a subinterval ]λ, µ[ of ] coth(δ), coth(γ)[ such
that λ, µ ∈ Q and λ + µ =: r 6= 0. It is easy to see that if u ∈ ]λ, µ[ , then r − u ∈ ]λ, µ[ also
holds. Substituting u ∈ ]λ, µ[ and v := r − u, (16) implies

1

r
d(u(r − u) + 1) =

(r − u)2 − 1

r2
d(u) +

u2 − 1

r2
d(r − u).

This equality, using the additivity and Q-homogeneity, after some simplification, reduces to

d(u2) = 2ud(u) + 2d(1)− u2d(1) (u ∈ ]λ, µ[ ).

If u is rational, then this equality gives that d(1) = 0. Hence the above equality shows that (7)
is valid on ]λ, µ[ with r = 2. In view of Lemma 4, we obtain that d is a standard derivation.

(vi) In the sixth case assume that α < 0 < β and d(sin(x)) = cos(x)d(x) holds for all x ∈ ]α, β[ .
Then γ = α

2
and δ = β

2
. First we can choose λ > 0 such that ]−λ, λ[⊆ ]γ, δ[∩ ]− π

2
, π
2
[ . Thus the

cosine function is everywhere positive over ]−λ, λ[ . Then the sine function is strictly increasing

on ] − λ, λ[ and cos(x) =
√

1− sin2(x) holds for all x ∈ ] − λ, λ[ . Therefore the restriction of
the sine function to the interval ]α, β[ satisfies the functional equation

sin(x+ y) = sin(x)
√

1− sin2(y) +
√

1− sin2(x) sin(y) (x, y ∈ ]− λ, λ[ ).

By Corollary 2, it follows that d is also a derivation with respect to the function

(u, v) 7→ u
√
1− v2 + v

√
1− u2 (u, v ∈ ]− sin(λ), sin(λ)[ ).
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It means that the functional equation

d(u
√
1− v2 + v

√
1− u2)

=
(√

1− v2 − v
u√

1− u2

)

d(u) +
(√

1− u2 − u
v√

1− v2

)

d(v)
(17)

holds for all u, v ∈ ]− sin(λ), sin(λ)[ . Replacing v by −v and adding the equality so obtained to
(17) side by side, we get that

d(u
√
1− v2) =

√
1− v2d(u)− u

v√
1− v2

d(v) (18)

holds for all u, v ∈ ]−sin(λ), sin(λ)[ . Let W be the set defined in Lemma 6. Then, by this lemma,
the intersection W∩ ] − sin(λ), sin(λ)[ is nonempty, moreover it is dense in ] − sin(λ), sin(λ)[ .
Then, for u, v ∈ W∩ ]− sin(λ), sin(λ)[ , we have that u, v, and

√
1− v2 ∈ Q. For such values of

u and v, the equality (18) and the Q-homogeneity of d implies that

u
√
1− v2d(1) =

√
1− v2ud(1)− u

v√
1− v2

vd(1),

which is possible only if d(1) = 0. Let 0 6= u ∈ ]− sin(λ), sin(λ)[∩Q, and v ∈ ]− sin(λ), sin(λ)[ .
By the Q-homogeneity and additivity of d, it follows that d(u) = ud(1) = 0 and hence (18)
simplifies to (3) on the interval ]− sin(λ), sin(λ)[ . Using this, (18) can be rewritten as

d(u
√
1− v2) =

√
1− v2d(u) + ud(

√
1− v2)

for all u, v ∈ ]− sin(λ), sin(λ)[ . With the substitution w :=
√
1− v2, this equality yields that

d(uw) = ud(w) + wd(u)

for all u ∈ ]− sin(λ), sin(λ)[ and w ∈ ] cos(λ), 1]. Then, in view of Lemma 5, d is of Leibniz-type
and hence is a standard derivation on R.

