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ABSTRACT

Recognition of Hungarian conversational telephone speech is challenging due to the informal style and
morphological richness of the language. Neural Network Language Models (NNLMs) can provide remedy
for the high perplexity of the task; however, their high complexity makes them very difficult to apply in the
first (single) pass of an online system. Recent studies showed that a considerable part of the knowledge of
NNLMs can be transferred to traditional n-grams by using neural text generation based data augmentation.
Data augmentation with NNLMs works well for isolating languages; however, we show that it causes a
vocabulary explosion in a morphologically rich language. Therefore, we propose a new, morphology aware
neural text augmentation method, where we retokenize the generated text into statistically derived sub-
words. We compare the performance of word-based and subword-based data augmentation techniques
with recurrent and Transformer language models and show that subword-based methods can significantly
improve the Word Error Rate (WER) while greatly reducing vocabulary size and memory requirements.
Combining subword-based modeling and neural language model-based data augmentation, we were able to
achieve 11% relative WER reduction and preserve real-time operation of our conversational telephone
speech recognition system. Finally, we also demonstrate that subword-based neural text augmentation
outperforms the word-based approach not only in terms of overall WER but also in recognition of Out-of-
Vocabulary (OOV) words.
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1. INTRODUCTION

Today’s state-of-the-art in language modeling for ASR relies on Neural Network Language
Models (NNLMs) (Mikolov et al. 2010; Sundermeyer et al. 2012; Irie et al. 2019), capable of
handling continuous space and thereby outperforming traditional Back-off N-gram LMs
(BNLMs). BNLMs cannot exploit long context based syntactic dependencies and are also less
flexible in terms of generalization for unseen cases, as semantic knowledge (such as embeddings
reflecting similarity) is not captured while training them.

NNLMs however have an undesired property, they are computationally very heavy in
decoding, so neural LMs cannot be effectively used in a single decoding pass, they are rather
exploited by rescoring lattices obtained from a first decoding pass with a BNLM. It is obvious,
but can also be shown, that information is lost during the first decoding pass, as the pruning
of the recognition network is based only on short context syntax, discarding both longer
context syntactic and quasi all semantic knowledge. Another problem arising is the increased
latency of the system through the two decoding passes, which hampers exploitation in strict
online requirements.

To reduce these limitations in exploiting neural LMs for ASR, several solutions have been
proposed (Deoras et al. 2011; Arisoy et al. 2014; Adel et al. 2014; Singh et al. 2019). In Adel et al.
(2014) it was shown that using the neural LM to generate an augmented training corpus to train
an improved BNLM is the best performing strategy. Sometimes these are called approximative
models as they try to capture the knowledge of the neural model through their augmented
training corpus. Although the converted model loses its ability to model long contexts and
distributed input features, it can be directly applied for first-pass decoding that makes these
techniques attractive.

Another burden of language modeling for morphologically rich languages are the different
syntactic properties of the language compared to English. Heavy agglutination results in much
larger vocabularies, which is a problem in itself, but causes other problems too: individual word
forms occur less often and hence, the size of the training corpus should accordingly be
augmented to maintain the predictive power of the dataset. Moreover, as suffixes express
grammatical relations usually provided by word order in English, morphologically rich languages
tend to be more permissive in choosing word order, leading to higher variation. This impairs
BNLM estimation badly, but may also cause that word embeddings become less powerful in
terms of syntactic and semantic consistency (Döbrössy et al. 2019), even despite using long
context windows. To alleviate these problems linked to the different organization of morpho-
logically rich languages, subword unit modeling is an often used alternative (Creutz & Lagus
2002; Kurimo et al. 2007; Mihajlik et al. 2010).

1.1. Related work

Recently several studies concentrated on the approximation of neural LMs. Suzuki et al. (2019)
uses a domain balanced mixture of the training corpora to train a shallow Recurrent Neural
Network Language Model (RNNLM) for text generation, and improve speech recognition
results for Japanese, Korean and English. They use subword-based approach, but compose
these subwords back into words to prepare the final LM, unlike our approach that retokenizes
words into subword units in the final LM. Another approach called RNN n-gram has also
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been introduced (Chelba et al. 2017). RNN n-grams are special RNNLMs trained on n-grams
sampled from the training data. As a consequence, the size of the modeled context here is also
limited, but RNN n-gram models are able to learn word embeddings just like standard
RNNLMs. Wang et al. (2019) report using general domain pre-trained Transformer (Vaswani
et al. 2017) to generate augmentation text corpora for LM training. They demonstrate that the
pre-trained and fine-tuned Transformer performs significantly better in data augmentation than
RNNLM or simple in-domain Transformer models.

