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Abstract

We investigate joint temporal and contemporaneous aggregation of N independent
copies of strictly stationary INteger-valued AutoRegressive processes of order 1 (INAR(1))
with random coefficient « € (0,1) and with idiosyncratic Poisson innovations. Assuming
that o has a density function of the form (x)(1—x)?, z € (0,1), with 8 € (—1,00) and
limg41 9(z) = 91 € (0,00), different limits of appropriately centered and scaled aggregated
partial sums are shown to exist for 8 € (—1,0] in the so-called simultaneous case, i.e., when
both N and the time scale n increase to infinity at a given rate. The case [ € (0,00)
remains open. We also give a new explicit formula for the joint characteristic functions of
finite dimensional distributions of the appropriately centered aggregated process in question.

1 Introduction and main results

Studying temporal and contemporaneous (also called cross-sectional) aggregations of independent
stationary stochastic processes goes back to Granger [6]. He started to investigate contempora-
neous aggregation of random-coefficient autoregressive processes of order 1 in order to obtain the
long memory phenomenon in aggregated time series. Random-coefficient autoregressive processes
of order 1 were introduced by Robinson [I7], and some of its statistical properties were studied as
well. The field of aggregation of stochastic processes became an important area of statistics, for

2020 Mathematics Subject Classifications 60F05, 60J80, 60G52, 60G15, 60E10.

Key words and phrases: randomized INAR(1) process, temporal and contemporaneous aggregation, simulta-
neous limits.

Matyéds Barczy is supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sci-
ences, and by the UNKP-19-4 New National Excellence Program of the Ministry for Innovation and Technology.
Fanni K. Nedényi is supported by the UNKP-19-3 New National Excellence Program of the Ministry for Innova-
tion and Technology. Gyula Pap was supported by the Ministry for Innovation and Technology, Hungary grant
TUDFO/47138-1/2019-ITM.


http://arxiv.org/abs/2001.07127v3

surveys on aggregation of different kinds of stochastic processes, see, e.g., Pilipauskaité and Sur-
gailis [14], Jirak [7, page 521] or the arXiv version [3] of Barczy et al. [4]. For historical fidelity, we
note that Theil [21] already considered contemporaneous aggregations of linear regression models
with non-random coefficients, and later Zellner [24] investigated the case of random coefficients.

Recently, Puplinskaité and Surgailis [I5] [16] have studied iterated aggregation of random coeffi-
cient autoregressive processes of order 1 with common innovations and with so-called idiosyncratic
innovations, respectively, belonging to the domain of attraction of an a-stable law. They described
the weak limits of finite dimensional distributions of appropriately centered and scaled aggregated
partial sum processes when first the number of copies N — oo and then the time scale n — oo.
Very recently, Pilipauskaité et al. [I3] have extended the results of Puplinskaité and Surgailis [16]
(idiosyncratic case) deriving the weak limits of finite dimensional distributions of appropriately
centered and scaled aggregated partial sum processes when first the time scale n — oo and then
the number of copies N — oo, and when n — oo and N — oo simultaneously with possibly
different rates. We note that similar kinds of results were derived for the total accumulated work
process of the aggregation (also called superposition) of independent and identically distributed
stationary ON/OFF processes, see, e.g., Taqqu et al. [20], Mikosch et al. [IT] and Dombry and
Kaj [5]. Namely, there are two kinds of results, iterated ones and simultaneous ones for the total
accumulated work process in question: first the number of aggregated processes M tends to in-
finity and then the time-scaling parameter ¢ converges to infinity, and in reversed order (iterated
cases), and the simultaneous cases in which both M and ¢ go to infinity at the same time
possibly at different rates. In the simultaneous cases it turned out that there are three subcases,
where so-called fast, slow and intermediate growth conditions hold, respectively, see, e.g., Dombry
and Kaj [5l page 35]. In Pilipauskaité and Surgailis [14, page 1013], one can find a comparison
of their results on aggregation of random coefficient autoregressive processes of order 1 and the
above mentioned results on the total accumulated work process for ON/OFF processes. For some
random coefficient autoregressive processes of order 1, Leipus et al. [8] have also described the
asymptotic behaviour of sample covariances in N x n panel data (see formula (1.5) in [§]) when
both N and n tend to oo, possibly at different rate.

The above mentioned references are mainly about aggregation schemes for randomized autore-
gressive processes and ON/OFF processes. In the present paper we study aggregation procedures
for randomized INteger-valued Autoregressive Processes of order 1 (INAR(1) processes) with Pois-
son innovations in the so-called simultaneous case, and this work can be considered as a continua-
tion of the papers Barczy et al. [4] and Nedényi and Pap [12], where the iterated cases have been
studied. According to our knowledge, simultaneous limits have not been derived for aggregations
of randomized INAR(1) processes (or more generally for those of randomized branching processes
with immigration), our results are the first ones in this direction. In our forthcoming Theorems
L1 and the number of aggregated copies of a stationary randomized INAR(1) process with
Poisson innovations and the time scale both tend to oo simultaneously at a rate which could be
considered analogous to the fast growth condition for ON/OFF processes mentioned above.

Let Z,, N, R, Ry, and C denote the set of non-negative integers, positive integers,
real numbers, non-negative real numbers, and complex numbers, respectively. For =,y € R,



let xVy := max(x,y). We will use Pt for the weak convergence of the finite dimensional
distributions of stochastic processes with sample paths in D(R,,R), where D(R,,R) denotes
the space of real-valued cadlag functions defined on R,. Equality in distribution will be denoted

by Z

An INAR(1) time series model was first introduced by McKenzie [10] and Al-Osh and Alzaid
[1], and it is a stochastic process (Y)rez, satisfying the recursive equation

Yi_1

(1.1) Yk: ka,j—f—{fk, k‘EN,
j=1

where (ep)reny are independent and identically distributed (i.i.d.) non-negative integer-valued
random variables, (& )k jen are ii.d. Bernoulli random variables with mean «a € (0,1), and
Y, is a non-negative integer-valued random variable such that Yp, (& )k jen and (ex)ren are
independent, and we define Z?:l := 0. With the binomial thinning operator ao due to Steutel

and van Harn [I§], the INAR(1) model in (1)) can be written as
Y, =aoY._ 1+ ey, k eN,

which is very similar to an autoregressive model of order 1 (where o is replaced by the usual
multiplication). An INAR(1) process can also be considered as a special branching process with
immigration having Bernoulli offspring distribution. We point out the fact that the theory and
application of integer-valued time series models (such as INAR(1) processes) are rapidly developing
and important fields (see, e.g., the survey paper of Weif} [23] and Chapter 5 in the book of Turkman

et al. [22]).

As in Barczy et al. [4], we will consider a certain randomized INAR(1) process (Xj)rez, with
randomized thinning parameter «, given formally by the recursive equation

X = ao Xp_1 + ¢, keN,

where « is a random variable with values in (0,1) and X, is some appropriate random variable.
We will construct a process (Xj)rez, such that, conditionally on «, it is a strictly stationary
INAR(1) process with thinning parameter « and with Poisson immigrations. Conditionally on
«, the ii.d. innovations (gx)reny have a Poisson distribution with parameter A € (0,00), and
the conditional distribution of the initial value X, given « is the unique stationary distribution,
namely, a Poisson distribution with parameter A/(1—«). More precisely, let A € (0,00), and let
P, be a probability measure on (0,1). Then there exist a probability space (£2,.4,P), arandom
variable o with distribution P, and random variables {Xy, &, €k @ k,j € N}, conditionally
independent given « on (Q,.A,P) such that

P =1|la)=a=1-P(,;=0]a), k,jeN,
¢

A
Plep ={|a) = ﬁe_’\, teZy, ke N,

Ao
P(X0:€|a):me (1) )\, EGZJ’_’



for details see Barczy et al. [3, Section 4]. Note that the conditional distribution of ¢, k € N,
does not depend on «. Define a process (Xj)pez, by

Xk—1

X, = ng’j_l_gk’ k € N.
j=1

Then, conditionally on «, the process (Xi)rez, is a strictly stationary INAR(1) process with
thinning parameter « and with Poisson immigrations having parameter A\, see, e.g., Turkman
et al. [22, Section 5.2.1]. The process (Xj)rez, can be called a randomized INAR(1) process
with Poisson immigrations, and the distribution of « is the so-called mixing distribution of the
model. We note that (Xj)rez, is a strictly stationary sequence, but it is not even a Markov
chain (so it is not an INAR(1) process) if « is not degenerate, see Section 2 and Appendix A in
Barczy et al. [3]. Further, a strong law of large numbers does not hold for (Xj)rez, in the sense
that %Zzzo X does not converge to a constant as n — oo with probability one.

The conditional generator function of X, given «a € (0,1) takes the form
Fo(zo | @) == E(z" |a) = 70270 5 € D,

where D := {z € C: |z] < 1}, 1ie., conditionally on «, X, has a Poisson distribution
with parameter (1 —«a)~'A, and consequently the conditional expectation of X, given «a is
E(Xy|a) = (1—a)~'A. Here and hereinafter the conditional expectation E(Xj|«) is meant in the
generalized sense, see, e.g., in Stroock [19, §5.1.1]. Then, as the negative part of X, is 0, which
is integrable, the conditional expectation in question does exist in this generalized sense. The joint
conditional generator function of Xy, X,..., X given a will be denoted by Fy  x(z0,. .., 2k ]| @),
2o, ...,z € D. Let us remark that the choice of Poisson-distributed innovations serves a technical
purpose. It allows us to calculate explicitly the stationary distribution of the model and also the
joint characteristic function of finite dimensional distributions of the randomized process itself
(see Proposition [[3]).