(vii) In the seventh case suppose that 0 < 2α < π < β (the other case can be treated similarly)
and d(cos(x)) = − sin(x)d(x) holds for all x ∈ ]α, β[ . Then γ = α and δ = β

2
and we can choose

λ ∈ ]0, π
2
[ such that ]π

2
− λ, π

2
+ λ[⊆ ]γ, δ[ . Thus the sine function is positive over ]π

2
− λ, π

2
+ λ[

and hence sin(x) =
√

1− cos2(x) holds for all x ∈ ]π
2
− λ, π

2
+ λ[ . The restriction of the cosine

function to the interval ]α, β[ satisfies the functional equation

cos(x+ y) = cos(x) cos(y)−
√

1− cos2(x)
√

1− cos2(y)

for all x, y ∈ ]π
2
− λ, π

2
+ λ[ . By Corollary 2, it follows that d is also a derivation with respect to

the function

(u, v) 7→ uv −
√
1− u2

√
1− v2 (u, v ∈ ] cos(π

2
+ λ), cos(π

2
− λ)[ ),

i.e., the functional equation

d(uv −
√
1− u2

√
1− v2) =

(

v + u

√
1− v2√
1− u2

)

d(u) +
(

u+ v

√
1− u2

√
1− v2

)

d(v) (19)

holds for all u, v ∈ ] cos(π
2
+ λ), cos(π

2
− λ)[ . Replacing v by −v and subtracting the equality so

obtained from (19), we get that
d(uv) = vd(u) + ud(v) (20)
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holds for all u, v ∈ ] cos(π
2
+ λ), cos(π

2
− λ)[ . Hence, in view of Lemma 5, we get that d is a

standard derivation on R.
(viii) In the eighth case suppose that −π < 2α < β and α < 2β < π and d(tan(x)) =
1

cos2(x)
d(x) is valid for all x ∈ ]α, β[ . The restriction of the tangent function to the interval ]α, β[

satisfies the functional equation

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
(x, y ∈ ]γ, δ[ ).

By Corollary 2, it follows that d is also a derivation with respect to the function

(u, v) 7→ u+ v

1− uv
(u, v ∈ ] tan(γ), tan(δ)[ ),

i.e., the functional equation

d
( u+ v

1− uv

)

=
1 + v2

(1− uv)2
d(u) +

1 + u2

(1− uv)2
d(v) (21)

holds for all u, v ∈ ] tan(γ), tan(δ)[ . Now choose a subinterval ]λ, µ[ of ] tan(γ), tan(δ)[ such
that λ, µ ∈ Q and 0 < λµ =: r 6= 1. It is easy to see that if u ∈ ]λ, µ[ , then r

u
∈ ]λ, µ[ also holds.

Substituting u ∈ ]λ, µ[ and v := r
u
, (21) implies

1

1− r
d
(

u+
r

u

)

=
1 + ( r

u
)2

(1− r)2
d(u) +

1 + u2

(1− r)2
d
( r

u

)

.

A direct and simple computation yields that

− 1

u2
d(u) = d

(1

u

)

for u ∈ ]λ, µ[ , which, using Lemma 4, yields that d is a standard derivation.
(ix) In the last case suppose that 0 < 2α < β < π (the case −π < α < 2β < 0 can be treated

similarly) and d(cot(x)) = − 1
sin2(x)

d(x) is valid for all x ∈ ]α, β[ . The restriction of the cotangent

function to the interval ]α, β[ satisfies the functional equation

cot(x+ y) =
cot(x) cot(y)− 1

cot(x) + cot(y)
(x, y ∈ ]γ, δ[ ).

By Corollary 2, it follows that d is also a derivation with respect to the function

(u, v) 7→ uv − 1

u+ v
(u, v ∈ ] cot(δ), cot(γ)[ ),

i.e., the functional equation

d
(uv − 1

u+ v

)

=
1 + v2

(u+ v)2
d(u) +

1 + u2

(u+ v)2
d(v) (22)

holds for all u, v ∈ ] cot(δ), cot(γ)[ . Now choose a subinterval ]λ, µ[ of ] cot(δ), cot(γ)[ such that
λ, µ ∈ Q and λ + µ =: r 6= 0. It is easy to see that if u ∈ ]λ, µ[ , then r − u ∈ ]λ, µ[ also holds.
Substituting u ∈ ]λ, µ[ and v := r − u, (22) implies

1

r
d(u(r − u)− 1) =

1 + (r − u)2

r2
d(u) +

1 + u2

r2
d(r − u).
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This equality, using the additivity and Q-homogeneity, after some simplification, reduces to

d(u2) = 2ud(u)− 2d(1)− u2d(1) (u ∈ ]λ, µ[ ).