Although subword language modeling has been used in morphologically rich Finnish ASR
systems for more than a decade now (Creutz & Lagus 2002; Kurimo et al. 2007), it was not found
beneficial for spontaneous conversational speech until recently. In Enarvi et al. (2017), subword
RNNLMs were trained on Finnish and Estonian conversations and used for rescoring lattices
generated with conventional back-off models. In a recent paper (Singh et al. 2019), n-gram
based approximation of recurrent language models was evaluated on a Finnish and an Arabic
OOV keyword retrieval task. The approximation method significantly improved OOV search
results, however the proposed model was not tested on in-vocabulary words and no overall word
error rates were presented either.

Subword language models have already been applied successfully for recognition of
Hungarian conversational speech (Mihajlik et al. 2010; Tarján et al. 2013), but subword-based
neural language models have not been used before to the best of our knowledge except for our
former studies in the topic (Tarján et al. 2019, 2020a, b). In the first paper (Tarján et al. 2019),
the performance of BNLMs, and models augmented with RNNLMs were compared in terms
of perplexity and WER on a Hungarian conversational telephone speech recognition task.
In our next paper (Tarján et al. 2020b), we analyzed the effectiveness of the RNNLM based
data augmentation by systematically comparing BNLMs, augmented models and 2-pass
recognition results to determine the amount of knowledge that can be transferred from the
offline to the online ASR system. Our first Transformer based results were presented in Tarján
et al. (2020a), where we showed that language models augmented with a pretrained Trans-
former LM can significantly outperform models augmented with an RNNLM. In addition,
the first version of our subword-based data augmentation approach was also introduced in
that paper.

1.2. Our contribution

This paper summarizes the results of our research aimed at gaining a better understanding
of how to transfer the knowledge of modern neural network based language models to the
conventional back-off n-gram LMs. Our goal is to improve the LM of an online call center
ASR system in the morphologically rich Hungarian. We compare conventional BNLMs and
n-gram approximation of RNNLMs, non-pretrained and pre-trained Transformer LMs. With
the neural language models we generate training text for a BNLM and demonstrate that such
data augmentation is efficient in Hungarian, if vocabulary is large enough and a large BNLM
is used.

We also propose a morphology aware data augmentation method by retokenizing the
augmented training corpus to subword units, and training a subword-based BNLM on it. We
demonstrate that (i) the ASR accuracy further improves compared to the word based baseline
augmented BNLM, and (ii) the footprint and complexity of the resulting subword unit
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augmented BNLM significantly decrease. As subword unit LMs are known to perform better on
a wide range of morphologically rich languages, we hypothesize that our approach is transferable
to other such languages.

In addition to summarizing our former studies, our paper also extends them in several
aspects: (i) recurrent and Transformer models are discussed in parallel, this way providing a
much better comparison among these techniques; (ii) the morphology aware Transformer based
data augmentation process has been greatly revised to make the process much clearer and more
efficient compared to the method presented in Tarján et al. (2020a); (iii) we introduce new
experimental results about the impact of vocabulary and LM size on the accuracy of augmented
models to illustrate the drawbacks of word-based data augmentation for morphologically rich
languages; (iv) we compare the OOV recognition capabilities of the discussed language modeling
techniques; (v) finally, we apply the recurrent and Transformer based data augmentation
simultaneously and prove that these neural LM techniques can support each other.

In the next section the experimental database and preprocessing methods are introduced.
In Section 3, we describe the techniques we used for training our different types of language
models. Next, Section 4 introduces the data augmentation techniques applied in our experi-
ments. In Section 5 the speech recognition results are presented. Finally, Section 6 highlights the
most impactful outcome of our work.