Following the setup of our former paper Barczy et al. [4], we assume that the distribution of
the random variable «, i.e., the mixing distribution, has a probability density of the form

(1.2) () (1 —z)?, x € (0,1),

where ¢ is a function on (0,1) having a limit lim, ¢(x) = ¢ € (0,00). This is the
same mixing distribution as the one in Pilipauskaité and Surgailis [14, equation (1.5)] used for
randomized autoregressive processes of order 1. Note that necessarily [ € (—1,00) (otherwise
fol Y(x)(1 — 2)° dr = 0o) and the function (0,1) 3 x + ¢(z) is integrable on (0,1). Further,
in case of ¥(r) = %x“, x € (0,1), with some a € (—1,00), the random variable « is
Beta distributed with parameters a+1 and [+ 1. This is an important special case from the
historical point of view, since the Nobel prize winner Clive W. J. Granger used the square root of
a Beta distribution as a mixing distribution for independent random coefficient AR(1) processes,
and considered their contemporaneous aggregations, see Granger [6]. Note also that certain o

operators, where the summands are random parameter Bernoulli distributions with a parameter
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having Beta distribution, appear in catastrophe models. One can check that, under (L2), for each
¢ € R, the expectation E ((1 )l) is finite if and only if 8 > ¢ —1 (see, e.g., Barczy et al. [4]
Remark 4.5]).

Let aU), j € N, be a sequence of independent copies of the random variable « having
density function given in ([.2)), and let (X;gj))kem, 7 € N, be a sequence of independent copies
of the process (Xj)rez, with idiosyncratic innovations (i.e., the innovations (é,ij))kem, jeN,
belonging to (X,gj))kez+7 j € N, are independent) such that (X,gj))%@ conditionally on al) is
a strictly stationary INAR(1) process with thinning parameter o) and with Poisson innovations

having parameter A\ for all j € N.

For each N,n € N, consider the stochastic process SNV™ = (SI«/(N’H))teR+ given by

Nn) N [nt] ) N [nt] 0 A

n)._ J J

._§ E(Xk — E(X; § § <X aU))’ teR,.
j=1 k=1 Jj=1 k=1

We remark that if 8 € (—1,0], then the first moment of —— is infinite, so the centralization

11—
E(XY [a@) in SO could not be replaced by E(XY) in case of § € (-1 O] From
a statlstlcal point of view, it is also reasonable to con81der a process similar to S given

a(Nn) [nt] (4) 2 Xy ) :
by S, = ijl > i (Xk ), t € Ry, which does not require the conditional
expectations of the processes X, j E N.

An INAR(1) process may be used to model migration, which is an important task nowadays
all over the world. More precisely, given a camp, for all k& € Z,, the random variable X,
can be interpreted as the number of migrants present in the camp at time k, and every migrant
stays in the camp with probability « € (0,1) independently of each other (i.e., with probability
1 — a each migrant leaves the camp) and, at any time k € N, new migrants may come to
the camp. Given several camps in a country, we may suppose that the corresponding INAR(1)
processes are independent, and each one can have independent parameters « coming from a
certain distribution (in our case having a density function given in (.2])). So, the temporal and
contemporaneous aggregates of these INAR(1) processes is the total usage of the camps in terms
of the number of migrants in the given country in a given time period, and this quantity may be
worth studying.

In Barczy et al. [4] and Nedényi and Pap [12] limit theorems for appropriately scaled versions
of SN have been derived in the so-called iterated cases, i.e., first taking the limit N — oo
and then n — oo or vica versa for all possible 5 € (—1,00). (We note that in [4] and [12],

SM - was denoted by S™)

As the main result of the paper, in case of € (—1,0], we derive
limit theorems for appropriately scaled versions of S®™ in the so-called simultaneous case, i.e.,
when both N and n increase to infinity at a given rate. The case [ € (0,00) is of the greatest

interest, but it remains open, since our present technique is not suitable for this case (for more
details, see Remark [LH)).

1.1 Theorem. If € (—1,0), then

1 —B
~ 5058 D +8,,—
n~tN, 20 RN ERO RN (92(1+3)t)t€[g as n— oo and Npy7Pn!— 0,



where  Vaa4p) is a symmetric 2(1 + B)-stable random variable (not depending on t) with

characteristic function
- K 4|0]20+8)
E(elfV20+9) = e~ Kslf" "7 6 cR,

T(—
where Kg := ¢1(%)1+5—1(+g).
We note that Theorem [[.I] can be considered as a counterpart of Theorem 4.8 in Barczy et
al. [4], which is about the iterated aggregation case first taking the limit N — oo and then
n — oo in case of € (—1,0). The scaling factors and the limit processes coincide in these two

8

theorems. Heuristically, one might think that it is a consequence of the condition N,""n~! — oo

as n — oo in Theorem [[T], which in case of 5 € (— ,0) can be interpreted in a way that N,
1428 _ B

tends to oo much faster than n (indeed, N,n~!= N,/"" N, """n™! = 00-00 =00 as n — oo

in case of € (—1,0)). So this simultaneous case is more or less the above mentioned iterated
case. We mention that the same phenomenon occurs for randomized autoregressive processes of
order (1), see Pilipauskaité et al. [I3] (2.15) and (2.20)].

1.2 Theorem. If 5 =0, then
(N, log N,,)"2 2 GNnm) Dty — Wiy, V) ier, as n— oo and (logN,)’n™" — oo,

where Wiy, has a normal distribution with mean 0 and variance Ai;.

We note that Theorem can be considered as a counterpart of Theorem 4.9 in Barczy et al.
[4], which is about the iterated aggregation case first taking the limit N — oo and then n — oo
in case of [ = 0. The scaling factors and the limit processes coincide in these two theorems. For
this fact one might give a similar heuristic explanation as we did in case of Theorem [Tl (indeed,
N,n™! = (log N,,) 2N, (log N,,)>n™t — 0o - 00 = 00 as m — o0), and note also that the same
phenomenon occurs for randomized autoregressive processes of order (1), see Pilipauskaité et al.
[13, (2.16) and (2.21)].

In both Theorems [L.1] and the limit processes are lines with random slopes. So, similarly
as it was explained at the end of Section 4 in Barczy et al. [4], under the assumptions of Theorems

1
[0 and 2 we have n~LN, =7 §Wm) P4 as n— 00 and n- L(N,, log N,,)~2 S(Nnm) N
as n — 00, respectively. In principle, by applying some smaller scaling factors, one could try to

Q(Nn,n)

achieve a non-degenerate weak limit of S as m — 0o in these cases.

The proofs of Theorems [LIand are based on an explicit formula for the joint characteristic
function of (S , S(ln ), where n,m € N and 0=:ty <t; <ty <-- <ty Infact, we

t’!?L

derive two formulae for the characteristic function in question in the next proposition.

1.3 Proposition. Let n,m € N and 0=ty <t <ty <---<t,. Then the joint characteristic
function of ( (Ln ,...,St(jl’")) takes the form

(1.3) (exp {129 St }) /0 e Kn @y () (1 — a)? da

1



forall 0; € R, i =1,...,m, where for all a € [0,1],

Ko(a) = > (€%m =1 =16, ) (Inte] = [nt1])

/=1

[nte, | [nte, ]

+ Z Z ak2—h (ew‘lvm — 1) (ei%vm — 1)

<l1<ba<m klztnt[1,1J+1 ko= L’nt(2,1J+1

[y

o o ((Umtey J=k0)6e, 020y O am(Lnte) = nte—1 )+ (ka=1= [ty -1 Oy m )

m
i Z Z R (. 1)281(1:2—1@1—1)6@,7”

/=1 Lntg,1J+1<k1<k‘2<\_nth
with the notation 0;,, :=0;+---+0,, 7=1,...,m.

Further, we also have

m 1 _
(1.4) E (exp {12 egSt(el,n)}) _ / M@ (a)(1 — a)? da,
=1 0

where for all a € [0,1],

[ntm | [ntm]—1 N _ _ _
Kn(a) = Z [(1 _ CI,) Z a,k_é(eiee\/l,k 1= ieéva) + a\_nth—Z(elezvl,Lnth — 1= j@le’Lnth )]

{=—0c0 k=¢Vv1
Lnth—l |_nt J
k ig . ‘N a/ m i6~ '~
= > af(e™r —1—if) + e G Sl (RETM)
—a
k=1

[ntm | [ntm|—1 _ B _ "
+ [(1 B CL) Z ak—é(eiez,k — 1= i@g,k) + a[nth—Z(elez,meJ —1— ief,LntmD]
(=1 k=¢

with the notation ggk =yt §k7 1 <0<k < |ntn], where 5) — S Bl et
j=1,...,|ntw], and we define SVl .=,

Jj= Lnth :

Formulae ([3]) and (I4)) in Proposition [[3 have quite a different structure, and it seems to be
difficult to check their equality not using any ingredients of the proof of Proposition [[L3l However,
in Section 2] we present such a proof in case of m = 1. In the proofs we will use only (L.3)), but
we present (L4 as well, since it is interesting on its own right and it can be useful later on for
handling the case [ € (0,00) as well. We note that formula (I.4)) is based on an infinite series
representation of strictly stationary INAR(1) processes, recalled in Appendix [Bl

The proofs of Theorems [L.1] and are based on the explicit formula of the characteristic

function of (St(lN”’"), ce Sg”’")) given in ([L3), where 0 <t; <ty <...<t,, meN, and an

7



auxiliary Lemma [C.2] which gives a set of sufficient conditions for the convergence of the integral
N, fol <1 — eﬁz”(“)> Y¥(a)(1 —a)’da as n — oo, where (2,(a)).en is a sequence of complex
numbers. This proof technique is not suitable for handling other possible cases, e.g., the case
p € (0,00), these remain for future work (for more details, see Remark [[.3]).

In the next remark we compare our assumptions in Theorems [[.T] and with the correspond-
ing assumptions in Pilipauskaité et al. [I3] for analogous results about simultaneous aggregation
of random coefficient autoregressive processes of order 1.