If u is rational, then this equality gives that d(1) = 0. Hence the above equality shows that (7)
is valid on ]λ, µ[ with r = 2. In view of Lemma 4 we get that d is a standard derivation. �

When considering the interval ]α, β[ , one should observe that depending on additional as-
sumptions described in the nine cases of the theorem, this interval can be arbitrary small in all
the cases except the case (vii), then it contains either [π/2, π] or [−π,−π/2].

5. Extension of the result of Nishiyama and Horinouchi

Theorem 8. Let d : R → R be an additive function, I be a nonempty open interval not con-
taining zero and assume that P,Q : I → R are of the form

P (u) =
∑

k∈Z

pku
k, Q(u) =

∑

k∈Z

qku
k, (23)

where pk, qk ∈ Q for all k ∈ Z and the set {k ∈ Z | (pk, qk) 6= (0, 0)} is finite. Then

Q′(u)d(P (u)) = P ′(u)d(Q(u)) (u ∈ I) (24)

holds if and only if

(i) either P and Q are linearly dependent,
(ii) or P and Q are linearly independent, P−p0 and Q−q0 are linearly dependent and d(1) = 0,
(iii) or P − p0 and Q− q0 are linearly independent and d is a standard derivation.

Proof. First we prove the necessity of (i)–(iii). Assume that (24) holds and P , Q are linearly
independent. Then the Wronskian P and Q is not identically zero on I, i.e., there exists u0 ∈ I
such that P ′(u0)Q(u0) 6= P (u0)Q

′(u0).
Substituting u ∈ I ∩ Q we have that P (u) and Q(u) are rational numbers. Therefore, using

the Q-homogeneity of d, (24) implies that

Q′(u)P (u)d(1) = P ′(u)Q(u)ud(1) (25)

for all u ∈ I ∩ Q. By the continuity of P and Q and the density of I ∩ Q in I, it follows that
(25) holds for all u ∈ I, in particular, for u = u0, which implies that d(1) = 0.

From now on, we assume that P − p0 and Q− q0 are linearly independent. Let k0 denote the
smallest element of the finite set {k ∈ Z \ {0} | (pk, qk) 6= (0, 0)}. Then u−k0(P (u) − p0) and
u−k0(Q(u)− q0) are linearly independent polynomials of the variable u. This is equivalent to the
linear independence of the coefficients of P −p0 and Q−q0, that is, of (pk)k∈Z\{0} and (qk)k∈Z\{0}.
Therefore, the system of vectors (pk, qk)k∈Z\{0} spans R2. Thus there exists ℓ ∈ Z\{0} such that,
for 0 6= k < ℓ, the vector (pk, qk) is parallel to (pk0, qk0) and (pℓ, qℓ) is not parallel to (pk0, qk0).
Then,

piqj = pjqi (0 6= i < ℓ, 0 6= j < ℓ) and pk0qℓ 6= pℓqk0 . (26)

Now let v ∈ I be fixed and r ∈ (I/v)∩Q). Then u = rv ∈ I, therefore, the equality (24), the
additivity and Q-homogeneity of d imply

(

∑

j∈Z

qjjr
j−1vj−1

)(

∑

i∈Z

pir
id(vi)

)

=

(

∑

i∈Z

piir
i−1vi−1

)(

∑

j∈Z

qjr
jd(vj)

)

.
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Using that d(1) = 0, this equality is equivalent to
∑

i∈Z\{0}

∑

j∈Z\{0}

piqjr
i+j−1(jvj−1d(vi)− ivi−1d(vj)) = 0. (27)

This implies
∑

i<j, ij 6=0

(piqj − pjqi)r
i+j−1(jvj−1d(vi)− ivi−1d(vj)) = 0.

According to the choice of k0 and ℓ, we have (26), therefore,
∑

k0≤i,max(i+1,ℓ)≤j, ij 6=0

(piqj − pjqi)r
i−k0+j−ℓ(jvj−1d(vi)− ivi−1d(vj)) = 0.

The left hand side of this equality is a polynomial of r, hence its value at r = 0 is equal to zero,
which gives

(pk0qℓ − pℓqk0)(ℓv
ℓ−1d(vk0)− k0v

k0−1d(vℓ)) = 0.