2. DATABASE

2.1. Training data

2.1.1. Original data. In-domain training data is extracted from the Hungarian Call Center
Speech Database (HCCSD) consisting of anonymised telephone customer service calls and the
corresponding manual transcripts. We selected 290 h of recordings for training the acoustic
model of our ASR system (see Table 1). The in-domain LMs are built on the transcripts of
the training set containing 3.4M word tokens and 100k unique word forms. As the available
in-domain training text data is very limited, we also utilize a general text corpus for pre-
training the Transformer LM, which was collected from the website of the Hungarian National
Assembly1 and contains official transcripts of parliamentary speeches.

Table 1. Train and test dataset statistics

In-domain Train Validation Evaluation

Audio [h:m] 290:07 7:31 12:12

# of word tokens 3,401,775 45,773 66,312

word OOV rate [%] – 2.7 2.5

General text

# of word tokens 57,601,277 – –

1www.parlament.hu.
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2.1.2. Subword segmented data. Morphologically rich languages have significantly larger
vocabulary, as case endings usually reflect grammatical roles. Large vocabulary size can be a
problem in itself, however it also increases data sparseness in the training data and result high
OOV rate. A common remedy is to segment words into smaller units and train language models
on these subword sequences (Kurimo et al. 2007; Mihajlik et al. 2010). One of the most popular
statistical word segmentation algorithm is Morfessor (Creutz & Lagus 2002) was inspired by the
Minimum Description Length (MDL) principle, and was specifically designed for processing
morphologically rich languages. We apply the Python implementation of the original algorithm
called Morfessor 2.0 (Virpioja et al. 2013). Hyperparameters of the segmentation were optimized
on the validation test set (see Section 2.2).

Non-initial morphs of every word were tagged with the ‘þ’ sign to provide information to
the ASR decoder for the reconstruction of word boundaries (see left-marked style in Smit,
Virpioja & Kurimo 2017). For instance, subword segmentation transcribes the Hungarian
sentence ‘megbeszélem a nejemmel’ (meaning ‘I will discuss it with my wife’) as follows:

Conventional tokenization:
hát megbeszélem a nejemmel
Subword-based tokenization:
hát meg þbeszél þem a nejem þmel

2.2. Test data

Almost 20 h of conversations were selected from HCCSD for testing purposes. The test
dataset was split into two disjoint parts (see Table 1). The validation set (≈7.5 h) and the
corresponding text transcripts were used for optimization of the hyperparameters (e.g.
learning rate control, early stopping), whereas evaluation set (≈12 h) was used to test the
models and report experimental results. Subword segmentation of evaluation dataset was
performed with Morfessor 2.0 toolkit using the segmentation model we optimized on the
validation set.

3. LANGUAGE MODELING

3.1. Back-off n-gram models

Count-based, back-off language models (BNLMs) have low computational cost and fit well into
Weighted Finite-State Transducer (WFST) framework, hence are still widely used in online,
single-pass ASR systems. We carry out training and interpolation of BNLMs with the SRI
language modeling toolkit (Stolcke 2002) applying Chen and Goodman’s modified Kneser-Ney
discounting (Chen & Goodman 1999).

3.2. Recurrent language model

The 2-layered Long Short-Term Memory (LSTM) RNNLM structure (Elman 1990; Hochreiter
& Schmidhuber 1997) we used in our experiments is illustrated in Figure 1. This type of network
has already been successfully applied for other language modeling tasks (Zaremba et al. 2014;
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Chelba et al. 2017). Our implementation2 is based on the TensorFlow sample code of the Penn
Tree Bank language model presented in Zaremba et al. (2014).

The hyperparameters of the neural network were optimized on the validation set. One batch
consists of 32 sequences containing 35 tokens each (words or subwords). LSTM states are
preserved between the batches, so stateful recurrent networks are trained according to Ten-
sorFlow terminology. The 650 dimension word/subword embedding vectors are trained on the
input data, since we did not find any benefit of Hungarian pretrained embeddings. In order to
match the dimensionality of embeddings the size of the LSTM layer is also set to 650. The
applied recurrent LSTM structure uses altogether 20 million trainable parameters. After testing
several optimization algorithms, we decided on the momentum accelerated, Stochastic Gradient
Descent (SGD). We apply a simple adaptive learning rate decay scheme, where the initial
learning rate is set to 1 and decreased by a factor of 2 each time validation error plateau. For
regularization purposes, dropout layers with keep probability of 0.5 and early stopping with
patience of 3 epochs are used.