=B
1.4 Remark. In Theorem [T (where 8 € (—1,0)), the condition N,""n~! — 0o as n — oo
yields that N, — 0o as n — oo and

I -8
NPt =N,N, P nt = o0 as n — 0o,

which is the form of the condition in Pilipauskaité et al. [I3] for their convergence (2.22) for
simultaneous aggregation of random coefficient autoregressive processes of order 1 with the same

_1
mixing distribution given in (L2). However, in case of 3 € (—1,0), the condition N,™”n~! — oo
as n — oo does not imply that N, "n~' — 0o as n — oo in general. Indeed, for example,

_1
if N, :=|n"Inn| with some v € (1+3,—1— %), then N,"n! ~ n_1+ﬁ(lnn)ﬁ — 00

. == ~1-8-18 =8
as n — oo, since —1+ 15 >0, but Na™n=' ~n~#F (Inn)™F — 0 as n — oo,

=B
since %ﬁ?ﬁ < 0. We note that the condition N, ™”n~! — o0 as n — oo in Theorem [I.1]

1
might be replaced by N,™"n~! as n — oo. However, a new proof technique would be needed,

=B
since our present one uses effectively that N,"n™' — oo as n — oo, for example, in the
proof of Theorem [[T] we argued that for large enough n and for any 2 € (N, ! /1], we have

NI O(1)] < |0(1)] (see @I3)).

In Theorem [L2] (where 3 = 0), the condition (log N,)?n™! — oo as n — oo yields that

N, - 00 as n — oo and N,n~ ! = n‘l(logNn)2(log]\f7]\7ﬂ)2 — 00-00 =00 as m — oo, which

is the form of the condition in Pilipauskaité et al. [I3] for their convergence (2.21). However,

the condition N,n™! — oo as n — oo does not imply that (logN,)?n™' — co as n — oo

in general. Indeed, for example, if N, := n? then N,n! =n — oo as n — oo, but

(log N,,)?n™t = 4n~'(Inn)> - 0 as n — oo. Further, one can check that
n~Y(N,log N,,) 2

lim - =1,
o0 n= ! (N, log (N /n)) ™2

where n~1(N, log(N,/n))"% is the scaling factor in (2.21) in Pilipauskaité et al. [I3]. Indeed,

i " alog N E o log Ny T lim ! T 1
n—oo n=1(N, log(Nn/n))_% ~ n—oo \ N, log N,, — N,, logn ~ nsoo \ 1 —logn/log N, -

since (logn/log N,)* = [(log N,,) *njn"*(logn)*> =+ 0-0 =0 as n — oo under the condition
(log N,,)?n™t — oo as m — oo. We note that the condition (log N, )?n™' — co as n — oo in

8



Theorem might be replaced by N,n~! as n — oo. However, a new proof technique would be
needed, since our present one uses effectively that (log N,,)?n~! — oo as n — oo, for example,

in the proof of Theorem we argued that —"—— f(ﬁ’;%)f)ﬁ)il 1dz = m (1 — N%) — 0

Ny, log Ny,

as n— oo (see (Z20)). O

In the next remark we shed some light on why our proof technique is not suitable for other
cases, e.g., the case [ € (0,00) being of the greatest interest, which remain for future work.

1.5 Remark. Motivated by the fact that Theorem [L.I] can be considered as a counterpart of
Theorem 4.8 in Barczy et al. [4], using Theorem 4.10 in Barczy et al. [4] (which is about the
iterated aggregation case first taking the limit n — oo and then N — oo incaseof § € (—1,1)),
one might suspect that in case of g € (—1,1) in the simlfltaneous aggregation case an appropriate

5 and with the same limit distribution as

limit theorem might hold with the same scaling n=:N,
in Theorem 4.10 in Barczy et al. [4] when both n and N,, increase to infinity at some appropriate
rate. Unfortunately, our proof technique used in the present paper, i.e. an application of Lemma

[C32] is not suitable for handling this case, since in order to fulfill condition (CH) of Lemma

“14p
one is forced to choose a sequence (g,)nen in (0,1) satisfying e, < LnN,'*” with some

constant L >0 and e, -0 as n — co. However, with such a possible choice of (g,)nen We
were not able to check the other two conditions of Lemma [C.2]

Very recently, for randomized autoregressive processes of order 1, Pilipauskaité et al. [13] have
found a somewhat new approach for studying simultaneous limits. Namely, they used an infinite
series representation of the stationary distribution of their model for calculating the characteristic
function of finite dimensional distributions in question. In our case, i.e., in case of randomized
INAR(1) processes, we also derived such a formula given in (IL.4]), and it is much more complicated.
As a future work, using it, we plan to handle the remaining case 3 € (0,00), where a completely
different limit behaviour is expected. O

The paper is structured as follows. Section Pl contains the proofs, first the proof of Proposition
and a direct proof of the equality of the formulae (I3]) and (4)) in case of m =1, then the
proofs of Theorems [[.T] and We close the paper with three appendices. In Appendix [Al we
recall the generator function of finite-dimensional distributions of stationary INAR(1) processes
with Poisson immigrations. Appendix [B]is devoted to an infinite series representation of strictly
stationary INAR(1) processes in question. Finally, Appendix [C] contains some approximations of
the exponential function and some of its integral extensively used in the proofs of Theorems [Tl

and

2 Proofs

For a non-negative integer-valued random variable (, its characteristic function and generating
function will be denoted by ¢, and G¢, respectively. For a non-negative integer-valued random



variable L and p € [0,1], Bin(L,p) will denote a random variable having a binomial distribution
with parameters L and p (meaning that the conditional distribution of Bin(L,p) given L =/,
¢ € Z,, is a binomial distribution with parameters ¢ and p). The notations O(1) and |O(1)]
stand for a possibly complex and real sequence (ay)ren, respectively, that is bounded and can
only depend on the parameters A, 1, [, and on some fixed m € N and 6,...,0,, € R.
Further, we call the attention that the multiple O(1) and |O(1)| notations in the same formula
do not necessarily mean the same bounded sequence.

Proof of Proposition [I.3] First, we prove (L.3)). Since

- -Tr 1,n
. O+ + 0, St(l )
. o] [SE] (bat 0| S S
> oS = | | = : : :
] LS| o | s - s
B e

by the law of total expectation, we have

R R )
/=1

[nte] A\
:/ exp Zegm Z (X —m)

k=|nt,_1]+1

where for all a € [0,1] we have

[nte]
A
exp E O0m g X — 1 a=a
-«
/=1 k=|nte_1|+1
—F [e—iﬁ Sy Oem(Inte] = nte—1))
X FO,...,Lnth—l <el€1’m7 A 7elel,m7 6192,m’ R 76192,m7 A elem’m7 tr ’elamym a= a)]

' ' g

[nt1] items |nt2]—|nt1] items [ntm |—|ntm—1] items

where recall that Fy . |ne,, J_1(Zo, oy Blntm | —1 | = a) denotes the conditional joint generating
function of (X, X1,..., X, -1) given a = a at (20,...,2n,-1) € C"ml. Then an

application of (A.2) yields (3.

Now we turn to prove ([L4)). Using again the law of total expectation we have

el

a=a|Y(a)(l—-a)da,




where, by (BI) and the fact that E(Xj|a) = 2= =AY 2 o, k € N, we get Lebesgue a.e.

a € |0,1],

Z < (k=£) 0O---0 a'l(gk—_éizl OEk_p— )\ae)

k
Z (al(f) 0-..0 a%}l o0&y — )\Clk_é>

Z (a,(f) 0-.-0 aéﬁl ogp— )\ak_z)
k=

—i—iZHZ- (a,(f)o-~-oaﬁloag—)\ak4)}>a

where for / =0 and k €N, a,(f_z) 0---0 a,(f__ﬁl o¢p_y 18 defined to be ej. Here

m 0o |
DI (ago._.oaﬁ)logg_mk_z)
= 30 3 (S tcan ) (ool o),

and

[t ] [ntm ]

=5 (S ) (oo o),
=1 k=¢ i=

Consequently, for Lebesgue a.e. a € [0, 1],

m [nt; |
exp ZG Z( k——)
=1

[ntm] |ntm]
:E<exp{i SDNACTS .oagﬁlow—w—f)})

l=—00 k={V1

11



Next we show that for all ¢ >0, n €N, and ¢ < |nt], ¢ € Z, we have

[nt]
<eXp { Z Qk (ak .0 a%ﬁl ogy — )\a’f—é) })

k=0V1
(2.1) !