By the last relation in (26), this yields

ℓd(vk0) = k0v
k0−ℓd(vℓ) (v ∈ I).

With the substitution u := vℓ, and with the notation r := k0
ℓ
, we get

d(ur) = rur−1d(u) (u ∈ J := {xℓ | x ∈ I}).
Observe that r ∈ Q \ {0, 1}, therefore, by Lemma 4, it follows that d is a standard derivation.

If condition (i) holds and P is not identically zero, then Q is a rational multiple of P , hence
(24) is trivially valid by the Q-homogeneity of d.

If condition (ii) holds, then, denoting P0 := P − p0 and Q0 := Q− q0 and using (i) for P0 and
Q0, we have

Q′(u)d(P (u)) = Q′
0(u)d(P0(u) + p0) = Q′

0(u)(d(P0(u)) + p0d(1)) = Q′
0(u)d(P0(u))

= P ′
0(u)d(Q0(u)) = P ′

0(u)(d(Q0(u)) + q0d(1)) = P ′
0(u)d(Q0(u) + q0) = P ′(u)d(Q(u)).

Finally, if condition (iii) is valid, i.e., d is a standard derivation, then, for all u ∈ I and i, j ∈ Z,

juj−1d(ui) = juj−1iui−1d(u) = iui−1d(uj).

Multiplying this equality by piqj , then summing up the equalities so obtained side by side for
(i, j) ∈ Z2, we obtain that

(

∑

j∈Z

qjju
j−1

)(

∑

i∈Z

pid(u
i)

)

=

(

∑

i∈Z

piiu
i−1

)(

∑

j∈Z

qjd(u
j)

)

.

This equality, by the additivity and Q-homogeneity of d is equivalent to (24). �

Corollary 9. Let d : R → R be an additive function, I be a nonempty open interval not
containing zero and assume that P,Q : I → R are of the form (23), where pk, qk ∈ Q for all
k ∈ Z and the set {k ∈ Z | (pk, qk) 6= (0, 0)} is finite. Assume that Q′ is non-vanishing on I,
furthermore P − p0 and Q− q0 are linearly independent and d derivates P ◦Q−1 on J := Q(I).
Then d is a standard derivation.
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Proof. Using that d derivates P ◦Q−1, we have

d(P (Q−1(v))) = P ′(Q−1(v))
1

Q′(Q−1(v))
d(v) (v ∈ J).

Substituting u := Q−1(v) ∈ I into the above equation, we can see that (24) holds. Taking into
consideration that P −p0 and Q−q0 are linearly independent by assumption, Theorem 8 implies
that d is a standard derivation. �

Corollary 10. Let d : R → R be an additive function, let P be a nonzero real polynomial with
rational coefficients and I be a nonempty open subinterval of R. Then d derivates P over I if
and only if

(i) either deg(P ) = 0 and d(1) = 0,
(ii) or deg(P ) = 1 and P (0)d(1) = 0,
(iii) or deg(P ) ≥ 2 and d is a standard derivation.

Proof. This statement is an immediate consequence of Theorem 8 by choosing Q(u) = u. �

6. Open Questions

Motivated by the results of the previous section, we can formulate two open problems. Let
P,Q : I → R by of the form (23), where pk, qk ∈ Q for all k ∈ Z and the set {k ∈ Z | (pk, qk) 6=
(0, 0)} is finite and let d : R → R be an additive function.

Problem 1. Assume that Q is non-vanishing on I and d derivates P/Q on I, that is,

d

(

P (u)

Q(u)

)

=
P ′(u)Q(u)−Q′(u)P (u)

Q2(u)
d(u) (u ∈ I).

Under what conditions on P and Q does this equality imply that d is a standard derivation?
Problem 2. Assume that P ′ is non-vanishing on I and Q(I) ⊆ P (I) and d derivates P−1 ◦Q

on I, that is,

d
(

P−1(Q(u)
)

=
Q′(u)

P ′(P−1(Q(u)))
d(u) (u ∈ I).

This, provided that Q is strictly monotone on I, is equivalent to the condition

P ′(P−1(v))d
(

P−1(v)
)

= Q′(Q−1(v))d(Q−1(v)) (v ∈ Q(I)).

Under what conditions on P and Q does this equality imply that d is a standard derivation?
The result of Boros and Erdei [2] would be a particular case of such a generalization.
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