3.3. Transformer language model

Recently Transformer architectures have proven to be particularly successful in generating well-
structured, high-quality texts thanks to the self attention mechanism and the depth of the model
(Radford et al. 2019; Yang et al. 2019). In order to generate augmentation text to our ASR task,
we applied one of the most promising Transformer architectures called OpenAI GPT-2 (Rad-
ford et al. 2019) implemented in HuggingFace’s Transformers library (Wolf et al. 2019). The
GPT-2 architecture has four variants with different sizes from which we opted for the medium
having altogether 345 million trainable parameters.

Figure 1. The recurrent LSTM language model structure used in our experiments

2github.com/btarjan/stateful-LSTM-LM.
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GPT-2 medium consists of 24 decoder-only Transformer blocks each having 16 attention
heads and 1,024 dimensional embedding and bottleneck layers (see Figure 2). Due to GPT-2
conventions the first feed-forward layer in each block is four times larger than the
bottleneck layers (4,096). For regularization purposes it applies embedding, attention and
residual dropouts with a rate of 0.1. We apply the Adam optimization scheme (Kingma &
Ba 2014) with initial learning rate of 1e-4 and a linear decay schedule. We pre-train
the model on the general training corpus for 15 epochs using minibatches of 16 sequences
consisting of 512 tokens each. Fine-tuning of the pre-trained model took 4 epochs on the
in-domain training set with the same hyperparameters as in pre-training. Tokenization was
performed with a byte-level Byte Pair Encoding (BPE) (Sennrich et al. 2015) model with
30k vocabulary items (256 bytes þ29,744 merges) trained on the in-domain training set.

In addition to the pre-trained model, we also trained a model exclusively on the in-domain
training text. Despite the small amount of training data, we did not encounter any convergence
problems during the 10 epochs of training. The relative robustness of this non-pretrained
Transformer model may be surprising; however, our results are in line with the recently
developed theory of overparameterized machine learning (Dar et al. 2021).

Figure 2. Structure of the applied GPT-2 medium architecture
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4. DATA AUGMENTATION WITH NEURAL LANGUAGE MODELS

There are various approaches for the approximation of a neural language model with a back-off,
n-gram language model (Deoras et al. 2011; Arisoy et al. 2014; Adel et al. 2014; Singh et al.
2019). In Adel et al. (2014) three such methods are described and evaluated, coming to a
conclusion that the so called text generation based data augmentation yields the best results. The
main idea of this approach is to estimate the BNLM parameters from a large text corpus
generated by a NNLM. In this section, we describe the various data augmentation approaches
applied in our experiments.

4.1. Data augmentation with RNNLM

We first generate a large text corpus with the RNNLM, which is than can be used to train a
backoff, n-gram language model (see Figure 3). The model trained on the generated text can be
considered as the n-gram approximation of the recurrent neural model (RNN-BNLM). To
further improve the performance, the RNN-BNLM can be interpolated with the original, in-
domain BNLM (BNLM þ RNN-BNLM) and can be utilized in a real-time ASR system.
Interpolation weights are optimized on the development set. In our work, we first generated 100
million words/subwords with the corresponding word or subword-based RNNLM (RNN-BNLM
100M) that was formerly trained on the in-domain training set. In order to get an insight how
the corpus size influences the language model capabilities, we also generated a larger text corpus
with 1 billion subwords (RNN-BNLM 1B).

Figure 3. Data augmentation of in-domain training text with recurrent neural language model
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4.2. Data augmentation with Transformer LM

4.2.1. Neural text generation with GPT-2. Generation of a text sequence is initialized with a
prefix prompt, which we sample from the in-domain training set. The length of the sampled
prefix varies randomly between 1.7 words to balance the trade-off between free and constrained
text generation. For the same reasons, the temperature is also randomly changed from 1.0 to 1.5.
We generate two large corpora for data augmentation purposes each consisting of 1 billion
words. The first corpus is generated with the pre-trained and then fine-tuned Transformer LM
(TR) described in Section 3.3, while the second one is generated with a Transformer trained
directly on the in-domain corpus without pre-training (TR-noPT).