[nt]—1 N N _ ~
= exp {)\ [(1 —a) Y d T =1 =il ) + M (@ — 1 — ierLLntﬂ] }
k=tv1

for all a € [0,1], which together with the independence of {gy : k € Z} and a,(f), Uk eZ,
yield (L4). First we prove (2.)) in case of 1 < ¢ < |nt], ¢ € Z, yielding that ¢V 1= /(. By the
tower rule we have for any a € [0, 1],

[nt] [nt]
o ot b)) et )

k=tv1

=E <exp {i(gg(fg —A)+ @H(aﬁl ogp—Aa) + -+ gtntJ—l(a(Li)tJ_1 6---0 aﬁzl ogy — )\aLNtJ—l—Z))}

x K <exp{19tntJ( )J 'Oaéﬁlow—)\amﬂ_é)}

= E <exp {i(gg(fg —A)+ @H(aﬁl ogp—Aa) + -+ gmtJ—l(a(LfL)tJ—l 6---0 aﬁzl ogy — )\aLntJ—l—Z)) }

4 4 4
<><L>J<>)>

[nt]—1°7"9%+1

—i0, ., Aalntl—¢ ~
% @ 101ntjNa (pBin(a(e) G an’a) (thJ)>

— e_i)‘gLntJaLntJie
x E (exp {i(g’g(sg —A)+ 5€+1(a£1 ogp—Aa)+ -+ 5LntJ—1(a(Li)tJ—1 0---0 aéﬁl 0cy— )\aLntJ—l—Z)) }

i0), al? o--0alt) ogy
X (1 — a+ ae”lnt ) Lt 1770

_ e_i)‘(glntJﬂaL””*1*‘-1—91””(11””*‘)
< E (exp {i@(ee =)+ (0 06— Xa) + o+ By a(allly o0 alf)y o e — Aal2) }

7 5 B I )
x (1 — a)emi=1 + el -1 01y ) Ul 2 0%105@) —

12



— e—i)\(ngJ71a\_ntj717Z+§Lmjamtj—l)
x E (exp {i(ge(az - A+ §z+1(agﬁl og—Aa)+ -+ gwjﬂ(a(é)”_z 0.6 aéﬁl oz, — )\aWJ‘%Z))}

x G

Bin (a(@” 720---oa§i)lo€g,a

) ((1 — a)eiaWFl + aei(atnﬂﬁatntj)))

_ e—iA(bﬂvlntJﬂaLnu714_1_5@”&@”4)
x E (exp {1<5£(6Z - )\) + §Z+1(CL2?1 OE&p — >\CL> + -+ gﬂ"tJ—Q(a(LfL)tJ—2 0-+--0 a§?1 ogp— )\atntJ_2_£>) }

(£) (£)
= L ~ @nt)—2° 0% 41°¢¢
x(1—a+ a(l _ a)elelntjfl + a2€1(9[ntJ71+9[ntJ)

[nt]—1
. nt] 5 j— 0, i0,
_ e_l)‘zk:te Oa® ZGQ <(1 _ a) Z ak—éelee,k + aL"tJ_éelgl,LntJ)
k=¢
) [t 1 _ _
— eI A op Lo x e A((1-a) Y at e gttt )
k=t

which coincides with

[nt]—1 _ _ ~ ~
(2.2) exp {)\ [(1 —a) Z aF ek — 1 —i6,) 4 al™ T (et — 1 — ieé,\_ntj)] },
k=(

as desired. Indeed, the coefficient of the constant term (not depending on 6;, j =/¢,..., |nt])
in the exponential of (22) is

nt|—1

L alntl=¢ 1
-1 —a) Z aF =t = Xal"=t = —\(1 - a)
k=t

Y LntJ—Z:_)\
a—1 “ ’

the coefficient of 5j, je{l,...,|nt] — 1}, in the exponential of ([2.2)) is

[nt]—1 nt]—j 1
—iN1 = k—Z_')\ \_ntJ—Z:_')\ 1— j—Zai_‘)\ LntJ—Z:_')\ j—¢
iA( a);a iXa N1 —a)a g iAa iAa’ ™,

the coefficient of élm | in the exponential of (2.2)) is —iXal™=t the coefficient of efent) in the
exponential of Z2) is Aal™~¢  and the remaining term (1 — a) ,Eitg_l aF—teller

well.

coincide as

13



Finally, we prove (2.1)) in case of ¢ < 0, ¢ € Z, yielding that ¢V 1= 1. By the tower rule
we have for any « € [0, 1],

|nt) |nt)
E <exp {i Oy <a,(f) 0---0 aé?l ogp— Aa’f“’) }) —FE (exp {129k<al(f) 0..-0 aéﬁl oes — Aak—f) })
k=1

k=0Vv1

= E (eXp {1<§1(a’§€) O---0 aEﬁZl o Ef _ )\al—f) + e + gl_ntJ_l(a\(_i)tJ—l O-+++0 aéﬁzl le) Ef _ )\a’l_nﬂ—l—f)>}

() (0) () (0)

x E (exp {igLntJ(a(\_i)tJ o---oa%ﬁ1 o0&y —)\awj_é)} Ay O 0yl OEp, . Ay 1 OO Ayl oeg))

=E <exp {i(@l(a@ 0---0 aé?l ogp—AaTH 4+ 4 gL"tJ_l(a(Li)tJ—l 0---0 aﬁl ogp— )\aL"tJ_l_Z)> }

—i0, alntl—¢ ~
X e 6L7Ltj)\ @Bin( ® (0) )(etnﬂ)>

4
Q) —107 00 OE0,a

e—ixéLmJatntH
o (eXp {i(gl(aga oo aﬁl ogg— a4+ 5LntJ—1(a(Li)tJ—1 0---0 aﬁl o0& — )\CLWJ_I_Z)> }
x(l-—a+ aeln) )“(LQtJl"""’“E?lOW)
_ e—i,\(b]m,laLntJ—1—z+§m”apnl4)
x E (exp {i(gl(agf) 0.0 agﬁl o — Al 4ot gtntJ_2(a(ﬁtJ_2 0.0 agﬁl oy — )\aLntJ—2_z)> }
X ((1 - a)ei(ﬂ"”* + aei(gtnﬂ1+§LntJ))“(L2tJ1""'002?105!)
_ e—i)\(gLntJ71aLntJ*1*2_;’_@1””(1@”7()

% (eXp {1(51(0,&@ O---0 a%ﬁl ogp — )\al—f) + -+ gtntJ_2(a(LfL)tJ—2 O-+-0 a%&l ogy— )\aLNtJ—Q—Z)> }

x G

Bin (a(ﬁ” 72o-~~oa§?10857a

) ((1 _ a)eigmuq + aei(gwj1+§wj)))
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— e—iA (éwj _jalnt] 717{""5\_7@ alnt] 711)

‘B <exp {i(m@ ovroall 05— 200 o By a(ally o0 all 02— Aal=) }

Lnt|—2°" oaéﬁlosg

o
X (1 —a+a(l —a)el-1 4 a2ei<5mu1+5mu>) )

[nt]—1
_ LntJ k—t 1 i 1 D
— 1)\2 Ora G ® ® - <(1 . a) § ak 16191* + aLntJ 16101’[””>.

[11 O- an+

Since for all ¢ <0, ¢ €Z, and a € [0,1],

agz) 0---0 aé?l ogp = Bll’l(&?g, -,

which can be checked by calculating the characteristic function of both sides (see also Turkman
et al. 22, Lemma 5.1.1]), using again the tower rule, we have

[t
<eXp { Z Qk <ak -0 a%ﬁl ogp— )\ak_é) })

k=tv1
L [nt]—1
s nt] 5 k—¢ _ _ 1o 1
_ oA Ora Gw(l_al £ g e<(1 —a) }: aF1eife o glnt] 161917WJ>>
k=1

nt|—1
= o AT fat exp{ A+ )\( a’~t 't ((1 —a) LXJ: ablefr 4 aL"tJ_leigl’WJ))}
k=1
lnt]—1
= o AT et exp { — A"+ M1 —a) Z aF~lelk 4 Aqlntl il L) },
k=1
which coincides with
lnt]—1

23)  exp {A [“ —a) D ke 1 i) + a1 151W] }

k=1

as desired. Indeed, the coefficient of the constant term (not depending on gj, j=1,...,|nt])
in the exponential of ([2.3) is

ntJ 1 aLntJ_l _ 1

A1 —a) Z aF =t — Xal"=f = —\(1 — a)a'* —dal"=t = _ g,

a—1

the coefficient of Hj, je{l,...,|nt] —1}, in the exponential of (23 is

[nt]—1 )

)\(1 ) Z k¢ i\ |nt|—¢ )\(1 ) j—ZaLntJ J—1
—1 —a a — 1AQ = —1 —a)a E——
a—1

k=j

—idal" =t = —i\ad

15



the coefficient of 5Lnt | in the exponential of [Z3) is —iXal"l~*, the coefficient of i) in the
exponential of Z3)) is Aal™~‘  and the remaining term A(1 — a) ,EmJ Lak—teie  coincide as

well. 0

Direct proof of the equality of formulae ([3) and (L4) in Proposition in case of
m=1. Incaseof m=1,forall a€ (0,1) and n €N, we have

Kn(a) = (e161,1 —1—i611)([nt:] — 0) + Z ahrh (eiel’1 — 1)2ei(k2_k1_1)9171]

1<k <ko<|nt1 |

1 ' . .
_ (6101 1 1‘91) LntlJ + Z akz—k1 (eu‘)l . 1)261(k2—k1—1)91] ’

l-a L 1<k <ko<|nit1 ]
and
_ |_nt1J—1 . . LntlJ ~ ~
Kn(a) _ Z ak(elel”“ —1—= iel,k) + (elel,tntﬂ —1— iel,anJ)
k=1 — @
[nt1]—1 N N . ~
+ Z (1 o a) Z ak—f(elee,k o 1 _ ieé’k;) ‘l’ a\_ntlj—é(elee,\_ntﬂ — ]_ — ie@,tntlJ)] s
=1 k=0
where
Op =00+ +0,=(k—(+1)0, 1<L<k< |[nt],
since g’] =01 1j<nty )y = 01 forevery j=1,..., |nt;|. Next, we derive a simpler form of I?n(a).
Namely,
[nt1]—1
= k( iko alm) i|nty]0
— k01 1 _ (MMl 1 3
K,(a) = ]; a* (e 1—ik6,) + 1_a(e 1 —i|nt,)6,)

Lntlj nt1J 1

(1—a) Z Z ab Tt (TN ik — 0+ 1)6))