4.2.2. Word-based data augmentation. The fact that text corpora generated by RNNLMs
can improve the accuracy of n-gram language models has been shown by several studies before
(Deoras et al. 2011; Adel et al. 2014; Suzuki et al. 2019; Tarján et al. 2019, 2020b). However,
Wang and her colleagues (Wang et al. 2019) were the first who applied general domain pre-
training and in-domain fine-tuning of a Transformer LM to improve the effectiveness of the
data augmentation process. For that reason we summarize their original, word-based data
augmentation process in this section. In the next section, we are going to propose an extended
version of the augmentation process that fits better to morphologically rich scenarios.

The original, word-based version of neural text based data augmentation process is shown on
the left side of Figure 4 (white boxes). First a large corpus is generated by the Transformer
LM (pre-trained on a general text corpus and fine-tuned on the in-domain text). Based on
this generated text a BNLM (TR-BNLM) is trained, which approximates the short-term
dependencies learned by the Transformer. To further improve the model, the TR-BNLM can be
interpolated with a BNLM trained the on the in-domain text (BNLM þ TR-BNLM).

4.2.3. The proposed subword-based data augmentation. Language modeling of morpho-
logically rich languages poses a great challenge, since the large number of word forms cause data
sparseness and high OOV rate. A common remedy is to segment words into smaller parts and
train language models on these subword sequences (Kurimo et al. 2007; Mihajlik et al. 2010). In
this study we compare two popular, data-driven subword tokenizers Morfessor (Creutz & Lagus
2002) and BPE algorithm (Sennrich et al. 2015) for the character-level retokenization of the
generated corpora. Morfessor is inspired by the Minimum Description Length (MDL) principle
and specifically designed for processing morphologically rich languages (see Section 2.1). BPE is
one of the most widely used subword tokenizers especially for processing byte-level token se-
quences (Radford et al. 2019).

The question arises as to why to retokenize the generated texts when we could use the
original byte-level tokenizer of the Transformer model. Hungarian uses many characters that are
encoded with multiple bytes. A byte-level tokenizer can split these multibyte characters and
place the leading and trailing part of a character into separate subwords. These broken char-
acters make assignment of phonetic transcripts ambiguous, since subword boundaries does not
represent phone boundaries anymore. By using character-level retokenization we can prevent
this ambiguity in the phonetic transcription of subwords.

Our proposed morphology aware extension to the word-based data augmentation process
called subword-based neural text augmentation is depicted in Figure 4 (grey boxes). The revised
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data augmentation process starts with training the subword tokenizer (Morfessor or BPE) on the
in-domain dataset. The word-based generated text corpus and the in-domain training text are
then segmented into subword sequences using the pre-trained tokenizer. In order to preserve
word boundary information during the ASR decoding process, non-initial subwords were tagged
with the ‘þ’ sign. Based on the segmented text, we train BNLM models (Subword BNLM and
Subword TR-BNLM in Figure 4), which can be interpolated for the best performance again
(Subword BNLM þ TR-BNLM).

5. EXPERIMENTAL RESULTS

In this section, we utilize the techniques presented in Section 4 to show whether the application
of neural language model based data augmentation can turn to reduction in WER.

5.1. Experimental setup

High resolution MFCC vectors were used as input features for an LF-MMI trained Factored
Time Delay Neural Network (TDNN-F) acoustic model (Povey et al. 2018, 2011). The matrix

Figure 4. Neural text generation based data augmentation of language models with the proposed
modification (gray boxes)
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size (hidden-layer dimension) was 768 and the linear bottleneck dimension was 80 resulting
in a total number of 6M parameters in the 12 hidden layers. Phoneme-based acoustic and
language model resources were compiled into WFSTs and decoded with the VoXerver
(Tarján et al. 2011) ASR decoder. The typical latency of the online decoding setup was
measured to be around 250 ms. After experimenting with different n-gram orders on the
development set, we found 4-g models the optimal choice both for word and subword
BNLMs.