(=1 k={

nt1J

+ Y altt T (D0 g (g | — 0+ 1)6,)
(=1

~+
-
[

nty|—1
. [nt1]
-y ak(elkel—l—ikﬁl)—i—cll (ellrIon — 1 it ]6,)
—a

Lntlj 1 k
(1—a) Z Zake (=0 1 —i(k — €+ 1)6))
k=1 (=1
[nt1]—1
+ Y a (U 1 —i(j + 1)6))
=0
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) Lntlj )
— af(e® — 1 —ik#,) + a4 (erJe1 —-1- iLntljé’l)
k=1 o
Lntlj 1 k-1 nt1J
(1—a) Za’ iG+1)0 1—1]—1—191 Zajl ”91 1—1]91)
k=1 35=0
[nt1|—1 . HET
= af(e® — 1 — kb)) + (erJe1 —-1- iLntljé’l)
k=1 —a
LntlJ—l k ntlj

+(1—a) Z Zaj_l (e — 1 —1ij6;) + Z @’ (eV — 1 —1j6,).
k=1 j=1

Next, by induction with respect to p € N, we prove that

1 1 (eiel —1—if)p+ Z qk2—k (ei61 o 1)2ei(k2—k1—1)61
— 1<k <ka<p
p—1 P
(2.4) — STk 1 k) + 1“— (e — 1 — ipf;)
—a

k=1
p—1 k P

+(1—a)) > (" =1 —ijfy) + Y a T (V" — 1 —156;)
k=1 j=1 j=1

for all a € (0,1), which yields that =K, (a) = Ko(a), n€N, a€ (0,1), in case of m = 1,
as desired. For p =1, (24) takes the form

a
m( 191 1= 1‘91> m( 191 1= 1‘91) ( i01 —1- 101)

which readily holds. Let us suppose that (2.4]) holds for 1,...,p, where p € N. Then, using the
induction hypothesis, the left-hand side of (2.4]) with p replaced by p+ 1 takes the form

1 . . .
- [(6101 1 191)(]9 + 1) + Z akQ—kl (6191 o 1)261(k2—k1—1)91]
— 1<k <ko <p+1
i0 :
1 1 [( N 1—ifp Y (e - 1)2ei(k2"“‘1)91] P At 1_ Lo
— 1<k <ka<p —
p
Z ap-i-l—k‘l (eiel _ 1)2ei(p+1—k‘1—1)01 —
1—a

k1=1

17



3
L

. p
= a®(e® — 1 —ik6)) + . a4 (et — 1 —ipbs)
—a
1

p—1 k ,
1 —a ZZCL 1J91 —1— 1]‘91) -+ Zaj—l(eijel _q_ 1]91)

k=1 j=1 j=1

B
Il

0116, 1 < . -

p+1—ky (101 1 2 i(p—k1)61

- + T4 kzla (e )7e
=

The right-hand side of (2.4]) with p replaced by p+ 1 takes the form

P . an .
Z otk(elke1 —1—1ik0) + I (el(”“)e1 —1-i(p+ 1)91)

—a
Pk ptl
33w 1) + S e -1y
k=1 j=1 Jj=1

so to prove that (2.4]) holds with p replaced by p+ 1, it is enough to check that

) p+l P .
(P 1 —iph) + 1“— (0 — 1 —i(p+ 1)6y) — la—(em"l 1 ip)
—Qa —Qa
p . .. .
+(1—a) Zoﬂ‘l(e”e1 —1-— ij@l) + a? (el(”“)e1 —1—i(p+ 1)91)
j=1

601 —1—191

i 1 & . .
_ — _ — Z Ptk (6191 i 1)2el(p—k1)91
k=1

=0, a€(0,1), 0, € R,

or equivalently

s (eip91 1 —ipf ) n p (ei(P+1)91 1 ( I 1>0 ) n (1 a) p aj_l( ijo1 -1 0 )
1—a pv1 . p 1 ;:1 764
et — 1 —if, a (ae®)P -1 .
— _ i 0 _q 2 — 1 R.
1—a 1—a aefr —1 (e ) =0 ¢ €(0,1), 6 €

After multiplying both sides by (1 — a)(ae'®* — 1), to prove that (Z4) holds it remains to verify
that

— (P — 1 —ipf))a" (ae® — 1) + (ei(f’”’l)@1 —1—ilp+ 1)91)ap(ae191 —1)
(2.5) +(1—a)? Zaﬂ Y —1—1j6;) — (ae®” —1)(e — 1 —i6,)
— a(aPe?? —1)(e?% —2¢% + 1) =0, aec(0,1), 6, €R.

18



Since

Zaj_l( 1701 1—1]«91) = e acift — 1 o a—l —i6, Zjaj 1,

Jj=1

we get that (2.5]) is equivalent to

— (P — 1 —ipf)a" (e — 1) + (T — 1 —i(p + 1)6;)aP (e — 1)

(2.6) +(1—a)??(a?e™ — 1)+ (1 —a)(a” — 1)(a” — 1) —i6,(1 — a)?*(ae” — 1) Zjaj—l

=1
101 101 : p . iph1 12601 101 _
— (ae” = 1)(et — 1 —10y) — a(aPe®* — 1)(e'* —2¢'" +1) =0, a€ (0,1), 6, €R.
The validity of (Z8]) can be checked by calculating the coefficients of e!(P2)%1 = eilp+Df — oipf1
0!, 201 ei% 9, and the constant term (not depending on 6;), and verifying that these are
all 0. We provide the details for e®+D% g%t and 6. The coefficient of €@+ on the

left-hand side of (2.0) is
—aP*t? —a? + (1 — a)*a? + 2a"*! =0,

the coefficient of et at the left-hand side of (28] is

p
ipa?*t? —i(p + 1)a"™ —i(a — 2a* + a?) z:jaj_1 +ia
=1

p p p
= ipa?*? —i(p+ 1)a?™ +ia —i (Z jal —2 ZjajJrl - Zjaj+2>
j=1 j=1 j=1
p+1 p+2
= ipa?™? —i(p + 1)aP™ + 1a—1<2ja3—223—1a]+23—2 ) 0,

and the coefficient of 6; at the left-hand side of (2.0) is

p
—ipa” ™ +i(p+ 1)a” +i(1 — 2a + a?) Zjaj_l —i
j=1

p+1 p+2
= —ipa”™ +i(p+ 1a —1—1—1(2]@3 1—22]—1@’ 1—1—2]—2@’ 1) =0.

O

Proof of Theorem [I.Il To prove thls limit theorem we have to show that for any sequence

(Ny)nen of positive integers with N”B 1 — 00, we have

1
— o D
n~IN, A Ghnm) Tt (Va48)t)ter, as m — 00.
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For this, by continuous mapping theorem, it is enough to verify that for any m € N and

to,t1, ..t € Ry with 0 =%y <t; <...<t,, we have

| A7 2R X ) o A

N, Z(Z(X %;Hl(x am),...
s Vaqam (o ts =ty ot — 1) as m— 00

So, by continuity theorem, we have to check that for any m € N,

)
=
hia

N ) (ei >ty 9z(tz—tz1)V2(1+5)> — o Kal 0L Oclte—te- 1)[20+8)

O=ty<t; <...<t, and 6q,...,0,, € R the convergence

[nte]
_1 I (4) A
<exp{ Zem Ny, Z Z (Xk “ 1= a0

J=1 k=[nt,_1]+1

m [nt,]

Nn
E( {m LN 2(1%)22‘9@ Z (X,ﬁj)—

j=1 (=1 k=|nte_1]+1

=1 k=|[nt;_;|+1

holds. Note that it suffices to show

O, =N,

/=1 k= L’ntg,lJ-i-l
2(1+8)

— Kp as n — 0o,

> Oulte — tes)
=1

since it implies that (1 — ©,,/N,)N — e KalXiz Oelte—te—1)
applying (A.2)) (or (I3)) to the left hand side, we get

\2(1+6)

) m [nte] A\
s —1ar 200+8)
E(exp{m Ny, Zé’g Z (Xk— I—a

as n — 00,

[ntm ]

(e

k= Lntmflj-i-l

1—aW

to,tl,...,tm S R+ with

as n — oo

L m [nte]
1—E<exp{in_1Nn_m295 Ze (Xk_l%)})]

as desired. By

J

o — 2(1+6 A
O, = N, E|1— e N 7 25 S0y Oullnte) ~Lnte 1))
) ) ) =)
in=1N, U7y in=1N, 219 g in—1N, 219 in=1N, U7 g
XF07___,\_nth—1<§ " Leoe " Leene " o " "
Vv Vv
[nt1] items [ntm |—|ntm—1] items

— N,E [1 - eﬁf‘n@} — N, /01 (1 —er aA"(“)) Y(a)(1 - a)? da
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with

" o1 7@ . —#
An(a) = Z(em Nn O _ 1—in 1Nn 1+5) 95>(Lntd - Lntg_lj)

(=1

\_ntll J Lntez J

1 1
B 4T 3048) . 1A 20048
+ E E § akg k1 (eln Ny 951 o 1) (eln Ny 952 o 1)
1<l <<

<m k1:|_nte1,1J+l k‘z:\_ntgz,lJ-i-l

1
o @n N, D ((Lntey J=k1)00 +302, ! Oc((nte] ~Intes ))+-(ka—1|nte, 1 ])0r, )

m 1 1
X Z Z ak2—k1 (einlen 248y, 1)2ein*1Nn 2048) (ky—ky1—1)0,
(=1 |nty_q1|+1<ki<ko<|nty]
for a € [0,1]. The aim of the following discussion is to apply Lemma with z,(a) := A,(a),
B
neN, ae(0,1), &,: =N, neN, and

m 2(1+8)

Z Oo(te — to—1)

(=1

I =y 'K

Since f§ € (—1,0), we have ¢, € (0,1) for n > ng, where ny is sufficiently large, and
lim,, o0 €, = 0. First we check (CH]). Using (C2), for any a € (0,1) we get

m 1 p2
Au(@)l € D20 2Ny Lt ] — L)
/=1

oY n2 N 1041160, (Lnte, | — Lt ))(Inte, ] — |nte, 1)

1<l <la<m

#3028ty — [t D) (Lnte] — ntis) — 1)
/=1

N | —

m 2 m 2
_ 1 1 1
Wt (S e~ tea)) ) < 5 (S et v 1)

=1
since %(Lntd — |nte_1]) < %(ntg —ntp1+1) =ty —ty 1+ % <ty—t;_1+ 1. Consequently, since
1

e, !N, = N, we have

sup €,'N,, sup |A,(a)] <

n=no ac(0,1—ey)

m 2
(Z 10| (te — oy + 1)) < o0,
(=1

N~

1
i.e., (CA) is satisfied. Therefore, by Lemma [C.2] substituting a = 1 — 27N, """ with 2z > 0,
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the statement of the theorem will follow from
1

limsup N, [ o |1=em7 4|1~ ) da
n—00 1-N,ITP
(2.7)
e ) 1 1
— lim sup/ 1 — e)szani An(l—z*INn 1+6) @) 4y < o0
n—00 Nt
and
! A
lim ‘Nn 5 (1 — eﬂA"@) (1—a)’da— 1'
n—00 1-NIFB
(2.8) N 1 -
— lim <1 L AN A (127, m"))Z_(zw) -1l =0
n—o0 N;l
with
m 2(1+8) NE 2\ 8
I'= wl_lKﬁ Z QZ(tZ - tZ—l) = 5 Z eg(tg — tg_l) / (1 — e_z)z—(2+5) dz
=1 =1 0

o 2
0

where the first equality is justified by Lemma 2.2.1 in Zolotarev [25] (be careful for the misprint
in [25]: a negative sign is superfluous) or by Li [9, formula (1.28)].

Next we check ([2.7) and (2.8)). By Taylor expansion,

_ 1
inian 2(1+p8) 0,

1 1 1
—1=in"'N,, "0, + n 2N, "7 O(1) = n ' N, 2P O(1),

N ov 1 _1p2? __3 1
el Nn % _1—in7'N, 0, = —n"2N, ”BEZ +n 7PN, 2P O(1) = n 2N, TP O(1)

forall ¢€{1,...,m}, resulting

1 ) (T Ol lnte) — [nty 1)) L 2001, nO()

1 P 1
113 2n 2(1+ 1+
ZNn B Nn( B) Nn B

(2.9) AzN. P A, (1 -

1

1 1
for z > N, '. Indeed, for z > N, ! wehave 2> N, """ yielding 1—27'N,, """ € (0,1), and

1
A, 1— -
2N,HP

mo L R
=3 (e 0 _ 1 _inL, TP 0c) ([nte] — |nte-1])

(=1

Lntglj \_ntgzj 1 ko—Fk1 B 2(++/3)
+ Z Z Z (1 — ) Cn o — 1)

1
1<l <la<m k‘lz\_ntgl,lJ-i-l k:2=|_nte2,1J+l ZNn%JFﬁ

1 1
. to— R TeEn
5¢ eln’an 21+8) ((LntelJ—kl)Gzl +Zz2:[11+1 ef(LntlJ_LntlflJ)‘i'(k?_l_Lnt2271J)952) (ein’an 20+8) 0oy _ 1)
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m k2 —k1 1 1
i Z Z (1 _ ) (ein*1N7L 20y, 1)2ein*1Nn 2048 (ky—k1—1)6,
1

(=1 |nte_ | +1<ki<ko<|nte) 2N

:i(_Q i + 0(1)3 )(LntzJ—Lnté—lJ)

1 _3
7’L2 an+ﬁ ngNr?(lH?)

O(1 10 O(1 O(1 10 O(1
N () YR R TR T
1<t <lo<m 2N, P nNFH g2 NP NP nNZD 2 NP

X (Inte,] = [nte,a])([nte,] = [nte,1])

1 & O(1 i0 o) \? O(1
A3 (o) (o (o
ZNTL1+B nNr?(H/J’) n2Nn1+/J‘ Ni(1+5)

/=1

x (nte] = [ntea])([nte] = [nte = 1])

_ 2 OInte] — [nte]) N O(1)
2n2an%6 nQNi(liﬂ)
 Lictictyem O0be(Inte, | — [nte 1)) ([nte,] — |nte,1]) | O(1) N nO(1)
n2Nﬁ% N,f“iﬂ) anl%B

_ 2 Oi(nte] — [ntea])(Inte] — [ntea —1]) - O(1)  nO(1)

MNP N ZNg*
(S0, 0elnte] — [nte—r]))®  O(1)  nO(1)
- 1 + 3 + _2
2n2an+ﬁ N;(Hﬁ) ZN,?

where we used the following facts:

_ 1
QN D ((Lntey J=k1)6e, +302, !, 00(lnte] —Inte—1 ))+(ka—1—|nte, 1 ])6r, )
(2.10) 1
b Ta e 1
— oiln 2 o) _ 1+ N, X9 0(1)

_ 1 _ 1
(2.11) N T (4108 _ Ny TP O(1) _ gy N o(1),

due to |nti—1] +1 < ky < ko < |nte],




following from an application of Bernoulli’s inequality:

) ko—k1
1—— —1
2N+

By (23]), for large enough n and for any z € [1,00), we have

< ]{32 — ]{31 < Lnth

1= _1 -
ZanJrB anlJrB

_1
AzNa P ReA,(1—2"'N,

(T et — |ntea)))? (1 - ReO(l)) L nReO(1)
N0

)

2n?

NJJFB
o A2 Oelte — ten))” Lol AL Oelte — te))? L oWl
4 N+ 1 NIE
1 L B
since Ny, — 00 as n— oo, and nN, "7 <nN,”” — 0 as n — oo, hence we obtain for
large enough n,
/OO '1 _ eAzNJﬁAn(l—z*lN;ﬁ) L—(B+2) 4,
1

(2.12) . L L .
< / (1 + e)\anlJrB Re Ap(1—27'N, 1+6)) Z—(5+2) dz < 2/ z—(5+2) dz < 0.
1 1

Again by ([Z3), for large enough n and for any z € (N, ', 1], we have

NNFFA (1 N TR < A2 (300L Oe((nte] — [ntei]))?
2n?

2 1

< Z()‘(Zzlzl |9€|(t€ —lp1 + 1))2 + | 0(1)| + | O(l)|) < Z| O(l)| < |O(1)|’
N;(HB)

=)

where we used that z € (Nn_l, 1} and nN," — 0 as n — oo imply that

10| fOMI_ #lOW] _ 6y,

1 B
z T T
N, ™7 Nt N, ™

(2.13)

™

Hence, using (C.3), we obtain for large enough n

/1
Nyt

1

1
i+ N ]
1 — MNn An(l—z Nn, ) »—(2+6) 4

AzNJ%BAn(l — z—lNJﬁ) e

1
< \0(1)|e0<1>|/ ~048) 4 < oo,
0
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which, together with ([212), imply (2.1).
Now we turn to prove (238). By (CI), we have

Nyt
/ <1 — e—%(ZZ’Ll 9£(tz—te71))2)z—(2+5) dz| <
0

A Oelte = tee))® [N i) o AT Oty — t1))* NP
- 2 [ 2 =5

as n — 0o, hence (2.8)) reduces to check that lim, . I, = 0, where

[e%¢) 1
I, = / [eAzNN An(1=z"1N, TPy _ e—%@ﬁlemf—u,nf] —C+8) 45
Nyt

Applying again ([2.9]), we obtain

o0 T -
I1,] < / o~ oz (7 Oe(lnte | =[nte—1]))? | (2N, 20 0()+nn, TFP 0(1) _ 1’2—(2+5> dz
N 1

+
Nt

= I 4 12,

e — g (7L, Oe(lnte | —nte—1]))? o B (T Oelte—te-1))? | ,—(248) .,

Here, for z € (N, !, 00), we have

B

R - )
}ZNn 2(1+5) 0(1) +nN, * O(l)} < Z(Nn WD L N, ﬁ>| O( )|
and hence, by (C.3), we get

_ 1 __1
)eZN” 2045 o(1)4+nN, P 0o1) 1‘

1 1
< }ZN;%%W O(l) + nN;ﬁ 0(1)} e‘an 2(1+5) 0(1)+TLN,L 1+8 0(1)

/3
< Z(Nn 2(1+5) + N1+ )‘ O( )| (N 2(1+ﬁ)+ )|O(1)\

Consequently, for large enough n,

o0 L B
I < (N, T, )|0( W e 22 (7 Be(lnte) —nte-1 ))2+2 (N "0 40 N7 ) O] ,—(146)

(N ElgEw) +n |O |/ —*T =1 Oe(te—te—1))? ,—(1+8) dz,

that gets arbitrarily close to zero as n approaches infinity, since the integral is finite due to the

fact that
-8B

2
1 M & m
- Z <§ Qé(tz _ t€_1)> A O A Op(te—te—1))%/4 Z_(H'B), z >0,
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is the density function of a Gamma distributed random variable with parameters —f and

ANOoPL, ety — to—1))? /4. Further, by (CI)),

ﬁ@:i/m(;%QTLWW—WnFF;ﬁ%Zﬁﬂdmm—WfﬂW+%Qﬁkwmtzm — 1|28 g5
Nyt

e G )

(= /=1

y / o~ 5 (T Octe—te—1))* ,—(1458) 4,
Nyt

— 0 as n — oo.

This yields (Z8) completing the proof. O

Proof of Theorem [1.2. To prove this limit theorem we have to show that for any sequence
(N,)nen of positive integers with (log N,,)?n~! — oo, we have

n~' (N, log Nn)_% S(Nnm) Bty (Wi t)er, as n — 0o.