In Hungarian there is a close correspondence between the surface (orthographic) form of
words and their phonetic transcription, therefore the pronunciation of most words can be
derived by using simple grapheme-phoneme mapping rules (Mihajlik et al. 2002). However,
there are always exceptions e.g. foreign words, named entities which are handled with an
exception dictionary collected from manual transcripts. Phonetic transcription of subword units
are derived by using the same grapheme-phoneme mapping rules as in case of words. In order to
handle irregularities, a dictionary of exceptionally pronounced subwords is created by tokenizing
the word-based exceptions. The entries of the subword-based exception dictionary are applied as
alternative pronunciations in addition to the ones that were generated with the grapheme-
phoneme rules.

5.2. Data augmentation with RNNLM

We performed single-pass decoding with the BNLM and RNN-BNLM models and calculated
WER of each output (see Table 2). In order to ensure the fair comparison among the
modeling approaches, we pruned each RNN-BNLM so that they had similar runtime memory

Table 2. WER of the online ASR system using data augmentation with RNNLM

Token type Model
Memory

usage [GB] PPL [–] WER [%]

WERR over
Word/Sub.
BNLM [%]

Word BNLM 1.3 101.1 21.9

RNN-BNLM 100M 0.9 102.2 22.5 �2.6p

BNLM þ RNN-BNLM 100M 1.5 95.7 21.3 2.7p

Subword BNLM 1.0 83.7 21.1 3.4p

RNN-BNLM 100M 1.1 84.8 21.1 3.7p 0.3

RNN-BNLM 1B 0.9 78.6 20.5 6.4p 3.2p

BNLM þ RNN-BNLM 100M 1.1 77.1 20.4 6.8p 3.5p

BNLM þ RNN-BNLM 1B 1.1 75.9 20.2 7.7p 4.5p

3.9 72.8 19.9 8.8p 5.6p

p sign indicates significant difference compared to Word or Subword-based BNLM models and was tested with
Wilcoxon signed-rank test (P < 0.05).
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footprint as the baseline BNLM models (≈1 GB). ASR results of word-based language
models show similar trends as perplexity results. The BNLM approximation of word-based
RNNLM (Word RNN-BNLM 100M) has a slightly higher WER than the baseline BNLM;
however, the interpolated model (Word BNLM þ RNN-BNLM 100M) outperforms both.
The relative WER improvement of the interpolated model compared to the baseline BNLM is
around 3%.

Replacing words with Morfessor derived subwords in the baseline BNLM yields 3% relative
WER reduction (Word BNLM vs. Subword BNLM), which is in accordance with our former
findings in Tarján et al. (2013). The LM trained on the 100-million-subword generated corpus
(Subword RNN-BNLM 100M) has the same WER as the subword-based BNLM (21.1% WER).
Using a ten times larger corpus to train the approximated model, however, seems to change the
trend. Subword-based RNN-BNLM 1B model is the first approximated model that outperforms
a baseline BNLM by itself without interpolation. This observation underlines the importance
of the size of the generated text. The difference between 100M and 1B models are also reflected
in their interpolated counterparts. Subword BNLM þ RNN-BNLM 1B model can reduce
WER of subword-based BNLM by ≈5% or even ≈6% if runtime memory consumption is not a
restricting factor.

All in all, by augmenting the in-domain training text with a subword-based RNNLM, we
managed to reserve real-time operation of the system and reduce the word error rate by 8–9%
relative.

5.3. Word-based data augmentation with Transformer LM

5.3.1. Comparing language modeling approaches. In our first experiment, we use the
augmentation text generated with the GPT-2 Transformer LM (see Section 4.2) in its original
form without subword segmentation. Our goal is to compare the modeling capabilities of lan-
guage models on in-vocabulary words, hence we limited the vocabulary of all models to the 100k
words occurring in the in-domain training text. Previously (see Section 5.2), we augmented the
same dataset with a corpus generated by the 2-layer LSTM RNNLM. The results of word-based
data augmentation with the RNNLM are placed here to serve as an advanced baseline (RNN-
BNLM). All models were pruned to 1 GB runtime memory usage. The results are summarized in
Table 3.