For this, by continuous mapping theorem, it is enough to verify that for any m € N and
to,t1,...,t,, € Ry with 0=:%y <t; <...<t,, we have

[nt1] [nt2 |
) A
(N, o ) Z(Z(X S ()
nt1J+1
[ntm |
3 Cﬂn_ A )
o k 1— ol
k=|ntm—1]+1
l>WA¢1(t17t2_t17"'7tm_tm—1) as n — 0.

So, by continuity theorem, we have to check that for any m € N, ty,t,...,t,, € Ry with

O=ty<ti <...<t, and 6,...,0,, € R the convergence
Nn LntZJ () )\
j
=1 J=1 k=|nte_, |+1

) N, m [nte) . \
<{<> S0 0o 2)

7=1 (=1 k=|ntp_1]+1

IE(Xp{MT%NgngQ_%ﬁiﬁg g% (xg—-lja)}>]Nn

(=1 k=|ntp_1]+1

R Ny (ST 0 (tg—ty_1))?
_)E<elzz_19e(te—tz1)WA1/)1) e as n — 00
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holds. Note that it suffices to show

D=
NE

0, =N,

w3 (-2

1-E (exp{in_l(]\fn log N,,)~
(=1 k=|nt,_1]+1

LA (e, 92(156 —ti1))?

as n — oo,

Ay (ST 0p(tp—tp_1))2
2

since it implies that (1 —©,,/N,)" — e~
(A2) (or (L3)) to the left hand side, we get

as n — 0o, as desired. By applying

1 .
1 — o= in (Nalog Na) ™3 20 57 04(Inte]—nte—1 )

0, =N, E

1 1
in~!(Nplog Nn)~ 26 in~ 1 (Nplog Nn)~ 26
XFO7...7|_nt7nJ_l<e ( n 10g n) 1,...,6 ( n 10g n) 1’...

S
~~

[nt1] items

1 1
N 7em*1(Nn log Na) ™ 26m ’einfl(Nn log N )™ 2 0, ‘ a)]

WV
[ntm |—|ntm—1] items

1
= N E [1 - eraf@)] Nn/ (1= e @) v(a) da
0
with

n L -1 1
B,(a) := Z(em {(Nnlog No)™20: _ | _ =1 (N, log Nn)_§94)(Lnth — |nte-1])

(=1

[nte, | [nte, ] . )
+ Z Z akz—kl (einfl(Nn logNn)7§9[1 . 1) (einfl(Nn logNn)7§€g2 . 1)

Sl<bosm ki=[nte, —1|+1 ko=|nte, 1]+1

—_

o it (N log Na) ™3 ((Lntey J=k0)0e, 5421y Oc(Inte | —{nte—y )+ (ka—1[nte, —1])00, )

m
. _1 L 1
+Z Z qk2—k (em Y(Nylog Np)~ 26, 1)2em L(Ny log Np) ™ 2 (ka—k1—1)6;
{=1 |nty_q1|+1<ki <ka<|nty]

for a € [0,1]. The aim of the following discussion is to apply Lemma with z,(a) := By(a),
neN, ae(0,1), & :=(ogN,)', neN, and I := (32U, Ou(te — te—1))%. Note that
en € (0,1) for n > ng, where ng is sufficiently large, and lim, ,, &, = 0. First we check
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([CH). Using ([C2), for any a € (0,1) we get
2

Ba(@)] < Y n (N log No)™ (Lt = [t

+ n”?(Nylog Nu) 700|106, (It | — [nte, 1)) ([nte, ] — [nte 1))

2

+ 30 n (Nalog N, (It — Lo ) (nte] — [ntir] 1)

:; 2(N,log N,,)~ (ZW@ |([nte] — Lnté—lJ))

—_

2
§(N logN (ZW@ tg—tg 1—|—1)> ,

since %(Lntd |nti—1]) < %(ntg —nty_1+1) =t — 1t —I— <ty —ty—1 +1. Consequently, since
= (log N,,)~!, we have

1 (& ?
sup £,'N, sup |Bn(a)| < = (Z 10| (te — to—1 + 1)) < 00,
nzno ac(0,1—ey) 2 —1
i.e., (CH) is satisfied. Therefore, by Lemma [C2 substituting a = 1 — 2N, ! with z > 0, the
statement of the theorem will follow from
1

lim sup N, B0 qq
n—o0 1—(log Np)—1
(2.14)
101;7}% Nnp 1
= lim sup/ 1— e’\7B"(1_ZN" )’ dz < o0
n—oo Jo
and
lim ‘N (1—e%Bn )da—]‘
(2.15) N
log Np, Nn _
— lim / (1 _ B (12 1)) dz— 1] =0
n—oo 0

with [ = %( Zn:l eg(tg — tg_l))2.
Next we check (ZI4) and (2I5]). By Taylor expansion,

A _1
¢ (Nnlos N "2 00— — i ~Y(N,, log N,) "2 + n "2 (N, log N,,) ™1 O(1) = n ™! (N, log N,,) 2 O(1),
L1 _1 92
e (Nalog N)"200 _ 1 i1 (N, log N,)) 20, = —n (N, log N~ 0 (N log N,)"2 O(1)
=n"*(N,log N,) "t O(1)
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forall ¢€{1,...,m}, resulting

AT 0(Inte] — [ntey )
z 2zn?log N, 2N;2 (log N,) N, log N,

Ny,

(NI

for z < N,. Indeed, z < N, yields that 1—z/N, € (0,1), and

[nte, | [t |

+ Z Z Z (1 B Ni)kQ—kl (einfl(anogNn)*%eel o 1)

1<l <bla<m klztnt[1,1J+l kzzt’ntnglJ-i-l

% einfl(Nn 10gNn)7% ((LmzlJ—kl)Gzl-l-Zﬁgllﬂ GZ(UWJ—Lmzf1J)+(k2—1—Lm‘/zzflJ)%) (einfl(Nn IOgNn)7%9z2 _ 1)

m kg—kl o 1 o 1
+Z Z (1 _ Nin) (em Y(N,log Nn) 260, 1)2em L(Np log Nn) ™2 (ka—k1—1)6;

(=1 |ntp_q |+1<ki<kao<|nty]

(& O N,
_Z( 2n2N, log N, _'_ng(anogNn)g)(L te] — [nte-1])

- 2 050) (e o) (o)

1<l <la<m

10, 0(1) o T
g (n(anogNn)% - n2Nn10gNn)(L”télJ [nte, 1)) ([nte, | — [nte,—1])

(100 (Lt (o)

1

1
2

x (nte] = [ntea])([nte] = [nte = 1])

_ X Oilnte] = ntea]) O(1)

B 2n2N, log N, n2(N, log Nn)%
. Zl<61<éggm eélefz(LntélJ - Lntfl—lJ)(Lnth - Lntb—lj) + O(l) nZO(l)
n?N, log N, (N,logN,)? ~ Nilog N,
2 07(Inte) — [ntea))([nte) — [nten — 1)) N 0(1) nzO(1)
2n2N,, log N,, (N, log Nn)% NZ2log N,
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(R 0t — [nten)))? L oM . nz0)
n 2n2N,, log N,, (N, log N, )% NZ2log N,,’

_ 1
where we used the corresponding versions of (ZI0) and (ZII) replacing N, *"*” by

(N, log N,)"2 and that
ko—k1
(1_i) :l_l_nzO(l)
N, N,

following from Bernoulli’s inequality. By (2.10), for large enough n and for any z € (0, N,), we
have

A 0,(Inte] — [ntey )
A& ReB,(1— N (Zé:l o([nte] — [nte 1J)) 1 Re O(1) )+ nReO(1)
- N 22n?log N, (N,log N,,)z N, log N,

AT Ou(Lnte] — |ntei]))? L o)
4zn?log N, N, log N,,’

< —
hence we obtain that

(log N)~* (log Np)~*
/ ‘1 _MEB(1-%) | s </ <1+6A%Ran(1—Nin)) dz
0 0

< log ) (1 . {_)\(ZZL ifz(};igg;vtnte—ﬂ)) + jzfﬂ 1(()){51])\1 }) -0

(2.17)

as n — 00, since

i (i Oe((te] — Lt ]))’

n—00 n?log N,

= O’
and, due to the assumption (log N,,)?>n~' — 0o as n — oo, we have

n B n log N,
N,log N, (logN,)? N,

— 0 as m — 00.
Note that for every z € ((log N,)™!, N,(log N,,)™') we have

‘ (1_i)'  MEIL 6 (te = teer + D) [0 »]O(1)

N, 2zlog N, Nn%(logN )g N, log N,
(2.18) 2
X 1 - I

since n(N,log N,,)™' = 0 as n — oo, as we have seen before.