Without LM interpolation, neither the RNN-BNLM nor the TR-noPT-BNLM (Trans-
former without pre-training) models can outperform the baseline BNLM. Only the pre-
trained TR-BNLM can reduce the word error rate by around 2% relative. In contrast, with
LM interpolation, all augmentation methods reduce significantly the WER of the baseline
model. Using a recurrent model (BNLM þ RNN-BNLM 100M) or the non-pretrained
Transformer (BNLM þ TR-noPT-BNLM 1B) for data augmentation result in similar Word
Error Rate Reduction (WERR), with the Transformer model being slightly better (2.7% vs.
3.7% WERR). The pre-trained Transformer (BNLM þ TR-BNLM 1B), however, stands out
among all other approaches, since it reduces the error rate by relative 6%. We also tested
whether word-based augmentation models can support each other and found that by
applying RNN-BNLM and TR-BNLM simultaneously an additional 1% of WERR can be
obtained.
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5.3.2. Extended word-based augmentation. In the previous section, we limited the vocabu-
lary size of language models to 100k and pruned them to a maximum memory footprint of 1 GB
for comparability reasons. In the following, we examine the performance of word-based
augmented models without these limitations (See Figure 5).

As it can be seen in a morphologically rich language like Hungarian, the 100k vocabulary size
is a strict limitation. By increasing the vocabulary size to 300k, we can reduce the WER by a
relative 2% (from 20.6% to 20.2%) and by raising it to 1M by a relative 3% (from 20.6% to
20.0%). If we reduce LM pruning and let the memory footprint to increase from 1 to 4 GB, the
WERR can go up to 4.5% (WER from 20.6% to 19.7%), but for such a great improvement we
need an extremely large vocabulary with 3 million words. We can see that in a morphologically
rich language, exploiting full advantages of neural text generation based data augmentation
sacrifices footprint, as large vocabulary and high memory consumption are produced, which
severely limits the practical applicability of the approach.

Figure 5. WER of word-based BNLM þ TR-BNLM 1B with extended vocabulary and memory footprint

Table 3. WER of the baseline and neural augmented language models using word-based modeling and
100k vocabulary

Model PPL [–] OOV rate [%] WER [%] WERR [%]

BNLM 101.1 1.8 21.9 –

RNN-BNLM 100M 102.2 1.8 22.5 �2.6p

TR-noPT-BNLM 1B 108.1 1.8 23.1 �5.3p

TR-BNLM 1B 107.3 1.8 21.5 1.7p

BNLM þ RNN-BNLM 100M 95.7 1.8 21.3 2.7p

BNLM þ TR-noPT-BNLM 1B 94.3 1.8 21.1 3.7p

BNLM þ TR-BNLM 1B 90.2 1.8 20.6 5.9p

BNLM þ TR-BNLM 1B þRNN-BNLM 100M 87.8 1.8 20.4 6.8p

p sign indicates significant difference compared to BNLM and was tested with Wilcoxon signed-rank test
(P < 0.05).
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5.4. Subword-based data augmentation with Transformer LM

In order to lower the resource requirements of the augmented language model and utilize the
generated text more efficiently, we apply subword LMs (see Section 4.2). Retokenization of the
Transformer generated corpus was performed with two different character-level tokenizers:
Morfessor and BPE algorithms. In order to make their comparison fair, both tokenizers are
trained to use 30k subword units (just like the byte-level tokenizer of the Transformer model).
The ASR system models word boundaries with tagged subword units (see Section 2.1), hence the
subword language models apply altogether 40k vocabulary items. While in the word-based case
the OOV ratio is around 0.6% even with an extremely large 3-million-word vocabulary, the
subword-based augmented language models (Subword BNLM þ TR-BNLM 1B) can fully cover
the test set (0% OOV ratio) with only this 40k subword units.

As shown in Table 4, subword-based data augmentation with a Transformer LM is more
effective than with a RNNLM. Morfessor tokenizer slightly outperforms BPE algorithm,
however the difference is not statistically significant. Subword modeling can reduce the WER
of the 100k word-based model by up to 5% (from 20.6% to 19.6%). The subword BNLM þ
TR-BNLM, moreover, outperforms the 3-million-word vocabulary word-based model by
reducing WER by 2% relative (from 20.0% to 19.6%). Both former improvements were found
statistically significant (P < 0.05). The WER of the subword-based model with 40k vocab-
ulary and 1 GB memory consumption is roughly the same as the WER of the word-based
model with 3M vocabulary items and 4 GB memory usage (19.6% vs. 19.7% WER). Thus, we
can state that neural text generation based data augmentation with subword tokenization can

Table 4. WER and PPL of word and subword-based augmentation with normal (1 GB) and extended
memory footprint (4 GB)

Model
Vocab
size

PPL [–] OOV
rate [%]

WER [%]

1 GB 4 GB 1 GB 4 GB

Word
BNLM þ TR-BNLM 1B

100k 90.2 84.9 1.4 20.6 20.4

300k 94.2 88.7 1.0 20.2 20.0

1M 97.5 91.8 0.8 20.0 19.8

3M 100.8 94.2 0.6 20.0 19.7

Subword – Morfessor
BNLM þ RNN-BNLM 1B

40k 75.9 72.8 0.0 20.2 19.9

Subword – BPE
BNLM þ TR-BNLM 1B

40k 69.6 66.3 0.0 19.7 19.4

Subword – Morfessor
BNLM þ TR-BNLM 1B

40k 69.1 64.7 0.0 19.6 19.3

Subword – Morfessor
BNLM þ TR-BNLM 1B þ
RNN-BNLM 1B

40k 67.2 63.5 0.0 19.4 19.1
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be significantly more efficient than word-based augmentation for a morphologically rich
ASR task.

Just like in the case of word-based models (see Section 5.3.1), using both RNNLM and
Transformer models simultaneously, we were able to achieve an additional average relative WER
reduction of 1%.

5.5. OOV recognition analysis

The Transformer LM applied in our experiments use subword tokenization, so it can create new
word forms when generating text for data augmentation. Hence not only subword-based lan-
guage models, but word-based models augmented with the Transformer LM become to some
extent capable of recognizing out-of-vocabulary words. In this section, we compare this OOV
recognition capability of the augmentation approaches. We consider OOV words to be those
words that did not occur in the original in-domain training text (see Section 2). We evaluated
the ASR outputs of word and subword-based augmentation approaches using information
retrieval metrics (Precision, Recall, F1) (Fawcett 2006).

The results are summarized in Figure 6. The baseline BNLM and the word-based BNLM þ
TR-BNLM vocab 100k models are not shown in the figure, since they are (obviously) not
capable of recognizing OOV words. As it can be seen in Figure 6, all models recognize OOVs
with high precision, so it is not typical that OOV words get inserted or replace other words in
the ASR transcript. What shows a significant difference between the systems examined is the
value of the recall. As the vocabulary size of word-based models increases, so does the recall
of OOV words. The 3-million-word vocabulary word-based augmented LM is capable of
recognizing almost 22% of OOVs. Subword-based approaches, however, outperform word-
based augmentation, while using significantly less resources. Subword BNLM þ RNN-BNLM is
only slightly better than the best word-based model. However, the subword-based BNLM þ TR-

Figure 6. Precision, recall and F1 of OOV word recognition with various augmented language models
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BNLM system can capture every 4th OOV word (≈25% recall) with only 40k subwords in its
vocabulary.

6. CONCLUSIONS

In this paper our aim was to improve our Hungarian conversational telephone speech recognition
system by handling morphological richness of the language and transferring information from a
recurrent and Transformer neural language model to the back-off n-gram model used in single-
pass decoding. We compared various types of word-based and subword-based data augmentation
techniques and found that by generating a 1-billion-subword corpus with a RNNLM, we were
able to achieve 8% relative WER reduction and preserve real-time operation of our ASR system.

We also introduced an approach called subword-based neural text augmentation that is the
extension of the Transformer based language model augmentation method presented in Wang
et al. (2019) for morphologically rich languages. With this new approach we managed to further
improve the WER of our online ASR system with 3% relative. Our solution also outperforms the
original, word-based data augmentation technique in terms of WER and OOV recognition
capability while keeping the vocabulary size and memory requirements of the system quite low.

In the future, we would like to extend our work to other languages and ASR tasks to confirm
multilingual portability and task independence of the proposed techniques.
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