Hence, using (C3]), we obtain for large enough n

Np(log Np)~ 1t
/ (log Ny) ‘1 B e)\%Bn(l—Nin) dz <
(log Nn)~1
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Ny (log Np)~*
</ o A2 B (=53] 4.
(log N,)—1

N, z
A—B, (11— —
co (1)

M Oel(te—ten +1)°  JO@], n|OQ)|

oy [N
L elOl / . dz < o0,
(log Ny)~1 2zlog N, zNé(log N,)3 N, log N,
since for every N, € N, we have
1 Nn(logNn)71 1
(2.19) —dz =1,
lOg Nn (log Np)—1 z
and
Ny, (log Np)~1 N —1 1
(2.20) L 1dz = (N — 1) — " 1—— ) o0
N, log N, (log Ny, )—1 Nn(logNn)2 (logNn)2 N,

as n — oo due to the assumption n~!(log N,)? — oo as n — oo. Together with (ZI7), this
implies (2.14).
Now we turn to prove (2.I5). By (2I7), the convergence (2.I5]) reduces to showing that

og N,)~1 m
(log Np)~* 2
as n — oo. Using (2.19), it is enough to check that
O, n) 1 m
/Nn(l Y <ex\%3n(1—zfn) -1+ A2 Oulte — té_l))2) dz| — 0
(log Ny,)~* 2zlog N

as n — oo. By applying (C4), (ZI0) and ([Z.I8), we have
Nn(logNn)71 m - 2

/ (e,\NZan(1—NLn) 1 A iy Oelte — te-1)) ) dz
Q

og N)~1 2zlog N,

Ny, (log Nyp) 1
g/ 1‘A&Bn (1—1)
(1ogNn)*1 2 < Nn

Nn z A(Zm_ Hg(tg — tg_l))2
g (1o 2 =1
+‘ 2 ( Nn) * 2-1og N,

2
B (1-57)

)dz

0, -1 m 2
< /N"(l &) 1AL 0] (te — te1 + 1)) N 10(1)] . n| O(1)] ol O]
< ' 2 2zlog N, an%(log Nn)% N, log N,

og Nn)71

oW o)l
2Nz (log N,)s  Vulog Ny

(Zm: Oo(ty — te—1)>2 B n—2<zm:9@(|_ntgj - Lntg_lj))

/=1 /=1

2

. A
2zlog N,

)dz
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. /N"“"gN"” 3 (XML Ot —ter +1)°  [O()] 7?0 ) jow
~ 2 422(log N, )2 22N, (log N,)3 = N2(log N,,)?

og Np)~1

oWl noQ)
2NZ(logN,)  Valog Nn

m

(Z (e — te-1)>2 - n_z(zm: Oc([nte] — L”té—lj)>

/=1 /=1

2

L
2zlog N,

) *

Indeed, the last but one inequality follows from

Nn z )\(Z?Ll Hg(tg — tg_l))2
)\jBn (1 B Fn) + 2zlog N,

<A\—B, (11—
z 2zn?log N,

o, Z)+A@jnwmmvmu»2
Ny,

A(Zgbﬂ Oc([nte] — Lntf—lJ)y AT Oolte — to-q))?

T 2zn?log N, * 2zlog N,

oW »oQ)
2Nz (logN,)  Valog Ny

~

m

(Z Oo(te — tz—1)>2 - n‘%iﬁg(Lntd - Lntf—lj)y

/=1

n A
2zlog N,

Y

and the last inequality from (a + b+ ¢)? < 3(a® + b* + %), a,b,c € R. Consequently,

/N”(logN”) <e,\@Bn(1—Nin) — 14+ Ay Oelte — te‘l))2> d
a

—0 — 00.
og N)~1 2zlog N, - as T ee

Indeed,

1 Nn(log Nn)™" 1 1 log N, 1 1
- Sde=——(logN, - - -
(log N, )2 /(logNn)l 2% logN,)2 <°g N, ) ogN, NoogN,

as n — oo, and hence

Ny, (log Nyp)~ 1
! / L dz—0 —
_— —dz as n — oo.
Ny (log N,)? (log N)~1 2?

Further, using the assumption (log N,,)?n™! — oo as n — oo, we have
n2 Nn(IOgNn)71 n2 7’L2 1
" ldz=— " (ogN,) YN, —1)=— " (1-—
VT oy 1 ™ S o) = w1 )

2
n log N, 1
_ 1——) =0 .
((log Nn)2) N, ( Nn) - as oo
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Moreover, ([2Z.19) yields that

1 Nn(logNn)71 1
1—3/ —dz—0 as n — oo,
Ni (log N,,)2 JogNn)=t  Z
and
1 Np(log Ny )1 d ) ) m 4 2
- (te—t ) —-n- ( te| — |nty— )
oy ) (300 =7 (bt~ e
2
‘(Zeg ty — to_ 1) —n_2<2«9@ ’n,tg — ntg_1J)> — 0 as n — oQ.
This together with (2.20) yield (2.13]), completing the proof. O
Appendices

A Generator function of finite-dimensional distributions
of stationary INAR(1) processes with Poisson immi-

grations

Consider a strictly stationary (usual) INAR(1) process (Xj)gez, with thinning parameter a €
(0,1) and with Poisson immigration distribution having parameter X € (0,00). Namely,

P1=1)=a=1-P(,=0),
>\€
(A1) Pley =1) = ﬁe—k, (e,

o N=1)\\k .
P(X,=k) = we—“—“) A kez,.

As it was recalled in Section Il (Xj)kez, is indeed a strictly stationary INAR(1) process.

A.1 Proposition. Under the assumption (AJl), the joint generator function of (Xo, X1, ..., X)),
k€ Zy, takes the form

Fo,. k(20,. .., 2k) = E(Zé(ozf(l : Zli(k)
(A.2) h\ -
-1 Z @’z — Dziga - z-1(z — 1)
0<i<j<k
forall ke N and z,...,2z, € C, where, for i =3, the term in the sum above is z; — 1.

For the proof of Proposition [AT] see the proof of Proposition 2.1 in Barczy et al. [3] (see also
Barczy et al. [4, Proposition 2.1]).
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B Infinite series representation of strictly stationary
INAR(1) processes

B.1 Lemma. Under the assumption (A1), we have
D (i —i
(B.1) (Xi)hez = <5k +> al o oall, o€k_,-) ,
i=1 kez

where {e : k € Z} are independent random variables with the same distribution as e, (given
in assumption ([(Adl)), and al(f), k.t €Z, are given by

i 14 . .
o [Xia& i ieN,
ak o1 .= ) .

0, if 1=0,

where 5,(3, jEN, k.l eZ, have the same distribution as &1 (given in assumption (A)),

and {ex:k €Z} and a,(f), k.l € Z, are independent in the sense that the families {ey : k € Z}
and {5,(3 :j € N}, k0 € Z, occurring in a,(f), k.l € Z, are independent families of independent
random variables, and the series in the representation (B.I) converge with probability one.

Lemma [B.1lis a special case of Lemma E.2 in Barczy et al. [2], where one can find a proof as
well.

C Approximations of the exponential function and some
of its integrals

In this appendix we collect some useful approximations of the exponential function and some of
its integrals.

We will frequently use the following the well-known inequalities:
(C.1) 1—e*<x, z € R,

(C.2) le™ — 1| < |ul, e — 1 —iu| <u?/2, uck.

The next lemma is about how the inequalities in ([C.2)) change if we replace u € R by an
arbitrary complex number (for a proof, see, e.g., the proof of Lemma B.1 in Barczy et al. [3]).

C.1 Lemma. For any z € C it holds that

(C.3) le* — 1| < |z[e!,
2
(C4) le* —1—z| < %eM.
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The next lemma is a variant of Lemma B.2 in Barczy et al. [4] (developed for proving limit

theorems for iterated aggregation of randomized INAR(1) processes), and we use it in the proofs
of Theorems [[.1] and [I.2

C.2 Lemma. Suppose that (0,1) > z + ¥(x)(1 — x)? is a probability density, where 1 s a
function on (0,1) having a limit lim,4 ¢ (z) =11 € (0,00) (and then necessarily € (—1,00)).
For all a € (0,1), let (zn(a))nen be a sequence of complex numbers, let ng € N, (£,)nsn, be
a sequence in (0,1) with lim, e, =0, and let (Np)nen be a sequence of positive integers
such that

(C.5) sup €, ' N, sup |zn(a)| < oo,
nzno a€(0,1—ey)
1 A
lim sup N, 1—em™a@| (1 —a)’da < o0,
n—oo l—en

lim
n—oo

1 A
Nn/ (1 - eﬁz"(“)> (1—a)’da— I‘ =0
1

—€n

with some I € C. Then
1

lim N, (1 - eﬁ%(“)) W(a)(1 — a)’ da = 1.

n—o0 0

Proof. For all a € (0,1) and for sufficiently large n € N, we have 1—¢, > a, hence, by (C.1l),

(C.6) Nulza(a)] € ene, "Ny sup |2,(0)] =0 as n — oo,
be(0,1—en)

thus we conclude lim,, o N,|2,(a)] = 0. By applying (C.3) and using (C.6), for any n € N and
a€(0,1), we get

A

1—a

(C.7) ‘Nn (1 - eﬁz’*“))‘ <N,

Zn(a)’e|ﬁ2"(“)| —0 as n — oo.

If n>ng and a€(0,1—¢,), then ;& <e,;' and
‘Nn <1 — eﬁz"(“)ﬂ <A supe'N, sup |za(a)] | e Przno en’ SUPac(o,1-en) 120 (@) —.
nzno a€(0,1—ey)
where C € R, (due to (CAl)). Since fol Y¥(a)(1 —a)’da =1, we have

N, /1—€n (1 - eﬁz"(“)) Y(a)(1 —a)’ da
0

1
[ (1= e @) 1010 @01 - 0 da
0

< /1 C(a)(1 —a)’da < oo
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for n > ny. Therefore, (0,1) > a+> C(a)(1 —a)” serves as a dominating integrable function.
Thus, by the dominated convergence theorem, the pointwise convergence in (C.1) results

1—en \
(C.8) lim N, (1 - em%(a)) Y(a)(1 - a)? da = 0.

n—oo 0

Moreover, for all n > ngy, we have

‘Nn /01 (1 - eﬁ%(a)) D(a)(1 — a)® da — i1

l—en \
< [ (1o ) v - 0)"da
(C.9) b
+ ‘Nn (1 - eﬁ%(a)) (¥(a) — ¥1)(1 — a)? da
l—en
1 A
+ Nn/ (1 — emz”(a)) (1—a)’da—1|,
l—en
where

A@[; (1 - ™) ((a) = ¥1)(1 — a)’ da

1
<<sw ww—mom/
a€ll—en,1) l—en

with  sup,ep—c, 1) [¥(a) —¥1] — 0 as n — oo, by the assumption lim,y ¢(z) = ¢;. Taking
limsup,,_,., of both sides of (C3), by ([C.) and the assumptions of the lemma, we obtain the
statement. a

1 — em2a*n(@) (1—a)’da,
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